
J. Fluid Mech. (2020), vol. 884, A5. c© The Author(s) 2019
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is unaltered and is properly cited. The written permission of Cambridge University Press
must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/jfm.2019.887

884 A5-1

The alignment of vortical structures in turbulent
flow through a contraction

Vivek Mugundhan1, R. S. Pugazenthi1, Nathan B. Speirs1, Ravi Samtaney1

and S. T. Thoroddsen1,†
1Division of Physical Science and Engineering, King Abdullah University of Science and Technology

(KAUST), Thuwal 23955-6900, Saudi Arabia

(Received 3 June 2019; revised 15 August 2019; accepted 23 October 2019)

We investigate experimentally the turbulent flow through a two-dimensional contraction.
Using a water tunnel with an active grid we generate turbulence at Taylor microscale
Reynolds number Reλ ∼ 250 which is advected through a 2.5 : 1 contraction.
Volumetric and time-resolved tomographic particle image velocimetry and shake-the-
box velocity measurements are used to characterize the evolution of coherent vortical
structures at three streamwise locations upstream of and within the contraction. We
confirm the conceptual picture of coherent large-scale vortices being stretched and
aligned with the mean rate of strain. This alignment of the vortices with the tunnel
centreline is stronger compared to the alignment of vorticity with the large-scale strain
observed in numerical simulations of homogeneous turbulence. We judge this by the
peak probability magnitudes of these alignments. This result is robust and independent
of the grid-rotation protocols. On the other hand, while the pointwise vorticity vector
also, to a lesser extent, aligns with the mean strain, it principally remains aligned
with the intermediate eigenvector of the local instantaneous strain-rate tensor, as is
known in other turbulent flows. These results persist when the distance from the
grid to the entrance of the contraction is doubled, showing that modest transverse
inhomogeneities do not significantly affect these vortical-orientation results.

Key words: homogeneous turbulence

1. Introduction
Turbulent flows convecting through a contraction occur in many engineering

applications, such as within ducts and pipes of variable cross-section. Contractions
are also employed in subsonic wind tunnels for reducing turbulence levels in the
test section. Weak contractions are sometimes inserted after the turbulence-generating
grid to make the fluctuations more isotropic (Comte-Bellot & Corrsin 1966; Uberoi
& Wallis 1966). The imposed acceleration and mean strain significantly affect the
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FIGURE 1. Sketch of the 2-D contraction used in our experiments, showing the coordinate
axes used. Conceptual model of how a vortex tube aligned with the centreline stretches
and amplifies as it moves through the contraction.

turbulence dynamics, especially any large-scale vortices present. More generally, in
high Taylor microscale Reynolds number (Reλ) turbulent flows, the large scales will
certainly subject the smaller scales to mean strain, without any external confining
walls. The physics of grid-generated turbulence flowing through a contraction is
therefore fundamental to turbulence research and can be a basis for improving the
predictive capability of various turbulence models employed in engineering simulations
(Lesieur et al. 2005; Brown et al. 2006; Ertunç & Durst 2008).

The early conceptual theory of Prandtl (1933) models turbulence as consisting of
discrete vortex filaments aligned streamwise or perpendicular to the centreline, to
explain its evolution though the contraction. The elongation of a vortical structure
aligned with the axis of a contraction, schematically shown in figure 1, will enhance
its vorticity and rotational speed, to conserve angular momentum. This predicts the
streamwise velocity fluctuation reduces as the inverse of contraction ratio C, while
the lateral velocity fluctuations grow proportionally to C1/2.

Taylor (1935) used more general vorticity distributions to improve this modelling.
He used a Lagrangian approach to obtain the amplification of the disturbance field
at the exit of the contraction. He used one Fourier mode to represent vorticity
disturbances in three-dimensional (3-D) cells (Taylor–Green vortices). Using Kelvin
circulation theorem, he obtained different prefactors in the above theory assuming
inviscid flow and rapid distortion. He showed that the streamwise velocity fluctuations
reduce by a factor ranging between 1/C and 2/C. The variation in lateral velocity
fluctuations obtained is the same as that of Prandtl’s except for the constants.

Ribner & Tucker (1952) performed more detailed spectral analysis of a random
turbulent velocity field, deriving explicit relations for the fluctuations at the exit of
the contraction. Similar expressions were obtained independently by Batchelor &
Proudman (1954). They did their analysis by assuming distortion of fluid elements
to occur much faster relative to change in their position. They took into account
a realistic and arbitrary distortion of isotropic turbulence. This theory was later
dubbed rapid distortion theory (RDT), e.g. Sreenivasan & Narasimha (1978) and
Hunt & Carruthers (1990). In case of a symmetric contraction and C > 2, they give
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Turbulence in a contraction 884 A5-3

an approximate ratio of energy of streamwise turbulent velocity outlet and inlet of
the distortion as (3/4)C−2

[log(4C3)− 1]. Likewise, the ratio of the energy of the two
lateral velocity components is approximately given as (3/4)C.

Early experiments on this configuration are those of Uberoi (1956). His wind-tunnel
experiments investigated the effect of three different axisymmetric contraction ratios
of C= 4, 9, 16, for a square cross-section duct. Nearly isotropic turbulence was
achieved by passing through grids of various mesh sizes. The grid Reynolds numbers
ReM =UiM/ν (where Ui is the mean speed at the inlet of contraction and M is the
mesh size of the grid) are in the range 3700–12 000. Using hot-wires, he observed
decreasing magnitude of the streamwise fluctuation, while the lateral fluctuations
increase as the flow accelerates through the contraction. However, for the largest
contraction ratio, of C= 16, the streamwise fluctuations decrease initially, but then
increase towards the exit, reaching higher values than at the inlet. These measurements
are in disagreement with Prandtl’s theory, which he concluded applies only when
C< 4.

It is also observed that the linear theory (Ribner & Tucker 1952; Batchelor &
Proudman 1954) over-predicts the reduction of the streamwise component, while it
over-predicts the increase in the lateral ones.

Hussain & Ramjee (1976) studied the effect of an axisymmetric contraction, using
four different contraction shapes but with the same contraction ratio of C' 11. They
used essentially a high-speed air blower, with an outlet velocity of ∼28 m s−1. This
produces an exit Re ∼ 105 based on the nozzle diameter, while the turbulence is
generated by a fine 1.4 mm mesh at ReM = 234. They found that the increase in the
lateral turbulent kinetic energy is only half of that predicted from the linear theory.
They also found an increase in the streamwise fluctuations when C> 4.

Faced with these large discrepancies between the theories and the above-mentioned
experiments, Tsugé (1984) modified the theoretical approach. He proposed that the
smaller eddies agree better with linear theory than the larger ones, which are amplified
by mean-flow inhomogeneities and grow for large contraction ratios, if C > 4. With
these modifications he was able to closely reproduce the experimental results.

Han et al. (2005) investigated (with correction for background disturbances)
the budget of turbulent kinetic energy of grid-generated turbulence through an
axisymmetric contraction with C' 11. In their following work (Reif et al. 2005) they
theoretically investigated this case, formulating a new definition of rapid distortion.

Ayyalasomayajula & Warhaft (2006) experimentally investigated grid-generated
turbulence subjected to mean strain using an axisymmetric contraction (4 : 1) in a
wind tunnel. They used both passive and active grids to generate a wide range of Reλ
(40–470) and by changing the mean wind speed, as high as 5 m s−1. The evolution of
turbulence statistics and return to isotropy after straining was studied using hot-wire
measurements at mostly single points and were compared with predictions made
using RDT. They observed that the effects of strain on small and large scales were
different and give rise to nonlinear interactions. Following this work, Gylfason &
Warhaft (2009) investigated the effect of axisymmetric strain on a passive scalar field.
A transverse temperature gradient imposed on a homogeneous isotropic turbulence
generated using passive and active grids (Reλ = 50 and 190 respectively) is passed
through an axisymmetric contraction. A tensor model was developed to predict the
evolution of the scalar and they suggest that this model can be applicable in straining
regions when RDT is not accurate. The small-scale statistics deviated from RDT due
to the nonlinearity neglected in RDT.

Chen et al. (2006) studied a different class of straining turbulent flow. Using
planar particle image velocimetry (PIV), they measured the response of turbulence
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884 A5-4 V. Mugundhan and others

subjected to a planar straining–relaxation–destraining cycle in the framework of
Reynolds averaged Navier–Stokes (RANS) and large eddy simulations (LES). The
straining–destraining cycle was achieved by translating a piston in a water tank, in
which turbulence was generated using four rotating active grids (Reλ = 400). The
work mostly focused on the scale dependence of the RANS and LES variables, such
as the Reynolds stress, subgrid-scale stress and dissipation.

However, recently, Ertunç & Durst (2008) have called into question the entire
earlier experimental work which is based on using two-component ×-configuration
hot-wires. In a comprehensive study of the errors involved, they conclude that these
measurements may be unreliable. This arises both from possible mass-flow-rate
fluctuations in the wind tunnels, but primarily from electronic noise contamination of
the hot-wire signals along with inadequate spatial resolution. These ×-wire probes
are sensitive to the large accelerations of the mean flow and the accompanying
reduction in important transverse length scales. Without correcting for these effects,
they see discrepancies, near the exit of the nozzle, which reduce the transverse
fluctuations by up to ∼30 %, while the longitudinal fluctuations become swamped
by noise. They conclude that the observed anomalous increase in the longitudinal
velocity fluctuations for large C is a measurement artefact. Their careful experiments
for a strong contraction with C= 14.75 show continuous reduction in the streamwise
fluctuations, until they have essentially disappeared.

On the other hand, not all studies have used hot-wires. Brown et al. (2006) used
two-component laser Doppler velocimetry (LDV) experiments to study the evolution of
grid turbulence in a planar contraction between a linearly converging roof and ceiling,
while the side walls were straight. They studied converging half-angles of ∼8◦ giving
C(x1) up to 9 at the exit. With a water tunnel and a M = 9.5 mm square mesh grid
they reached ReM = 4500–9000, with the corresponding Reλ = 51–99, based on the
Taylor microscale. Their pointwise LDV measurements show turbulence behaviour
similar to that for the axisymmetric case, with streamwise velocity fluctuations
decaying initially and then increasing. Using the local contraction ratio C(x1) with
the streamwise coordinate, the minimum is reached at C≈ 2, and this location is
independent of Re but depends on the inlet turbulence level. The flow reaches peak
anisotropy between the various fluctuation components at 2.5<C< 3.5, but starts to
return to isotropy at C≈ 4. LDV measurements are not subject to the same errors as
hot-wire measurements. However, one could argue that this study uses a contraction
that is too gradual to expect RDT to be fully applicable. The maximum value of the
strain-rate parameter S∗ is 25 in our experiments.

The effects of a contraction on turbulent scalar fields have also been studied.
Warhaft (1980) studied experimentally the decay of passive temperature fluctuations,
with and without uniform straining. Thermal fluctuations were induced in grid-
generated turbulence using a heated parallel array of fine wires, called the mandoline,
and were subsequently strained by passing the flow through a C = 4 axisymmetric
contraction. Using independent grids for the velocity and temperature fields, they
could vary their length-scale ratios. The contraction was in all cases found to
accelerates the thermal fluctuation decay. The streamwise velocity fluctuations
decreased by a half and the transverse intensity increased by ∼55 % (their figure
2), which is somewhat smaller than the predicted change.

Thoroddsen & Van Atta (1995a) also studied the effect of a 2-D contraction with
C= 2.5 in a thermally stratified wind tunnel, with a strong linear temperature gradient.
The reduction in the vertical height of the test section increases rapidly the mean
temperature gradient and the strength of stable density stratification. This drastically
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Turbulence in a contraction 884 A5-5

reduces the vertical velocity fluctuations, while ‘fossilizing’ the temperature field.
Without the temperature stratification, the streamwise root mean square reduces by
∼40 % through the entire contraction, while the transverse component grows by
a factor or ∼30 %, broadly consistent with the above study. Downstream of the
exit these components approach the same level very slowly. The spectrum of the
transverse fluctuations is greatly enhanced at the large-scale streamwise wavenumbers,
when compared to the isotropic relations (their figure 10(a)). Thoroddsen & Van Atta
(1995b) followed up by studying the turbulence in a constant-area vertical expansion.
Iino et al. (2002) used a similar vertical contraction in the stratified tunnel, but now
with a laterally expanding duct to keep the mean-flow velocity constant.

Direct numerical simulations (DNSs) can potentially provide time-resolved
three-dimensional velocity and pressure fields, which are effective for deciphering
the complete physics using not only point statistics, but also 3-D coherent structures
and structure-based statistics. However, practical DNSs are currently limited to the
modest Reλ∼ 200. This is especially true in our configuration owing to the complexity
of the boundary conditions.

Recently, Clay & Yeung (2016) used DNS to reproduce the results of the
experimental study by Ayyalasomayajula & Warhaft (2006) with an axisymmetric
contraction. Simulations up to a maximum Reλ of 95 were used to explain the
mechanisms underlying the nonlinear interactions of different scales observed in the
experiments. They used a time-dependent strain rate applied to the computational
domain to closely match the experimental conditions. Homogeneous isotropic
conditions were first obtained at a maximum Reλ of 113, before starting the
mean-straining simulations. A similar time-dependent strain rate in DNS was
adopted previously by Gualtieri & Meneveau (2010). They simulated the straining–
destraining experiments by Chen et al. (2006) up to a maximum Reλ of 40. Using
the discriminant ∆ which combines the velocity gradient tensor invariants, they
visualized vortical structures. The initial worm-like structures with arbitrary alignment
(characterizing isotropy), tend to show a preferred alignment along the positive strain
direction at the end of straining. On destraining, they tend to return back to the initial
isotropic state.

Another notable numerical simulation is that of Jang et al. (2011) who tracked
fully developed pipe flow through an axisymmetric contraction, and which largely
focused on the boundary-layer structure. They also observed that turbulent kinetic
energy, when scaled by the local velocity, decays rapidly in the core region. The
coherent vortical structures were visualized based on the swirling strength from
the DNS data. Spanwise vortical structures existing in the pipe are stretched into
streamwise structures in the contraction, with only long ‘streaky’ structures aligned
along the axis in the later part of it.

Other DNSs of strained turbulence include studies on: inertial particles dynamics
in an axisymmetrically expanding homogeneous turbulent flow (Lee et al. 2015),
homogeneous isotropic turbulence subjected to uniform plane strain (Zusi & Perot
2013) and axisymmetric contraction/expansion (Zusi & Perot 2014). Lee et al. (2015)
studied the dynamics of inertial-particle-laden turbulence subjected to axisymmetric
expansion up to a maximum Reλ of 193 and for S∗ from 0.2 to 20. Under straining
action, vorticity intensifies with the filaments (represented by isosurface of vorticity
magnitude) aligning qualitatively with the extensional directions.

Based on the above survey of previous experimental studies, most work has been
limited to single-point measurements using hot-wires or LDV, with varying degree
of accuracy. None of these measurements provide any direct information on the
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vorticity in the flow, which is the conceptual underpinning of the basic theory.
One can therefore argue that the time is ripe for applying the latest experimental
techniques to this problem. Three-dimensional volumetric measurement techniques
like tomographic particle image velocimetry (tomo-PIV) and shake-the-box (STB)
particle-tracking techniques have now become available for this purpose (Elsinga
et al. 2006; Schanz et al. 2016). Furthermore, Casey et al. (2013) introduced a new
scanning laser-volume tomo-PIV technique to resolve a larger volume of the velocity
field with good temporal and spatial resolutions. They applied this technique to
the turbulence flow field in a round jet, tracking large coherent vortical structures.
Ianiro et al. (2018) most recently used three-camera tomo-PIV to study the vortical
structures in a transitional swirling jet, at a Re of 1000. Westerweel et al. (2013) have
suggested a triple-pulse technique for more accurate tracking of particle trajectories.

In the current study, we have successfully employed such non-intrusive tomo-
PIV/STB techniques. Using high-speed video cameras we obtain the first time-resolved
measurements of coherent vortical structures within turbulent flow fields at various
locations inside a 2-D planar contraction.

We use an active grid upstream of the contraction to enhance the turbulence
level, thereby obtaining higher values of the turbulent Reλ ∼ 250. Active grids have
become a common technique to achieve a higher level of turbulence in small-scale
wind tunnels, since its introduction by Makita (1991), who reported turbulence with
Reλ ≈ 400 in his early wind-tunnel experiments. The active grid also gives us better
control of the creation of large observable structures at the inlet to the contraction,
compared to other canonical flows such as fully developed channel or pipe flow. Our
laboratory facility does not allow for the set-up of a fully developed pipe or channel
flow with such a large cross-section as 18 cm. Mydlarski (2017) has comprehensively
reviewed the subsequent developments to date. Recently, Reλ of the order of 103 has
been achieved using active grids by Larssen & Devenport (2011), compared to 102 for
corresponding passive grids. The active grid consists of a square mesh of shafts with
flaps/wings attached to them, where each shaft can be independently rotated about its
axis. Even though active grids were initially used to study homogeneous, isotropic
turbulence, they have now been employed to investigate a wider class of flows, such
as an inhomogeneous shearless mixing layer between two homogeneous isotropic
streams by Kang & Meneveau (2008) and in wind-tunnel models of atmospheric
boundary layers by Michioka et al. (2011). Thormann & Meneveau (2015) extended
this to shearless flow with a transverse linear gradient of turbulent kinetic energy.
Active grids have also been applied to study the behaviour of air bubbles in a water
channel using a vertical test section by Poorte & Biesheuvel (2002) and Prakash
et al. (2016).

Other studies using active grids investigate: the effect of the flap shapes and
holes in the flaps (Thormann & Meneveau 2014) with Hearst & Lavoie (2015)
reporting that solid flaps with no holes generate higher turbulent intensities and
Reλ, turbulent boundary layers (Sharp et al. 2009; Dogan et al. 2016, 2017; Hearst
et al. 2018), turbulent wakes (Hearst et al. 2016) and particle clustering (Obligado
et al. 2014, 2015). Such grids have also been used in more applied studies on wind
turbines and wind farm models (Cal et al. 2010; Bossuyt et al. 2017; Hearst &
Ganapathisubramani 2017; Rockel et al. 2017). Thoroddsen & Van Atta (1993) also
investigated the effect of a fixed grid configuration on thermally stratified turbulence,
comparing bi-planar square grids to horizontal or vertical rods, and showed that the
horizontal rods produced von Kármán vortex streets which are only visible in the
spectra up to x/M ∼ 30, but absent for the bi-planar grids.
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FIGURE 2. (a) Schematic of the gravity-driven water tunnel with the 2-D contraction. An
extensional part was added for some experiments to increase the distance between the
active grid and the entrance to the contraction which is either 238 mm or 478 mm. (b)
Measurement regions illustrated with respect to the coordinate axis positioned at the start
of contraction (SOC). EOC denotes the end of contraction. Here xAG represent the distance
from the bottom shaft of the active grid. xAG (Ext) gives the distance from the active
grid with the extension added. See supplementary material § S1 for photographs, available
online at https://doi.org/10.1017/jfm.2019.887.

2. Experimental set-up
2.1. Constant-head vertical water tunnel with a 2-D contraction

We study turbulence in a constant-head vertical water tunnel with a 2-D contraction,
i.e. the square inlet is contracted in one of the horizontal directions. Figure 2(a) shows
the acrylic tunnel which consists of an overhead tank, a straight vertical inlet duct of
cross-section 260× 260 mm, the active grid module, a 2-D contraction and a bottom
straight section. Background turbulence in the inlet flow is suppressed, first by passing
it through a wound mesh inside the outer part of the overhead tank, followed by two
perforated steel plates and a metallic honeycomb placed in the straight section. Flow is
then guided smoothly into the active grid module through a 203 mm long converging
section which reduces the cross-section to 180× 180 mm. The active grid module is
described in detail in the next subsection. The water passes through a 238 mm long
straight section after leaving the grid (measured from the bottom grid shaft) before
entering the contraction. The contraction ratio is 2.5 : 1, reducing the cross-section
from 180× 180 mm to 72× 180 mm. The length of the contraction is equal to its
inlet dimension of 180 mm. The contraction profile (in mm) is given by the equation,

y=
1
2

{
180–108

[
6
( x

180

)5
− 15

( x
180

)4
+ 10

( x
180

)3
]}

. (2.1)
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FIGURE 3. Sketch of the active grid showing only 3× 3 shafts in the grid assembly (left),
and a closer view of the attachment of flaps to the shaft (right). Photographs of the active
grid can be found in § S1.

This fifth-order polynomial is expressed in the current coordinate system, and
ensures that the contraction is free of flow separation and provides flow uniformity
(Bell & Mehta 1988). The actual profile of the contraction in 3-D perspective is
sketched in figure 1. The contraction profile is machined out of an acrylic block
and is placed between two glass plates to form the contracting stream. Glass plates
provide better optical access for the imaging and are more resistant to scratching
than the acrylic. To ensure that there are minimal effects from the exit boundaries, a
500 mm long straight section of the same cross-section is provided downstream of
the end of the contraction. Two horizontal outlet pipes extend symmetrically from the
sides.

Constant head is maintained by supplying water from a 500 l sump to the overhead
tank using a centrifugal pump (maximum rating of 600 lpm at 10 m head). The flow
rate through the tunnel and thus the level in the overhead tank is controlled using
three ball valves – one valve at the pump suction and one valve each in the two
return lines from the exit of the tunnel. The inlet valve was set to approximately
0.28 m s−1 measured at the level following the grid. In all experiments, the return-
line valves are kept fully open to achieve maximum flow rate. To eliminate bubbles
from the flow, the vertical tunnel is initially filled up to the brim from the bottom
before the start of experiments. Flow is then set with the main centrifugal pump,
maintaining a constant level in the overhead tank by adjusting the bypass valve. All
measurements are performed at least 5 min after a steady flow is achieved through the
loop. Experiments are conducted near the room temperature of 21 ◦C, giving water a
density of ρ = 998 kg m−3 and dynamic viscosity of µ= 9.79× 10−4 Pa s.

2.2. The active grid
The active grid, shown in figure 3, enhances turbulence in the flow by rotating
numerous small flaps within the uniform inlet stream. The assembly consists of 10
rotating stainless steel shafts of diameter 6.35 mm with a grid spacing of M= 30 mm.
Each shaft has six square flaps (20 × 20 × 0.5 mm) with two 6 mm through holes,
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mode 1 (S1) – counter-rotating adjacent rods in both planes; (b) sync mode 2 (S2) –
all rods rotated in same direction; (c) sync mode 3 (S3) – counter-rotating adjacent rods
in bottom plane only, while the top flaps are open; (d) sync mode 4 (S4) – rods in
the bottom plane rotated in same direction. In modes S3 and S4, rods in the top plane
are fixed with flaps aligned vertically. A: anticlockwise; C: clockwise; O: open. M1–M10
represent the motors connected to each shaft (M1, M2, M3, M6, M7 are in the bottom
plane and M4, M5, M8, M9, M10 in the top plane). Directions are specified when viewed
in the negative y and z directions.

which reduce its solidity and inertia. To improve flow homogeneity across the span of
the test section, half-flaps without holes are attached to the side walls of the channel.
The shafts are oriented in two perpendicular directions and are confined to two
horizontal planes vertically separated by 9 mm. Shafts in the top and bottom planes
are shown in red and black respectively in figure 3. A dual-shaft stepper motor
(ISM-7401D NEMA-23 from National Instruments) controls each shaft separately,
enabling independent rotation. We use rubber-sealed stainless steel deep-groove ball
bearings to support the shafts through the tunnel walls, with V-rings for good sealing.
Stainless steel circlips mounted on the end of the shafts arrest axial movement. We
use the NI cRIO-9035 industrial-grade embedded controller with two NI 9375 Digital
I/O modules (each module has 16 DI and 16 DO channels) for precise control of the
motor rotation, which spins at N = 3 rps (Rossby number, Ro = 2〈Uin〉/MΩ ≈ 0.95,
where Ω = 2πN) in all our experiments. More details of the control system can
be found in Mugundhan (2019). A proximity sensor sets the initial position of the
flaps to the horizontal (‘home’ position) at the start of rotation cycle, which enables
synchronous rotation.

The active grid can be operated using many different rotation protocols, broadly
classified into two modes – synchronous (sync) and random. In the synchronous mode,
the angles of all flaps are coordinated in sync with each other, whereas in the random
mode, the direction of rotation of each shaft changes randomly. Mydlarski & Warhaft
(1996) report in their wind-tunnel experiments, that they get higher values of Reλ with
an active grid when it is operated in the random mode. The synchronous rotation has
four modes of operation – S1–S4, as illustrated in figure 4, which shows a schematic
of the grid from the top. In modes S1 and S2 all shafts rotate in sync in the specified
directions, whereas in modes S3 and S4, shafts in the top plane remain open for the
entire cycle, i.e. oriented vertically, and only the bottom shafts rotate. We chose mode
S1 as our base case as it injects circulation of opposite sign into the flow, while mode
S2 preferably injects circulation of the same sign into the flow. The different rotation
modes show the generality of our results, even for the ‘pathological’ rotation protocols
S2 and S4, but we focus mostly on the base mode S1.
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FIGURE 5. Schematic view of the test section with laser illumination (green), volume
optics and four high-speed video cameras. (a) Shows the front view and (b) shows the
top view.

In the random mode (R), the direction of rotation of the shafts changes randomly,
while keeping a constant rotation speed of 3 rps, which is called the single random
mode in the literature (Poorte & Biesheuvel 2002). The cruise time also varies
randomly between the period of 180◦ and 540◦ of a rotation. This sets the average
cruise time equal to the period of one complete revolution. In the so-called double
random mode, the speed of each shaft is also a random variable. However we
implement only the single-random mode as it is common in the literature. Also,
Larssen & Devenport (2011) conclude from their study with the double random
mode that the mean rotation speed has a greater effect on Reλ than the deviation of
cruise time and rotation rate.

2.3. Illumination and imaging set-up
Figure 5 shows a schematic of the illumination and imaging system in relation to the
contraction used in our experiments. The cameras are sketched in the top view only
and are arranged in a horizontal plane. A LaVision tomo-PIV imaging system is used
to obtain time-resolved 3-D measurements of the volumetric flow field. We use both
LaVision’s tomo-PIV (Elsinga et al. 2006) and PTV algorithms (Schanz et al. 2016),
to compute velocity fields from the captured particle images. Particles are illuminated
using a dual-cavity pulsed Nd-YLF, 527 nm green laser (Litron LDY 300 PIV) with a
maximum output of 23 mJ pulse−1 (at 70 % power and a frequency of 1 or 1.3 kHz)
and of pulse width 100 ns. In our experiments both of the lasers are flashed together
with no separation time to obtain a sufficiently high illumination intensity.

LaVision volume optics (modules A and B reference number 1108676) are used to
expand the laser beam into a volume slice. The volume optics consist of a focusing
lens and two perpendicular cylindrical lenses which expand the beam to illuminate
a 3-D volume in the measurement region, as shown in figure 5. A metallic aperture
cuts off the dim edges of the expanded laser, forming a measurement region that is
approximately 56× 106× 20 mm, as indicated in figure 2(b).

The flow evolution is tracked in three separate experimental regions in runs on
separate days. The first region is close to the grid, before the flow enters the
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contraction. The second is inside the contraction and the third is at the bottom of the
contraction, which includes its exit and the following straight section. These regions
are marked as P1, P2 and P3 in figure 2(b). An overlap of positions P2 and P3 is
used to check for consistency of the statistics between the separate experimental runs.

Imaging is done using four high-speed video cameras (LaVision Imager Pro HS)
with Scheimpflug attachments and 105 mm Nikkor lenses at an aperture of f /16. They
allow frame rates up to 1279 fps at full 4 Mpx resolution. Two cameras are placed on
either side of the measurement zone, as shown in figure 5. Images are captured with
a resolution of 1152 × 2016 px at 1000 fps. However, in position P3 at the exit of
contraction, where the mean flow has accelerated, a higher frame rate of 1300 fps is
used. The LaVision control unit synchronizes the cameras and the laser providing one
laser flash per frame. For good reconstruction quality, we maintain optimum angles
between the cameras, and those viewing from opposite sides are positioned so that
they do not have co-linear lines of sight. For positions P1 and P2 the angles between
C1/C2 and C3/C4 are 30◦ and 38◦ respectively, while for the narrower tunnel in P3
they are 24◦ and 32◦. In P2, cameras C1, C2, C3, C4 make angles 105◦, 75◦, 71◦ and
109◦ with the laser respectively.

2.4. Calibration and seeding particles
Spatial calibration was accomplished using an 11.8 mm thick 4-plane calibration plate
from LaVision (Number: 106-10) with two different depths of white dots on a black
background per side. The edges of the calibration plate have been cutoff to fit into
the test section, where it is mounted on a support rod extending from the bottom
of the tunnel. The test section is filled with water and calibration images are taken
with the plate in the centre of the volume. The calibration images are taken under
normal laboratory lighting and third-order mapping polynomials in the image plane
are obtained using the LaVision DaVis software.

Both the tomo-PIV and STB algorithms require a second volume self-calibration
step (Weineke 2008) which is used to improve the original calibration using the actual
particle images. In self-calibration, we use pre-processed images (pre-processing
involves subtracting a sliding minimum over 5 px, normalizing with a local average,
Gaussian smoothing and sharpening of the raw images) to compute disparity vectors
for each sub-volume of the measurement region, which are then used to correct the
original calibration. Volume self-calibration is done using the 20 000 highest-intensity
particles, by dividing the measurement zone into 5 × 5 × 3 sub-volumes with a
maximum allowed triangulation error between 1.8 and 2.0 pixel. The procedure is
repeated, updating the corrections to the mapping functions after every step until
the standard deviation of the fit falls from ∼0.5 pixels to below 0.1 pixels. Volume
self-calibration accounts for any misalignments such as slight changes in the positions
of the cameras and other optical disturbances during conduct of the experiment.

For seeding particles we use fluorescent red or orange polyethylene microspheres
with diameters in the range 63–106 µm which are close to neutrally buoyant with
a density of 1.05 g cm−3 (from Cospheric). To avoid particle agglomeration and to
allow reuse of the particles, they are first treated with diluted Tween-80 surfactant
solution. To ascertain the ability of the particles to faithfully follow the fluid flow, we
estimate the time constant governing their dynamics. Using the mean particle diameter
and assuming a low-Re Stokesian drag coefficient of 1, based on Adrian & Westerweel
(2011), we estimate the particle time constant in our case as ∼20 µs. This corresponds
to a Stokes number of 2× 10−4, indicating minimal lag between the flow and tracer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.887


884 A5-12 V. Mugundhan and others

2.5. Time-resolved tomo-PIV and STB particle tracking algorithms
To obtain velocity fields we use two separate techniques: tomo-PIV and STB. In
the tomo-PIV analysis, 3-D reconstruction is done with the FastMART algorithm in
DaVis (version 8.2.2). The algorithm consists of initialization with the single-step
MLOS (multiplicative line-of-sight) algorithm (Worth & Nickels 2008; Atkinson &
Soria 2009) with subsequent calculations using the MART (multiplicative algebraic
reconstruction) (Elsinga et al. 2006) and SMART (simultaneous MART) (Atkinson
& Soria 2009) algorithms. The direct correlation technique with binning is used
for the 3-D velocity calculations. The region with S-N (signal-noise) ratio greater
than 2 is used for the cross-correlation, which determines the depth of the volume
reconstruction. Here, S-N is calculated by the ratio of the intensities of true particles
to that of ghost intensities. However, tomo-PIV suffers from some disadvantages, such
as the occurrence of ghost particles, which decreases the accuracy of the method.
Spatial averages of interrogation volumes are employed during correlation, which
smooth velocity gradients and fine structures. Furthermore, volume reconstructions
are needed at every time step, which are much more computationally demanding than
particle tracking.

STB is a new 4-D Lagrangian particle-tracking velocity measurement technique
that can handle densely seeded flows while producing a minimum number of ghost
particles (Schanz et al. 2013a, 2016). It brings together volume self-calibration,
optical transfer function features of tomo-PIV (Schanz et al. 2013b) and iterative
triangulation and the image matching of the iterative reconstruction of volume particle
distribution (IPR), introduced by Weineke (2013). Particle velocities obtained from
from the tracks are then mapped to a three-dimensional Eulerian grid (Gesemann
2015). Lagrangian particle-tracking methods can typically handle a seeding density
one order smaller than those in tomo-PIV, i.e. only '0.005 ppp. The ‘image
matching’ technique used in IPR enables 3-D reconstructions as accurate as tomo-PIV
with seeding densities as high as 0.05 ppp. On the other hand, keep in mind that
5–10 particles are needed in each interrogation volume for the correlation method,
equalizing the total number of velocity vectors obtained in the two techniques.

We compare the processing results of these two algorithms in supplementary
material § S2 and find that both produce similar results for the coherent vortical
structures. As STB can now produce a similar density of velocity vectors to tomo-PIV,
reduces ghost particles and greatly reduces the processing time we present the
results processed using STB from DaVis (version 8.4.0) from LaVision in this paper.
Most results presented herein are from STB calculations, with typically 30 000 particle
tracks appearing in the volume. Pre-processing of images for STB is the same as
for tomo-PIV except that no smoothing or sharpening is applied. For the pointwise
statistics, a grid of either 36 or 48 pixels with time filter length of five time steps is
used, while for structure-based statistics we use 11 time steps to improve traceability
of the coherent structures. Details of the velocity grids and the convergence of flow
features with spatial resolution are presented in the supplementary material § S2.

To evaluate the quality of the STB velocity computation for a chosen grid
resolution, we use methods adopted in Zhang et al. (1997) and Casey et al. (2013),
wherein they analyse the residual of the continuity equation to evaluate the quality
of their tomo-PIV computations. The three terms of the continuity equation are
computed over a cuboidal volume of sizes W, 2W and 4W by taking differences
of velocities averaged over opposite faces (as seen in Zhang et al. (1997)). We
use the STB velocities computed on a grid of 48 pixels with a filter of 11 time
steps for region P2 for this equality evaluation. Thus, here, W is taken as 48 pixels.
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FIGURE 6. (a) Joint probability density function (PDF) of parameters 1V/1y and
−(1U/1x+1W/1z) for volume size of 4W, contours shown for the range 0.01–0.04.
(b) PDF for ξ . All plots shown for the grid of size 48 voxels.

Figure 6(a) shows the contour plot of joint probability density function (PDF) of
1V/1y and −(1U/1x+1W/1z), for case 4W. Here U, V , W represent the
instantaneous velocities averaged over the faces. The 45◦ line on the plot corresponds
to the divergence-free velocity field, and it is seen that our data align along this
line with small scatter, indicating that the divergence errors are acceptable. The
peak value of the contours is shifted to the left of zero, as the flow accelerates
through the contraction. Correlation coefficient between the two quantities plotted
is calculated to be 0.91. This is as expected based on the values of 0.82 and 0.96
reported by Ganapathisubramani et al. (2007) and Casey et al. (2013) respectively,
for their calculations in a turbulent jet, with similar spatial resolutions. With the
higher-magnification experiments (see § 3.10) we get a higher correlation coefficient
of 0.94, for the same volume size. This is shown in the supplementary figure S14.

Deviation of the velocity field from divergence-free data is also represented by a
non-dimensional parameter defined as (Zhang et al. 1997),

ξ =
(∂U/∂x+ ∂V/∂y+ ∂W/∂z)2

(∂U/∂x)2 + (∂V/∂y)2 + (∂W/∂z)2
. (2.2)

The parameter ξ varies between zero and 1, and deviation from 0 represents the
normalized deviation from the divergence-free condition. Figure 6(b) shows the PDF
for ξ for all three volume sizes. The mean values of ξ are 0.21, 0.15 and 0.06 for W,
2W and 4W respectively. The corresponding values reported by Casey et al. (2013)
are similar at 0.36, 0.19 and 0.09 for their highest Re case. Our results show slightly
better closure of continuity despite our higher Reλ and less resolved Kolmogorov
scales. The closure is even better in our higher-magnification experiments discussed
in supplementary material § S7.

3. Results
We present the results of the experiments described above in the following manner.

First, in § 3.1 we show characteristic turbulent parameters of the flow at specific
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points to give a basic sense of the turbulence level and behaviour in the channel.
Next, in § 3.2 we discuss the mean velocity and the effect of the active grid rotation
on the homogeneity of the flow. We then examine the evolution of the fluctuating
velocity (§ 3.3) and vorticity statistics (§ 3.4) through the contraction. With this
ground work we delve into a discussion on coherent vortical structures (§ 3.5) and
investigate the alignment of vorticity with the principal strain-rate directions (§ 3.6)
and the orientation of the vorticity vector (§ 3.7) and coherent structures (§ 3.8) in
the streamwise direction. We then solidify the validity and broader applicability of
our findings by briefly presenting additional experiments in which we improve the
homogeneity of the flow with a larger distance between the active grid and SOC,
showing little change in the results (§ 3.9), and increase the magnification of the
cameras to resolve smaller scales (§ 3.10). All results presented are based on STB
calculations unless otherwise stated.

3.1. Turbulence parameters
The important turbulent parameters computed at two different downstream locations
are tabulated in table 1. Point A is located 125 mm (x = −113 mm) downstream
of the active grid still inside the straight section and point B is located at 30 mm
(x= 30 mm) inside the start of the contraction. These points lie on the centreline of
the tunnel. The mean streamwise velocity in the straight inlet section varied between
0.27 and 0.28 m s−1 in our experiments. Turbulence intensities after the active grid
are initially high, then decay along the flow direction, as expected. Higher values
of fluctuations at point A are observed in modes S1, S3 and R, with the highest
of 16.9 % obtained in the random mode. This point is located on the centreline of
the tunnel at 125 mm (x =−113 mm, xAG/M = 4.2) from the active grid. In modes
S2 and S4, where shafts rotate in the same direction, lower turbulence intensities
are obtained. This trend is also noted for the turbulent Reynolds number based on
the Taylor microscale, Reλ, at both of the points. The highest value of Reλ = 292 is
achieved at point A in the random mode, which then reduces to 231 at point B. The
value of Reλ initially reduces in the straight section, due to the decay of the velocity
fluctuations, while the Taylor microscale remains approximately a constant. There is
some increase in λ, as the flow enters the contraction, which results in higher values
of Reλ.

Turbulence kinetic energy is computed as k = (u2
rms + v

2
rms + w2

rms)/2, based on
the root mean square of the fluctuating velocity components. The dissipation rate is
approximated by,

ε= 15ν

〈(
∂u
∂x

)2
〉
. (3.1)

The notation is the following: the instantaneous velocity U= 〈U〉 + u, V = 〈V〉 + v,
W = 〈W〉 + w, where 〈U〉, 〈V〉 and 〈W〉 are the time averaged velocities and, u, v
and w denote the fluctuations. Equation (3.1) assumes homogeneity and local isotropy.
Sirivat & Warhaft (1983) showed for grid turbulence that the estimate of ε using (3.1)
agrees well with that computed by two other approaches: differentiation of the energy
decay and integration of the velocity spectrum. Brown et al. (2006) also use (3.1),
showing that the dissipation rate agrees well with other estimates even though their
flow is not isotropic. We also compare the isotropic estimate of ε to a more complete
expression of 〈sijsij〉 in our high-magnification experiments, which are described in the
supplementary material § S7.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.887


Turbulence in a contraction 884 A5-15

Parameters Sync mode 1 Sync mode 2 Sync mode 3 Sync mode 4 Random

x (mm) −113 −113 −113 −113 −113
〈Uin〉 (m s−1) 0.273 0.283 0.269 0.284 0.269
〈u2
〉

1/2
/〈Uin〉% 14.9 12.0 13.7 11.7 16.9

k (m2 s−2) 2.47× 10−3 1.94× 10−3 2.42× 10−3 2.10× 10−3 3.15× 10−3

ε (m2 s−3) 1.39× 10−3 1.46× 10−3 1.74× 10−3 1.26× 10−3 1.67× 10−3

L (mm) 10.64 9.43 10.34 8.63 16.19
λ (mm) 5.51 4.04 4.26 4.76 5.10
η (mm) 0.162 0.160 0.153 0.166 0.154
ReL 538 424 519 404 927
Reλ 279 182 214 222 292
δ/η 3.8 3.9 4.0 3.7 4.0

x (mm) 30 30 30 30 30
〈Uin〉 (m s−1) 0.280 0.276 0.279 0.278 0.271
〈u2
〉

1/2
/〈Uin〉% 8.6 5.9 8.3 6.3 8.7

k (m2 s−2) 8.45× 10−4 6.13× 10−4 8.41× 10−4 7.44× 10−4 1.02× 10−3

ε (m2 s−3) 2.90× 10−4 2.13× 10−4 3.04× 10−4 2.94× 10−4 3.08× 10−4

L (mm) 12.91 9.91 12.10 8.75 17.44
λ (mm) 7.63 5.80 6.72 5.73 7.08
η (mm) 0.240 0.258 0.236 0.238 0.235
ReL 382 250 358 243 568
Reλ 226 146 199 159 231
δ/η 2.6 2.4 2.6 2.6 2.6
S∗ = Sk/ε 5.7 4.8 5.0 4.4 6.2

Parameters Sync mode 1

x (mm) 30
〈Uin〉 (m s−1) 0.294
〈u2
〉

1/2
/〈Uin〉% 4.5

k (m2 s−2) 2.90× 10−4

ε (m2 s−3) 1.15× 10−4

L (mm) 15.73
λ (mm) 6.27
η (mm) 0.301
ReL 272
Reλ 109
δ/η 2.0
S∗ = Sk/ε 5.0

TABLE 1. Flow parameters at location x = −113 mm (xAG/M = 4.2) upstream of the
start of the contraction (top), at x = 30 mm (xAG/M = 8.9), which is slightly inside the
contraction (middle), and at x= 30 mm (xAG/M= 16.9) with the extensional part (bottom).

The length scales associated with the turbulence are computed using the spatial auto-
correlation of the streamwise velocity (Pope 2000). For homogeneous turbulence, the
correlation of streamwise velocities at two points axially separated by a distance r is
given by,

f (r)=
〈u(x)u(x+ exr)〉

〈u2〉
. (3.2)
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The integral length scale L and Taylor microscale λ, are computed using the spatial
correlation function f as

L=
∫
∞

0
f (r) dr, λ=

(
−

1
2 f ′′(0)

)−1/2
. (3.3a,b)

The variation of the correlation f is shown for modes S1 and R in the supplementary
figure S16. In both cases the curve reaches zero, where we stop the integration. The
Reynolds numbers based on these length scales, presented in table 1, are defined as,
ReL = k1/2L/ν and Reλ = k1/2λ/ν. In case of isotropic flows, the Taylor microscale is

often estimated as
√

u2/
〈
(∂u/∂x)2

〉
(Pope 2000), which would give slightly smaller

values for Reλ. If we apply this estimate to our data, the largest of our Reλ, which
occurs for the random mode, reduces from 292 to 244. The smaller Kolmogorov
length scale is computed as η= (ν3/ε)1/4. The velocity grid resolution including the
75 % overlap is given by δ and is compared in table 1.

The turbulence-to-mean-strain time ratio is defined as S∗ = Sk/ε (Lee & Reynolds
1985; Pope 2000; Ayyalasomayajula & Warhaft 2006), where S is the mean strain
rate. Here, we use the dominant extensional strain rate (2∂〈U〉/∂x) for the mean
strain rate S. The value of S∗ should be very large to apply rapid distortion theory.
(Ayyalasomayajula & Warhaft 2006). For their flows, S∗ varied between 10 and 100.
However, as they study an axisymmetric contraction they use a different prefactor
(
√

3) to calculate the mean strain.

3.2. Mean velocity
Figure 7(a) shows the mean streamwise velocity 〈U〉 on the centreline of the tunnel.
The values have been time averaged over 4.2 s (this corresponds to ≈8τ , where
τ is the eddy turnover time computed based on the integral length scale and the
fluctuation at the start of contraction), and comparison between four realizations
confirms good convergence. Velocity is normalized by the corresponding mean inlet
velocity 〈Uin〉 in the straight channel averaged over the y direction. The mean velocity
in our experiments varies in the range 0.27–0.28 m s−1. The flow accelerates inside
the contraction and the measured mean streamwise values match closely the local
cross-sectional area ratio, the outlet speed reaching 2.5 times the inlet velocity. There
are minor differences seen between the different grid-rotation modes in the initial
straight section and into the first part of the contraction (figure 7(a)). This is due to the
flow not being entirely uniform in the transverse direction, both from the periodicity
of the grid and the nature of the contracting geometry. We quantify the errors in the
mean and root mean square (r.m.s.) quantities and discuss the convergence of our
results in the supplementary material sections § S3 and S4 respectively.

The transverse profile of 〈U〉 for modes S1 and R is shown in figures 7(b) and
7(c) respectively. The profiles are shown at four locations, x=−90, −30, 30 and 90
mm, corresponding to xAG/M ≈ 5, 7, 9 and 11, where xAG is the distance from the
bottom shafts of the active grid. Velocity profiles have been normalized by the local
mean velocity 〈Ulm〉 averaged over the transverse y direction. For mode S1 a strong
signature of the shaft rotation can be seen in the velocity profile at x=−90 mm. The
non-uniformity reduces with the vigorous turbulent transport of momentum in the
transverse direction, as we move further downstream. However, the flow still remains
slightly non-uniform for mode S1 when it enters the contraction. These profiles
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FIGURE 7. (a) Streamwise evolution of the mean streamwise velocity 〈U〉, on the
centreline, for different oscillation modes of the active grid: synchronous modes S1–S4
and random mode R. The streamwise velocity is normalized by the area averaged mean
inlet velocity in the straight section, 〈Uin〉. Vertical black lines mark the start and end
of the contraction. Transverse profiles of mean streamwise velocity 〈U〉(y) at different x
locations for mode S1 (b) and mode R (c). Locations x=−90 mm and x=−30 mm are
before the entrance to the contraction. They correspond to xAG/M≈ 5, 7, 9 and 11, where
xAG is the distance from the bottom shafts of the active grid. The streamwise velocities
in (b) and (c) are normalized by the local area averaged velocity at the corresponding
x-location, 〈Ulm〉.

are much more uniform in the case of the random mode. We present additional
information how the active grid rotation influences the homogeneity of the flow for
the different rotation modes in the supplementary material § S5.

An important parameter in strained turbulence is the strain-rate parameter, which is
defined above. The streamwise variations of the mean strain rate and the strain-rate
parameter S∗ are shown in figures 8(a) and 8(b) respectively. We plot S∗ for the modes
S1 and R which have the highest turbulent fluctuations. The maximum value of S∗ is
approximately 25.

3.3. Fluctuating velocity statistics
Figure 9(a–c) shows the streamwise variation of the r.m.s. velocities urms, vrms and
wrms on the centre of the tunnel. They are normalized by the mean velocity 〈Uin〉

in the straight section. There is a slight discontinuity seen in the profiles within the
contraction, as measurements at positions P2 and P3 are from different experimental
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FIGURE 8. (a) Streamwise variation of the normalized mean strain ∂〈U〉/∂x for different
modes. (b) Streamwise variation of S∗ for grid-rotation modes S1 and R. Vertical black
lines mark the start and end of the contraction. The vertical red line marks the maximum
curvature location.

realizations taken on different days. However, the trends seen for urms and vrms in the
contraction are as expected from the literature. All r.m.s. fluctuations decay rapidly
in the straight section, but in the contraction, urms continues to decay whereas there
is an increase in the transverse components vrms and wrms. In wind-tunnel experiments
with planar contraction of C= 2.5, the same as the current study, Thoroddsen & Van
Atta (1995a) also observed decay in the urms and increase in vrms. These trends are
similar to that proposed in Prandtl’s theory for an axisymmetric contraction (Prandtl
1933). According to his theory, streamwise velocity fluctuations vary as inverse of C
and lateral fluctuations grow proportionally to C1/2. This behaviour has been verified
experimentally by Uberoi (1956) in his experiments with an axisymmetric square
contraction and he concludes Prandtl’s theory holds good when C <4, which is true
in our case. The decay in urms in our current results is proportional to 1/C, but the
increase in vrms is not proportional to C1/2, its increase is weaker.

The spanwise wrms relatively has higher values in region P1 and shows a decay
upstream of the contraction. In the contraction, similar to the transverse vrms, wrms also
increases, reaching a clear local maximum at the contraction’s maximum curvature
location (MCL). This local maximum, which occurs at x≈ 142 mm, could be due to
the delayed reaction to the strongest mean strain, which is observed at x≈ 120 mm,
as seen in figure 8(a). After this local maximum at the MCL, there is a dip in
the r.m.s. followed by an increase further downstream. The increase towards the
downstream could be due to the tendency of the turbulence to return to isotropy. This
local maximum is also seen in experiments with the longer distance between the grid
and SOC, while it is less prominent. This variation of wrms for a planar contraction
has not been reported before. However, it should also to be noted that wrms has
the highest noise, as discussed in the supplemental material subsection § S3. These
variations in r.m.s. velocities along the contraction are similar for all grid-oscillation
modes.

We see a mismatch in the r.m.s. curves between the different measurement regimes.
This is most likely caused by two effects: these regimes are necessarily run on
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FIGURE 9. Streamwise variation of velocity and vorticity r.m.s. along the centreline.
(a) Streamwise velocity urms; (b) transverse velocity vrms; and (c) spanwise velocity wrms
for different modes of the active grid, i.e. the four synchronous modes S1–S4 and the
random mode R. Streamwise evolution of the vorticity r.m.s. of (d) streamwise vorticity
ωx,rms; (e) transverse vorticity ωy,rms; and ( f ) spanwise vorticity ωz,rms, for different modes
of the active grid. Here, 〈Uin〉 is the area averaged mean inlet velocity in the straight
section. The vertical black lines represent the start and end of the contraction. The vertical
red line marks the maximum curvature location.

different days, due to the major adjustments needed for the optical system and
camera arrangement/calibration; and also the laser volumes are not perfectly aligned
in the depth direction, which introduces minor differences due to the transverse
inhomogeneity arising from the grid-rod locations.

The random mode (R) shows the largest level of fluctuations for all components
of the velocity. This is also seen in table 1 with higher values of the turbulent
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intensity, turbulent kinetic energy and Reλ. Modes S2, S4 show lower values of
velocity fluctuations for urms (figure 9(a)).

As seen in figure 4, shafts on the top plane are oriented along y, and their flaps’
rotation displaces flow in the z, x directions; whereas those on the bottom plane are
along z, and their flaps’ rotation displaces flow in the x, y directions. As we measure
the statistics at the centre of the tunnel at a sufficiently long distance from the grid,
the flow is more complex and hence corroboration of vrms and wrms with the protocol is
difficult. However, the trends of all the fluctuations in the contraction are qualitatively
similar for all modes.

3.4. Vorticity statistics
In figure 9(d–f ) we present the streamwise variation of the r.m.s. vorticity components,
ωx,rms, ωy,rms and ωz,rms. All components of the vorticity decay upstream of the
contraction owing to diffusion and dissipation (Tennekes & Lumley 1972). The
ωx,rms and ωy,rms exhibit similar trends with downstream location. Both exhibit local
maxima at the MCL similar to that seen for wrms in figure 9(c). Keep in mind
that the gradient in wrms contributes to these two vorticity components. When we
view the vorticity field as consisting of large discrete entities, vortex tubes which
are aligned with the x-direction, they undergo stretching by the mean strain and,
thus, there is an increase in ωx,rms by conservation of angular momentum. The ωx,rms
reaches a prominent local maximum at the MCL, which could be due to the delayed
response to the strongest mean strain at x ≈ 120 mm. After this local maximum,
ωx,rms decreases locally until x≈ 170 mm after which it increases again until the exit.
This increasing trend qualitatively agrees with Prandtl’s theory for an axisymmetric
contraction. According to the theory, streamwise vorticity increases as C and the
transverse vorticity decreases as C−0.5. In our case, the transverse component ωy,rms
does not show a monotonic decrease as per the theory. Initially, there is a slight
decrease in its value due to the compression of vortex tubes aligned with y. But then,
there is a subsequent increase observed due to the variation of wrms. The increase in
ωy,rms is at a lower rate than ωx,rms. The spanwise component ωz,rms, which is parallel
to contracting walls, undergoes minimum variations along the contraction. This is
justified as any vortex tube aligned with the z direction ‘feels’ minimum changes
due to the contraction. To the best of our knowledge, there has been no earlier
experimental measurement of vorticity inside a contraction. However, the gradients
of velocity depend on the numerical grid used for the velocity computation, which
in turn depends on the particle density used. Here, we use the grid based on the
grid-dependence study detailed in the supplementary material § S2. This can lead to
fine structures being under-resolved, which can underestimate their gradients and in
turn the vorticity strength, while capturing the spatial structure of the vorticity field.

3.5. Coherent vortical structures
Identification and visualization of coherent vortical structures is one approach to
better understand the underlying dynamics in turbulent flows. Many definitions of
coherent structures exist in the literature, and there is no uniquely accepted best one.
One conceptual definition, given by Hussain et al. (1986), is ‘a coherent structure
is a connected turbulent fluid mass with instantaneously phase correlated vorticity
over its spatial extent’. There are also many methods for identification of such
vortical structures based on: (i) some intuitive characteristics of the vorticity where
the pressure has a minimum or (ii) the characteristics of the velocity gradient tensor.
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x
yz

FIGURE 10. Comparison of the instantaneous isosurfaces of |ω| = 30 s−1 (blue) and λ2=

−130 (orange) in position P2. The coordinates (x, y, z) indicate the principal directions
but do not coincide with the actual origin.

In the first approach, the simplest and most intuitive method uses the vorticity
magnitude as a criterion. In the second approach, based on the velocity gradient
tensor, parameters based on this tensor are used as its criteria. For example, the
discriminant ∆ (Chong et al. 1990), the second invariant of velocity gradient tensor
Q (Hunt et al. 1988) or the second eigenvalue λ2 (Jeong & Hussain 1995). The
λ2 parameter uses the eigenvalues of the real symmetric matrix (S2

+ Ω2), where
S is the strain-rate tensor and Ω is the rotation-rate tensor (Pope 2000). A vortex
is identified as the connected region where two of the three real eigenvalues are
negative. This implies that the second eigenvalue λ2< 0, when they are arranged such
that λ1 > λ2 > λ3. The eigenvalues of the strain-rate tensor in the descending order
(λS > λI > λC) will give the extensional (stretching), intermediate and compressive
strains respectively. The corresponding eigenvectors give the principal directions.

In figure 10 we compare the instantaneous isovorticity (blue) and λ2 structures
(orange) in region P2. The characteristic larger structures are captured by both
criteria, although there are differences in the visualization of smaller structures. Due
to ease of physical interpretation, we choose the vorticity magnitude in our further
analysis. This structure analysis is presented only for mode S1, as a larger number
of realizations were made for this mode.

The representative change in the spatial structure in the three measurement regions
is shown in figure 11. It presents isosurfaces of |ω|= 35 s−1. The vorticity is strong in
P1, immediately below the grid, which then decays as the flow enters the contraction,
as was observed in the r.m.s. vorticity presented. Big interconnected structures are seen
in region P1, which appear as blobs of comparable dimensions in all directions. As
the flow enters the contraction, the structures coalesce and break down, forming long
tubular structures under the straining action of the mean flow and exit the contraction
as long tubes.
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(a) (b) (c)

x yz

FIGURE 11. Downstream changes in the appearance of vorticity isosurfaces for a constant
value of |ω| = 35 s−1, for the three different streamwise measurement regions: (a) P1,
(b) P2 and (c) P3, for grid mode S1. The region between the planes marked in red
and green represents the overlap between P2 and P3. The plane marked in blue in (c)
corresponds to the end of the contraction. The sizes (x, y, z) of the measurement regions
in mm are P1 (92.0, 55.9, 23.6), P2 (95.1, 54.8, 17.6) and P3 (97.8, 43.2, 18.2). The
coordinates (x, y, z) indicate the principal directions only and do not coincide with the
actual origin.

Time evolution of structures within the three measurement zones is shown in
figure 12. Note that the results presented at different positions do not correspond
to the experiment done on the same day, thus we do not track the same structures
through the entire contraction. For better visualization, isosurfaces are shown for
a higher vorticity (|ω| = 60 s−1) for P1, which exhibits strong vorticity, versus
|ω| = 35 s−1 for regions P2 and P3. Smaller structures are seen in P1 as compared
to figure 11(a), due to the difference in the vorticity magnitude. Due to the active
grid motion we expect the production of larger structures than for passive grids.
Under the action of mean strain these structures are stretched, forming long tubular
structures. The evolution of two such structures in the mid position P2 is shown in
figure 12(b). Stretching continues as the flow moves through the contraction, forming
longer structures which get more aligned with the centreline of the tunnel as they
exit the contraction. A representative long structure observed in the lower part of
the contraction is shown in figure 12(c). We quantify this preferential orientation by
looking at the pointwise and structure-based statistics in the following sections.

3.6. Vorticity orientation with respect to the principal strain rates
Vorticity and strain-rate interdependence is important to understand the dynamics of
turbulent flows. In the vorticity evolution equation, the vorticity intensification terms,
due to stretching and tilting, include the local strain-rate tensor. The orientation
of ω with respect to the largest strain is thus an important quantity that governs
redistribution of vorticity across its components. We specifically look at the PDFs
of orientation of ω with respect to the principal directions of the strain-rate tensor.
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(a)

(b)
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FIGURE 12. Time evolution of isosurfaces of |ω| for measurement regions (a) P1 with
|ω| = 60 s−1; (b) P2 with |ω| = 35 s−1; and (c) P3 with |ω| = 35 s−1, for grid-oscillation
mode S1. The sequences are spaced by 20 video frames, which corresponds to a time
interval of 20 ms for P1 and P2, and 15 ms for P3. The region between the planes marked
in red and green represents the overlap between measurement volumes P2 and P3. The
plane marked blue in (c) corresponds to the end of the contraction. Dimensions of the
region are the same as in figure 11.

We present the probability density function for the cosine of the angles between
ω and the three principal eigenvectors. Using cos θ rather than θ is mandated by
the non-uniform probability of the angular locations on a sphere i.e. for a random
orientation it is much more likely to end near the equator than at the North Pole.
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FIGURE 13. PDF of the cosine of the angle between ω and the principal strain-rate
eigenvectors at x = −90 mm (a), 30 mm (b), 142 mm (c), 190 mm (d). The
legend denotes the angle between the vorticity vector and the θS: stretching vector;
θI: intermediate vector; and θC: compression vector. The PDFs are obtained using data
from 11 × 11 grid points in constant x-planes around the channel centreline. The
distributions are calculated using 50 bins.

Using the PDF (cos θ ) corrects for this and a random distribution gives a uniform
probability.

We use the notation that θS, θI , θC represent the angle between ω and the direction
of the principal stretching, intermediate and compressive stresses respectively. The
PDF is obtained at four characteristic x-locations along the tunnel which are:
x = −90 mm (close to the active grid), 30 mm (in the contraction), 142 mm
(corresponds to the maximum curvature of contraction) and 190 mm (after the exit
of contraction). The PDF at a given x-plane is obtained using data from 11× 11 grid
points around the channel centreline, sampled over the entire set of approximately
4× 5500 frames captured, corresponding to the total number of samples of 0.67× 106.
The PDFs at a particular x-location are averaged over those obtained from all of the
independent realizations (we have three realizations in P1; four each in P2 and P3).
To account for all directions of the vorticity vector, PDFs are plotted for the full
range of cos θ ∈ [−1, 1]. We note that for perfect spanwise grid homogeneity the
distribution should be symmetric about zero. There is a strong tendency for ω to align
with the intermediate strain, i.e. perpendicular to the other two principal directions
at x = −90 mm (figure 13). This overall alignment persists downstream through the
contraction.
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This behaviour of ω aligning with the intermediate eigenvector has been observed
in both simulations (Ashurst et al. 1987; Nomura & Post 1998; Hamlington et al.
2008) and in experiments (Tsinober et al. 1992; Su & Dahm 1996; Mullin & Dahm
2006) of different turbulent flows. This tendency of vorticity alignment was first
reported by Ashurst et al. (1987) using simulated data for isotropic and shear flow
turbulence. Later, this was verified with measurements in grid flow, in the outer
region of a turbulent boundary layer by Tsinober et al. (1992) and for coflowing jets
by Mullin & Dahm (2006). All of these studies report that ω tends to align with
the intermediate strain perpendicular to the compressive strain direction. Furthermore,
it has weak or no correlation with the stretching direction. This can be understood
for flow fields which are locally two-dimensional, such as vortices or plane shear
layers, where the principal stretching and compression are in planes perpendicular
to the vorticity vector, requiring that the vorticity be parallel to the remaining, i.e.
intermediate strain direction.

In our study we reach essentially the same conclusion. However, we observe
vorticity to be perpendicular to both the stretching and compression strain directions,
with nearly similar probability distributions. This is similar to the observations made
by Su & Dahm (1996) in the case of an axisymmetric jet. It is perhaps intuitive
to expect ω to align with the direction of stretching as it amplifies the stretched
vorticity component. However, vorticity being the derivative of the velocity, its local
value favours contributions from the smaller scales. On the other hand, we could
also expect alignment with the stretching direction due to the imposed contraction to
appear at larger scales based on the instantaneous coherent structures. This behaviour
was a mystery for a couple of decades before Hamlington et al. (2008) gave an
explanation. Indeed Hamlington et al. (2008), based on their analysis of DNS data of
homogeneous isotropic turbulence, showed vorticity tends to align with the stretching
direction of the background strain. However, with respect to the local strain rate,
ω showed preferred alignment with the intermediate strain direction. They separate
local and background strain rates based on the radius of integration used for the
computation of the strain rate. It is computed from a specific form of the Biot–Savart
integral, that expresses the velocity as an integral of the vorticity. Strain rate induced
at a location by the vorticity within this radius (≈12η, where η is the Kolmogorov
scale) is called local and beyond that is the background strain rate.

While the PDFs in figure 13 show no qualitative change with x in the general
alignment of ω with the principal strains, there are quantitative changes. The
magnitude of the peak probability changes. We see ω to deviate from alignment
with the intermediate strain through the contraction, but it then tends back to its
pre-contraction behaviour when it leaves the contraction. The PDF values for the first
bin at cos θ = ±1 are 3, 1.6, 2.2 and 2.4 for locations x = −90, 30, 142 and 190
mm respectively. As far as the stretching and compressive directions, the contraction
reduces the PDF value at cos θ = 0, but this tends to its pre-contraction behaviour at
the exit.

The effect of the contraction on the orientation observed from the PDFs is more
clear in the joint PDFs (JPDF) plotted between |ω| and the cosine of the angles
(figure 14). The red regions in the middle row of figure 14, which shows alignment
with intermediate strain, become wider as we move through the contraction. This
indicates slight loss of alignment. The red/yellow regions in the top and bottom
rows of figure 14 show a slightly preferential perpendicular alignment of ω with
the compressive and stretching strains, as they are concentrated in the middle,
corresponding to cos θ = 0.
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FIGURE 14. Joint PDF of |ω| and cos θ . Rows from top correspond to cos θC, cos θI
and cos θS respectively. Columns from left correspond to x=−90 mm, 30 mm, 142 mm
and 190 mm respectively. Samples obtained and bins used are the same as mentioned in
figure 13 for cos θ . A total of 50 bins are used in |ω|.

3.7. Orientation of vorticity vectors
To investigate how the contraction affects the alignment of vortical structures at the
different turbulent length scales, we examine both pointwise and coherent-structure-
based statistics, to quantify the average vertical orientation of ω. First, we present
the PDFs of the cosine of the angle (θ−X) between ω and the −x direction. PDFs
at the same four characteristic locations described in the previous section are shown
in figure 15. The range of values for cos θ−X varies between [−1, 1] going between
vertically up to down, which includes all possible orientations of the local ω. The
pointwise ω does indeed show significantly increased alignment with x as it passes
through the contraction. The vorticity vectors close to the grid are closest to random
orientation. As we move along the contraction, the rising values of the PDF at cos
θ−X =±1 indicate a strong tendency of ω to align with the x-direction. This was also
qualitatively observed with the instantaneous structures presented above in figure 12,
where longer structures aligned along the mean flow. Figure 16 shows the JPDF
between cos θ−X and |ω| at the same four locations. Sampling for this is done in the
same way as employed for the PDFs. Contours show the JPDF after averaging over
all of the independent realizations. At x = −90 mm (figure 16(a)), the probability
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FIGURE 15. The alignment of the vorticity vector with respect to the centreline of the
contraction. PDF of the cosine of the angle between ω and the −x-axis at four different
streamwise locations. The distribution is calculated using 50 bins. For a perfectly spanwise
homogeneous turbulent field, this distribution should be symmetric about zero.

density is nearly random over the range of vorticity magnitudes. As we move along
the tunnel, the distribution tends to concentrate close to cos θ−X = −1 and 1 and
this bias towards alignment with the vertical direction is more probable at higher
vorticity magnitudes. This can be seen clearly from figure 17, wherein we show the
conditional PDFs for three different values of cos θ−X = 0.98, 0.5 and 0. These PDFs
are extracted along the corresponding horizontal lines in the contour plot shown in
figure 16(d). The values are normalized by the total conditional probability in each
case. For the fully vertically aligned condition cos θ−X = 1, the normalized PDF has
a larger contribution at higher vorticity.

In both the PDFs and JPDFs, we observe the distribution to be nearly symmetric
(except at the point near to the grid) which also indicates that this distribution is
independent of the up or down orientation of the vorticity. This is expected as the
horizontal symmetries of the grids should not generate ωx with preferential clockwise
or counterclockwise rotation, but the measurement volume is not perfectly aligned
with the grids. At locations in proximity to the grid, the orientation could also be
slightly biased in ωy and ωz by the rotation protocol used. Figure 17 suggests that
stronger vorticity is most aligned in the vertical direction, i.e. in the direction of the
large-scale strain.

3.8. Orientation of coherent vortical structures
The analysis of vorticity orientation is now extended to large-scale coherent vortical
structures. The coherent structures are identified based on the vorticity magnitude and
their size. The structure identification and tagging is done using the 3-D watershed
function in MATLAB. Voxels with |ω| higher than a particular cutoff value are
flagged. A ‘turbulent structure’ here corresponds to a group of connected flagged
voxels. These connected regions are then sequentially numbered using the watershed
function. Numbered structures are then filtered based on their size in voxels. A large
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FIGURE 16. Joint PDF of |ω| and cos θ−X , where θ−X is the angle between the vorticity
and the −x-axis. Plots correspond to downstream locations at x = −90 mm (a), 30 mm
(b), 142 mm (c), 190 mm (d). Samples obtained and bins used are the same as mentioned
in figure 13.

cutoff value results in relatively smaller structures, corresponding to regions close
to the vortex core. Only big structures with sizes greater than a particular value are
considered for the statistics. Using the regionprops3 function in MATLAB, we extract
the principal axis lengths and directions of an equivalent ellipsoid, which has the
same normalized central moments as the structure. Filtered structures identified at
a representative time instant in measurement regions P1, P2 and P3 are shown in
figure 18. The x–y projections show the orientation becoming more aligned with x as
we move through the contraction from P1 to P3, with most of the structures in P3
nearly aligned with x. In figure 19 we present the PDFs of the cos(θ−X-Struct), where
θ−X-Struct is the angle between the major axis direction of the coherent structure and
the −x-axis. The PDF of absolute value of cos(θ−X-Struct) is shown as we consider
only the orientation of the principal axis.
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FIGURE 17. Normalized PDF of |ω| at different values of cos θ−X . The PDF is extracted
along horizontal lines in the JPDF of figure 16(d) at cos θ−X = 0.98, 0.5 and 0. The PDFs
are normalized by the integral under each curve.

We note that the structure shape and quantity depend on the chosen vorticity
magnitude and size criterion and are therefore quite subjective. Thus we quantify
the sensitivity of the results on the specific choice of these thresholds. Based on the
visualization of isosurfaces of |ω|, we see that the coherent structures are distinct and
clear for |ω| in the range 60–80 s−1 inside P1, and 30–40 s−1 inside P2 and P3. The
PDFs of |cos(θ−X-Struct)|, obtained for P1 and P3 for different size criteria in the above
ranges of |ω|, are shown in figure 19. The maximum size in this study is chosen to
ensure that large structures are identified at all the time realizations. Sizes of 50, 100,
200 and 300 voxels correspond to ≈12, 24, 48 and 72 mm3. Figure 19 shows that
the cutoff values chosen have a minimal effect on the PDFs. In P1 (figure 19(a)),
the alignment distribution is random. In P3 (figure 19(b)), the PDF shows strong
preference towards cos θ−X-Struct = 1 for both values of |ω| and especially for the
largest structures. This indicates that larger structures tend to align more as compared
to the smaller ones. Thus for all the further analysis of structures, we use a cutoff
value of |ω| = 70 s−1 for P1, |ω| = 35 s−1 for P2 and P3. In all cases only structures
of size greater than 100 voxels (≈24 mm3) are considered. For each realization, the
PDF is computed using structures that satisfy the above criteria, over all of the 5499
frames. In each measurement region, the average of the PDFs over all realization
is presented in figure 20(a) (average is over three realizations in P1, and four in
P2 and P3). With the chosen cutoff values, we have the average of approximately
100 000 big structures in each measurement volume. It is clear that there is a strong
tendency of structures to align with x near the exit of the contraction in P3, with
almost a random distribution at the inlet in P1. The random mode, which has a totally
different grid-oscillation protocol compared to the rest, exhibits an identical trend in
the PDFs (figure 20(b)). This confirms the structures tend to align in x-direction in a
contraction irrespective of the protocol of the grid.

The evolution of the orientation along the contraction is looked at more closely by
dividing each measurement region into three equal sub-regions, P1 to R1–R3, P2 to
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FIGURE 18. Orientation of instantaneous coherent vortical structures visualized based
on average vorticity magnitude and their total size. Vorticity weighted centroid of each
structure is shown with a dot, together with the major principal axis of the equivalent
ellipsoid with the length corresponding to the major axis length. (a) P1 with |ω| = 70 s−1,
(b) P2 with |ω| = 35 s−1 and (c) P3 with |ω| = 35 s−1. In all the regions the size criterion
used is >100 voxels. The x-coordinate shown here is local to each measurement region,
centred at the middle of the region.

R4–R6 and P3 to R7–R9 (R1 is closest to the grid and R9 is the last one at the outlet
of the contraction). The PDF of the structure orientation in each of these sub-regions
for modes S1 (figure 21(a)) and R (figure 21(b)) shows a clear systematic transition
from a random orientation at R1 to a preference for alignment in the vertical at
the outlet of the contraction at R8. Due to the overlap of P2 and P3, sub-regions
R6 and R7 also overlap and thus show nearly identical PDFs. However, in region
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FIGURE 19. PDFs of the orientation of coherent vortical structures for different values of
|ω| and structure size, for regions close to the grid (a) x=−23 to −115 mm (P1), and
near the exit of the contraction (b) x = 103 to 198 mm (P3). Grid-rotation mode is S1.
PDF calculated with 20 bins. The 100 voxel size corresponds to ≈24 mm3.
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FIGURE 20. Streamwise evolution of the PDF of orientation of coherent vortical structures
versus downstream location regions P1–P3 for modes (a) S1, and (b) R. Structures are
identified using the criteria: size of 100 voxels, |ω| = 70 s−1 for P1; |ω| = 35 s−1 for P2
and P3. PDFs are plotted with 50 bins.

R9, which is in the straight section downstream the contraction, the PDF shows
a slightly reduced peak tendency to align with x. This deorientation immediately
downstream of the contraction could be physical but we will require measurements
further downstream to confirm this behaviour and investigate the underlying reasons,
such as the return to isotropy. This reduction in the peak PDF value persists after
we increase the distance after the grid to the entrance of the contraction, as shown
in the supplementary figure S12 and discussed in supplementary material § S6.
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FIGURE 21. Streamwise evolution of the vertical orientation PDF of coherent vortical
structures in sub-regions R1–R10, for grid-oscillation modes (a) S1, and (b) R. Structures
are identified using criteria: size of 100 voxels, |ω| = 70 s−1 for P1; |ω| = 35 s−1 for P2
and P3. PDFs are plotted with 50 bins. The mid-x locations (in mm) for these sub-regions
are: −100 (R1), −69 (R2), −38 (R3), 46 (R4), 77 (R5), 108 (R6), 120 (R7), 151 (R8),
182 (R9).

3.9. Increasing the distance between the grid and contraction
There is a trade-off between large Reλ and transverse homogeneity of the inlet
flow, which requires a long distance between the active grid and the entrance of
the contraction. To address whether this inhomogeneity has significant effect on the
vortical-orientation results, we have performed an additional experiment where this
distance was doubled from x/M = 8 to 16, as shown in figure 2(a). Thormann &
Meneveau (2014) conclude that the traverse spatial homogeneity was found to be
good beyond x/M ≈ 15 in their study on decay of turbulence behind active fractal
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grids. This was done for the primary synchronous mode S1, which showed the
large inhomogeneity in figures 7(b) and S9(a). While the value of Reλ is more than
cut in half, the orientation results are essentially the same, as will now be shown.
The bottom part of table 1 lists the conditions at the inlet of the contraction with
the additional length. Figure 22(a) presents the inlet inhomogeneity of the mean
flow, showing that the maximum has reduced from ±6 % in figure 7(b), to ±3 %.
Figure 22(b) shows the orientation of the vorticity vector with respect to the principal
rates of strain. Compared to figure 13(c) the results are quite similar. Similarly,
figure 22(c) shows that the orientation of the pointwise vorticity vector with the
vertical centreline is the same as in figure 15. Finally, figure 22(d) also shows that
the orientation of the large-scale coherent structures is essentially the same as in
figure 20(a). Here the vorticity level of the isocontour must be adjusted to a smaller
value to account for the diffusion of vorticity further downstream from the grid.

3.10. Experiment at larger optical magnification
Our experiments are focused on capturing the larger-scale coherent vortices in the
turbulence and cannot resolve all the small scales and the velocity gradients accurately.
Thus, in order to evaluate the effect of the spatial resolution, we repeat an experiment
using a higher optical zoom (∼2×). The measurements were made in a region 30×
50 mm approximately centred on the location of the maximum contraction curvature.
We use these data to assess the accuracy of the vorticity and the dissipation rate, as
described in the supplementary material § S7. The PDF of the vorticity magnitudes
is slightly shifted to higher values, as shown in supplementary figure S15. Similarly,
the dissipation shows values up to 2.8 times higher than for the less zoomed imaging.
However, this results in only 25 % smaller estimates of the Kolmogorov scale due to
its weak dependence on ε−1/4.

4. Discussion and conclusions
Herein we have attempted to determine the evolution of turbulent vortical structures

as they convect through a two-dimensional contraction. We have used the latest tomo-
PIV and STB algorithms to measure the time-resolved velocity field in volumetric
slices upstream of and within the contraction.

We have used active oscillating grids to increase the energy of the turbulent
fluctuations. We have also kept the entrance of the contraction quite close to these
grids to retain the large Reλ ≈ 250. The trade-off is here between the vigour of the
turbulence and the transverse homogeneity of the mean and turbulent quantities. We
believe the transverse inhomogeneities are sufficiently small not to affect the dynamics
of the coherent vortices as they are accelerated and strained by the converging stream.
This is indeed verified in an additional experiment (§ 3.9), where the distance from
grid to contraction is doubled, to xAG/M= 16. The principal vortical-alignment results
were unaffected.

The random grid-oscillation mode shows the largest turbulence intensity, but we
see similar statistical trends for all of the five grid-oscillation modes, even for the
pathological ones with all grids rotating in the same direction. The streamwise urms
reduces monotonically through the entire contraction, consistent with the linear theory
and earlier hot-wire measurements for small contraction ratios. The cross-stream
velocity component r.m.s. values increase modestly. The fluctuations wrms, as well
as ωx,rms and ωy,rms, show small local maxima at the maximum local curvature of
contraction, which occurs somewhat downstream of the peak axial strain-rate location.
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FIGURE 22. Results obtained from experiments for which the length of the straight section
between the active grid and the inlet of the contraction is doubled from x/M=8 to 16. All
results presented are for mode S1. (a) Transverse profiles of 〈U〉(y) normalized by 〈Ulm〉

at different x-locations are presented in comparison to figure 7(b). The profiles marked by
dotted lines are obtained from experiments with the extension added. (b) PDF of cosine of
the angle between ω and the principal strain-rate eigenvectors at x=142 mm, as compared
to those in figure 13(c). (c) The alignment PDF of ω with respect to the tunnel centreline
at different x-locations, as compared to figure 15. (d) Streamwise evolution of PDF of
the orientation of coherent vortical structures in regions P2∗ (x = 3–109 mm) and P3∗
(x = 86–192 mm). Here, P2∗ starts 20 mm above the previous region P2 and is closer
to the inlet of contraction. Structures are identified using the two criteria of size >100
voxels and |ω| = 20 s−1 (refer to figure 20(a) for comparison). PDFs are evaluated with
50 bins.

While we cannot fully resolve the finest scales of the flow and pointwise statistics
could be better resolved with hot-wires or large-magnification planar PIV, we
highlight that the strength of our experimental method is the volumetric large-scale
measurements. We exploit this to visualize and track coherent vortical structures
using isosurfaces of constant |ω|, along with a minimum size criterion. Conditional
averaging shows that, immediately downstream of the active grid and before the
contraction, the coherent vortical structures have arbitrary orientation. They then get
stretched by the mean strain along the contraction, resulting in elongated structures
strongly oriented with the centreline x-axis at the contraction exit. The orientation
of these structures is determined by the major principal axis corresponding to the
equivalent ellipsoids. This is evaluated by PDFs of the cosine of the angle between
these ellipsoids, or ω and the vertical x-axis at different streamwise locations. The
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PDFs in figures 20 and 21 show clearly the systematically increasing alignment
through the contraction.

To quantify the strength of this alignment with the mean strain, we can look
at the ratio of the probability peak in figures 19–21, where the two are nearly
perfectly aligned, compared with the value in the low-probability plateau, i.e.
p(θ = π/2)/p(θ ' 0). For the pointwise vorticity vector in figure 15 this ratio is
∼4 near the exit of the contraction, while for the large-scale coherent vortical
structures this ratio becomes as large as ∼30 in figure 21. For comparison, by this
measure of the alignment, the alignment of vorticity and large-scale strain is weaker
for homogeneous turbulence, showing only a ratio of ∼5 in Hamlington et al. (2008).
However, the straining of the turbulent large scales is certainly not as persistent as in
our imposed external configuration.

We have quantified the degree of preferred alignment of ω with the intermediate
eigenvector of the strain-rate tensor as well as with the large-scale strain for our
turbulent flow subject to the contraction. These findings are of relevance, in the
context of LES to the development of subgrid-scale (SGS) stress tensor models,
especially those which are structure based (Lesieur et al. 2005). One such SGS
model is the stretched spiral vortex model originally developed by Misra & Pullin
(1997). In their work they consider that, embedded within each computational cell,
there exists a superposition of stretched vortices, each having orientation taken
from a probability density function. They proposed a two-vortex model in which a
fraction of the local subgrid structures tend to become aligned with the extensional
eigenvector and the remainder align with the intermediate eigenvector. Later works by
Cheng, Pullin & Samtaney (2015, 2018) and Cheng et al. (2017) orient the subgrid
vortex along the extensional eigenvector. In our experiments, one may consider the
large-scale strain imposed by the contraction as an analogue to the background strain
experienced by the subgrid vortex in the stretched spiral vortex SGS model. Hence,
the alignment of the vortical structures after the contraction in our experiments is in
a sense a validation of the assumption of orientation along extensional eigenvectors
in the stretched spiral vortex SGS model. Our experimental results may serve as a
guide to other models that rely on a vortex structure approach in LES modelling.

This work suggests numerous extensions. It remains, for example, to investigate
whether individual coherent vortical structures persist through the entire contraction,
which would require employing multiple tomo-PIV systems along the streamwise
direction.
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