A NOTE ON *“ SIMPLIFICATION AND SCALING ”

by N. RILEY
(Received 5th August 1974)

1. Introduction

In a recent paper Segel (1) points out that the diverse techniques (which
“ comprise the core of the applied mathematicians art (or craft) ) of the applied
mathematician, although in general reliably proven, are ‘ rarely explicitly
delineated but rather are transmitted indirectly and informally . In his article
Segel aims to clarify two such techniques, namely:

(i) Scaling—or how to choose dimensionless variables in such a way that
the relative size of the various terms in an equation is explicitly indicated
by the magnitudes of the dimensionless parameters which precede them,

(i) Simplification—a procedure in which a term is neglected under the
assumption that it is small, and the consistency of the assumption
checked later.

By studying relatively simple examples Segel shows how an inappropriate
scaling can lead to a problem which is not meaningful, and furthermore how the
simplification procedure can lead to ‘ wretched consistent approximations *
in which the approximation, although apparently good, is in fact a poor one.

The purpose of the present note is to show how when (i) is applied, perhaps
naively but certainly plausibly, to a fairly complicated particular physical prob-
lem an ordinary differential equation results to which (ii) may be applied.
An apparently consistent first-order solution is derived using the method of
matched asymptotic expansions. Carrying the procedure to higher order
reveals an anomaly, and we verify that the first-order solution is  wretchedly
consistent ”’. The implications of this failure of the procedure (ii) for the original
scaling are discussed.

2. Statement of the problem

We consider the high Reynolds number flow of a viscous, electrically con-
ducting fluid past a semi-infinite flat plate in the presence of a magnetic field
which, at infinity, is parallel to the plate. The magnetic Reynolds number is
assumed to be small so that perturbations to the applied uniform magnetic
field are small. We assume, as a first approximation, that the magnetic field
is unperturbed which is equivalent to setting the magnetic Reynolds number to
zero in the induction equation. Then, as in the non-magnetic case, the major
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disturbance to the uniform flow is due to the thin boundary layer which is
associated with the no-slip condition at the plate. Accordingly we introduce
the classical boundary-layer scaling into the Navier-Stokes equations and retain
only the highest order terms. Thus we write the two-dimensional stream
function as

¥ =@Uex)¥ (), n=(Uo/2vx)*y. 2.1

Here, x, y are coordinates along and normal to the plate with origin at the leading
edge, U, is the undisturbed stream speed and v the kinematic viscosity of the
fluid. The Lorentz force normal to the plate y = 0 is balanced by the pressure
gradient across the boundary layer, and if the pressure gradient is eliminated
from the boundary-layer equations we have the following problem for f(n),

f7+ff"+etnf—nf) =0, (2.2)

with
F@ =10 =0, 2.3)

and
f(e0) = 1. (2.4)

where ¢ = (gu?H3v/pU3). The constants o, u, H, and p represent the fluid
conductivity, permeability, undisturbed field strength and density respectively.
The parameter ¢* may be interpreted as the ratio of the Hartmann number to
the Reynolds number. We shall assume e« 1.

3. Solution procedure
To simplify the problem further we now neglect the term O(e) in (2.2) so
that the first term of an approximate solution satisfies

(;/I +fofll —_ 0,
with , , G.1)
Jo(0) =£50)=0, f3(0)=1,
with solution f3(n) = B(n), where B is the classical Blasius function.
We note that
B(n)—n—c, (c#0), as n—oo, (3.2)
whereas we may infer from equations (2.2) to (2.4) that
f()—n—=0 as n-ooo. 3.3)

The solution f; then can only be thought of as an * inner ” solution and there
must be an “ outer ” region in which the magnetic interaction terms in (2.2)
(that is the terms O(g)) are of the same order as either the viscous or inertia
terms. This requirement together with (3.2) leads to the scaling

n=2e"3, f(n)=e*F(Q), (3.4
and (2.2) becomes
eF" +FF'+(F—EXF =0, 3.5)
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and in this outer region the viscous term is now relegated to O(¢). Simplifying
the outer problem by neglecting the term O(g), the first term of an “ outer ™
approximate solution satisfies

FoFg+EFo—¢*Fp =0,

and the solution, which matches with f; and is consistent with (3.3), is simply
F, = £. Thus we have constructed an apparently consistent first-order solution
by matching solutions which are valid in different domains. As Segel observes,
once a problem has been correctly scaled one may exploit perturbation theory
systematically to derive arbitrarily accurate approximations. In practice this
may not always be possible, but the problem represented by equations (2.2)
to (2.4) is sufficiently simple for us to proceed to higher-order terms. The
outer expansion of the inner solution f; shows that we require, as £—0,

F~E4ete,
so to continue the solutions we write
f=fot+e,+0(s), F=Fy+etF +0(c), (3.6)
in the inner and outer regions respectively. The equation satisfied by F, is
F{—E(F{+F;=0.

One solution of this equation has F| = C, exp (4¢2) and since with this solution
we cannot satisfy the outer boundary condition we set C, = 0. The other
solution F; = C,&is also excluded by the outer boundary condition and we have,
therefore, F; = 0, which cannot match with the inner solution. At this stage
then the expansion scheme, which gives an apparently self-consistent first-order
solution, fails.

The devotee of singular-perturbation techniques may at once suspect that
the scaling (3.4) is incorrect or that the series (3.6) are incomplete. Neither
resolves the paradox and we have in fact constructed a wretched consistent first
approximation, as we now demonstrate by proving that (2.2) has no solution
subject to (2.3), (2.4).

The non-existence proof, which is in the same spirit as that employed by
Reuter and Stewartson (2) for the case of large magnetic Reynolds number is
in three parts depending upon whether £ (0) is positive, negative or zero, and
we treat each case separately.

Case (). f'(0) =0 .

With f”(0) = 0 we see from (2.2), (2.3) that f“(0) = 0 and repeated differen-
tiation of (2.2) gives f"(0) = 0 for all n. This implies, by the analyticity of
solutions of (2.3), that f = 0, which contradicts (2.4) showing that no solutions
exist with f”(0) = 0.

E.M.S.—20/1—E
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Case (ii). f"(0)>0

As we have observed in (3.3) f~n+o(l) as n—oo where in fact the error
is exponentially small. Thus f”—0 as n—c0. Suppose, however, that f” first
vanishes at a finite value, 7, say, of 5. Then we have f"(11,) = 0, f'(no) = a,
(say), where a, >0 and, if the solution is to be regular (o) < 0. Thus for
0 < n<ng, f'(M)<a, which shows, using (2.3), that f(no)<a;n,- We then note
that with /() < 0and (n/—n>f"), = ,, <0 we have a contradiction which shows
that f” does not vanish at a finite value of #. This result, along with (2.3),
implies that f'—1 monotonically from below as n—oc0. We now define a new

quantity g(n) as
g=f'-1, 3.7

n

and we note that for 0 < n< o0, g<0. Consider now f gdn. From (3.3) we
/]

see that this integral converges and hence, as n— o,

f " gdn~b+g*(), (3.8)

V]
where b is a negative constant and g* is exponentially small. Thus from (3.7),
(3.8) we have

f~n+b+g*,
which contradicts (2.2) and shows that no solutions exist with f”(0)>0.

Case (iii). f"(0)<0

When f"(0) <0 we see from (2.3) that f'(0+)<0. This, together with (3.3)
shows that there exists a value, 7, say, of 5 for which f'(n,) = 0. Invoking
Rolle’s theorem, we see that f”(y) vanishes at least once in the interval
0<n<ny Suppose that f” vanishes for the first time at n = #, where 0<n, <n,.
We then have f"(n,) = 0, f'(n;) = —a, <0 and, for the solution to be regular
f"(n)=0. From (2.3) we see that f(1,)> —a,n,, which in turn shows that

(ﬂf"?zf'):, = >0,

this result together with f”(n7,) = 0 leads, as before, to a contradiction showing
that no solutions of (2.2) to (2.4) exist with f”(0) <O.

This completes the proof, in spite of the fact that it is possible using the
method of matched asymptotic expansions to construct a first-order solution,
that no solution of (2.2) to (2.4) exist.

4. Discussion

In deriving equation (2.2) we recall that since the magnetic Reynolds number
is small the induction equation has been simplified by neglecting convective
terms. Further, a scaling has been introduced into the Navier-Stokes equations
which reflects the conjecture that all departures from uniform conditions occur
in a thin boundary layer close to the plate. Although we have constructed an
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apparently self-consistent first-order solution of (2.2) using the method of
matched asymptotic expansions, we have amply demonstrated that care must
be taken in applying these formal methods. This is true in particular for those
problems which exhibit a multi-layer structure for which it is not a practical
proposition to extend the solution beyond the first order. In the present case,
failure of the simplification procedure at the second stage does not imply that
the procedure has been misused but is directly attributable to the non-existence
of solutions.

The final question which we must pose is: at what point does a flaw exist
in our analysis? The answer to this question can be found in the work of Cole
(3), who has carried out a careful analysis of this problem. Consider again the
scaling which leads first to (2.2) and then, subsequently, to the outer equation
(3.5). If R and R, are the Reynolds number and magnetic Reynolds number,
based upon distance from the leading edge of the plate, respectively, then

y/@2x)* =nR™* = (eR)"*¢ = (BR,) "%, @4.1)

where B = uH32/pU3 is the square of the ratio of the Alfvén speed to the
undisturbed fluid speed. Now, implicit in our arguments is the assumption that
with e« 1, R>»1 then ¢R>»1. Furthermore, we have assumed R,«1, and so
for consistency f must be very large. However, unless f<1 disturbances will
propagate upstream, and the notion of disturbances confined to a boundary
layer growing from the leading edge is invalid. This is the source of our
difficulty. As may be seen from the work of Cole (3), the disturbances to the
magnetic field penetrate to a distance O(R,*) from the plate, as indicated in
(4.1). Thus, as Cole points out, perturbations to the magnetic field cannot be
completely ignored but that they take place over a very much greater distance
than the boundary-layer scale. In other words, this particular problem exhibits
not only the features of high Reynolds number flows but also those analogous
to low Reynolds number situations, and it is these latter which were not
accounted for in our original scaling of the basic equations.
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