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Abstract

Consider a density-dependent birth-death process XN on a finite state space of size N. Let
PN be the law (on D([0, 7"]) where T > 0 is arbitrary) of the density process XN/N and let
FIjv be the unique stationary distribution (on [0,1]) of XN/N, if it exists. Typically, these
distributions converge weakly to a degenerate distribution as N —> co, so the probability
of sets not containing the degenerate point will tend to 0; large deviations is concerned with
obtaining the exponential decay rate of these probabilities. Friedlin-Wentzel theory is used
to establish the large deviations behaviour (as A' —> oo) of PN. In the one-dimensional case,
a large deviations principle for the stationary distribution T\N is obtained by elementary
explicit computations. However, when the birth-death process has an absorbing state at
0 (so TlN no longer exists), the same elementary computations are still applicable to the
quasi-stationary distribution, and we show that the quasi-stationary distributions obey the
same large deviations principle as in the recurrent case. In addition, we address some
questions related to the estimated time to absorption and obtain a large deviations principle
for the invariant distribution in higher dimensions by studying a quasi-potential.

1. Introduction

Let XN be a continuous-time birth-death process on the state space {0, 1 , . . . , N}d c
Zd, whose Q-matrix has the form

<?\ ,n - et) = Nd\N\n/N), (1.1)

where n = («„ n2, ..., nd) and b(N) = {b\N\ ..., b{
d
N)) and dm = ( < \ . . . , d(

d
N))

are Lipschitz-continuous (E+)d-valued functions on [0, \]d such that b\m{x) = 0 if
Xj = 1 and d]N\x) = 0 if xt = 0. We would also like to allow the possibility
of absorbing states: for example, 0 may be absorbing, in which case we would
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[2] Large deviations and quasi-stationarity for density-dependent birth-death processes 239

have biN\0) = 0; alternatively, the process might be absorbed when it hits one
of faces x, = 0 of the cube [0, l]d, in which case we would have bf\x) = 0 if
Xj = 0. We assume that fe,-W), d\N) > 0 otherwise. Suppose further that, as N -> oo,
bw - diN) ->• F for some Lipschitz-continuous Rd-valued function F on [0, I]*. In
the case where biN) = b and dm = d, such a process is said to be density-dependent,
an idea first introduced by Kurtz [6]. In the more general situation just described,
such a process may be called asymptotically density-dependent (see [8]). Although
the notion of asymptotic density-dependency can be applied equally well to a process
on an infinite state space and many of the results presented here remain true in the
case of infinite state spaces, it is more natural and in some technical respects simpler
(especially in the context of quasi-stationary distributions) to discuss such processes
in the framework of finite state spaces. We shall concentrate on birth-death processes
with finite state spaces in this paper.

Denote by YN(t) := XN(t)/N the density process associated with XN. Kurtz [6]
established the following law of large numbers.

THEOREM 1.1. Suppose that YN(0) ->• y0 as N - • oo and let T > 0 be an arbitrary
fixed positive number. Then for any e > 0,

(sup \YN(t) - y(t)\ > e)-+0
\l£0<T /

as N —»• oo, where v(-) is the solution to the ODE

y(t) = F(y(0), >(0) = yo. (1.2)

In particular, if PNJ is the law of {YN (t) : t e [0, T]} (so PNJ is a probability measure
on D([0, T], [0, l]d)), we have PNT => Syi.y The original version of this theorem
stated in [6] applies only to the density-dependent case (that is, bm = b and d(N) = d),
however, the proof extends readily to the general asymptotically density-dependent
case (see [8]).

Once a law of large numbers like Theorem 1.1 has been established, it is natural
to ask whether the measure PN and the stationary distribution obey a large deviations
principle, to investigate the relationship between the path-wise large deviations at the
process level and the large deviations of the stationary measure.

2. Large deviations for the density process

The aim of this section is to present a large deviations theorem for the law PN of the
density process YN. The main result in this section is not really new, although some
relatively minor technical details are different from what has been established before.
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Certainly, Theorem 2.1 below will come as no surprise to anyone familiar with the
large deviations theory of similar Markov processes.

First, a reminder.

DEFINITION. Let E be a Polish space, ixn a sequence of probability measures on E
and aN a sequence of positive numbers with aN t oo. Let / : E —> [0, oo] be a lower
semi-continuous function. Then (fj,N,aN) is said to obey a large deviations principle
with rate function / if

for any open G C E,

— inf / (x) < lim inf — log /xn (G)
C N-*oo a^

lim sup — log IMN(F) < — inf/(x)
N-*oo ON F

for any closed F c E and for each 5 > 0, the level set {x : / (x) < s} is compact.

The above definition is a precise way of expressing the rough idea that if Bx is a
small neighbourhood of x, then fiN(Bx) ss exp[—aNI(x)}. Example 4.1 illustrates
one way in which this idea can be applied in practice.

From the Q-matrix defined by (1.1), we see that the density process YN is a Markov
chain on the state space SN = {0, N~\ 2N~l,... \}d whose generator is

= /A N f { x ) = J ( f ( x + u ) - f ( x ) ) Q ( " \ x , d u ) , x e S N (2.1)

d

where Qw(x, du) = NY^b\N\x)8ei/N + djN\x)S_ei/N. Consider the "logarithmic

moment generating function" G(W)(x, z), defined as follows:

d T f T

Gw(x, z) := —Ex[ez YN^~X]\ = / {e " - l)Q(N)(x, du). (2.2)

Let QN(x, du) = £ , b^\x)8+ei + djN\x)8^, and

GN(x,z) = J(e*T"-\)QN(x,du). (2.3)

Next, let
HN(x, u) = sup{zr

M - GiN)(x, z)},

HN(x, u) = sup{zr« - GN(x, z)},
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be the Legendre transforms of z M> Gm(x, z) and z i-> GN(x, z) respectively, for
fixed jr. Observe that

G(N)(x, z) = NGN(x, z/N) and / / W ( J C , u) = NHN(x, «), (2.4)

which exactly reflects the scaling property exhibited by (1.1). (We effectively have
YN(t) = N~lX(Nt) where X is the process whose g-matrix is defined via the kernel
QN(x, du) in a manner analogous to (2.1).)

It is easy to show that, in the case of a birth-death process,

, } f\) (x)
//„(,, „) = g ^ log

(2-5)

For the purposes of this section, we shall make the simplifying assumption that

b(N) -> b and d(yv) -* d (2.6)

uniformly in x e [0, l]d for some Lipschitz (K+)d-valued functions b and d which
are positive except on the boundaries as described in Section 1. (Thus, in the context
of Theorem 1.1, F = b — d.) These assumptions on b{N) and diN) imply that
GN(x, z) —> G(x, z) and HN(x, u) —>• H(x, u) as N —> oo for fixed x, u, where
G(x, z) = £,. fe,(^)(^ - 1) + d,(x){e-« - 1) and

H(x,u) = T Ulog=!

b,(*) + rf,-(x)). (2.7)

(Moreover, for fixed u, this convergence is uniform for x e [e, 1 — e]d for any e > 0.)
Define, for any arbitrary fixed 0 < R < T,

(2.8)--= f
JR

if 0 e C([0, T], fRd) is absolutely continuous, otherwise set SRT(<p) = oo. Let P^T

be the law of {YN(t) : t 6 [0, 7]} with MO)' = x. (Since P* T is a probability
measure on D([0, 7]), we need to think of SRJ as a function on D([0, 7]).) It can
be shown by standard arguments that SRJ is lower semi-continuous and has compact
level sets in the uniform topology on C([0, 7], W') (see, for example, [10], Theorem
5.1).

We have the following theorem, originally due to Wentzel [10].
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THEOREM 2.1. Suppose that the density-dependent process XN satisfies the assump-
tion (2.6). Then for any fixed T > 0 and each fixed x e (0, 1), (P^ T, N) obeys the
large deviations principle with rate function S = So,r defined by (2.8).

PROOF. Let po,r(0. V0 = sup,e[0 r ] \</>(t) - V(OI- For any s > 0, let 4>,(s) =
{</> : S(</>) > s}. Following [10], we prove the following two inequalities: for any
8, y, s0 > 0, there exists No such that for all N > No and any function </> with 0(0) = x
and S((p) < s0,

y)}, (2.9a)

< exp{-N(s - y)}. (2.9b)

Consider first the case that bm = b and diN) = rf (so that Gn = G and //w = H).
In this case, the proofs of these two inequalities are essentially identical to the proofs
of, respectively, Theorem 6.1 and Theorem 6.2 in [10]. (Indeed, the present situation
is almost identical to that of the example on pp. 228-229 of [10].) However, because
of our assumption that bj(x) = 0 for x, = 1 and possibly for x, = 0, some of the
assumptions of [10] are not quite satisfied and a few points in the proof require a
slightly different treatment. We shall concentrate on the main differences and omit
the other details which can be found in [10].

The main assumption of [10] which is violated is that it is not true that

H(y',u)-H(y,u)
AH(S):= sup , ' „ , , ^ 0

ly_ / M 1 + H(y, u)

as S I 0. However it is true that, for any e > 0,

H{y',u)-H{y,u)
sup >• 0 (2.10)

\y-y'\<b;y,y'(k{e,\-(]<i 1 + H(y, u)

as S J, 0. In addition, for any compact set U C Rd, there is a constant M such that for
all x e [e, 1 - e]d and for all u e U

\VUH\ < M.

(Reference [10] also assumes that the above holds with € = 0.)
For arbitrary e > 0, define a truncated process YN as follows:

YN(t) =

l-l/N ifYN(t) =

\/N ifyw(o =
YN{t) otherwise.
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Thus po,r(7/v, YN) < l/N. Since

Px
N,T(PoAYN, 4>)<&)> PX

N,APOAYN, <P) + POAYN, YN) < 8)

= PX
N,APO,T(YN, (j>)<8- PO,T(YN, YN))

> PX
N.APO.T(YN,4>AS)) < 8 - l/N)

and similarly

S - l/N),

we see that it is sufficient to prove the inequalities (2.9) with YN in place of YN.
We prove first the inequality (2.9a). It is clearly sufficient to prove this for all <p

such that (p(t) e [e, 1 — e]d for arbitrary e > 0. Then defining

AHm(t) := sup [H(N\y, 0(r)) - H(N)((f>(t), </>(/))],
\y-<HD\<Sn

we can then use (2.4) together with (2.10) to get an estimate for AHm(t), exactly as
in the proof of Theorem 6.1 in [10]. Next, a key step in the proof involves making a
Girsanov type change of measure, which is done using Theorem 3.1 of [10]. For this,
we merely need to define z(t, x) := VuH(x, </>(?)) and

d2G(x,z(t,y))
D(t):= sup J T

ZDZ{t):= sup

and the rest of the argument is now the same as in [10].
For the upper bound (2.9b), the only modification needed is in the definition of

A Hi in Theorem 4.1 in [10]:

H(y',u)-H(y,u)
= sup .

\y-y'\<2S',y,y'el<;,i-e] A + H(y, u)

Finally, the asymptotically density-dependent case, where biN) —> b and diN) -> d,
is an easy extension for not only do GN —> G and HN —> H, but also

82GN(x,z) d2G(x,z)
7 i • — r - p — and VuHN(x, u) ->• VuH(x, u).

Moreover, these convergences take place uniformly in u for u in each compact set
and uniformly in x at least for x e [e, 1 — e]d. The argument of Wentzel then goes
through without difficulty.
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REMARKS. (i) It should be emphasised that the large deviations estimates of The-
orem 2.1—unlike those of Theorems 6.1 and 6.2 in [10]—do not hold uniformly for
x G [0.1]. However, they do hold uniformly for x e [e, 1 — e] for any e > 0.

(ii) Of course, the result of Theorem 2.1 holds in much greater generality than in
the context of birth-death processes: the result has been formulated for a very general
class of (not necessarily time-homogeneous) Markov processes in [10]—in particular,
it holds for any density-dependent Markov chain. Similar results have been obtained
in the context of processes arising from queueing theory: see for example, [9], [3]
and [2]. However, in the case of birth-death processes, the function H and the rate
function have particularly simple forms and it is not easy to extend the results in some
of the subsequent sections to general density-dependent Markov processes.

3. Large deviations of the stationary distribution in one dimension

Consider first a one-dimensional density-dependent birth-death process; the higher-
dimensional case is deferred until Section 5. Suppose that the process XN introduced
in Section 1 has a unique stationary distribution—in particular, both end-points of
[0, 1] are reflecting barriers and we must have b(N)(0) > 0 and diN)(l) > 0.

Let UN be the stationary distribution of the density process YN on {0,
.., 1}:

where

7=0 k=\

Suppose there exists a function r on [0, 1] satisfying the following conditions:

/ | \o%r{u)\du < oo, (3.3a)

-T(- log \ogr(k/N) I —*• 0 as Af —> oo. (3.3b)
^ b^Qc/N) )

Note that a necessary condition for (3.3b) to hold is that
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as N —> oo, for almost all x e [0, 1]. However, this alone is not sufficient—we
require that the convergence takes place in a sufficiently uniform manner, although
(3.3b) is weaker than uniform convergence. Also, note that the conditions (3.3a,b)
together with our assumptions on b(N) and dw imply that f* | logr(w)| du < oo for
any x < 1 but it is possible that f0 | logr(«)| du = oo.

Define a function J (the "free energy function") on [0, 1] by

J(x)= I \ogr(u)du (3,4)
Jo

and let Jo be its global minimum in [0, 1] (the "Gibbs canonical free energy"):

To = min / \ogr{u)du. (3.5)
ye[o.nyo

THEOREM 3.1. Suppose the conditions (3.3) are satisfied. Then the family (UN, N)
obeys a large deviations principle with rate function I : [0, 1] —>• [0, oo] given by
I(x) = J(x)-J0.

PROOF. It is sufficient to prove that for any y > 0 and any x 6 [0,1], there exists
e > 0 such that

l n « ) ) V ( ) y), (3.6a)

limsup — lognN((x -e,x + 6)) < -(I(x)-y). (3.6b)

The proof relies on the following elementary fact: if aua2, ... ,an are positive num-
bers, then

n

max at < T ^ ak < n max a,

and hence
n

max log a, < log Y^ ak < logn + max log a,. (3.7)

The assumptions (3.3) imply that, given any x and any y > 0, we can choose e so
that

/
log r(u)du— I logr(u)du

Jo

1 ^

(3.8a)

\ (3.8b)

https://doi.org/10.1017/S0334270000012492 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012492


246 Terence Chan [9]

for all z e (x — e, x + e) and for all sufficiently large N. (The slightly different ranges
of summation in (3.8b) is to avoid problems caused by the fact that r(0) = 0; it is
inconsequential as far as the subsequent arguments are concerned.)

We first show that, as N —> oo,

- l o g 1^(0)-•/ , ,• (3.9)

From (3.2) and the lower bound in (3.7)

-itognw(0)>mM(i5>g

max I - log r(u)du — y II = —Jo — y 12,
O£Z<1 Jo

where we have used (3.8b) to obtain the second inequality. Similarly, using the upper
bound in (3.7) we obtain

lim - log l l w (0 ) > Jo-y/2
N-*oo /V

and since y is arbitrary, we have established (3.9).
Consider now the lower bound (3.6a). We have

(Here, [•] denotes the integer part.) Hence, using the lower bound in (3.7),

— \0gT\N«X-€,X+€))

1 n 1 î , bm(k/N)
>-logn/v(0) + max ^ E 1 0 ^

> — log nyv(O) + max — x

JV l(x-e)N]<j<[(x+()N] N

-> Jo + max / —\ogr{u)du-y/2
zs(x-c,x+c) Jo

> Jo- I \ogr(u)du -y,
Jo
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where we have used (3.8) in the last two steps. This establishes (3.6a). The upper
bound (3.6b) is proved similarly, but now applying the upper bound in (3.7) as the first
step in the above calculation.

EXAMPLE 3.1. Consider the Ehrenfest chain: b{N)(x) = b(x) = \(l — x) and
d(N)(x) = d(x) = \xx where X, [i > 0. Then X\N is the binomial distribution

where p = A./(A + /x). In the context of Theorem 3.1, we have r(x) = d{x)/b{x)
and

Cx f uu
J(x)= logr(u)du = log—- -du

Jo Jo Ml — u)
= xlogfxx + (1 - x)\ogk(l -x) - l o g A.

The minimum value of J(x) is attained at x = p, giving the minimum value as
Jo = log(l - p). Putting all this together, we find that

/(x) = J{x) -J0 = x\ogx + {\-x) log(l - x) - xlogp - (1 - x) log(l - P).

Observe that this last expression is the relative entropy

i d v " Jlog-— dvx,
dvp

where vx = (1 — JC)<50 + x8u which is exactly the rate function given by Sanov's
theorem if we were to write the binomial distribution as a sum of independent Bernoulli
measures.

A similar procedure can be carried out for the one-species parasite model studied
in [8], but the computations are messier.

Theorem 3.1 implies that I1n converges weakly—at least along a subsequence—to
a measure concentrated at those points a where / (a) = 0, that is at the points a where
the function J defined at (3.4) attains its global minimum Jo on [0, 1].

If the global minimum is attained at a e (0, 1), we have J'(a) = 0, which is
equivalent tor (a) = 1, which in turn is the same as F(a) = 0. In addition, since such
points a occur at a (local) minimum, we must have log r (a—) < 0 and log r (a+) > 0,
which is equivalent to F(a—) > 0 and F(a+) < 0; if F and r are differentiable,
this is merely saying that J"{a) < 0 and F'(a) < 0. (A similar conclusion can be
drawn if the global minimum is 0 at one of the endpoints a = 0, 1.) In other words,
the support of any limit point II<*, of the sequence {Y\N} is a subset of the stable
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equilibrium points of the ODE (1.2). In particular, if / attains its global minimum at a
unique point a* e [0, 1], then UN =» 8a. as N —> oo. For example, for the Ehrenfest
chain in Example 3.1, / attains its global minimum at x = p and so Y\N =>• 8P as
N —> oo, which is easily checked directly using the normal approximation to the
binomial distribution.

The ODE (1.2) may be written in the form

HO = -U'(y(0),

where U(x) = — f* F{u)du. Note that U and / have local minima (and local
maxima) at the same points. However, the global minima of the two functions need
not coincide. Suppose that U and J have more than one local minima but only
one global minimum. Intuitively, one might expect that the limiting distribution U^
should be concentrated at the global minimum of the potential function U. But this
is not necessarily the case, since it is the global minimum of J that determines where
n n converges to. The following is a rather extreme example of this distinction.

EXAMPLE 3.2. Let 8 > 0, 0 < e < K, and 0 < a < 1/2. Suppose that b and d are
continuous functions satisfying

d(u) =

€ u G (8, a - S)

K u€(a + 8,2a-8)

K/2 u e (2a + 8, a + 1/2 -8)

K we (a+ 1/2+ 5,1]

and

b(u) =

K u€[0,a-8)

e u € (a + 8,2a-8)

K ue (2a+ 8, a+ 1/2- 8)

K/2 u e (a+ 1/2 + 8, 1 -8),

with reflecting boundary conditions d(0) = b(\) = 0. Following the standard
notation we have established above, we have J(x) — f* \og(d(u)/b(u)) du and
U(x) = Jo d(u) - b(u)du. Suppose further that b(a) = d(a), b(2a) = d(2a) and
b(a+l/2) = d(a+1/2), that ( /and/ are C2 functions with U(0) = J(0) = U(2a) =
J (la) = U(l) = 7(1) = 0. Thus U and / have local minima at a and a + 1/2 (and a
local maximum at 2a). We have U(a) % a(e - K), U(a + 1/2) % - ^ ( 1 / 2 - a)/2,
J(a) a* a(log e — log K) and J (a + 1/2) as —(1/2 - a) log 2. We can clearly choose
a and e small enough and K large enough so that the global minimum of U occurs at
a + 1/2 while the global minimum of J occurs at a. Note that we can make a as small
as we please. Even though for very small a the well centred at a is much smaller than
the well centred at a + 1/2, Theorem 3.1 tells us that nevertheless TlN => 8a.
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The point that free energy is not the same as potential is well-documented in the
physics literature—for example, see [5]. Stable equilibrium points of (1.2) which do
not correspond to the global minimum of J (and /) are known as meta-stable points.

The one-dimensional case is the only case where an explicit product-form expres-
sion for the stationary distribution is known, without making additional assumptions.
Of course, in the special cases where the stationary distribution in higher dimensions
also has a product-form solution along the lines of (3.1), the proof of Theorem 3.1 can
be readily modified to give a similar large deviations result. In Section 5, we present a
more general large deviations result which does not rely on the existence of an explicit
product-form formula.

4. Large deviations of quasi-stationary distributions in one dimension

We continue to work in one dimension. Suppose that 6(W)(0) = 0, so that 0 is an
absorbing state and the set {1, 2 , . . . , N} is an irreducible transient class. Moreover,
our other assumptions on b(/V) and d^N) imply that the process YN will almost surely
be eventually absorbed. The stationary distribution no longer exists; however, we
may consider the quasi-stationary distributions and investigate their large deviations
behaviour as N -> oo. Note that since b(N)(0) = d(N)(0) = 0, we have F(0) = 0, so
that 0 is an equilibrium point of the ODE (1.2). The most interesting case is that in
which 0 is an unstable equilibrium and the ODE (1.2) has positive stable equilibria, for
then Theorem 1.1 says the process YN should stay close to a trajectory of (1.2) which
is attracted to a stable equilibrium, but of course YN must escape to 0. Therefore, it is
interesting to enquire about the large deviation behaviour of the law of YN, conditioned
on not having been absorbed.

To find the quasi-stationary distribution, we first need to obtain a /n-invariant
measure. To this end, we make use of some results of [7], in particular Theorems 4.1
and 4.4 and Example 1 of that paper. Observe firstly that the birth-death process is
reversible with respect to the subinvariant measure

Here and in the sequel, we shall not always distinguish between measures and
vectors associated with the transient class {1,2,. . . , N}ofXN and the same quantities
associated with the transient class {l/N, 2/N,... ,1} of YN. Moreover, for notational
convenience, we shall write b]N) and djN) for bm(j/N) and d{N)(j/N).

Given \i > 0, the /x-reverse of the Q-matrix of a birth-death process, with respect
to the /x-invariant measure m(N) on {1, 2, . . . , N} (or {l/N, 2/N, ... , 1}), again
describes a birth-death process (see [7]). The state space of this /x-reverse birth-death
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process is { 1 , 2 , . . . , N] (or {l/N, 2/N, ... , 1}). Denote by b(N) and dm the birth
and death rates respectively of the /J,-reverse process. Example 1 of [7] derives the
following recurrence equation for b{N) and d(N):

, (4.2a)

AN) _ T(N) _
aj+\ °j+\ M — r(N

for j = 1,2,... , N — 1. The requirements that Jf = 0 gives the initial equation

b™ = b™ + d[N)-n. (4.3)

The /i-invariant measure can then be expressed in terms of the \x-reverse birth rates:

< > = » r n # W 7 r f £ i . J = h2....,N. (4.4)
k=\

However, in order that the /x-invariant measure mm be the unique (stationary con-
ditional) quasi-stationary distribution (uniqueness follows from the fact that the state
space is finite), we must choose -/x to be the maximal Perron-Frobenius eigenvalue
of the (2-matrix, so that /x is the decay parameter. For a birth-death process, this must
be given by /u. = m\N)d\N). To see this, fix a state i ^ 0 and let

mf\t) = P(XN(t)=j)\XN(0) = i, XN(t) # 0) = Pij(f)
{V

where P,y(?) is the transition function. Writing mw{t) = (m\N)(t),... , m(^\t)) as
a row vector, the Kolmogorov forward equation shows that

m Q + { m q ) m t
dt

where q is the vector with entries qk = Qk0. The limiting conditional quasi-stationary
distribution is an equilibrium point of the above ODE. Now simply observe that for a
birth-death process, (mm • q) = m\N)d\N\

Since d(
0

N)=0,wehaved\N)=dm (l/N) -> 0 as N -* oo and hence m\N)d[N) -> 0
(m[N) < 1). If fx = 0 in (4.2), the solution to the recurrence relation (4.2a) is simply
b(N) = b(N). Since /x « 0 for large Â , we should have

b™~b™, djN)~d™. (4.5)
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Indeed, the finiteness of the state space {1, 2 , . . . , N] implies the boundary condition
b(P = 0. Therefore, starting from b^ = 0 (rather than (4.3)), we have by induction

u(.N)
bN-\ —

UN)
°N-2 —

b
AN)

aN

^N-X

(W) AN)
N-\UN

-m\N)c

b

- ^ - 1

l(N)

(AT) AN)
N-2uN-\

+ d<N-l

w

— m

N-l uN-\ ^ ">

= • * { & - * { & - 0, etc.
(4.6)

Theorem 4.1 of [7] gives that the //.-invariant vector associated with m^^ is given by

u(N) /L(W) lA -I\

"k Ik v • ' /
k=\

The doubly limiting conditional quasi-stationary distribution is given by

lim lim P(XN(t) = j\XN(t + s) + 0) = m^x)N).
I—*OOS—>0O J

In view of (4.4), (4.5) and (4.7), we are led to the following theorem.

THEOREM 4.1. Suppose the conditions (3.3) hold. Then each of the two families of
quasi-stationary distributions (mm, N) and (m(N)x(N\ N) obey a large deviations
principle with the rate function I given by Theorem 3.1.

PROOF. Assume (3.3) holds and consider first the limiting conditional distribution
m(N) given by (4.4). Comparing (4.4) with (3.1), we see that the only difference is that
b{N) in (3.1) has been replaced by b{N) in (4.4). Therefore, if we can show that (3.3)
holds with b(N) in the place of b(-N\ the proof of Theorem 3.1 will go through exactly
the same as before. (The fact that the product in (3.1) starts from k = 0 whereas the
starting point is k = 1 in (4.4) will not affect the relevant asymptotics.) In order to
check that (3.3) still hold with biN) in the place of b(N), we simply need to check that

as N —> oo, which is true because, since d(N) is bounded away from 0 in a neighbour-
hood of 1, (4.6) shows that bl

k
N)/b[N) -> 0 as N -> oo uniformly in k for k > Ko, for

some fixed Ko.

The same sort of argument applies to the doubly limiting conditional distribution
miN)x(N), as (4.8) shows that AT1 log*'" ' -+ 0.
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EXAMPLE4.1. Supposeb(N\x) = b(x) = Xx(l-x) andd(N)(x) = d(x) = fix where
A, fx > 0. (Such a model might describe a population inhabiting a finite habitat and
individuals can only give birth if there is some unoccupied habitat for the offspring;
here, N is the number of sites in the habitat and x e [0, 1] is the proportion of habitat
already occupied and the birth rate is proportional to the unoccupied area.) With
r = d/b, (3.4) gives

J(x) = x log ̂  + (1 - x) log(l - * ) + * . (4.9)
A

The most interesting case is where ft < X, for then 1 — fx/X is the unique stable
equilibrium of (1.2) in [0,1] and the absorbing state 0 is an unstable equilibrium. The
function J attains its global minimum on [0, 1] uniquely at x = 1 — fx/X and the
global minimum is given by

According to Theorem 4.1, the quasi-stationary distribution has large deviations rate
function / given by

I(x) = (l-x) (log(l - x) - log ̂  - l ) + £ . (4.10)

Since / and / attain their global minimum at a unique point x = 1 — fi/X, Theorem
4.1 implies that m(N) =» <5,_M/A.

We can use the large deviations result to obtain an approximate confidence interval
for the population density, conditional on non-extinction. For an a-confidence interval,
we seek an interval of the form (1 — fx/X — a, I — /x/X + a) whose w(W)-measure is
a. Since the rate function / is convex and has a unique minimum at 1 — fx/X, the
large deviations principle tells us that m(N)(l — fx/X + a, 1) % e-Nn\-ti/x+a) ̂ o r j a rge

N). Similarly, m(N)(0, 1 - /x/X - a) « g^'d-MA-"). Therefore, an approximate
a-confidence interval can be found by solving

e-Nl(\-nl\-a) + e-Nl{l-,il\+a) = \ _ a (4.1 1)

for 0 < a < max(/it/A, 1 — /x/X). It is not hard to see that (4.11) has a unique
solution, at least for large enough /V. For example, suppose fx/X = 1/2 and take
N = 100, a = 0.95. Solving (4.11) numerically, we find a « 0.1926 and so an
approximate 95% confidence interval for the population density given non-extinction
is (0.307, 0.693). Repeating this for N = 500, we find a «s 0.0859, giving an
approximate 95% confidence interval (0.414, 0.586).

On the other hand, if yu- > X, then the absorbing state 0 is the unique stable
equilibrium of (1.2) in [0, 1]. The global minimum on [0, 1] of the function J at
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(4.9) is attained at x = 0 and the global minimum is Jo = 0. Thus I(x) = J(x)
and m{N) =$• So. In this case, there is no "genuine" quasi-stationary distribution in the
sense of a long-term equilibrium conditional on non-absorption because the process
reaches the absorbing state 0 very quickly.

5. The quasi-potential and applications

We again make the assumption (2.6) and consider for the moment only the one-
dimensional case. Thus in particular, F = b — J in (1.2) and (3.3) holds with/- = d/b.

Let _y* be any stable equilibrium of the ODE (1.2) with domain of attraction D.
The quasi-potential relative to _y* is the function Vy. defined by

Vy.(x) = inf{Sr,T2(0) • -oo < 7, < T2 < oo, 0(7,) = / , <t>(T2) = x), (5.1)

where ST,,T2
 IS t n e action functional given by (2.7) and (2.8). Note that x i-> Vy.{x) is

continuous, non-negative and Vy. (y*) = 0.
The quasi-potential plays a central role in the study of exit times and large deviations

of the invariant distribution. Our first aim, however, is to obtain an explicit formula for
V. This is a relatively straight-forward exercise in the calculus of variations. Similar
calculations can be found in [9]. The Euler-Lagrange equation

j . . . - 0 - ^ = 0
dt

together with a transversality condition (the times 7\ and T2 are not fixed) gives

Putting the expression (2.7) for H into the above identity results in

02 = (b(4>) - d(<(>))2, 0(7,) = / , 0(7i) = x. (5.2)

For 0 satisfying (5.2), we have

Since y* is a stable fixed point of (1.2) (with F = b — d), b(z) > d(z) for z e
D n (-oo, y*) and b(z) < d{z) f o r z e O f l (y*, oo).

Consider first the case that x e D. If x < y* then 0(0 < 0 for t e (J\, T2) and
(5.2) shows that 0 = d(<p) — b(<j>). Similarly, if x > y* and x e D then 0(0 > 0 for
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t € {T\, T2) and again 0 = d{<p) — b(<j>). Hence, from (5.3) we have (bearing in mind
that r = d/b),

The above is also true for x e 3D since Vy. is continuous. These results can be
summarized as the following theorem:

THEOREM 5.1. Let y* be a stable fixed point of'(1.2) andlet Vy. be the quasi-potential
with respect to y* defined by (5.1). Then for x in closure of the domain of attraction
ofy*,

where I is the large deviations rate function given by Theorem 3.1. Moreover, the
infimum in (5.1) is achieved by the time-reversal of the trajectory of (1.2) which goes
fromxtoy*: that is, for u 6 (—oo, 0], </>(") = ^/(—u) where \}r(u) satisfies (1.2) with
i/r (0) = x. Up to a constant time-shift, this action-minimizing trajectory is unique.

Although in our case it is essentially just a rather pretentious way of presenting
some elementary computations, Theorem 5.1 is nevertheless a result of rather wide
scope which holds in many other similar situations—for example, see [1].

We can now use the quasi-potential to study the problem of exit from an interval
D = (a, /?) by YN; in particular we wish to take D to be the domain of attraction of a
stable fixed point y* of (1.2). The following result is due to Freidlin and Wentzel [4]

THEOREM 5.2. Let y* be a stable fixed point of (1.2) and let D = (a, /3) be an open
interval containing y*. Let zN = inf[t : YN{t) £ D}. Then for any x € D and any
6 > 0,

lin^ — log E*[r*] = min(Vr(a), Vy

If there is a unique y0 € {a, 0} such that Vy.^o) = min(V>,.(a), Vy.{f})) then

lim r(\YN(rN)-y0\>e) = 0.
N-*CK>

Theorem 5.2 is essentially a restatement of Theorems 2.1 and 4.1 in Chapter 4 of
[4], specialised to the present situation. Although the corresponding results in [4]
deal with diffusion perturbations of (1.2), the proofs can be readily extended to our
situation (see Chapter 5, Section 4 of [4]) because for the most part they do not rely
on any specific properties of the diffusions or the associated rate function but only on
the underlying large deviations structure of the processes.

EXAMPLE 4.1 REVISITED. We can obtain an estimate for the expected time to extinc-
tion in this example. We have seen that when p, < X, the unique stable point is
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y* = 1 — ix/k and since /(y*) — 0, Vy.(x) = I (x) where / is given by (4.10). We
have

/x
y* X'

Therefore, provided /x/X > e~x, Vy.(0) < ^,.(1) so applying Theorem 5.2 (with
D = (0, 1)), we find that

lim — log Ex[rN] = - - log - - 1
N-KX N XX

and for any e > 0,
lim P''r(yw(r/v) > e) = 0;

in other words, xN is the time of extinction with high probability. If the coefficient [x
of this death rate is too small (specifically if ix/X < e~\ Vr(0) > Vy.(l) and rN is
likely to be the first hitting time of 1 rather than 0. In any case, we have the following
lower bound for the extinction time r^0):

lim 1 log E*[r<0)] > min ( £ - log £ - 1, £
N^oo N V A A A.

Observe that if the ODE (1.2) has a unique stable fixed point y* whose domain
of attraction is (0, 1), then Theorem 5.1 shows that I(x) = Vy.(x). This result
extends to higher dimensions and can be used to obtain the large deviations behaviour
of the invariant distribution even if an explicit formula is not known to exist. The
following result is the same as Theorem 4.3 in Chapter 4 of [4] for diffusions; as with
Theorem 5.2, the proof can be easily adapted from the diffusion case.

THEOREM 5.3. Suppose that (1.2) has a unique stable equilibrium y* whose domain
of attraction is (0, l)d. Suppose that the density process YN has birth and death rates
b{N) and d{N) which satisfy (2.6) and the invariant distribution Y\N exists. Then for
any connected domain D c (0.1)'',

lim l l ogn A , (D) = -infV,.(jr),
/V-i-oo Af JteD

where Vy. is the quasi-potential relative to y*.

Theorem 5.3 implies that (YlN, N) obeys a large deviations principle with rate
function Vy.. The calculus of variations used at the beginning of this section is also
applicable to higher dimensions, and we find that

~ l J —OO
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where <f> = (0,, (f>2, • • • . </></) is the time-reversal of the trajectory of (1.2) going from x
to y* and bt, d{ are the individual components of the functions b and d. Unfortunately,
this calculation does not yield an explicit formula for Vy,(x) in terms of x, as in the
one-dimensional case. Finally, an interesting question is whether Theorem 5.3 also
applies to the quasi-stationary distribution.

Acknowledgements

This work was carried out while I was visiting the Department of Mathematics at
the University of Queensland. I would like to thank Phil Pollett for first arousing my
interest in this area and for many useful discussions. I am also grateful to Carnegie
Trust for the Universities of Scotland for its financial support towards the visit.

References

[1] D. A. Dawson and J. Gartner, "Large deviations, free energy functional and quasi-potential for a
mean field model of interacting diffusions", Memoirs ofAMS 78 (1989).

[2] P. Dupuis and R. S. Ellis, "The large deviations principle for a general class of queueing systems,
I", Trans. AMS 347 (1995) 2689-2751.

[3] R. S. Ellis P. Dupuis and A. Weiss, "Large deviations for markov processes with discontinuous
statistics, I: General upper bounds", Ann. Probab. 19 (1991) 1280-1297.

[4] M. I. Friedlin and A. D. Wentzel, Random Perturbations of Dynamical Systems (Springer, 1984).
[5] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981).
[6] T. G. Kurtz, "Solutions of ordinary differential equations as limits of pure jump Markov processes",

J. Appl. Prob. 7 (1970) 49-58.
[7] P. K. Pollett, "Reversibility, invariance and M-'nvariance", Adv. Appl. Prob. 20 (1988) 600-621.
[8] P. K. Pollett, "On a model for interference between searching insect parasites", J. Austral. Math.

Soc. Ser. B 32 (1990) 133-150.
[9] A. Weiss, "A new technique for analysing large traffic systems", Adv. Appl. Prob. 18 (1986)

506-532.
[10] A. D. Wentzel, "Rough limit theorems on large deviations for markov stochastic processes I, II",

Theory Probab. Appl. 21 (1976) 227-242, 499-512.

https://doi.org/10.1017/S0334270000012492 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012492

