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Abstract We prove that the Bergman projection on Lp(w) (p �= 2), where w(r) = (1−r2)Ae−B/(1−r2)α
,

is not bounded.
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1. Introduction and notation

Let ∆ denote the unit disc and let w denote a positive continuous function on the interval
[0, 1). Let dA(z) denote the Lebesgue measure on ∆ and dµ(z) the measure on ∆ defined
by

dµ(z) = w(|z|) dA(z).

Let Lp(w) (1 � p < ∞) be the space of all measurable functions f on ∆ such that

‖f‖p =
(∫

∆

|f |p dµ

)1/p

< ∞,

and let Lp
a(w) be the subspace of Lp(w) consisting of analytic functions. It is known and

easy to see that Lp
a is a closed subspace of Lp. Let P denote the ortho-projector from

L2(w) onto L2
a(w). P is called the Bergman projection. Let δ2

n = 2π
∫ 1
0 r2n+1w(r) dr.

Since the system {
zn

δn

}∞

n=0

is an orthonormal base of L2
a(w), the corresponding Bergman kernel (of the projection

P ) is given by

K(z, ξ) =
∞∑

n=0

znξ̄n

δ2
n

.

111

https://doi.org/10.1017/S0013091501000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000190


112 M. R. Dostanić

Therefore,

Pf(z) =
∫

∆

K(z, ξ)f(ξ) dµ(ξ), for f ∈ L2(w),

and
Pf(z) = f(z), for f ∈ L2

a(w).

It is of interest to study the boundedness of the projection P on the spaces Lp(w)
(1 < p < ∞) because then it is easy to find the dual of Lp

a(w). In [3], Lin and Rochberg
studied Toeplitz and Hankel operators on L2

a(w) in the case when w = e−h, where h is a
subharmonic function satisfying some additional conditions. As typical weights satisfying
these conditions Lin and Rochberg mentioned the functions

w0(r) = (1 − r2)A (A > 0)

and

w(r) = (1 − r2)A exp
(

− B

(1 − r2)α

)
(A � 0, B > 0, α > 0).

It is known (see, for example, [4, pp. 53–55]) that the projection P corresponding to w0

is bounded on Lp(w0) for 1 < p < ∞.
In this paper we shall show that in the case of the weight

w(r) = (1 − r2)A exp
(

− B

(1 − r2)α

)
,

the corresponding Bergman projection is not bounded on Lp(w), p �= 2.

2. Result

Theorem 2.1. If

w(r) = (1 − r2)A exp
(

− B

(1 − r2)α

)
, A � 0, B > 0, 0 < α � 1,

then the Bergman projection

Pf(z) =
∫

∆

K(z, ξ)f(ξ) dµ(ξ) (dµ(ξ) = w(|ξ|) dA(ξ))

is bounded on Lp(w) only if p = 2.

For the proof we need the following lemma.

Lemma 2.2. If

w(r) = (1 − r2)A exp
(

− B

(1 − r2)α

)
, A � 0, B > 0, 0 < α � 1,

and

Φ(λ) =
∫ 1

0
rλw(r) dr,
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then the following asymptotic formula holds:

Φ(λ) ∼ CλDe−Eλα/(α+1)
, λ → ∞,

where C, D, E are constants depending only on A, B, α and E > 0. (We write f(λ) ∼
g(λ), λ → ∞, to denote that limλ→∞(f(λ)/g(λ)) = 1.)

Proof. Consider the case 0 < α < 1. (The case α = 1 is similar.)
Let

S(t) = −(αB)1/(α+1)t − B(αB)−α/(α+1)t−α

and
H(µ) =

∫ ∞

0
tAeµS(t) dt.

Since S attains its maximum for t = 1, an application of the Laplace method gives
(see [1, pp. 66, 67])

H(µ) ∼ eµS(1)

√
2π

−µS′′(1)
, µ → ∞.

Having in mind that

S(1) = −(αB)1/(α+1) − B(αB)−α/(α+1) < 0 and S′′(1) < 0

and taking

E = −S(1), F =

√
− 2π

S′′(1)
,

we obtain
H(µ) ∼ F

√
µ

e−Eµ, µ → ∞, E, F > 0. (2.1)

Consider now the asymptotic behaviour of the function

G0(λ) =
∫ ∞

0
xAe−(λ+1)x−Bx−α

dx, λ → ∞.

Introducing the substitution

x = t

(
αB

α + 1

)1/(α+1)

in the previous integral, we get

G0(λ) = (αB)(A+1)/(α+1)(λ + 1)−(A+1)/(α+1)H((λ + 1)α/(α+1)),

and therefore, from (2.1), there follows the asymptotic formula

G0(λ) ∼ F1λ
De−Eλα/(α+1)

, λ → ∞,

where the constants F1, D can easily be determined but their exact values are not of
importance here.
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Let

Φ0(λ) =
∫ 1

0
tλ(1 − t)A exp

(
−B

(1 − t)α

)
dt.

Let us show that

lim
λ→∞

Φ0(λ)
G0(λ)

= 1. (2.2)

Since

Φ0(λ) − G0(λ) =
∫ ∞

0
e−(λ+1)x−B(1−e−x)−α

xA

((
1 − e−x

x

)A

− 1
)

dx

+
∫ ∞

0
e−(λ+1)xxA(e−B(1−e−x)−α − e−Bx−α

) dx

and 1 − e−x � x, we have

|Φ0(λ) − G0(λ)| �
∫ ∞

0
e−(λ+1)x−Bx−α

xA

∣∣∣∣
(

1 − e−x

x

)A

− 1
∣∣∣∣ dx

+
∫ ∞

0
e−(λ+1)x−Bx−α

xA|eB(x−α−(1−e−x)−α) − 1| dx. (2.3)

Since

lim
x→0+

((
1 − e−x

x

)A

− 1
)

= 0 and lim
x→0+

(
1
xα

− 1
(1 − e−x)α

)
= 0 (for 0 < α < 1),

then for given ε there is δ > 0 such that∣∣∣∣
(

1 − e−x

x

)A

− 1
∣∣∣∣ < 1

3ε and | − 1 + eB(x−α−(1−e−x)−α)| < 1
3ε (0 < x < δ),

and from (2.3) it follows that

|Φ0(λ) − G0(λ)|

� 2
3ε

∫ δ

0
xAe−(λ+1)x−Bx−α

dx +
∫ ∞

δ

e−(λ+1)x−Bx−α

xA

∣∣∣∣
(

1 − e−x

x

)A

− 1
∣∣∣∣ dx

+
∫ ∞

δ

e−(λ+1)x−Bx−α

xA| − 1 + eB(x−α−(1−e−x)−α)| dx. (2.4)

Since ∫ ∞

δ

e−(λ+1)x−Bx−α

xA

∣∣∣∣
(

1 − e−x

x

)A

− 1
∣∣∣∣ dx = O(e−λδ)

and ∫ ∞

δ

e−(λ+1)x−Bx−α

xA| − 1 + eB(x−α−(1−e−x)−α)| dx = O(e−λδ),
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we get from (2.4) that

|Φ0(λ) − G0(λ)| � 2
3ε

∫ ∞

0
xAe−(λ+1)x−Bx−α

dx + O(e−λδ),

i.e. ∣∣∣∣ Φ0(λ)
G0(λ)

− 1
∣∣∣∣ � 2

3ε + O

(
e−λδ

G0(λ)

)
< ε for λ � λ0,

which proves (2.2).
Since Φ(λ) = 1

2Φ0( 1
2 (λ − 1)), the assertion of the lemma follows from the asymptotics

of the function Φ0 (i.e. of G0). �

Remark 2.3. The proof of the previous lemma could be derived from Theorem 3
in [2], but the function

w(r) = (1 − r2)A exp
(

− B

(1 − r2)α

)

should first be replaced by

g(r) =
(

ln
1
r2

)A

exp
(

−B

(log(1/r2))α

)
.

Then the function Φ(λ) and m(λ) (m(λ) =
∫ 1
0 rλg(r) dr) have the same asymptotics when

λ → ∞. Furthermore, it is necessary to check whether the function v(t) = B0t
−α − A0t

(A0, B0 > 0) satisfies all conditions of Theorem 3 in [2].
The proof of Theorem 3 in [2] is based on detailed analysis of the Legendre–Fenchel

transform of the convenient class of functions (one such example is v(t) = B0t
−α − A0t).

Our proof is different and it is based on Laplace’s method. Since the weight is the
particular function w(r), our proof gives the conclusion more directly.

Proof of Theorem 2.1. It suffices to prove the unboundedness of P on Lp(w) for
1 < p < 2. Then, unboundedness on Lp(w) for p > 2 follows by duality. Let 1 < p < 2.
Consider the system of functions

fn(z) = zωnz̄n,

where ω is a fixed positive integer.
By direct computation we get from the definition of P

Pfn(z) = zωn−nan,

where

an =

∫ 1
0 w(r)r1+2ωn dr∫ 1

0 w(r)r1+2(ωn−n) dr
.
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Hence, by the lemma, we have

‖Pfn‖p

‖fn‖p

∼ const. × exp
(

Enα/(α+1)
(

(2(ω − 1))α/(α+1) − (2ω)α/(α+1)

+
1
p
(p(ω + 1))α/(α+1) − 1

p
(p(ω − 1))α/(α+1)

))
,

n → ∞. (2.5)

Let us show that for large ω, the inequality(
(2(ω −1))α/(α+1) − (2ω)α/(α+1) +

1
p
(p(ω +1))α/(α+1) − 1

p
(p(ω −1))α/(α+1)

)
> 0 (2.6)

holds, i.e.

L(ω) =
(

1 − 1
ω

)α/(α+1)

− 1 +
1
p
( 1
2p)α/(α+1)

((
1 +

1
ω

)α/(α+1)

−
(

1 − 1
ω

)α/(α+1))
> 0.

By the binomial formula we have

L(ω) =
α

α + 1

(
2
p
( 1
2p)α/(α+1) − 1

)
+ O

(
1
ω

)
.

Since 1 < p < 2, we have 1
2p < ( 1

2p)α/(α+1) and hence L(ω) > 0 if ω is a sufficiently large
integer. From (2.5) and (2.6) it follows that the quotient ‖Pfn‖p/‖fn‖p is not bounded,
i.e. that the operator P is not bounded. �

Remark 2.4. In the case p = 2 instead of (2.6) (which holds for ω large enough), for
every ω � 1 the reverse inequality

1
2 (2(ω − 1))α/(α+1) − (2ω)α/(α+1) + 1

2 (2(ω + 1))α/(α+1) � 0

holds, which is a consequence of the concavity of the function x �→ xα/(α+1). This, of
course, agrees with the boundedness of the operator P on L2(w).

Problems 2.5.

(a) Describe all weights w for which the corresponding Bergman projection is bounded
on Lp(w) for every p ∈ (1,∞).

(b) What is the dual of Lp
a(w) in the case when the Bergman projection is not bounded

on Lp(w)?
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