
Journal of Clinical and
Translational Science

www.cambridge.org/cts

Translational Research,
Design and Analysis
Research Article

Cite this article: Chanumolu SK and Otu HH.
Identifying large-scale interaction atlases using
probabilistic graphs and external knowledge.
Journal of Clinical and Translational Science 6:
e27, 1–10. doi: 10.1017/cts.2022.18

Received: 27 September 2021
Revised: 29 December 2021
Accepted: 7 February 2022

Keywords:
Interactome; atlas; gene interaction network;
external knowledge; Bayesian networks

Address for correspondence:
H. H. Otu, PhD, Department of Electrical and
Computer Engineering, University of Nebraska-
Lincoln, Lincoln, NE 68588, USA.
Email: hotu2@unl.edu

© The Author(s), 2022. Published by Cambridge
University Press on behalf of The Association
for Clinical and Translational Science. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (https://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

Identifying large-scale interaction atlases using
probabilistic graphs and external knowledge

Sree K. Chanumolu and Hasan H. Otu

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Abstract

Introduction: Reconstruction of gene interaction networks from experimental data provides a
deep understanding of the underlying biological mechanisms. The noisy nature of the data and
the large size of the network make this a very challenging task. Complex approaches handle the
stochastic nature of the data but can only do this for small networks; simpler, linear models
generate large networks but with less reliability. Methods: We propose a divide-and-conquer
approach using probabilistic graph representations and external knowledge. We cluster the
experimental data and learn an interaction network for each cluster, which are merged using
the interaction network for the representative genes selected for each cluster. Results: We
generated an interaction atlas for 337 human pathways yielding a network of 11,454 genes
with 17,777 edges. Simulated gene expression data from this atlas formed the basis for
reconstruction. Based on the area under the curve of the precision-recall curve, the proposed
approach outperformed the baseline (random classifier) by ~15-fold and conventional methods
by ~5–17-fold. The performance of the proposed workflow is significantly linked to the accu-
racy of the clustering step that tries to identify themodularity of the underlying biologicalmech-
anisms. Conclusions: We provide an interaction atlas generation workflow optimizing the
algorithm/parameter selection. The proposed approach integrates external knowledge in the
reconstruction of the interactome using probabilistic graphs. Network characterization and
understanding long-range effects in interaction atlases provide means for comparative analysis
with implications in biomarker discovery and therapeutic approaches. The proposed workflow
is freely available at http://otulab.unl.edu/atlas.

Introduction

Individual elements of a biological system work in concert at the molecular level, which is best
analyzed and explained within the context of networks. Networks involving all direct and
indirect interactions between genes and/or gene products (the interactome) can be used to
understand biological pathways and disease mechanisms. Such an understanding and tools
for in silico manipulation lead to new innovative, noninvasive, cost-effective, and scalable
approaches to combat human disease by providing means to manipulate and model molecular
mechanisms in an efficient and effective way [1].

Conventionalmethods for interaction network construction used correlation [2-5] ormutual
information [6-9]-based measures. Although dependent- or coexpression may lead to func-
tional similarity [10,11], these approaches produced bulky networks and were based on pairwise
associations only [12-15] ignoring higher-level associations that may not be inferred by strong
individual, paired associations. More complex methods emerged using Bayesian networks (BN)
[16-23], Gaussian graphical models – simultaneous equationmodels [24-26], state space models
[27-29], machine learning [30,31], and statistical methods [32,33]. Thesemethods overcome the
limited view of the pairwise approaches that are generally based on linear associations by pro-
viding a probabilistic blanket of dependency and coregulation, modeling nonlinear associations.
However, they can learn networks for only a limited number of nodes [34] because of their high
computational complexity. Indeed, biological systems operate at scales much larger than the
network sizes handled by these approaches [35,36], which must resort to dissecting the system
into pathways. To perform true system-level analysis, there is a need for tools that infer inter-
action networks, or interaction atlases, at levels beyond the current pathway views.

While the ever-increasing biological data production in the fields of genomics, transcriptom-
ics, and proteomics has resulted in a plethora of approaches attempting to recover interaction
networks in biological systems [37,38], they have not always made efficient use of the vast
amount of annotated data available [39]. This valuable resource can be used in a systematic
way to guide methods that learn interaction networks [40]. Traditional methods for gene inter-
action (GI) network construction use linear measures and generate large interactomes that miss
nonlinear relationships and ignore external knowledge [4,8,41,42]. Another group of methods
either uses a single external knowledge source or requires the exact gold-standard network for
the one to be generated [43-45], which are impractical approaches in real settings. A third group
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of approaches focuses on a limited view of interactions (e.g., find-
ing regulatory elements only, or identifying functional associations
as interactions) or uses deterministic mechanisms for external
knowledge incorporation [46-48]. These last two groups of meth-
ods perform well only for a few hundred to one- or two-thousand
genes due to algorithm complexity.

In this paper, we propose a method that uses a diverse set of
knowledge bases to infer interaction between two genes based
on a stochastic, automated framework. Our approach fuses this
information with experimental data in a probabilistic graph repre-
sentation to generate a large-scale interactome (a few tens of thou-
sands of genes). The proposed approach provides a higher system-
level view to understand the biological mechanisms in health and
disease. We see limited efforts in this direction using linear models or
models that do not incorporate external knowledge in building large-
scale networks [49,50]. Although these are helpful, there is a need for
advanced computational methods that make use of the existing inter-
action knowledge that is external to the experimental data.

The algorithm described in this paper uses a novel divide-and-
conquer approach to construct interaction atlases. Instead of learn-
ing the entire large interaction atlas in one shot, we first divide the
nodes into groups based on their expression profiles. The interac-
tion network within each cluster is learned using both experimen-
tal data and external knowledge. One representative gene in each
cluster is selected to build the network between the cluster repre-
sentatives. This forms a “network of clusters” and is used to merge
clusters that are linked together by building an interaction network
using the union of the nodes in the two clusters. The ensemble of
the links after the “merge” process yields the final atlas.

The proposed method is distinct from existing approaches that
dissect biological networks, such as the module network represen-
tation [51], which constrains the nodes in a module to having the
same parents or tree-based methods [52], which model recovery as
a feature selection problem based on ranked lists obtained from
regression analysis or the stochastic blockmodel-based approaches
where families of distributions are defined for the nodes, resulting
in unscalable node classification and parameter estimation prob-
lems [53,54]. We establish the proposed method using optimized
clustering, structure learning, external knowledge incorporation,
representative gene selection, and cluster merging processes. The
utility of our approach is demonstrated with simulated data and
compared to correlation and information theory-based approaches
that are used for large-scale interaction atlas generation.

Materials and Methods

The proposed atlas generation method is shown in Fig. 1. In what
follows, we describe each module in Fig. 1 in detail.

Experimental Data

To obtain simulated data that follow an interaction network rep-
resenting true mechanisms, we considered the human pathways
found in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database [55]. KEGG pathways involve gene products,
compounds, maps (a.k.a. pathways), DNA, RNA, and other mol-
ecules. In total, we obtained 337 human pathways, and for each
pathway, we deduced all of the direct and indirect gene-GIs using
KEGG2Net [56]. We analyzed the KGML files for these pathways
to extract the map (pathway) entries that the genes are directly or
indirectly linked to. We merged the KEGG2Net GI networks
obtained for each pathway following the direct/indirect links

between the gene and map entries in the KEGG pathways. For
example, let the set GXY represent all of the genes in pathway X
that has a direct/indirect link to the map (pathway) Y represented
as a “node” in pathway X. Similarly, let the set of genes GYX

represent all of the genes in pathway Y that has a direct/indirect
link to the map (pathway) X represented as a “node” in pathway
Y. Then, we establish a link between elements of the gene sets GXY

and GYX. By applying this merge method, we obtained an interac-
tion atlas that represents all of the direct and indirect interactions
between genes represented by all of the human KEGG pathways,
which consisted of 11,454 nodes and 17,777 edges. We used
SynTRen v 1.2 [57] to generate simulated transcriptomic data
for 20 test and 20 control samples for all of the 11,454 genes rep-
resented in our interaction atlas.

Clustering

We clustered the gene expression data matrix using hierarchical
clustering, k-means, clusternomics – an integrative context-depen-
dent clustering for biomedical datasets [58], EMMIXgene – a mix-
ture model-based approach to cluster microarray expression data
[59], gama – a genetic approach tomaximize a clustering criteria [60],
DIANA – a divisive, not agglomerative, hierarchical clustering,
FANNY – a fuzzy clustering approach, and PAM – partitioning
around medoids [61]. The implementations were done in R v
3.6.3 using the packages (functions) stats (hclust, cutree, k-means)
v 4.2.0, clusternomics v 0.1.1, EMMIXgene v 0.1.3, gama v 1.0.3,
cluster (diana, fanny, pam) v 2.1.2. Validation of the clustering
results was performed using the biological homogeneity index
(BHI) [62], V-measure [63], and adjusted Rand index (ARI)
[64]. These metrics were calculated using R packages clValid v
0.7, saber v 0.3.2, and mclust v 5.4.7, respectively.

Incorporation of External Knowledge

As the number of genes in a cluster is expected to be small (tens to a
few hundreds), we learned the networks within a cluster using our
previously established tool, Bayesian network prior (BNP) [19].
BNP is a construct that learns an interaction network based on
external knowledge and experimental data. As part of this paper,
we updated our BNP software by updating the evidence matrix
BNP uses to infer interaction of two genes. We gathered informa-
tion from Gene Expression Omnibus [65], KEGG [55], NCI/
Nature Pathway Interaction Database [66], Reactome [67],
Biological General Repository for Interaction Datasets [68],
FunCoup [69], Hetionet [70], HumanNet [71], RegNetwork

Fig. 1. Workflow for atlas generation.
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[72], STRING [73], and GeneMANIA [74] data sources that
imply an interaction between two genes based on different evi-
dence types, for example, Affinity Capture assays, colocaliza-
tion, two-hybrid experiments, and coexpression.

We represented the interaction information in the form of an
“evidence matrix” where the columns were the evidence types, and
the rows were the pairs of genes. If a pair of genes was labeled as
interacting by a data source based on an evidence type, we placed a
“1” in that location, which was otherwise left as a “0.”When all the
data sources were combined, we obtained an evidence matrix that
contained interaction information for 15,725,553 unique pairs of
genes. We added a “GI” column to this evidence matrix, and if
a pair of genes had two ormore evidence types based on which they
were known to be interacting, we labeled the GI entry for that pair
as “1” and otherwise labeled it as “0.”

BNP is a BN representing the dependency structure between
“different experimental evidence types that imply GI” and the
“event, GI.” Using our evidence matrix, we learned BNP with
the bnlearn R package v 4.6.1 [75] based on the hill climbing struc-
ture learning approach [76] utilizing the Bayesian information cri-
terion score [77]. The consensus network was obtained based on
1000 bootstrapped datasets wheremodel averaging was used to cal-
culate the strength of links between the nodes of BNP. The final
BNP graph was obtained by only retaining the edges that have sig-
nificant strength values [78]. Therefore, BNP is itself a BNwith one
node representing “GI” and the remaining nodes representing “dif-
ferent evidence types.” BNP reflects the distilled representation of
acquired scientific knowledge and can be used to calculate the
probability of interaction between two genes using a fusion of
external and experimental data. The updated version of the BNP
used for this paper can be found at http://otulab.unl.edu/BNP.

Within Cluster Network Construction

Given an expression dataset, the interaction network for the genes
in a cluster was calculated using BNP as previously described [19].
BNP uses experimental designs with two groups of samples (e.g.,
cancer vs. normal) where the set of observations for structure
learning is obtained by pairwise comparison of samples in the
two groups. As detailed previously [79], this preprocessing step
of the expression profiles provides a distribution of expression fold
change between the two groups for each node (gene) in the net-
work and has proven to be a reliable and robust way to obtain input
data for network learning.

Given two genes, BNP is instantiated with their expression pro-
files to obtain the value of its GI node that represents their inter-
action probability based on external knowledge and the supplied
experimental data. This probability is calculated for each pair in
a set of genes for which an interaction network is to be constructed
and incorporated in the structure learning phase to calculate the
probability of the candidate graphs. This way the optimum “maxi-
mum a posteriori” measure is maximized instead of the subopti-
mum “maximum likelihood” parameter, optimizing the search
process as BNP allows for calculation of P(G), the probability of
the candidate graph in the search. In the end, the networks learned
by BNP represent the GI dynamics for the case under investigation
(e.g., cancer) that is used to obtain the experimental data.

Representative Node Selection

We analyzed the GI networks generated for each cluster by BNP
using the central informative nodes in network analysis
(CINNA) R package v 1.1.54 [80]. Given a network topology,

CINNA first identifies the appropriate centrality measures (out
of ~50 such measures) for the input network. Next, dimension
reduction techniques are used to identify themost informative cen-
trality measure. For each network generated by BNP, we applied
CINNA to identify the most informative centrality measure for
the network and then used that measure to identify the most cen-
tral node in the network. We chose these nodes as the representa-
tive nodes for their clusters.

Cluster Merge

We sifted the expression values for the representative nodes
(genes) of each cluster and used BNP to learn an interaction net-
work for these nodes. Representing each cluster with a gene
enabled us to use BNP to build the interaction network of the rep-
resentative genes. As BNP uses external knowledge to build an
interaction network, using a hypothetical gene, for example, the
average of all genes in a cluster, or an eigengene in a cluster, would
strip BNP off of this feature. The interaction network of represen-
tative genes is regarded as a “network of clusters” as each node
(gene) represents a cluster. We merged clusters that are linked
together by building an interaction network using the union of
the genes in the two clusters. The ensemble of the links after the
“merge” process yielded the final atlas.

Results

BNP Construction

We assessed the validity of our BNP construction using fivefold
cross-validation on the GI inference. At each iteration, we left
out 20% of the gene pairs from our evidence matrix and learned
BNP as described with the remaining 80% of the data. For the
left-out pairs, we instantiated BNP using their evidence vector
and inferred the GI node as a probability value. We were able to
predict the GI node’s state with an area under the curve (AUC)
value of 94%. The final BNP model was developed using all of
the gene pairs in the evidence matrix as described. We tested
BNP on 167 KEGG human pathways that have less than 40 nodes
to obtain networks with reasonable complexity. For each pathway,
the corresponding GI network and simulated dataset were
obtained using KEGG2Net and SynTRen, respectively. The net-
works learned with BNP and the corresponding conventional
structure learning approach that does not use any external knowl-
edge were compared with the true networks. The results, summa-
rized in the Supplementary Data, show that BNP on average
attained a 95.52% AUC whereas the structure learning approach
that did not utilize external knowledge attained an average AUC
of 67.09%. These results demonstrated confidence in the construc-
tion and application of BNP to learning GI networks from experi-
mental data using external knowledge. The updated implementation
of BNP is freely available at http://otulab.unl.edu/BNP.

Clustering

For each of the eight clustering algorithms, we had six runs where
we used the following expected number of genes in a cluster: 3, 6,
12, 25, 45, 70. We used the default values for all other hyperpara-
meters required by the algorithms. Our goal was to sample the
neighborhood of the average number of genes in a cluster, ~34,
in both extremities as our simulated data involved 11,454 genes
from 337 pathways. For each of the 48 clustering results, we
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evaluated their performance based on the BHI, V-measure, and
ARI. The results are summarized in Fig. 2.

Although V-measure showed a strong correlation with the
average number of genes in a cluster, BHI and ARI measures
did not render their best performances at 70 average genes per clus-
ter. This was more plausible as the average number of genes in the
pathways used to generate the simulated data was ~34. Overall,
hierarchical, k-means, and EMMIXgene turned out to be the three
top performers when different metrics and average number of
genes per cluster were considered, followed by clusternomics
and Pam. We continued to experiment with our atlas generating
algorithm using the top three clustering methods.

Cluster Merge

We clustered the simulated gene expression data with an expected
number of genes per cluster of 25. For each cluster, we learned the
GI network using BNP and noted the strength values among the
genes within a cluster. The strength values were based on model
averaging of 1000 bootstrap datasets.We then picked the represen-
tative genes for each cluster and generated the interaction network
for the representative genes, again using the BNP approach with
1000 bootstrap datasets. The edges that have significant strength

values were retained to determine the final network among the rep-
resentative genes.

The interaction network among the representative genes was
used as a map to guide the cluster merge step. If two representative
genes were linked, we combined the genes in the two correspond-
ing clusters and learned an interaction network for this union set
using the BNP approach with 1000 bootstrap datasets. This
resulted in a strength value between the genes that are in two differ-
ent clusters. However, if a cluster C’s representative node was
linked to k other representative nodes, then the genes in this cluster
C went through k cluster merge processes. This implied that there
were k different strength values calculated for the genes that are in
cluster C, one for each of the cluster merge processes. We noted all
of these k strength values for downstream analysis.

We analyzed merged clusters to see if they contained genes that
belonged to the same pathway out of the 337 pathways used to con-
struct the atlas. In 78% of the cases, the two merged clusters con-
tained genes from the same pathway. This implied that using the
interaction network of the representative genes to merge clusters
enabled us to bring together the genes that belonged to the same
pathway. These genes were separated in the clustering phase but
now would be combined in the cluster merge phase to better cap-
ture the original pathway structure.

Fig. 2. V-measure, biological homogeneity index (BHI), and adjusted Rand index (ARI) values for the eight clustering algorithms using a range of average number of genes per
cluster. The input data are the simulated gene expression data that is generated from the human atlas with 11,454 genes representing 337 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways.
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Atlas Generation

We ran the complete workflow for our simulated dataset of 11,454
genes where we used hierarchical, k-means, and EMMIXgene clus-
tering approaches for comparison purposes. Furthermore, the
strength values among the genes in a cluster were taken to be either
the strength value that is calculated when only the genes in the clus-
ter were used to identify the GI network or the mean, median, min-
imum, maximum, one-step Tukey’s bi-weight average [81] of the k
strength values obtained during the cluster merge step. Note that k
represents the number of times a cluster goes through a merge
process.

The true atlas used to generate the simulated data consisted of
17,777 edges. However, there are 65,591,331 possible edges
between the nodes that make up the true interaction atlas.
Therefore, there are far fewer “true edges” than there are “false
edges.”Hence, for any accuracy assessment, in the context of iden-
tifying an edge as a “true” or “false” edge, the receiver’s operating
curve (ROC) approach would not be appropriate. It has been sug-
gested that for imbalanced datasets like this one, where the propor-
tion of the true and false class labels are disproportionate, AUC of
the precision-recall curve (AUC of PRC) is a better metric than the
AUC of ROC [82].

In Table 1, we list the AUC of PRC values for our proposed atlas
generation workflow using the three alternative clusteringmethods
and six different strength value calculations for the genes in a clus-
ter. While the baseline (pure random) performance for the AUC of
ROC measure is 0.5, the baseline value for the AUC of PRC mea-
sure is the ratio of the true class. In our case, the baseline AUC of
PRC measure is ~2.7 × 10−4. As seen in Table 1, the hierarchical
clustering approach outperformed other clustering methods yield-
ing the highest AUC of PRC regardless of the strength calculation
method. Furthermore, using the mean of strength values for a pair
of genes within a cluster has consistently resulted in the best AUC
of PRC value. Therefore, in our final atlas generation model we
adopted this best performing approach (hierarchical þ mean).
The proposed workflow can be accessed at http://otulab.unl.
edu/atlas.

In order to compare our proposed workflow with other
approaches, we used two main metrics that are used to generate
large-scale interaction networks: correlation and average mutual

information. For the proposed approach, we also tried the “perfect
clustering” case where the 11,454 genes that make up the atlas were
clustered into the 337 pathways that the genes came from. The
results, summarized in Table 2, show that the proposed method
outperforms conventional metrics in identifying the large interac-
tion atlas.

It is of note that the proposed algorithm with perfect clustering
results in an AUC of PRC value that is about 130 times better than
hierarchical clustering used in the proposed workflow. Although
the proposed approach outperforms existing methods even with
hierarchical clustering, there is still room for improvement in
the clustering phase. The better the clustering results approximate
the underlying biological organization, the more the generated
atlas becomes similar to the true interactome.

Clustering Effect on Learning

To understand the effect of clustering on learning, we generated 10
subnetworks from our large, true interaction atlas obtained from
KEGG, each containing approximately 500 nodes. The subnetwork
size was chosen such that it is not too large for the BNP approach
(no clustering) to handle; and it is also large enough to justify the
atlas approach (clustering) for network learning. We summarize
the results in Table 3.

Our results indicate that both BNP and atlas approaches
achieve AUC of PRC values well above the pure random perfor-
mance (baseline). The effect of clustering represented by the atlas
approach renders about an 85% reduction in the overall perfor-
mance. Furthermore, the average number of edges in the networks
learned by the atlas approach was about 10% more than those
learned by the BNP approach. This is potentially due to the cluster
merge steps involved in the atlas approach that is likely to addmore
edges. Nevertheless, the performance obtained by our atlas
approach significantly exceeds that of the baseline’s and is within
a reasonable distance of BNP’s performance, which is promising,
considering its ability to handle very large networks that are oth-
erwise impossible to reconstruct without clustering.

Application to Real Expression Data

We applied the proposed workflow to our previously established
renal cell cancer (RCC) gene expression data that contained 23
normal and 32 clear-cell RCC samples [83]. We focused on 10
pathways, listed in Table 4, that have common genes and have
been found to be associated with RCC using an experimental pro-
teomic-based approach [84]. We had analyzed our expression
dataset along with six other RCC datasets to infer active pathways
using a Bayesian pathway analysis and these 10 pathways were
found to be regulated [79].

We constructed a “mini-atlas” with 213 genes and 892 edges by
merging the 10 overlapping pathways listed in Table 4. Based on
the expression of these 213 genes from our RCC dataset, we recon-
structed the test atlas using the proposed workflow. Our approach
generated nine clusters during the first iteration. After a network is
learned for each cluster and clusters were merged using the repre-
sentative GI map, we ended up with a network of 978 edges. The
AUC of PRC for the learned network was 67.8 × 10−3, which was
~17-fold better than the baseline AUC value of 4.0 × 10−3.

To demonstrate the utility of our approach, we focused on a
subnetwork of the reconstructed atlas that contained genes from
two networks: hsa00010 (Glycolysis / Gluconeogenesis) and
hsa00330 (Arginine and proline metabolism). These two KEGG
pathways have one gene, aldehyde dehydrogenase, in common.

Table 1. Area under the curve of precision-recall curve (AUC of PRC) (×10−4) values
for the atlases generated using the proposed approach based on k-mean,
hierarchical, or EMMIXgene clustering algorithms

Clustering method
Link strengths k-means Hierarchical EMMIXgene

First cluster 3.8 5.0 3.0

Minimum 29.3 39.0 13.0

Maximum 24.6 34.6 11.9

Mean 29.9 39.7 13.1

Median 26.2 36.3 12.7

Tukey 26.0 36.0 12.5

Strength values for the genes in a cluster were calculated either based on the strength value
when only the genes in the cluster are used for network generation (First cluster) or the
minimum, maximum, mean, median, and Tukey’s bi-weight average of the strength values
obtained during the cluster merge process. For a pair of genes within a cluster, there were as
many strength values as the number of times the cluster has gone through a merge process
with another cluster. Best performing combination is highlighted with boldface and shaded
background.
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The subnetwork shown in Fig. 3 consists of 15 nodes and 18 edges.
Our method correctly identified 14 edges that exist in these path-
ways (true positives), missed two edges (false negatives), and sug-
gested two new edges (false positives) that do not exist in the true
KEGG pathways.

The subnetwork shown in Fig. 3 demonstrates two important
utilities of the proposed method. Firstly, the edge between the

genes enolase 1 (ENO1) and dihydrolipoamide S-acetyltransferase
(DLAT) do not exist in the KEGG pathway hsa00010 but is sug-
gested by our method as a putative interaction. Indeed, there are
studies that show significant association between these genes
[85,86]. Therefore, the proposed method can suggest potential
interactions that may not exist in current pathways but warrant
further study for the given experimental data. Secondly, the edge

Table 3. Subnetwork statistics and the area under the curve of precision-recall curve (AUC of PRC) values for the learned networks using the Bayesian network prior (BNP)
and atlas approaches

Subnetwork No. of nodes No. of edges No. of pathways involved

AUC of PRC (×10−3)

BNP Atlas Baseline

1 528 879 11 129.6 112.8 6.3

2 542 840 13 109.8 95.5 5.7

3 496 913 13 113.9 102.5 7.4

4 514 911 8 112.2 96.5 6.9

5 537 850 11 74 59.9 5.9

6 526 897 13 124.8 109.8 6.5

7 494 837 11 124.2 105.6 6.9

8 459 845 14 83.2 69.9 8.0

9 508 912 8 108.8 87.0 7.1

10 462 816 8 79.3 63.4 7.7

Average 507 870 11.0 106.0 90.3 6.8

St. dev. 29.05 36.57 2.31 20.06 19.45 0.90

Each subnetwork was chosen to have ~500 nodes.

Table 4. List of pathways used to generate the “mini-atlas” for testing the proposed workflow

KEGG pathway ID Pathway name No. of nodes No. of edges

hsa00010 Glycolysis/Gluconeogenesis 28 78

hsa00020 Citrate cycle (TCA cycle) 16 40

hsa00030 Pentose phosphate pathway 20 61

hsa00061 Fatty acid biosynthesis 12 35

hsa00230 Purine metabolism 48 277

hsa00280 Valine, leucine, and isoleucine degradation 33 116

hsa00330 Arginine and proline metabolism 31 64

hsa00562 Inositol phosphate metabolism 27 75

hsa00620 Pyruvate metabolism 21 51

hsa00640 Propanoate metabolism 20 53

KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 2. Area under the curve of precision-recall curve (AUC of PRC) values with 95% confidence interval for the atlases generated using the correlation and averagemutual
information (AMI) metrics compared with the proposed approach based on hierarchical clustering and perfect clustering of expression data

Correlation Hierarchical (proposed) AMI
Perfect clustering

(proposed)

AUC of PRC (×10−4) 7.9 [7.6–8.2] 39.7 [37.8–41.6] 2.4 [2.2–2.6] 5116 [4895–5337]
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between the genes dihydrolipoamide dehydrogenase (DLD) and
aldehyde dehydrogenase 18 family member A1 (ALDH18A1)
not only suggest a potential interaction that do not exist in the
reference databases but also infers an edge that connects two path-
ways that are otherwise not connected. Like the ENO1–DLAT
interaction, there exist studies that imply association between
DLD and ALDH18A1 [87,88]. Hence, the proposed method has
the potential to merge disconnected pathways and suggest inter-
actions that do not exist in existing pathway databases but may
be in play for the given experimental data.

Discussion

Biological systems operate through a networked cascade of events
and networks involving all direct and indirect interactions between
genes and/or gene products describe the functional workflow of an
organism’s biological machinery. When building the interactome
of an organism, the biological databases that provide a vast amount
of annotated data can be used in a systematic way. BN have become
increasingly popular as they capture both linear and nonlinear
interactions, handle stochastic events in a probabilistic framework
accounting for noise, and focus on local interactions, which can be
related to causal inference. However, interaction network learning
algorithms are computationally very intense and feasible for only a
limited number of nodes. Current methods have reached a bottle-
neck in terms of the size of the reconstructed network. In this
paper, we proposed an algorithm to fix this bottleneck by develop-
ing a modular approach for reconstructing the entire interaction
atlas for a complex organism. We demonstrated the effectiveness
of our approach by constructing the interaction atlas for humans.

Our goal was to provide a divide-and-conquer approach that
first identified groups of molecules that showed dependency based
on experimental data. Within each group, or cluster, the corre-
sponding interaction network is learned using external knowledge

via the BNP framework. Each network is summarized using one
representative node, all of which are used to build a meta-network
representing the interactions between the clusters. The union of the
nodes in interacting clusters underwent a second learning phase,
and the ensemble of all the learned edges represented the final
interaction atlas.

Using the simulated data that represented all the human path-
ways in the KEGG database, we optimized the proposed method
for the clustering approach, cluster size, representative node selec-
tion, and cluster merge process. Our optimized parameter selection
outperformed existing large-scale interactome generating metrics
using the AUC of PRC measure. Our results suggested that the
accuracy in the clustering phase of the proposed method dramati-
cally impacted the reliability of the reconstructed interaction atlas.
In the process of developing the atlas generation workflow, we also
updated the BNP method and both the BNP approach, which can
be used to reconstruct small interaction networks (with no cluster-
ing), and the atlas generationmethod described in this paper can be
found at http://otulab.unl.edu/BNP and http://otulab.unl.edu/
atlas, respectively.

Our current workflow has potential limitations. We can only
operate on human transcriptomics and proteomics data for
now. To apply the current approach to other organisms, we need
to build the corresponding knowledge base that collects interac-
tion information for those organisms based on external data-
bases. We also cannot extend the current approach to other
omics, such as metabolomics, or to a multiomics approach
where an interaction network that involves different omic types
is constructed. However, this can be possible when such a
knowledge base, which lists interaction information between
different omics, is established. Our current implementation
does not identify network characteristics and motifs that result
from the identified atlas. We hope to address these issues in our
future work. Furthermore, despite bringing the ability to

Fig. 3. A subnetwork of the reconstructed test atlas that involves genes from the hsa00010 and hsa00330 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. FN, false
negative; FP, false positive; TP, true positive.
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reconstruct very large interaction networks, clustering dimin-
ishes the performance of network learning by about 10–15%
(Table 3). Despite our attempts to optimize each algorithmic
step shown in Fig. 1, our approach still suffers methodological
weaknesses. Primarily, there is room for improvement in hyper-
parameter selection in the employed clustering approaches as
opposed to using the default values. Additionally, the network
learning approaches, even though proven to be robust for gene
expression data, are not able to produce faithful representations
of the entire dependency structure but rather a subset of it.

The ability to generate large interaction atlases provides the
means to understand the global characteristics and distant
influences in the interactome. Most of the existing methods for
interaction network generation focus on local modules at the path-
way level, which does not provide the overall cause-and-effect
mechanisms. Identifying interaction atlases can also be used to
understand the characteristics of the interactome from a network
science perspective. Coupled with biological interpretation of the
interactions, this provides a tool to perform comparative analyses
of disease mechanisms with a potential to lead to biomarker dis-
coveries and/or putative therapeutic approaches.

Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cts.2022.7.
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