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Moments of the Rank of Elliptic Curves

Steven J. Miller and Siman Wong

Abstract. Fix an elliptic curve E/Q and assume the Riemann Hypothesis for the L-function L(ED, s) for

every quadratic twist ED of E by D ∈ Z. We combine Weil’s explicit formula with techniques of Heath-

Brown to derive an asymptotic upper bound for the weighted moments of the analytic rank of ED. We

derive from this an upper bound for the density of low-lying zeros of L(ED, s) that is compatible with

the random matrix models of Katz and Sarnak. We also show that for any unbounded increasing func-

tion f on R, the analytic rank and (assuming in addition the Birch and Swinnerton-Dyer conjecture)

the number of integral points of ED are less than f (D) for almost all D.

1 Introduction

Let E be an elliptic curve over Q. The Birch and Swinnerton-Dyer conjecture predicts

that the geometric rank

rmw(E) := the rank of the Mordell–Weil group of E/Q

is equal to the analytic rank

r(E) := the order at s = 1 of the L-function L(E, s).

This implies in particular the Parity Conjecture:

w(E) = (−1)rmw(E),

where w(E) denotes the sign of the functional equation of L(E, s). Nekovár [29] shows

that this follows from the finiteness of the Tate–Shafarevich group. Denote by NE the

conductor of E/Q and by ED the quadratic twist of E by an integer D. If E/Q is given

by y2
= x3 + Ax + B, then an equation for ED is Dy2

= x3 + Ax + B. If D is square-free

and is prime to 2NE, we have the relation ([25])

w(ED) = w(E)χD(−NE),

where χD denotes the quadratic character associated with Q(
√

D). Thus among the

square-free integers D prime to 2NE, the Parity Conjecture implies that half of the

twists ED have odd Mordell-Weil rank, and the other half, even. Early experimen-

tal investigations (see for instance [3, 10, 11, 37]) suggested that a positive portion

Received by the editors January 5, 2010; revised October 1, 2010.
Published electronically June 20, 2011.
The first named author was partially supported by NSF Grants DMS0855257 and DMS0970067, and

the second named author was partially supported by NSF grant DMS0901506.
AMS subject classification: 11G05, 11G40.
Keywords: elliptic curve, explicit formula, integral point, low-lying zeros, quadratic twist, rank.

151

https://doi.org/10.4153/CJM-2011-037-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-037-7


152 S. J. Miller and S. Wong

of families of elliptic curves (including the family of all curves, curves with prime

conductor, one-parameter families, quadratic and cubic twists, etc.) have rank ≥ 2.

The numerical investigations can be misleading though, as the convergence could

be on the order of the logarithm of the conductor, which is still small for the fam-

ilies above. Recently Watkins [35] considered the family of cubic twists studied by

Zagier–Kramarz [37], and went far enough to see the percentage of the higher ranks

drop, with his data suggesting the proportion of rank 2 and higher tends to zero in

the limit.

On the other hand, the random matrix models of Katz and Sarnak ([20, §4 and

§5], [18, pp. 9–10]), which presuppose the Riemann Hypothesis (RH), predict that

half of the twists should have analytic rank 0, and the other half, analytic rank 1,

whence the average analytic rank over all twists should be 1/2. In fact, function field

analogues suggest that as the conductors tend to infinity, the limiting behavior of the

normalized zeros near the central point should agree with the scaling limit of eigen-

values near one of orthogonal groups (if we split by sign of the functional equation,

the even sub-family should agree with SO(even) and the odd with SO(odd)). See [4,

20,21] for general surveys on random matrix theory and [1,5,7,8,22,23,26,27,30,36]

for some of the many results on ranks in elliptic curve families as well as agreements

with scaling limits of random matrix ensembles.

Goldfeld seems to have been the first person to investigate the average rank of

elliptic curves in a quadratic twist family. His main tool is Weil’s explicit formula.

For the rest of this paper F denotes the triangle function

(1.1) F(x) = max(0, 1 − |x|).

The explicit formula says that the sum over powers of traces of Frobenius of ED,

weighted by F, is essentially equal to a sum of the Mellin transform of F extended

over the non-trivial zeros of L(ED, s). Under RH, each term of this latter sum is non-

negative. Since ran(ED) is the order of L(ED, s) at s = 1, to bound the average analytic

rank we are led to study the average of the non-Archimedean side of the twisted

explicit formula. In this way, Goldfeld [13] shows that under RH, for x ≫E,ǫ 1 we

have

(1.2)
∑

|D|<x

ran(ED) ≤ (3.25 + ǫ)
∑

|D|<x

1.

He also points out that any improvement of the constant 3.25 to a number strictly less

than 2 would imply that a positive portion of the twists would have analytic rank 0, a

statement which at present has been proved unconditionally only for special classes of

E. Heath-Brown [14] makes a major breakthrough by improving Goldfeld’s constant,

also under RH, from 3.25 to 1.5, and with D restricted to twists with the same root

number. This implies that under RH, a positive portion of the twists of E have rank

0 and 1, respectively. This improvement is a result of better control over the non-

Archimedean side of the twisted explicit formula, so Heath-Brown’s upper bounds

are in fact upper bounds for the average of the Archimedean side.

For the rest of this paper, the constants involved in any O, o, and ≪ expressions

are with respect to the variable x only and depend only on those parameters printed
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as subscripts next to these symbols. In particular, any unadorned O, o, and ≪ con-

stants are absolute. The elliptic curve L-functions are normalized to have functional

equation s → 2 − s, so s = 1 corresponds to the central point.

Theorem 1.1 Fix a positive, thrice continuously differentiable function W compactly

supported on (1/2, 1) or (−1,−1/2). Fix an elliptic curve E/Q, and assume RH for

every L(ED, s). For any positive integer k = oE(log log log x), as 1 + iτD runs through

the non-trivial zeros of L(ED, s) with τD 6= 0, we have

∑

D

[
ran(ED) +

∑

τD 6=0

( sin(τD(log x)/2)

τD(log x)/2

) 2] k

W
( D

xk/2 log2k+2 x

)
≤

1

2

[(
k +

1

2
+

1√
3

) k

+
(

k +
1

2
− 1√

3

) k

+ oE,W (1)
] ∑

D

W
( D

xk/2 log2k+2 x

)
.

We now investigate the consequences of Theorem 1.1. First, fixing a number

R > 0 and setting k = [R/e] + 1, we get the following weighted upper bound on

the density of large rank twists.

Corollary 1.2 Fix an elliptic curve E/Q, and assume RH for every L(ED, s). Then for

any fixed R > 0 and x ≫R 1, we have

∑

ran(ED)≥R

W
( D

x

)
≤ e−R/e

(
O(1) + oE,W ((e/R)R/e)

) ∑

D

W
( D

x

)
.

Remark 1.3 For k = 1, Theorem 1.1 is essentially due to Heath-Brown [14]. More

precisely, denote by ∆E(+) and ∆E(−) the set of square-free integers D prime to NE

for which L(ED, s) has root numbers +1 and −1, respectively. Then Heath-Brown

shows that

∑

D∈∆E(±)

ran(ED)W
( D

x

)
≤

( 3

2
+ oE(1)

) ∑

D∈∆E(±)

W
( D

x

)
.

It then follows that

∑

D∈∆E(+)
ran(ED)=0

W
( D

x

)
≥

( 1

4
+ oE(1)

) ∑

D∈∆E(+)

W
( D

x

)
,(1.3)

∑

D∈∆E(−)
ran(ED)=1

W
( D

x

)
≥

( 3

4
+ oE(1)

) ∑

D∈∆E(−)

W
( D

x

)
.(1.4)

The general outline of the proof of Theorem 1.1 follows that of Heath-Brown; specif-

ically, we make crucial use of his smooth averaging, resulting in a better asymptotic

constant in the theorem, cf. §4. Note that Heath-Brown considered a two parameter

family of elliptic curves; in general, one obtains better results the larger the family
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is (for example, see the larger support M. Young [36] obtains for the 1-level density

(or the better estimates on vanishing at the central point) for two-parameter fami-

lies of elliptic curves than S. J. Miller [27] obtains for one-parameter families).1 Our

main contribution is in the handling of certain truncated multivariable sums (Propo-

sition 4.3) and in the arithmetic applications (Theorem 1.9 and the corollaries). In

particular, for k > 1 Theorem 1.1 (and hence Corollary 1.2) can also be refined to

sum over D ∈ ∆E(±) only; we can even drop the condition (D,NE) = 1, at the cost

of introducing a tedious congruence argument on D in the proof of Theorem 1.1.

Such refinements, however, do not improve the lower bounds (1.3) and (1.4), so we

will not pursue these issues here.

From the proof of Theorem 1.1 we see that xk/2 log2k+2 x can be replaced by xk/2+ǫ

for any ǫ > 0, provided that we stipulate the o(1)-term on the right side be dependent

upon ǫ. We can then rewrite Theorem 1.1 in a more suggestive form:

(1.5)
∑

D

[
ran(ED) +

∑

τD 6=0

(
sin(

τD log T
k+ǫ )

τD log T
k+ǫ

) 2
] k

W
( D

T

)
≤

1

2

[(
k +

1

2
+

1√
3

+ ǫ
) k

+
(

k +
1

2
− 1√

3
+ ǫ

) k

+ oE,W,ǫ(1)

] ∑

D

W
( D

T

)
.

The factor k + ǫ in the τD-sum is due to the fact that the asymptotic formula

in (1.5) sums over |D| ≪W xk/2+ǫ. If we can prove a similar formula—even just

an upper bound—by summing over |D| ≪W xα for some fixed α, uniformly for

infinitely many k, then we would be able to prove that almost all ED have analytic

rank ≤ 2α + 1. The reason we need to take such a long sum is to ensure that the

main term dominates the error term in (1.5). Now, our argument leading up to (1.5)

is essentially optimal, except in one step where we estimate a difference of two terms

by bounding each term; cf. Remark 4.5.

Question Can we improve the main term in (1.5)?

Corollary 1.2 gives an upper bound for the weighted average of the multiplicity

of the (potential) zero at s = 1 of L(ED, s). This argument can be extended to count

non-trivial zeros of bounded height. We begin with some notation. If ED is an even

twist, then under RH the non-trivial zeros of L(ED, s) come in complex conjugate

pairs 1 + iτED, j with 0 ≤ τED,1 ≤ τED,2 ≤ · · · . If ED is an odd twist, then L(ED, s) has a

zero at s = 1; we label the remaining zeros as 1 + iτED, j with 0 ≤ τED,1 ≤ τED,2 ≤ · · · .

Finally, regardless of the parity of ED, define

τ̃ED, j = τED, j(log NED
)/2π.

1Additionally, in Heath-Brown’s analysis he only needed to study moments of the prime sums, whereas
for our applications towards bounding the analytic rank we must compute the moments of the full explicit
formula.
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Since
(

sin( x
2
)/ x

2

) 2
is decreasing for 0 < x < 2π, for any fixed α > 0, if for some

|D| ≫E 1 we have τ̃ED,3k < α/2π, then for this D and for every j ≤ 3k,

( sin(τED, j(log |D|)/2)

τED, j(log |D|)/2

) 2

>
( sin(α/2)

α/2

) 2

.

We invoke Theorem 1.1, noting that |D| ≤ x, since W is compactly supported on

(1/2, 1) or (−1,−1/2), and we get the following corollary.

Corollary 1.4 Fix an elliptic curve E/Q, assume RH for every L(ED, s), and let W be

as in Theorem 1.1. For any α ∈ (0, 2π), any integer k > 0 and x ≫k 1, we have

∑

τ̃ED ,3k<α/2π

W
( D

x

)
≤ O(1) + oE,W (1)

(
(sin α

2
)/α

2

) 2k

∑

D

W
( D

x

)
.

Remark 1.5 To deduce the corollary from Theorem 1.1, first note that since the

summands in the left side of the theorem are non-negative, the contribution from

the square-free D with 1
2
xk/2 log2k+2 x < D ≤ xk/2 log2k+2 x < D ≤ is already included

in the left side of the theorem. To run through all square-free D we can then apply a

geometric series, and to remove the square-free condition, a simple sieve argument,

all the while maintaining the denominator on the right side of the corollary (at the

price of scaling the numerator by a finite constant).

To put this result into context, recall that random matrix theory [19, §6.9, §7.5.5]

furnishes a family of probability measures for the scaling limits of classical compact

groups. For SO(even) and SO(odd) we have the measures v(+, j), v(−, j) on R, j =

1, 2, . . . , with respect to which Katz and Sarnak formulate the following conjecture.

Conjecture 1.6 (Katz–Sarnak) For any integer j ≥ 1 and any compactly supported

complex-value function h on R,

∑ ′

w(ED)=+1

h(τ̃ED, j) =

( ∑ ′

w(ED)=+1

1 + oE,h(1)

) ∫

R

h · dv(+, j),

where
∑ ′

D signifies that D runs through all square-free integers D. Similarly for v( · , j).

As is pointed out in [20, p. 21] and [18, p. 10], this conjecture implies that almost

all even (resp. odd) twists of E have analytic rank 0 (resp. 1). By choosing h to be

supported on an arbitrarily small neighborhood of 0 ∈ R, this conjecture implies

that for any fixed j and any ǫ > 0, there exists δ j(ǫ) > 0 so that

• δ j(ǫ) → 0 as ǫ → 0, and
• the set of square-free D for which τ̃ED, j < ǫ and w(ED) = 1 has density < δ j(ǫ).

In particular, for any ǫ > 0 the δ j(ǫ) (if they exist) form a non-increasing sequence

that converges to 0. With respect to this formalism, Corollary 1.4 can be viewed as

proving the existence of δ j(α/2π) under RH (instead of the full random matrix the-

ory conjecture), such that δ j(1/2π) → 0 as j → ∞. However, our present argument

does not allow us to replace (sinα)/α with an arbitrarily large constant by replacing

α/2π with an arbitrarily small number.
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Remark 1.7 If instead of sending ǫ to zero we kept ǫ fixed, we are asking about the

number of normalized zeros in a given neighborhood. The answer here can also be

predicted from the Katz–Sarnak conjectures; using the one-level density Goes and

Miller [12] have recently obtained explicit results for one-parameter families. Their

calculations are similar to those by Mestre [28] and Hughes-Rudnick [15].

Remark 1.8 The method leading up to Theorem 1.1 and the corollaries readily

extends to twists by higher order Dirichlet characters; cf. Remark 4.4. We can also

replace E by a cuspidal newform of weight 2 and trivial Nebentypus.

As we mentioned before, Random Matrix Theory predicts that almost all twists

of ED have analytic rank ≤ 1. Under RH alone we can show that the analytic

rank grows slower than any unbounded increasing function for almost all twists.

This is significantly better than what can be shown for an arbitrary elliptic curve;

from Mestre [28] we know that the rank of an elliptic curve E with conductor NE is

O(log NE/ log log NE).

Theorem 1.9 Let f be an unbounded increasing function on R. Fix an elliptic curve

E/Q, and assume RH for every L(ED, s). Then the set of integers D for which ran(ED) >
f (D) has density zero.

Proof Let f be an unbounded, increasing function on R. Then

∑

|D|<T

ran(D) ≥
∑

T/2<|D|<T

ran(D) ≥ f (T/2) × #
{

T/2 < D < T : ran(D) > f (D)
}
.

On the other hand, by Goldfeld’s theorem (1.2) the left side is OE,W (T). Since f is

increasing and unbounded, the number of such D must be oE(T), as desired.

Remark 1.10 This proof of Corollary 1.2 is essentially due to Heath-Brown. Our

original (longer) proof made use of the effective nature of Theorem 1.1 with respect

to k.

Conjectures of Lang (and others) giving height bounds for rational and integral

points on elliptic curves suggest that “most” elliptic curves have no integral points.2

Thanks to Theorem 1.9 and the work of Silverman, we can make this precise for

quadratic twist families. Let

(1.6) E : y2
= x3 + Ax + B

be a quasi-minimal model for E/Q (i.e., |4A3 + 27B2| is minimal subject to A,B ∈ Z).

Silverman [33, Theorem A] shows that there exists an absolute constant κ such that,

if the j-invariant of E/Q is non-integral for ≤ δ primes, then

(1.7)

[
the number of S-integral points

on the quasi-minimal model (1.6)

]
≤ κ(1+rmw(E))(1+δ)+#S.

2We would like to thank Joe Silverman for bringing this to our attention.
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Since (1.6) is quasi-minimal for E, up to a bounded power of 2 and 3, the Weierstrass

equation

(1.8) y2
= x3 + AD2x + BD3

is quasi-minimal for ED if D is square-free. Since the j-invariant is constant in a

quadratic twist family, Silverman’s theorem plus Theorem 1.9 immediately yields the

following conditional result that makes precise for quadratic twist families the heuris-

tic above on integral points.3

Corollary 1.11 Fix an elliptic curve E/Q, and assume RH and the Birch and Swinner-

ton–Dyer conjecture for every L(ED, s). Then for any unbounded increasing function f

on R, the set of integers D for which the Weierstrass equation (1.8) has more than f (NED
)

integral points has density zero.

Denote by EA,B the Weierstrass equation y2
= x3 + Ax + B so that 4A3 + 27B2 6=

0, and such that there exists no prime p with p4|A and p6|B. The latter condition

implies that the discriminant of this equation differs from the minimal discriminant

by at most 612. Also, as H(EA,B) := max(|A|1/3, |B|1/2) goes to infinity, we capture

all elliptic curves over Q. Under RH for the L-functions of all elliptic curves over Q,

Brumer [2] shows that as x → ∞,

∑

H(EA,B)≤x

ran(EA,B) ≤ (2.3 + o(1))
∑

H(EA,B)≤x

1.

The same argument for Theorem 1.9 readily yields the following result. Young [36]

has improved this, replacing 2.3 with 25/14; as this constant is less than 2, under RH

we find that a positive percentage of curves have rank 0 or 1.

Corollary 1.12 Assume RH for the L-function of every elliptic curve over Q. For any

unbounded, increasing function f on R, the set of elliptic curves EA,B, as ordered by the

height function H(A,B), for which ran(E) > f (H(A,B)) has density zero.

Lang [24, p. 140] conjectures that the number of integral points on a quasi-mi-

nimal model of any E/Q should be bounded solely in terms of rmw(ED). Silverman

[32, p. 251] conjectures that (1.7) should hold for all E with no δ-dependence. This

conjecture plus Corollary 1.12 would imply an analog of Corollary 1.11 for the set of

all elliptic curves over Q.

2 Explicit Formula

Fix a modular elliptic curve E/Q of conductor NE. Denote by an(E) the n-th coeffi-

cient of L(E, s). For any prime p ∤ NE, denote by αp(E) and αp(E) the eigenvalues of

the Frobenius of E/Fp. Define

(2.1) cn(E) =





αp(E)m + αp(E)m if n = pm > 1 and p ∤ NE,

ap(E)m if n = pm > 1 and p|NE,

0 otherwise.

3To see this, note that for any elliptic curve E ′/Q and for any prime p, we have ordp(NE′ ) ≤ 2 if
p > 3, ord3(NE′ ) ≤ 5, and ord2(NE′ ) ≤ 10 [17, p. 385].
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Note that cp(E) = ap(E). For any λ > 0, define Fλ(x) = F(x/λ), where F is the

triangle function given by (1.1) (F(x) = max(0, 1 − |x|)). Following Weil’s explicit

formula, we set

Φλ(u) =

∫ ∞

−∞
Fλ(x)e(u−1)xdx

(which is closely related to the Laplace transform of Fλ). Note that if s = 1 + it with

t ∈ R, then

(2.2) Φλ(s) = λ
( sin(λt/2)

λt/2

) 2

;

in fact, if Re(s) = 1, then Φλ is essentially the Fourier transform of Fλ. As ρ = β + iτ
runs through the zeros of L(E, s) with 0 < β < 2, counted with multiplicity, Weil’s

explicit formula [28, §II.2] says that

(2.3)
∑

ρ

Φλ(ρ) := lim
z→∞

∑

|ρ|<z

Φλ(ρ) =

log NE − 2
∑

pm>1

cpm (E) log p

pm
F
( log pm

λ

)
− 2 log 2π − 2

∫ ∞

0

( F(t/λ)

et − 1
− 1

tet

)
dt.

Note that |cpm (E)| ≤ 2pm/2. Since ‖F‖ ≤ 1, that means

∑

p,m
m≥3

cpm (E) log p

pm
F
( log pm

λ

)
≪

∑

p,m
m≥3

log p

pm/2
≪

∑

n>1

log n

n3/2
≪ 1.

The integral in (2.3) is O(1/λ), so for λ ≥ 1, the explicit formula now takes the form

∑

ρ

Φλ(ρ) =

log NE − 2
∑

p

cp(E) log p

p
F
( log p

λ

)
− 2

∑

p

cp2 (E) log p

p2
F
( log p2

λ

)
+ O(1).

Next, we study how the explicit formula behaves under quadratic twists. If p ∤
2NED (note that 2NE and D need not be coprime and D need not be square-free),

then

(2.4) cp(ED) := ap(E)
( D

p

)
, cp2 (ED) := cp2 (E).

Since ‖F‖ ≤ 1,

∑

p|2NED

F
( log p

λ

) log p

p

(
cp(ED) − ap(E)

( D

p

))
≪

∑

p|2NED

log p√
p
,

∑

p|2NED

F
( log p2

λ

) log p

p2

(
cp2 (ED) − cp2 (E)

)
≪

∑

p|2NED

log p

p
.
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Since log p ≪ p1/4, for |D| ≥ 2 the right side of both expressions above are

≪
∑

p|2NED

p−1/4.

As the summands are decreasing and there are at most 1 + log(2NED) terms, the sum

is bounded by ∑

p≤1+log(2NE|D|)
p−1/4 ≪E log3/4 |D|.

As ρD runs through the zeros of L(ED, s) with 0 < Re(ρD) < 2, the explicit formula

becomes

(2.5)
∑

ρD

Φλ(ρD) = log NED
− 2

∑

p

cp(E) log p

p

( D

p

)
F
( log p

λ

)

− 2
∑

p

cp2 (E) log p

p2
F
( 2 log p

λ

)
+ O(log3/4 |D|).

Remark 2.1 Though it does not matter for the purposes of this paper, we note

that we can improve the error term above, replacing O(log3/4 |D|) with (log |D|)1/2.

Clearly
∑

p|2NED log p/p ≪ ∑
p|2NED log p/

√
p, so it suffices to bound the latter sum.

This sum has ≤ 1 + log(2NED) terms, and the function log t/
√

t is decreasing for

t ≥ 8. Thus

∑

p| log(2NED)

log p√
p

≪ O(1) +
∑

p≤log(2NED)

log p√
p

≪
(

log(2NE|D|)
) 1/2 ≪E (log |D|)1/2,

as claimed.

Lemma 2.2 We have the estimates

∑

p

cp2 (ED) log p

p2
F
( 2 log p

λ

)
= −λ/4 + oE(λ),

∑

p

ap(ED)2 log2 p

p2
F
( log p

λ

) 2

= λ2/12 + oE(λ2),

which imply

∑

ρD

Φλ(ρD) = log NED
+
λ

2
− 2

∑

p

cp(E)
(

D
p

)
log p

p
F
( log p

λ

)
+ oE(λ).
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Proof If p ∤ 2NED, then by (2.4) cp2 (ED) = cp2 (E) and cp(ED) = ap(E); as L(s, E) is

a cusp form, we immediately obtain cp2 (E) = ap(E)2 − 2p. Thus

∑

p∤2NED

cp2 (E) log p

ps
=

∑

p∤2NED

ap(E)2 log p

ps
− 2

∑

p∤2NED

log p

ps−1
.

Up to the bad primes and a term holomorphic for ℜ(s) > 3/2, the two sums on the

right are (−1) times the logarithmic derivative of, respectively, the Rankin-Selberg

L-function of the cusp form associated with E with itself, and ζ(s − 1). Each of the

convolution L-function and ζ(s − 1) has a simple pole at s = 2. The Tauberian

theorem and trivially estimating the bad primes now immediately implies that both

−
∑

p<x

ap(E)2 log p

p
and

∑

p<x

cp2 (E) log p

p

are −x + oE(x) + O((log |D|)1/2). The first two claims now follow from partial sum-

mation, and the third follows from substituting the first claim into (2.5).

Set λ = log x and define

(2.6) βp =
ap(E) log p

p
F
( log p

log x

)
, Xk = xk/2 log2k+2 x.

In what follows, we will take D so that |D| ≤ Xk. From now on, assume4

(2.7) k = oE(log log log x),

whence OE(log3/4 |D|) = oE(log x). Combine all these and recall that NED
≪ NED2.

We now arrive at the final form of the explicit formula for ED, obtained by combining

the last definitions of λ and βp and the bound OE(log3/4 |D|) = oE(log x):

∑

ρD

Φlog x(ρD) ≤ log(D2) +
log x

2
− 2

∑

p>2

βp

( D

p

)
+ oE(log x).

We emphasize again that D need not be coprime to 2NE or square-free.

3 Moments of Analytic Rank

Below we reduce the proof of Theorem 1.1 to a weighted sum of the βp’s (defined in

(2.6)). Define

f (x,D) = 2 log |D| +
log x

2
, R(x,D) = 2

∑

p>2

βp

( D

p

)
;

4We choose this o-bound for k to simplify the exposition. The optimal choice would be that which
renders the O-term in Proposition 3.2 to be oE(log x), but such refinements have no material impact on
the arithmetic applications of the main theorem.
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we will apply this to our test function Fλ with λ = log x (which is why we have a

(log x)/2 term above). Let W be a positive, thrice continuously differentiable func-

tion with compact support on (1/2, 1) or (−1,−1/2). The k-th moment of the

twisted explicit formula, weighted by W , now becomes

∑

D

(∑

ρD

Φlog x(ρD)
) k

W
( D

Xk

)
≤

∑

D

(
2 log |D| +

log x

2
+ oE(log x)

) k
W

( D

Xk

)

+

k∑

r=1

(
k

r

)
(−1)r

∑

D

f (x,D)k−rR(x,D)rW
( D

Xk

)

+

k∑

r=1

(
k

r

)
oE,k

( k−r∑

i=1

(
k − r

i

)
logi x

∑

D

f (x,D)k−r−iR(x,D)rW
( D

Xk

))
.

We begin by tackling the first of the three sums on the right.

Lemma 3.1 For l ≥ 0, we have

∑

D

(
f (x,D) + oE(log x)

) l
W

( D

Xk

)
=

(
(k + 1/2) log x + oE,W (log x)

) l
[∑

D

W
( D

Xk

)
+ oW (Xk)

]
.

Proof Since W (x) = 0 if |x| ≥ 1, the sum in the lemma extends over |D| ≤ Xk only.

Thus with X ′ := xk/2, from (2.7) we see that

(
(k + 1/2) log x + oE(log x)

) l ∑

|D|>X ′

W
( D

Xk

)

≥
∑

|D|>X ′

(
f (x,D) + oE(log x)

) l

W
( D

Xk

)

≥
(

(k + 1/2) log x + oE(log x)
) l ∑

|D|>X ′

W
( D

Xk

)
.

The condition |D| > X ′ can be dropped at the cost of introducing a term

≪
(

(k + 1/2) log x + oE(log x)
) l ∑

|D|≤X ′

W
( D

Xk

)

≪W

(
(k + 1/2) log x + oE(log x)

) l

xk/2,

and the lemma follows.
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The rest of the paper is devoted to proving the following result. The proof of

Theorem 1.1 makes use of the conditional estimate only; we state the unconditional

result for comparison.

Proposition 3.2 For r > 0, we have the estimate

∑ ′

D

f (x,D)iR(x,D)rW
( D

Xk

)
=





(
2 log Xk +

log x
2

+ oE,W (log x)
) i( 1

3
+ oE(1)

) r/2
logr x

∑
D W

(
D
Xk

)

+OE,W

(
4rr3x3r

(
log X2

k +
log x

2

) r+i
/Xk

2
)

if r is even,

OE,W (4rr3x3r
(

log X2
k +

log x
2

) r+i+1
/Xk

2) if r is odd.

If we assume RH for every L(ED, s), then the O-term can be improved to

≪E,W cr
Err+3xr/2

(
log X2

k +
log x

2

) r+i

for some constant cE depending on E only.

Assuming the RH-estimate, we then see that

1

logk x

∑

D

(∑

ρD

Φlog x(ρD)
) k

W
( D

Xk

)
≤ (k + 1/2 + oE(1))k

∑

D

W
( D

Xk

)

+

k∑

r=1
r even

(
k

r

)
(1 + oE(1))r/2(k + 1/2 + oE,W (1))k−r(1/

√
3)r

∑

D

W
( D

Xk

)

+ OE,W

(
k4+kck

Exk/2
(

log X2
k +

log x

2

) 2k)
.

From (2.7) we have k = oE(log log log x) and Xk = xk/2(log x)2k+2, which im-

plies that this O-term is oE,W (Xk). We replace
∑

r even g(r) with the equivalent
1
2

∑
all r(1 + (−1)r)g(r). Expanding the rest of the second line above accordingly and

using (2.2) for Φ (note we have chosen λ to equal log x), we find

∑

D

[
ran(ED) +

∑

τD 6=0

( sin(τD(log x)/2)

τD(log x)/2

) 2] k

W
( D

Xk

)
≤

1

2

[(
k +

1

2
+

1√
3

) k

+
(

k +
1

2
− 1√

3

) k

+ oE,W (1)
] ∑

D

W
( D

Xk

)
,

and Theorem 1.1 follows.
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4 Poisson Summation

In this section we adapt Heath-Brown’s argument to reduce Proposition 3.2 to a

“multivariable prime number theorem” for elliptic curves, to be proved in Section

6.

We first set notation and then prove an auxiliary result. We define the Fourier

transform by

ĝ(y) =

∫ ∞

−∞
g(x)e−2πixydx;

this normalization of the Fourier transform facilitates applying the Poisson Summa-

tion formula later.

Recall that W is a positive, thrice continuously differentiable function with com-

pact support on (1/2, 1) or (−1,−1/2). Denote by Ŵl the Fourier transform with

respect to t of

Wl(x, t,Xk) :=
(

log(t2X2
k ) +

log x

2

) l

W (t).

Note that the integral defining Ŵl makes sense, since W (0) = 0.

Lemma 4.1 There exists a constant γW > 0 depending on W only, so that for Xk > 2

and integers l ≥ 0, m 6= 0, as t → ∞,

(a) |W (t)| < γW , |Wl(t)| < γW l
(

log X2
k +

log x

2

) l

,

and

|Ŵl| < γW l3
(

log X2
k +

log x

2

) l

min(1, |t|−3) for all l ≥ 1;

(b)

∫ xr

2

∣∣∣ ∂
∂t

(Ŵl(x,
Xkm

t
,Xk)

1√
t

)
∣∣∣dt

< γW max(1, l3)
(

log X2
k +

log x

2

) l

(Xk|m|)−1/2 min
(

1,
( xr

Xk|m|
) 3/2)

.

Proof For the rest of this proof, γi denotes a constant depending on W only. Since

W (t) is zero around an open neighborhood of 0 and since W has compact support,

∂3

∂t3
Wl(x, t,Xk) < γ1l3

(
log X2

k +
log x

2

) l

.

Apply integration by parts three times and recall that W has compact support. We

get

∣∣Ŵl(x, t,Xk)
∣∣ < γ2

1

|t|3
∫ ∞

−∞

∣∣∣ ∂3

∂y3
Wl(x, y,Xk)

∣∣∣dy

< γ3 l3
(

log X2
k +

log x

2

) l

min(1, |t|−3).
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The same argument yields the same estimate for ∂
∂t

Ŵl(x, t,Xk) with a different con-

stant (note 1/|t| < 1/|t|3 as 1/2 < |t| < 1). Consequently,

∣∣∣ ∂
∂t

[
Ŵl

(
x,

Xkm

t
,Xk

) 1√
t

]∣∣∣

≤
∣∣∣
( ∂

∂t
Ŵl

)(
x,

Xkm

t
,Xk

) Xkm

t5/2

∣∣∣ +
1

2

∣∣∣Ŵl

(
x,

Xkm

t
,Xk

)
t−3/2

∣∣∣ (chain rule)

<




γ4l3

(
log X2

k +
log x

2

) l∣∣∣
(

Xkm
t

)−3
Xkm
t5/2 +

(
Xkm

t

)−3

t−3/2
∣∣∣ if |Xkm/t| ≥ 1,

γ5l3
(

log X2
k +

log x
2

) l∣∣∣ Xkm
t5/2 + t−3/2

∣∣∣ if |Xkm/t| < 1

< γ6l3
(

log X2
k +

log x

2

) l

t−3/2 min
(

1,
∣∣∣ Xkm

t

∣∣∣
−2)

.

So if |Xkm| ≥ xr, the integral in the lemma becomes

< γ7l3
(

log X2
k +

log x

2

) l
∫ xr

2

t−3/2 t2

|Xkm|2 dt < γ8l3
(

log X2
k +

log x

2

) l x3r/2

|Xkm|2 .

On the other hand, if |Xkm| ≤ xr, then splitting the integral as
∫ Xk|m|

2
+
∫ xr

Xk|m| gives

< γ9l3
(

log X2
k +

log x

2

) l
(

(Xk|m|)−1/2 +

∫ xr

Xk|m|
t−3/2dt

)

< γ10l3
(

log X2
k +

log x

2

) l

(Xk|m|)−1/2.

Taking γW to be the maximum of the γi , the lemma follows for l > 0. The argument

for l = 0 is similar and simpler.

Recalling the definition of R(x,D)r, we have

(4.1)
∑

D

f (x,D)iR(x,D)rW
( D

Xk

)
=

2r
∑

D

f (x,D)iW
( D

Xk

) ∑

p1,...,pr>2

βp1
· · ·βpr

( D

p1

)
· · ·

( D

pr

)
.

Note that the primes p1, . . . , pr in the inner-sum above need not be distinct. In

particular, the product of the quadratic symbols is a non-trivial character precisely

when p1 · · · pr is not a square, and is zero if any p j divides D. We proceed accordingly.
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Contribution to (4.1) from those (p1, . . . , pr) whose product is a square

In this case, every prime in the r-tuple appears with even multiplicity, which means

(i) r is even, and (ii) the product of quadratic characters in (4.1) is 1 if every pi ∤ D,

and is zero otherwise. Thus the contribution in question is

(4.2) 2r
∑

p1,...,pr/2

(βp1
· · ·βpr/2

)2
∑

D6≡0(pi )

f (x,D)iW
( D

Xk

)
=

2r
∑

p1,...,pr/2

(βp1
· · ·βpr/2

)2
∑

δ|π ′

µ(δ)
∑

d

f (x, dδ)iW
( dδ

Xk

)
,

where π ′
= p1 · · · pr/2 and µ is the Möbius function.5 The terms in (4.2) with δ = 1

sum to

2r
∑

p1,...,pr/2

(βp1
· · ·βpr/2

)2
∑

d

f (x, d)iW
( d

Xk

)
=

2r

(∑

p

β2
p

) r/2 ∑

d

(
2 log |d| +

log x

2

) i

W
( d

Xk

)
.

By Lemmas 2.2 and 3.1, this is

=

(
2 log Xk +

log x

2
+ oE(log x)

) i(
1/3 + oE(1)

) r/2
logr x

∑

d

(
W

( d

Xk

)
+ oW (Xk)

)
,

where the factor of 2r was absorbed in the (1/12)r/2 factor.

We now bound the contribution from the terms in (4.2) with δ > 1. As W is

supported on either (−1,−1/2) or (1/2, 1), the d-sum below can be restricted to

|d| ≤ Xk/δ, and we find the contribution is bounded by

≪ 2r
∑

p1,...,pr/2

(βp1
· · ·βpr/2

)2
∑

δ|π ′

δ>1

∑

d

f (x, dδ)iW
( dδ

Xk

)

≪W 2r
(

2 log Xk +
log x

2
+ oE(log x)

) i ∑

p1,...,pr/2

(βp1
· · ·βpr/2

)2
∑

δ|π ′

δ>1

∑

|d|≤Xk/δ

1

≪W 2r
(

2 log Xk +
log x

2
+ oE(log x)

) i ∑

p1,...,pr/2

(βp1
· · ·βpr/2

)2
∑

δ|π ′

δ>1

Xk/δ,

(4.3)

5The Möbius function is multiplicative, and µ(pr) = (−1)r .
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where in the second line we use Lemma 4.1(a). Recall that π ′
= p1 · · · pr/2 with

p1 < · · · < pr. Hence
∑

δ|π ′,δ>1
1
δ =

∏
p|δ(1 + 1

p
) − 1 ≪ 2r/2/p1. Thus (4.3) is

≪ Xk23r/2
(

2 log Xk +
log x

2
+ oE(log x)

) i ∑

p

β2
p

p

(∑

q

β2
q

) r/2−1

≪ Xk2r/2(1/3 + oE(1))r/2−1
(

2 log Xk +
log x

2
+ oE(log x)

) i

logr−2 x.

Keeping in mind that
∑

D W (D/Xk) ≪W Xk, we see that if r is even, then the terms
in (4.1) coming from those (p1, . . . , pr) whose product is a square is

(

2 log Xk +
log x

2
+ oE(log x)

) i
(

1/3 + oE(1)
) r/2
(

log
r

x + OW (2
r/2

log
r−2

x)
)

∑

d

W
( d

Xk

)

.

Contribution to (4.1) from those (p1, . . . , pr) whose product is not a square

Set

(4.4)



π = p1 · · · pr,

π0 = largest perfect square divisor of π such that (π0, π/π0) = 1,

π1 = the product of the distinct prime divisors of π0, so π1 =
∏

p|π0
p,

π2 = the product of the distinct prime divisors of π/π0, so π2 =
∏

p|π/π0
p.

For example, if π = 25345378112
= (327411)22553, then π0 = (327411)2, π1 =

3 · 7 · 11, and π2 = 2 · 5.

We write D as j + mπ1π2 with m ∈ Z and j ∈ {0, 1, . . . , π1π2 − 1}. Note that

( D

π

)
=

( D

π2
1π2

)
=

( j

π2
1π2

)
=

( j

π2
1

)( j

π2

)
.

Then the contribution to (4.1) in question is equal to

2r
∑

p1,...,pr

π2>1

βp1
· · ·βpr

∑

j mod π1π2

( j

π2
1

)( j

π2

) ∞∑

m=−∞
f (x, j + mπ1π2)iW

( j + mπ1π2

Xk

)
.

Set e(z) = exp(2πiz). Applying Poisson summation gives

(4.5) 2r
∑

p1 ,...,pr
π2>1

βp1 · · · βpr

∑

j mod π1π2

( j

π2
1

)( j

π2

) ∞∑

m=−∞
Ŵi

(
x,

Xkm

π1π2
,Xk

) Xk

π1π2
e
(
− m j

π1π2

)
=

2rXk

∑

p1,...,pr
π2>1

βp1 · · · βpr

π1π2

∞∑

m=−∞
Ŵi

(
x,

Xkm

π1π2
,Xk

) ∑

j mod π1π2

( j

π2
1

)( j

π2

)
e
(
− m j

π1π2

)
.

We break the analysis into cases.
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Lemma 4.2 The contribution to (4.5) from m divisible by π1π2 is

O

(
23ri3

(
2 log Xk +

log x

2

) r+i xr/2

X2
k

)
.

Proof As π1π2|m, e(−m j/π1π2) = 1. If we did not have the ( j/π2
1) factor (which is

the case if π1 = 1), then the sum over j would be zero. In general it is present, and

the j-sum is bounded by the number of numbers at most π1π2 that share a divisor

with π1, which we may trivially bound by π1π2.

As βp =
ap(E) log p

p
F(log p/log x), we see each that prime is at most x, and for

p ≤ x we have |βp| ≤ (2 log p)/(
√

p) by Hasse’s bound (|ap(E)| ≤ 2
√

p). We use

Lemma 4.1(a) to trivially bound Ŵi by

Ŵi

(
x,

Xkm

π1π2
,Xk

)
≪ i3

(
log X2

k +
log x

2

) i

min
(

1,
( π1π2

Xk

) 3 1

m3

)

≪ i3
(

log X2
k +

log x

2

) i 1

X3
k m̃3

,

where we write m as π1π2m̃. The sum over m̃ converges, and we are left with

2rXki3
(

log X2
k +

log x

2

) i ∑

p1 ,...,pr≤x

π1 ,π2>1

2r log p1 · · · log pr√
p1 · · · pr

· 1

X3
k

.

Ignoring now the restrictions on the primes, our contribution is bounded by

22rX−2
k i3

(
log X2

k +
log x

2

) i
(∑

p≤x

log p√
p

) r

.

Since k = o(log log log x) and r ≤ k, we have6
(∑

p≤x
log p√

p

) r ≪ (2x1/2)r and thus

the contribution to (4.5) from m with π1π2|m is bounded by

≪ 22rX−2
k i3

(
log X2

k +
log x

2

)i

(2x1/2)r ≪ 23ri3
(

log X2
k +

log x

2

) i

xr/2/X2
k .

The error term from Lemma 4.2 is significantly smaller than the other error terms

that arise below. We may now assume that π1π2 ∤ m; in particular, m 6= 0. For

l = 1, 2, set

δl = (πl,m), πl = δlπ
′
l , m = δlnl.

6By partial summation,
∑

p≤x log p · 1

p1/2 ≤
∑

p≤x log p

x1/2 + 1
2

∫ x
2

∑
p≤u log p

u3/2 du. Using
∑

p≤u log p =

u + O(u/ log u) (see [9]), there is a c such that
∑

p≤x log p · 1

p1/2 ≤ 2x1/2
(

1 + c
log x

)
(in bounding the

contribution of the integral, it is convenient to split it to [2, x1/8] and [x1/8, x], where on the latter interval

we replace 1/ log u with 8/ log x). As r ≤ k = o(log log log x),
(

1 + c
log x

) r ≪
(

1 + c
log x

) log x ≪ ec , and

thus
(∑

p≤x
log p√

p

) r ≪ (2x1/2)r .
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Since (π1, π2) = 1, by the Chinese remainder theorem we may write j as j = j1π2 +

j2π1 with j1 ∈ {0, . . . , π1 − 1} and j2 ∈ {0, . . . , π2 − 1}. The j-sum in (4.5) is thus

(4.6)

[ ∑

j1(π1)

( j1π2

π2
1

)
e
(
−m j1

π1

)][ ∑

j2(π2)

( j2π1

π2

)
e
(
−m j2

π2

)]
=

(
π1π2

)[ ∑

j1(π1)

( j1

π2
1

)
e
(
−m j1

π1

)][ ∑

l2(π ′
2 )

( l2

π ′
2

)
e
(
−n2l2

π ′
2

) ∑

j2(π2)

j2≡l2(π ′
2 )

( j2

δ2

)]
,

where we used the fact that π1 and π2 are relatively prime to replace (π2/π
2
1) with 1.

Note that the j2-sum in (4.6) is zero unless δ2 = 1. As ( j1/π
2
1) = ( j1/π1)2, we see

that we have the principal character, and the j1-sum becomes a Ramanujan sum, as

the Ramanujan sums are defined by

S(π1,m) :=
∑

d|(π1,m)

µ
( π1

d

)
d =

∑

j1 mod π1
( j1 ,π1)=1

e
( m j1

π1

)
.

While we have a negative sign in the exponential’s argument, this does not matter

as its presence is equivalent to taking the complex conjugate of the Ramanujan sum;

as the Ramanujan sum is real valued, we may add or remove the minus sign. Note

π1 = δ1π
′
1 and δ1 = (π1,m). As π1 is square-free, we must have δ1 and π ′

1 relatively

prime. In particular, if d|δ1, then d does not divide π ′
1, so in this case µ(π ′

1δ1/d) =

µ(π ′
1)µ(δ1/d). Thus the j1-sum is just

∑

d|δ1

µ
( π ′

1δ

d

)
d = µ(π ′

1)
∑

d|δ1

µ
( δ1

d

)
d.

As δ1 is a product of a subset of the r primes, we may write δ1 = pν1
· · · pνℓ . Using

the multiplicativity of the Ramanujan sums, we find the d-sum equals (pν1
− 1) · · ·

(pνℓ − 1) = ϕ(δ1) (where ϕ is Euler’s totient function).

Using the above, (4.6) simplifies to

=

( π1

π2

)
µ(π ′

1)ϕ(δ1)
∑

j(π2)

( j

π2

)
e
(
−nδ1 j

π2

)

=

( π1

π2

)
µ(π ′

1)
ϕ(δ1)

√
π2

1 + i

( −nδ1

π2

)(
1 − i

( −1

π2

))
,

by the standard quadratic Gauss sum calculation. Note |(π1/π2)µ(π ′
1)ϕ(δ1)| ≤ δ1.

In the analysis below, remember m = n1δ1 6= 0. Thus the terms in (4.5) where π1π2

does not divide m contribute

≪ 2rXk

∑

p1,...,pr

π2>1

βp1
· · ·βpr

π1
√
π2

∑

δ1|π1

∑

|n1|6=0

Ŵi

(
x,

Xkδ1n1

π1π2
,Xk

)
δ1

( ±n1δ1

π2

)

≪ 2rXk

∑

|n1|6=0

∣∣∣∣
∑

p1,...,pr

π2>1

βp1
· · ·βpr

∑

δ1|π1

( ±n1δ1

π2

) 1

π ′
1

√
π2

Ŵi

(
x,

Xkn1

π ′
1π2

,Xk

)∣∣∣∣ .

(4.7)
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There is no contribution from any n1 divisible by a p j that divides π2 because of the

presence of the factor (n1δ1/π2).

We now estimate (4.7) in two ways, first unconditionally and then assuming RH.

Unconditional Estimate

Since ‖F‖ ≤ 1, we have |βp| ≤ 2 log p√
p

(and βp = 0 if p > x). Letting u = π ′
1π2, we

rewrite (4.7) as

(4.8) 2rXk

∑

|n1|6=0

∣∣∣∣
∑

u≥2

Ŵi

(
x,

Xkn1

u
,Xk

) 1√
u

∑

p1,...,pr

π2>1
p1···pr=u

Q(p1, . . . , pr, n1)

∣∣∣∣ ,

where

Q(p1, . . . , pr, n1) := βp1
· · ·βpr

∑

δ1|π1

( ±n1δ1

π2

) 1√
π ′

1

.

As δ1 is a product of at most r distinct primes, there are at most 2r terms in the δ1-sum

in Q(p1, . . . , pr, n1). Since F vanishes outside (−1, 1), we have βp = 0 if p > x. We

use Lemma 4.1(a) to bound Ŵi , and we see that

(r.h.s. of (4.7))

≪W 2rXk

∑

|n1|6=0

∑

p1,...,pr<x

2r log p1 · · · log pr

p1 · · · pr

(p1 · · · pr)
3

X3
k |n1|3

i3(log Xk + log x)i

≪W 4ri3
(

2 log Xk +
log x

2

) i

x3r/X2
k ,

where we trivially bounded
∑

p≤x p2 log p with x2
∑

p≤x log p ≪ x3.

RH Estimate

Note that if p1 · · · pr ≥ xr, then Q(p1, . . . , pr, n1) = 0 for any n1 because one of the

βp terms vanish. In particular, the u-sum in (4.8) is a finite sum. To evaluate this

u-sum we proceed by partial summation. That calls for the following estimate, to be

proved in Sections 5 and 6.

Proposition 4.3 Assume RH for every L(ED, s), and let U ≤ xr with x ≥ 10. Then

there exists a constant cE depending only on E so that, for any integers m, r > 0, as

p1, . . . , pr run through all prime numbers,

∑

p1···pr≤U
π2>1

(p1, . . . , pr, n1) ≪ (cEr)r
[

log NE + log |n1| + log x
] r

log2r+1 x.
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Assuming this, the u-sum in (4.8) is

=

[ ∑

p1···pr≤xr

π2>1

Q(p1, . . . , pr, n1)

]
Ŵi

(
x,

Xkn1

xr
,Xk

) 1√
xr

−
∫ xr

2

[ ∑

p1···pr≤t
π2>1

Q(p1, . . . , pr, n1)

]
∂

∂t

(
Ŵi

(
x,

Xkn1

t
,Xk

) 1√
t

)
dt

≪W (cEr)r
[

log NE + log |n1| + log x
] r

log2r+1 x × i3(log Xk + log x)i

×
[

1√
xr

min
(

1,
∣∣∣ xr

Xkn1

∣∣∣
3)

+
1√

Xk|n1|
min

(
1,
∣∣∣ xr

Xkn1

∣∣∣
3
2
)]

≪E,W rr+3cr
E(log Xk + log x)i

[
log |n1| + log x

] r log2r+1 x√
Xk|n1|

min
(

1,
∣∣∣ xr

Xkn1

∣∣∣
3
2
)
.

(4.9)

Consequently, (4.8) becomes

≪E,W rr+3cr
E(log Xk + log x)i

∑

|n1|6=0

(log |n1| + log x)r

√
Xk√
|n1|

min
(

1,
∣∣∣ xr

Xkn1

∣∣∣
3
2
)
.

Thus the contribution to the n-sum from those |n1| ≥ xr/Xk is

≪E,W rr+3c̃r
E(log Xk + log x)i

√
Xk

∑

|n1|≥xr/Xk

(log |n1| + log x)r 1√
n1

( xr

Xkn1

) 3
2

≪E,W rr+3c̃r
E(log Xk + log x)i

√
Xk

( xr

Xk

) 3/2 ∑

|n1|≥xr/Xk

(log |n1| + log x)r

n2
1

.

(4.10)

We now proceed to analyze (4.10). We claim that the n1-sum is bounded by

O((log Xk + log x)r+1 (Xk/xr)).

We split the n1-sum into two cases, |n1| ≤ Xk and |n1| > Xk, where Xk =

xk/2 log2k+2 x. In the first case, we replace (log |n1| + log x)r with (log Xk + log x)r.

The resulting n1 sum is dominated by 2
∑

n1≥xr/Xk
1/n2

1, which is O(Xk/xr).

Consider now |n1| ≥ Xk, and remember 0 < r ≤ k = o(log log log x). The claim

is trivial if r = k = 1. We may thus assume k ≥ 2, which implies Xk ≥ x so |n1| ≥ x.

We have (log |n1|+log x)r ≤ 2r logr |n1| and 2r ≪ log log x. We are left with bounding

∑

|n1|≥max(x,xr/Xk)

logr |n1|
n2

1

.

Note that

logr |n1| ≤ |n1|r log log |n1|/ log |n1|,
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and the exponent is decreasing with increasing |n1|.
Assume first xr/Xk ≥ 10. We thus have

∑

|n1|≥xr/Xk

logr |n1|
n2

1

≤ 2
∑

n1≥xr/Xk

n
−2+r

log log(xr/Xk)

log(xr/Xk)

1 ≪
( xr

Xk

)−1+r
log log(xr/Xk)

log(xr/Xk)

=
Xk

xr
· exp

(
log(xr/Xk) · r

log log(xr/Xk)

log(xr/Xk)

)

≤ Xk

xr
·
(

log(xr/Xk)
) r ≤ Xk

xr
· rr · logr x ≤ Xk

xr
(log Xk + log x)rkk;

however, kk ≤ log x (to see this, taking logarithms leads us to compare k log k and

log log x, and log log x is clearly larger, since k = o(log log log x)). Combining the

above with the factor of 2r ≪ log log x ≪ (log Xk + log x) proves the claim in the

case xr/Xk ≥ 10. If instead xr/Xk ≤ 10, we argue similarly, except now the n1 sum

starts at x instead of xr/Xk, and we may add the factor of Xk/xr to our bound, as it is

bounded below by 1/10 .

We use the above analysis to finish bounding the contribution to the n1-sum from

|n1| ≥ xr/Xk. Substituting into (4.10) yields that the contribution is bounded by

≪E,W rr+3c̃r
E(log Xk + log x)i+r+1

√
Xk

( xr

Xk

) 3/2 Xk

xr

≪E,W rr+3c̃r
E(log Xk + log x)r+i+1xr/2.

On the other hand, the contribution from those |n1| < xr/Xk is

≪E,W rr+3c̃r
E(log Xk + log x)i

√
Xk

∑

0<|n1|<xr/Xk

(log |n1| + log x)r

√
|n1|

.

We argue as before. As |n1| ≤ xr,
(
log |n1| + log x

)r ≤ (r + 1)r logr x, and from above

we know (r + 1)r ≪ log log x. Thus we find that the contribution from these n1 is

bounded by

≪E,W rr+3c̃r
E(log Xk + log x)r+i+1xr/2.

This completes the proof of Proposition 3.2.

Remark 4.4 The argument in this section readily extends to twists by Dirichlet

characters of fixed order n > 2. The main difference is that the argument now pro-

ceeds according to whether p1 · · · pr is a perfect n-th power or not. Also, if n > 2,

then
∑

p β
n
p converges. The effect of this is that our family is now expected to agree

with the scaling limits of unitary matrices, and not orthogonal matrices (see [31]).

The rest of the argument, including Proposition 4.3, extends with no change. Go-

ing through the whole proof, we see that, for twists by characters of order n > 2,

Theorem 1.1 holds with the new asymptotic constant (k + 1/2 + oE,W (1))k.

In terms of arithmetic, given an elliptic curve E/Q and a number field K/Q with

an Abelian Galois group of order n, the L-function of E(K) is equal to the product
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of all the twisted L-functions L(s, E, χ), where χ runs through all (non-necessarily

primitive) Dirichlet characters of orders dividing [K : Q] and of conductors dividing

the Artin conductor of K/Q. So the analog of Theorem 1.1 for twists by Dirichlet

characters of order ≤ n would provide information about the average analytic ranks

for a fixed elliptic curve over Q as we vary over Abelian extensions of degree ≤ n

over Q.

Remark 4.5 While Proposition 4.3 gives an essentially optimal bound for the size

of the Q-sum, we have no control over the sign of this Q-sum as u varies. Because of

that, to estimate (4.9) using Proposition 4.3 we are forced to put absolute value signs

everywhere. This is essentially the only place in the proof of Theorem 1.1 where we

might lose information (the ≪ in (4.7) does not have any material impact on the rest

of the proof).

5 A Complex Prime Number Theorem

The results in this section are elliptic curves analogs of classical estimates. As is cus-

tomary, given a complex number s we denote by σ and t its real and imaginary parts,

respectively.

Lemma 5.1 Assume the Riemann hypothesis for L(E, s). Then for σ ≥ 1 + 1/ log x

and |t| ≥ 2, we have the estimate

L ′(E, s)/L(E, s) ≪
(

log NE + log(|s| + 2)
)

log x.

For a proof, see for example [16, Theorem 5.17].

Lemma 5.2 Assume the Riemann Hypothesis for L(E, s). For 0 ≤ j ≤ log x, x ≫E 1,

and 1 + 1/ log x ≤ σ ≤ 2, we have the estimate

(5.1)
1

log j x

∑

p<x

ap(E) log1+ j p

ps
≪

(
log NE + log(|s| + 2) + log x

)
log2 x.

The proof is standard, and is given in Appendix A for completeness.

From the definition of F and Lemma 5.2, we immediately obtain the following

corollary.

Corollary 5.3 Assume the Riemann hypothesis for L(E, s). Then for 1 + 1/ log x ≤
σ ≤ 2, we have the estimate

∑

p<x

ap(E) log p

ps
F
( log p

log x

)
≪ (log NE + log(|s| + 2) + log x) log2 x.

6 Proof of Proposition 4.3

When r = 1, Brumer [2, (2.13)] deduced Proposition 4.3 from the explicit formula

in conjunction with an estimate of a weighted sum of zeros of L(ED, s). Another
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(essentially equivalent) way is to apply the Perron formula as in the proof of the

prime number theorem to the logarithmic derivative of L(E, s). The explicit formula

approach does not seem to generalize to r > 1, but the approach via the Perron

formula does, with the key analytic estimate provided by Corollary 5.3. We prove

Proposition 4.3 in several steps.

We first give an overview of the steps leading to the proof of the proposition. The

difficulty in the prime sums there is that we have factors such as (±nδ1/π2); in other

words, only some of the primes are involved in the Legendre symbols. We want to

exploit cancellation from the Legendre symbols. We are able to do that for the primes

dividing π2, but not for the primes dividing π1. Fortunately the contribution from

primes dividing π1 is small. The reason is that these primes occur at least twice, and∑
p<x β

2k
p = O(log2k x).

We break the proof into four steps, which are given below. We assume x ≥ 10

below; as we are only interested in the limit as x → ∞, this assumption is harmless.

Remember also that U ≤ xr.

Step I.

Define

Lx(E, s) =
∑

p<x

ap(E) log p

ps
F
( log p

log x

)
.

As F has compact support, this is a finite sum and hence it is holomorphic for all s. A

standard application of Perron’s formula (see for instance [16] or [34]) gives

(6.1)

∣∣∣∣
∫ 1

log x
+i
√

x

1
log x

−i
√

x

Lx(E, s + 1)r U s

s
ds −

∑

p1···pr≤U

βp1
(E) · · ·βpr

(E)

∣∣∣∣ ≪ log2 x.

Corollary 5.3 shows that there is a constant, which we denote cE,1/5, such that the

integral is

(6.2) ≤ (cE,1/5)rU 1/ log x log2r x

∫ 1
log x

+i
√

x

1
log x

−i
√

x

(
log NE + log(|s| + 2) + log x

) r |ds|
|s| .

For x ≥ 10 we have |s| + 2 ≤ x; further, U 1/ log x ≤ er as U ≤ xr. Trivially estimating

the integrand gives that (6.2) is

≤ (cE,1e) r
(

log NE + log x
) r

log2r+1x,

where we gained a log x from the integral. Using this in (6.1), we find
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(6.3)
∑

p1···pr≤U

βp1
(E) · · ·βpr

(E) ≪ (cE,1e)r
(

log NE + log x
) r

log2r+1x.

Step II.

Fix an integer m 6= 0. With π2 defined as in (4.4), we claim that there is a constant

cE,2 such that

(6.4)
∑

p1···pr≤U
π2>1

βp1
· · ·βpr

( m

p1 · · · pr

)
≪ cr

E,2

(
log NE + 2 log |m| + log x

) r
log2r+1x.

Remember |βp| ≤ 2
log p√

p
if p ≤ x and 0 otherwise. We first show that we may

drop the condition π2 > 1 at a negligible cost. To say that π2 = 1 means that r

is even and π = (p1 · · · pr/2)2. While this suggests that the π2 = 1 term would

have a large contribution, as the character
(

m
p1···pr

)
=

(
m
π2

1

)
(which is 1 if (m, π1) =

1), these terms give a small contribution because each prime occurs at least twice,

leading to significantly smaller prime sums. Explicitly, instead of having sums such

as
∑

p<x
log p√

p
, we have

∑
p<x

log2 p
p

, so

∑

p1···pr≤U
π2=1

βp1
· · ·βpr

( m

p1 · · · pr

)
≤

∑

p1···pr/2≪
√

U

(
βp1

· · ·βpr/2

) 2

≤
(∑

p<x

β2
p

) r/2

since βp = 0 if p ≥ x

≪ (4 log2 x)r/2,

which suffices for our purposes, as it is dominated by the claimed error in (6.4). Thus

it suffices to study the sum in (6.4) without the additional condition π2 > 1.

If p ∤ 2NEm, then ap(E)
(

m
p

)
= ap(Em). If we did not have to worry about the

p ∤ 2NEm condition, we could estimate the sum by a generalization of (6.3) (the only

difference being that now the conductor is NEm2 and not NE). We therefore replace

βp1
· · ·βpr

(
m

p1···pr

)
with βp1

(Em) · · ·βpr
(Em) and control the error. We bound the

error by the number of primes dividing 2NEm as follows: we label the primes so that

p1, . . . , p j are all the primes dividing 2NEm, with 1 ≤ j ≤ r (this is the error term,

and at least one prime in our list divides 2NEm). We denote the remaining primes by

q1, . . . , qr− j to emphasize the fact that they are relatively prime to 2NEm. For these

primes, we still have the character
(

m
q1···qr− j

)
, and we bound the contribution from

these primes sums by using (6.4) and induction. There is no harm in doing so; even

though we are trying to prove (6.4), we are only using it with fewer primes, and thus

we are fine by induction (note the base case is j = r, which leads to a vacuous sum).

Using the above and |βp| ≤ 2 log p√
p

, the left side of (6.4), without the π2 condition,
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is

∑

p1···pr≤U

βp1
(Em) · · ·βpr

(Em) + O

[
r∑

j=1

∑

p1,...,p j

pl|2NEm

2 log p1 · · · 2 log p j√
p1 · · · p j

∑

q1···qr− j≤U/p1···p j

βq1
(E) · · ·βqr− j

(E)
( m

q1 · · · qr− j

)]
.

We estimate the first sum above by using a straightforward generalization of (6.3).

Specifically, the bound in (6.3) depends on the conductor of the elliptic curve, NE.

As we are twisting by m, we must replace log NE with log(NEm2) = log NE +2 log |m|.
We now estimate each of the inner q-sum by using Step I applied to the elliptic curve

Em. The only change in the bound is that NE is replaced by NEm2. All that remains is

to bound the j-sum. We have

r∑

j=1

∑

p1,...,p j

pl|2NEm

2 log p1 · · · 2 log p j√
p1 · · · p j

≤
r∏

j=1

(
1 +

∑

p|2NEm

2 log p√
p

)
.

The worst case is when 2NEm is a primorial; if pmax denotes the largest prime, we

would have p1 · · · pmax = 2NEm, which implies
∑

p≤pmax
log p = log(2NEm), so

pmax ≈ log(2NEm). Using the Prime Number Theorem and Partial Summation, we

have ∑

p≤y

log p√
p

≤ 2y
√

y
+

∫ y 2tdt

2t3/2
≤ 2

√
y + 2

√
y ≤ 4

√
y.

All together, this yields

≤ (cE,1e)r
[

log NE + 2 log |m| + log x
] r

log2r+1 x

+ 8r(cE,1e)r
[

log NE + 2 log |m| + log x
] r

log2r+1 x

≤ cr
E,2

[
log NE + 2 log |m| + log x

] r
log2r+1 x

(with cE,2 = 9ecE,1), which completes the analysis of Step II.

Step III.

Fix an integer A 6= 0, 1. We claim that there is a constant cE,3 such that

(6.5)
∑

p1···pr≤U
(p j ,A)=1
π2>1

βp1
· · ·βpr

( m

p1 · · · pr

)
≪

cr
E,3

(
log NE + 2 log |m| + log |A| + log x

) r
log2r+1x.
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We proceed by induction. We first consider the base case when r = 1. We extend

the sum to be over all primes at most U with π2 > 1 (which we can handle by Step

II), and bound the error from primes dividing A. We have

∑

p≤U
(p,A)=1
π2>1

βp

( m

p

)
≪ cE,2

(
log NE + 2 log |m| + log x

)
log3x +

∑

p|A

log p√
p

≪ cE,2

(
log NE + 2 log |m| + log x

)
log3x + log |A|

≪ cE,3

(
log NE + 2 log |m| + log |A| + log x

)
log3 x,

where cE,3 = max(1, cE,2). This gives the case r = 1. In general,

∑

p1···pr≤U
(p j ,A)=1

π2>1

βp1 · · · βpr

( m

p1 · · · pr

)

=

∑

p1···pr≤U
π2>1

βp1 · · · βpr

( m

p1 · · · pr

)

+

O

(

r
∑

j=1

∑

p1···p j≤U

pl|A

2 log p1 · · · 2 log p j√
p1 · · · p j

∣

∣

∣

∣

∑

q1···qr− j≤U/p1···p j

(ql ,A)=1
π2>1

βq1 · · · βqr− j

( m

q1 · · · qr− j

)

∣

∣

∣

∣

)

.

Step III now follows from a similar analysis as in Step II, the main difference being

that instead of p|2NEm we now have p|A.

Step IV.

Finally we come to the proof of Proposition 4.3. We must show that there is a constant

cE such that

∑

p1···pr≤U
π2>1

Q(p1, . . . , pr, n1) ≪ (cEr)r
[

log NE + log |n1| + log x
] r

log2r+1 x,

where

Q(p1, . . . , pr, n1) = βp1
· · ·βpr

∑

δ1|π1

( ±n1δ1

π2

) 1√
π ′

1

.

We proceed by induction on r, the case r = 1 being automatic (in that case π2 = p

and π1 = 1). When π1 = 1 (which forces δ1 = 1), every prime occurs to an odd

power, and in particular (m/p1 · · · pr) = (m/π2). Thus by (6.4), the sum of the

Q(p1, . . . , pr, n1) terms with π1 = 1 is

≪ (cE,2)r
(

log NE + 2 log |n1| + log x
) r

log2r+1x

≪ (2cE,3)r
(

log NE + log |n1| + log x
) r

log2r+1x
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(from pulling out the 2 and noting cE,2 ≤ cE,3). It remains to account for terms with

π1 > 1. That happens precisely when π is exactly divisible by an even prime power.

In a slight abuse of notation, let us write p1 · · · pr as p2
1 · · · p2

λ · q1 · · · qr−2λ. We do

not assume the different p’s are relatively prime to each other, nor do we assume the

different q’s are relatively prime to each other; however, it is important that the p’s

are relatively prime to the q’s, and no q prime occurs an even number of times. Then

the contribution from these terms is therefore equal to (⌊z⌋ is the largest integer at

most z)

(6.6)
⌊r/2⌋∑

λ=1

∑

(p1···pλ)2≤U

β2
p1
· · ·β2

pλ

∑

q1···qr−2λ≤U/(p1···pλ)2

(q j ,p1···pλ)=1
π2>1

βq1
· · ·βqr−2λ

∑

δ1|π1

( ±n1δ1

π2

) 1√
π ′

1

,

where π1 and π2 above are defined with respect to the r-tuple

(p1, p1, . . . , pλ, pλ, q1, . . . , qr−2λ);

in particular, π1, π ′
1 and δ1 are independent of the q’s. We switch the order of the δ1

and q-sums. Therefore (6.6) is bounded by

(6.7)

⌊r/2⌋∑

λ=1

∑

(p1···pλ)2≤U

β2
p1
· · ·β2

pλ

∑

δ1|π1

∣∣∣∣∣
∑

q1···qr−2λ≤U/(p1···pλ)2

(q j ,p1···pλ)=1
π2>1

βq1
· · ·βqr−2λ

( ±n1δ1

π2

)∣∣∣∣∣ .

We dropped the 1/
√

π ′
1 factor, as it only marginally improves the final bound (at

a cost of more involved calculations), and the estimate without it suffices. We now

apply (6.5) from Step III to the q-sum. We use r − 2λ and U/(p1 · · · pλ)2 for r and

U in Step III, take A = p1 · · · pλ ≤
√

U = xλ/2 ≤ xr/2, m is ±n1δ1, and note

δ1 ≤ π1 ≤ A ≤
√

U . Thus (6.7) is bounded by

⌊r/2⌋∑

λ=1

∑

(p1···pλ)2≤U

β2
p1
· · ·β2

pλ

∑

δ1|π1

cr−2λ
E,3 (log NE+2 log |n1|+log xr/2+log x)r log2(r−2λ)+1x.

There are at most 2r/2 choices for δ1 (as δ1|π1 and π1 is the product of at most r/2

distinct primes); thus we may replace the δ1 sum with the harmless factor 2r/2.
We now turn to the sums over λ and the primes p1, . . . , pλ. Our definition of βp

forces each prime to be at most x. Using
∑

p≤x 1/p ≤ 4 log2 x and r ≤ 2r, we see that

our sum is clearly dominated by

⌊r/2⌋
∑

λ=1

(

∑

p≤x

4 log2 p

p

) λ

2
r/2

c
r−2λ
E,3

(

log NE + 2 log |n1| + log x
r/2

+ log x
) r

log
2(r−2λ)+1

x

≪ (8cE,3)
r
(

log NE + 2 log |n1| + log x
r/2

+ log x
) r

log
2r+1

x

⌊r/2⌋
∑

λ=1

1

log2λ x

(

∑

p≤x

1

p

) λ

https://doi.org/10.4153/CJM-2011-037-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-037-7


178 S. J. Miller and S. Wong

≪ (16cE,3r)
r
(

log NE + log |n1| + log x
) r

log
2r+1

x

⌊r/2⌋
∑

λ=1

4λ log2λ x

log2λ x

≪ r

2
(64cE,3r)

r
(

log NE + log |n1| + log x
) r

log
2r+1

x

≪ (128cE,3r)
r
(

log NE + log |n1| + log x
) r

log
2r+1

;

the claim follows by taking cE = 128cE,3.

A Appendix: Proof of Lemma 5.2

We first prove the j = 0 case, and then show how arbitrary j follows by partial

summation. In the arguments below σ ≥ 1 + 1
log x

, and thus x1−σ ≤ e.

For j = 0, we mimic the proof of the prime number theorem under the Riemann

hypothesis. Note that because of our normalization for the elliptic curve L-functions

that the central point is s = 1, the functional equation relates s to 2 − s, and the

coefficients cp(E) (see (2.1)) are on the order of
√

p. Set c = 1/2 + 1/ log x. Write

s = σ + it with σ > 1. We extend the sum to all prime powers; as the squared and

higher powers lead to convergent series, the cost of replacing p < x with pk < x

is absorbed by the error term. Applying the Perron formula (see for instance [6,

Chapter 17], taking the T there to be
√

x), a standard argument yields7

(A.1)

∣∣∣∣
∫ c+i

√
x

c−i
√

x

−L ′(E, σ + it + ξ)

L(E, σ + it + ξ)

xξ

ξ
dξ −

∑

n<x

cn(E)Λn

nσ+it

∣∣∣∣ ≪

∞∑

n=1
n6=x

Λ(n)

nσ−1/2

( x

n

) c

min
(

1,
1√

x
∣∣ log x

n

∣∣
)

+
Λ(x)√
xxσ−1/2

,

where Λ denotes the usual von Mongoldt function, and the last term on the right

side of (A.1) is present only if x is a prime power (though there is no harm in always

including it as it is dominated by other error terms). Unlike [6], we have the factor

nσ−1/2 in the denominator. The nσ is due to the fact that we are integrating a shifted

L-function, while the n−1/2 (which is really
√

n in the numerator) is due to cn(E) ≪
n1/2 for n a prime power.

If n ≥ 5
4
x or if n ≤ 3

4
x, then | log x

n
| has a positive lower bound. Thus the contri-

bution of such n to the right side of (A.1) is (recall that σ > 1 and c = 1/2 + 1/ log x)

≪
∑

n

Λ(n)

n1+1/ log x
≪ −ζ ′(1 + 1/ log x)

ζ(1 + 1/ log x)
≪ log x.

7We briefly comment on the modifications needed to Davenport’s argument. First, we need to change
the integration from (c − i∞, c + i∞) to (c − i

√
x, c + i

√
x). This is easily done through contours, as the

imaginary part is large where the two differ. We can thus look at the two vertical segments, each of which
we shift to a vertical segment to the right (this adds a horizontal segment, but by the same arguments as
below the contribution here is negligible). Using Hasse’s bound that |ap(E)| ≤ 2

√
p, we see that L(E, s)

converges absolutely for ℜ(s) > 3/2. As ℜ(σ + it + ξ) > 3/2, we pass through no zeros or poles when
shifting the contour, and we are left with two vertical integrals in a region where the series expansion for
L′/L converges absolutely. We can interchange the integral and the sum and argue as in Davenport to
obtain an error subsumed in the error term below.
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We assume now that x is not a prime power; if it is, we may replace x by x − 1 at the

cost of losing at most one term in (5.1), and the contribution from that term may be

absorbed by our error term. As x is not a prime power, the argument in [6, p. 107]

shows that the contribution from those n such that 3
4
x < n < 5

4
x is

≪ log x√
x

min
(

1,
x√
x〈x〉

)
+ log2 x,

where 〈x〉 is the distance from x to the nearest prime power. Putting everything

together gives

∣∣∣
∫ c+i

√
x

c−i
√

x

−L ′(E, σ + it + ξ)

L(E, σ + it + ξ)

xξ

ξ
dξ −

∑

n<x

cn(E) log n

nσ+it

∣∣∣ ≪

log2 x +
log x√

x
min

(
1,

x√
x〈x〉

)
.

Our next step is to estimate the integral. We are evaluating L ′/L at σ + it + ξ, which

has real part σ + c = σ + 1/2 + 1/log x, which is greater than 3/2 + 1/log x as σ > 1.

We shift the contour and evaluate the integrand at arguments with real part 1 + 1
log x

,

which means shifting ξ to having real part 1 − σ + 1
log x

. The ξ-rectangle has vertices

c ± i
√

x, 1 − σ +
1

log x
± i

√
x.

Under the Riemann Hypothesis, there are no zeros or poles inside or on this rect-

angle. Thus it remains to estimate the integral along the other three edges of this

rectangle.

The integral along the top edge is (recall 1 < σ ≤ 2)

∫ 1−σ+1/ log x

c

−L ′(E, σ + it + ξ + i
√

x)

L(E, σ + it + ξ + i
√

x)

xξ+i
√

x

ξ + i
√

x
dξ

≪
∫ 1−σ+1/ log x

c

(
log NE + log(|ξ + σ + it + i

√
x| + 2)

)
log x · e

√
x√
x

dξ

(by Lemma 5.1)

≪
(

log NE + log(|s| + 2) + log
√

x
)

log x

≪ (log NE + log(|s| + 2)) log2 x.

The same bound holds for the integral along the bottom edge. As for the vertical edge

with real part of ξ equal to 1 − σ + 1/log x (with σ > 1), using Lemma 5.1 again and

https://doi.org/10.4153/CJM-2011-037-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-037-7


180 S. J. Miller and S. Wong

noting σ ≥ 1 + 1/log x (so x1−σ+1/ log x ≤ 1) yields

∫ √
x

−√
x

L ′(E, 1 + 1
log x

+ it + iτ )

L(E, 1 + 1
log x

+ it + iτ )

x1−σ+1/ log x

1
log x

+ iτ
idτ

≪
∫ √

x

−√
x

(
log NE + log

(
1 +

1

log x
+ |s| + |τ | + 2

))
log x · dτ

1
log x

+ |τ |

≪
∫ √

x

0

(
log NE + log(|s| + 2) + log(

√
x)
)

log x · dτ
1

log x
+ |τ |

≪
(
log NE + log(|s| + 2) + log x

)
log x

[∫ e

0

log x dτ +

∫ √
x

e

dτ

τ

]

≪
(
log NE + log(|s| + 2) + log x

)
log x · log x.

Putting everything together, we find that for σ ≥ 1 + 1/ log x

∑

n<x

cn(E) log n

nσ+it
≪ log2 x +

log x√
x

+
(

log NE + log(|s| + 2) + log x
)

log2 x.

Since σ > 1, the contribution to the sum on the left side from non-prime n is ≪∑
m<

√
x log m/m3/2 ≪ 1, which completes the proof when j = 0.

The case of general j follows immediately by partial summation. Set

S(x) :=
∑

p≤x

ap(E) log p

pσ+it
≪ CE,s log2 x,

where CE,s = log NE + log(|s| + 2). Thus

1

log j x

∑

p≤x

ap(E) log1+ j p

pσ+it
≪ 1

log j x

∫ x

1

log j u · dS(u)

≪ log j x

log j x
S(x) − j

log j x

∫ x

1

log j−1 u

u
S(u)du

≪ CE,s log2 x +
j

log j x
CE,s

∫ x

1

log j−1 u

u
log2 udu

= CE,s log2 x +
j

log j x
CE,s

log j+2 u

j + 2

∣∣∣∣∣

x

1

≪ CE,s log2 x.

Added in proof. Bhargava et al. recently announced an unconditional proof that the

2-Selmer rank of the quadratic twists of any elliptic curve over Q is bounded by 1.5.
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