Proceedings of the Edinburgh Mathematical Society (2004) **47**, 111–117 © DOI:10.1017/S0013091501000190 Printed in the United Kingdom

UNBOUNDEDNESS OF THE BERGMAN PROJECTIONS ON L^p SPACES WITH EXPONENTIAL WEIGHTS

MILUTIN R. DOSTANIĆ

Matematicki Fakultet, Studentski Trg 16, 11000 Beograd, Serbia and Montenegro (domi@matf.bg.ac.yu)

(Received 12 February 2001)

Abstract We prove that the Bergman projection on $L^p(w)$ $(p \neq 2)$, where $w(r) = (1-r^2)^A e^{-B/(1-r^2)^{\alpha}}$, is not bounded.

Keywords: Bergman kernel; Bergman projection; Laplace method

2000 Mathematics subject classification: Primary 47B10

1. Introduction and notation

Let Δ denote the unit disc and let w denote a positive continuous function on the interval [0, 1). Let dA(z) denote the Lebesgue measure on Δ and $d\mu(z)$ the measure on Δ defined by

$$d\mu(z) = w(|z|) \, dA(z).$$

Let $L^p(w)$ $(1 \leq p < \infty)$ be the space of all measurable functions f on Δ such that

$$||f||_p = \left(\int_{\Delta} |f|^p \,\mathrm{d}\mu\right)^{1/p} < \infty,$$

and let $L^p_{\mathbf{a}}(w)$ be the subspace of $L^p(w)$ consisting of analytic functions. It is known and easy to see that $L^p_{\mathbf{a}}$ is a closed subspace of L^p . Let P denote the ortho-projector from $L^2(w)$ onto $L^2_{\mathbf{a}}(w)$. P is called the Bergman projection. Let $\delta^2_n = 2\pi \int_0^1 r^{2n+1} w(r) \, \mathrm{d}r$. Since the system

$$\left\{\frac{z^n}{\delta_n}\right\}_{n=0}^{\infty}$$

is an orthonormal base of $L^2_{\rm a}(w)$, the corresponding Bergman kernel (of the projection P) is given by

$$K(z,\xi) = \sum_{n=0}^{\infty} \frac{z^n \bar{\xi}^n}{\delta_n^2}.$$

111

M. R. Dostanić

Therefore,

$$Pf(z) = \int_{\Delta} K(z,\xi) f(\xi) \,\mathrm{d}\mu(\xi), \quad \text{for } f \in L^2(w),$$

and

112

$$Pf(z) = f(z), \text{ for } f \in L^2_a(w).$$

It is of interest to study the boundedness of the projection P on the spaces $L^p(w)$ $(1 because then it is easy to find the dual of <math>L^p_{\rm a}(w)$. In [3], Lin and Rochberg studied Toeplitz and Hankel operators on $L^2_{\rm a}(w)$ in the case when $w = e^{-h}$, where h is a subharmonic function satisfying some additional conditions. As typical weights satisfying these conditions Lin and Rochberg mentioned the functions

$$w_0(r) = (1 - r^2)^A \quad (A > 0)$$

and

$$w(r) = (1 - r^2)^A \exp\left(-\frac{B}{(1 - r^2)^{\alpha}}\right) \quad (A \ge 0, \ B > 0, \ \alpha > 0).$$

It is known (see, for example, [4, pp. 53–55]) that the projection P corresponding to w_0 is bounded on $L^p(w_0)$ for 1 .

In this paper we shall show that in the case of the weight

$$w(r) = (1 - r^2)^A \exp\left(-\frac{B}{(1 - r^2)^{\alpha}}\right),$$

the corresponding Bergman projection is not bounded on $L^p(w)$, $p \neq 2$.

2. Result

Theorem 2.1. If

$$w(r) = (1 - r^2)^A \exp\left(-\frac{B}{(1 - r^2)^{\alpha}}\right), \quad A \ge 0, \ B > 0, \ 0 < \alpha \le 1,$$

then the Bergman projection

$$Pf(z) = \int_{\Delta} K(z,\xi) f(\xi) \,\mathrm{d}\mu(\xi) \quad (\mathrm{d}\mu(\xi) = w(|\xi|) \,\mathrm{d}A(\xi))$$

is bounded on $L^p(w)$ only if p = 2.

For the proof we need the following lemma.

Lemma 2.2. If

$$w(r) = (1 - r^2)^A \exp\left(-\frac{B}{(1 - r^2)^{\alpha}}\right), \quad A \ge 0, \ B > 0, \ 0 < \alpha \le 1,$$

and

$$\varPhi(\lambda) = \int_0^1 r^\lambda w(r) \,\mathrm{d} r,$$

https://doi.org/10.1017/S0013091501000190 Published online by Cambridge University Press

then the following asymptotic formula holds:

$$\Phi(\lambda) \sim C \lambda^D \mathrm{e}^{-E \lambda^{\alpha/(\alpha+1)}}, \quad \lambda \to \infty,$$

where C, D, E are constants depending only on A, B, α and E > 0. (We write $f(\lambda) \sim g(\lambda), \lambda \to \infty$, to denote that $\lim_{\lambda \to \infty} (f(\lambda)/g(\lambda)) = 1$.)

Proof. Consider the case $0 < \alpha < 1$. (The case $\alpha = 1$ is similar.) Let

$$S(t) = -(\alpha B)^{1/(\alpha+1)}t - B(\alpha B)^{-\alpha/(\alpha+1)}t^{-\alpha}$$

and

$$H(\mu) = \int_0^\infty t^A \mathrm{e}^{\mu S(t)} \,\mathrm{d}t.$$

Since S attains its maximum for t = 1, an application of the Laplace method gives (see [1, pp. 66, 67])

$$H(\mu) \sim e^{\mu S(1)} \sqrt{\frac{2\pi}{-\mu S''(1)}}, \quad \mu \to \infty.$$

Having in mind that

$$S(1) = -(\alpha B)^{1/(\alpha+1)} - B(\alpha B)^{-\alpha/(\alpha+1)} < 0 \text{ and } S''(1) < 0$$

and taking

$$E = -S(1),$$
 $F = \sqrt{-\frac{2\pi}{S''(1)}},$

we obtain

$$H(\mu) \sim \frac{F}{\sqrt{\mu}} e^{-E\mu}, \quad \mu \to \infty, \quad E, F > 0.$$
 (2.1)

Consider now the asymptotic behaviour of the function

$$G_0(\lambda) = \int_0^\infty x^A e^{-(\lambda+1)x - Bx^{-\alpha}} dx, \quad \lambda \to \infty.$$

Introducing the substitution

$$x = t \left(\frac{\alpha B}{\alpha + 1}\right)^{1/(\alpha + 1)}$$

in the previous integral, we get

$$G_0(\lambda) = (\alpha B)^{(A+1)/(\alpha+1)} (\lambda+1)^{-(A+1)/(\alpha+1)} H((\lambda+1)^{\alpha/(\alpha+1)}),$$

and therefore, from (2.1), there follows the asymptotic formula

$$G_0(\lambda) \sim F_1 \lambda^D \mathrm{e}^{-E\lambda^{\alpha/(\alpha+1)}}, \quad \lambda \to \infty,$$

where the constants F_1 , D can easily be determined but their exact values are not of importance here.

M. R. Dostanić

Let

114

$$\Phi_0(\lambda) = \int_0^1 t^{\lambda} (1-t)^A \exp\left(\frac{-B}{(1-t)^{\alpha}}\right) \mathrm{d}t.$$

Let us show that

 $\lim_{\lambda \to \infty} \frac{\Phi_0(\lambda)}{G_0(\lambda)} = 1.$ (2.2)

Since

$$\begin{split} \Phi_0(\lambda) - G_0(\lambda) &= \int_0^\infty e^{-(\lambda+1)x - B(1 - e^{-x})^{-\alpha}} x^A \left(\left(\frac{1 - e^{-x}}{x}\right)^A - 1 \right) \mathrm{d}x \\ &+ \int_0^\infty e^{-(\lambda+1)x} x^A (e^{-B(1 - e^{-x})^{-\alpha}} - e^{-Bx^{-\alpha}}) \,\mathrm{d}x \end{split}$$

and $1 - e^{-x} \leq x$, we have

$$\begin{aligned} |\Phi_0(\lambda) - G_0(\lambda)| &\leq \int_0^\infty e^{-(\lambda+1)x - Bx^{-\alpha}} x^A \left| \left(\frac{1 - e^{-x}}{x}\right)^A - 1 \right| dx \\ &+ \int_0^\infty e^{-(\lambda+1)x - Bx^{-\alpha}} x^A |e^{B(x^{-\alpha} - (1 - e^{-x})^{-\alpha})} - 1| dx. \end{aligned}$$
(2.3)

Since

$$\lim_{x \to 0^+} \left(\left(\frac{1 - e^{-x}}{x} \right)^A - 1 \right) = 0 \quad \text{and} \quad \lim_{x \to 0^+} \left(\frac{1}{x^{\alpha}} - \frac{1}{(1 - e^{-x})^{\alpha}} \right) = 0 \quad \text{(for } 0 < \alpha < 1\text{)},$$

then for given ε there is $\delta > 0$ such that

$$\left| \left(\frac{1 - \mathrm{e}^{-x}}{x} \right)^{A} - 1 \right| < \frac{1}{3}\varepsilon \quad \text{and} \quad |-1 + \mathrm{e}^{B(x^{-\alpha} - (1 - \mathrm{e}^{-x})^{-\alpha})}| < \frac{1}{3}\varepsilon \quad (0 < x < \delta),$$

and from (2.3) it follows that

$$\begin{aligned} |\Phi_{0}(\lambda) - G_{0}(\lambda)| \\ \leqslant \frac{2}{3}\varepsilon \int_{0}^{\delta} x^{A} \mathrm{e}^{-(\lambda+1)x - Bx^{-\alpha}} \,\mathrm{d}x + \int_{\delta}^{\infty} \mathrm{e}^{-(\lambda+1)x - Bx^{-\alpha}} x^{A} \left| \left(\frac{1 - \mathrm{e}^{-x}}{x}\right)^{A} - 1 \right| \,\mathrm{d}x \\ + \int_{\delta}^{\infty} \mathrm{e}^{-(\lambda+1)x - Bx^{-\alpha}} x^{A} | - 1 + \mathrm{e}^{B(x^{-\alpha} - (1 - \mathrm{e}^{-x})^{-\alpha})} | \,\mathrm{d}x. \end{aligned}$$
(2.4)

Since

$$\int_{\delta}^{\infty} e^{-(\lambda+1)x - Bx^{-\alpha}} x^A \left| \left(\frac{1 - e^{-x}}{x} \right)^A - 1 \right| dx = O(e^{-\lambda\delta})$$

and

$$\int_{\delta}^{\infty} e^{-(\lambda+1)x - Bx^{-\alpha}} x^{A} | -1 + e^{B(x^{-\alpha} - (1 - e^{-x})^{-\alpha})} | \, \mathrm{d}x = O(e^{-\lambda\delta}),$$

we get from (2.4) that

$$|\Phi_0(\lambda) - G_0(\lambda)| \leqslant \frac{2}{3}\varepsilon \int_0^\infty x^A \mathrm{e}^{-(\lambda+1)x - Bx^{-\alpha}} \,\mathrm{d}x + O(\mathrm{e}^{-\lambda\delta}),$$

i.e.

$$\left|\frac{\Phi_0(\lambda)}{G_0(\lambda)} - 1\right| \leqslant \frac{2}{3}\varepsilon + O\left(\frac{\mathrm{e}^{-\lambda\delta}}{G_0(\lambda)}\right) < \varepsilon \quad \text{for } \lambda \geqslant \lambda_0.$$

which proves (2.2).

Since $\Phi(\lambda) = \frac{1}{2}\Phi_0(\frac{1}{2}(\lambda-1))$, the assertion of the lemma follows from the asymptotics of the function Φ_0 (i.e. of G_0).

Remark 2.3. The proof of the previous lemma could be derived from Theorem 3 in [2], but the function

$$w(r) = (1 - r^2)^A \exp\left(-\frac{B}{(1 - r^2)^{\alpha}}\right)$$

should first be replaced by

$$g(r) = \left(\ln\frac{1}{r^2}\right)^A \exp\left(\frac{-B}{(\log(1/r^2))^{\alpha}}\right).$$

Then the function $\Phi(\lambda)$ and $m(\lambda)$ $(m(\lambda) = \int_0^1 r^\lambda g(r) dr)$ have the same asymptotics when $\lambda \to \infty$. Furthermore, it is necessary to check whether the function $v(t) = B_0 t^{-\alpha} - A_0 t$ $(A_0, B_0 > 0)$ satisfies all conditions of Theorem 3 in [2].

The proof of Theorem 3 in [2] is based on detailed analysis of the Legendre–Fenchel transform of the convenient class of functions (one such example is $v(t) = B_0 t^{-\alpha} - A_0 t$).

Our proof is different and it is based on Laplace's method. Since the weight is the particular function w(r), our proof gives the conclusion more directly.

Proof of Theorem 2.1. It suffices to prove the unboundedness of P on $L^p(w)$ for $1 . Then, unboundedness on <math>L^p(w)$ for p > 2 follows by duality. Let 1 . Consider the system of functions

$$f_n(z) = z^{\omega n} \bar{z}^n,$$

where ω is a fixed positive integer.

By direct computation we get from the definition of P

$$Pf_n(z) = z^{\omega n - n} a_n,$$

where

$$a_n = \frac{\int_0^1 w(r) r^{1+2\omega n} \,\mathrm{d}r}{\int_0^1 w(r) r^{1+2(\omega n-n)} \,\mathrm{d}r}.$$

115

M. R. Dostanić

Hence, by the lemma, we have

$$\frac{\|Pf_n\|_p}{\|f_n\|_p} \sim \text{const.} \times \exp\left(En^{\alpha/(\alpha+1)}\left((2(\omega-1))^{\alpha/(\alpha+1)} - (2\omega)^{\alpha/(\alpha+1)} + \frac{1}{p}(p(\omega+1))^{\alpha/(\alpha+1)} - \frac{1}{p}(p(\omega-1))^{\alpha/(\alpha+1)}\right)\right),$$
$$n \to \infty. \quad (2.5)$$

Let us show that for large ω , the inequality

$$\left((2(\omega-1))^{\alpha/(\alpha+1)} - (2\omega)^{\alpha/(\alpha+1)} + \frac{1}{p}(p(\omega+1))^{\alpha/(\alpha+1)} - \frac{1}{p}(p(\omega-1))^{\alpha/(\alpha+1)} \right) > 0 \quad (2.6)$$

holds, i.e.

$$L(\omega) = \left(1 - \frac{1}{\omega}\right)^{\alpha/(\alpha+1)} - 1 + \frac{1}{p}(\frac{1}{2}p)^{\alpha/(\alpha+1)} \left(\left(1 + \frac{1}{\omega}\right)^{\alpha/(\alpha+1)} - \left(1 - \frac{1}{\omega}\right)^{\alpha/(\alpha+1)}\right) > 0.$$

By the binomial formula we have

$$L(\omega) = \frac{\alpha}{\alpha+1} \left(\frac{2}{p} (\frac{1}{2}p)^{\alpha/(\alpha+1)} - 1\right) + O\left(\frac{1}{\omega}\right).$$

Since $1 , we have <math>\frac{1}{2}p < (\frac{1}{2}p)^{\alpha/(\alpha+1)}$ and hence $L(\omega) > 0$ if ω is a sufficiently large integer. From (2.5) and (2.6) it follows that the quotient $\|Pf_n\|_p/\|f_n\|_p$ is not bounded, i.e. that the operator P is not bounded.

Remark 2.4. In the case p = 2 instead of (2.6) (which holds for ω large enough), for every $\omega \ge 1$ the reverse inequality

$$\frac{1}{2}(2(\omega-1))^{\alpha/(\alpha+1)} - (2\omega)^{\alpha/(\alpha+1)} + \frac{1}{2}(2(\omega+1))^{\alpha/(\alpha+1)} \le 0$$

holds, which is a consequence of the concavity of the function $x \mapsto x^{\alpha/(\alpha+1)}$. This, of course, agrees with the boundedness of the operator P on $L^2(w)$.

Problems 2.5.

- (a) Describe all weights w for which the corresponding Bergman projection is bounded on $L^p(w)$ for every $p \in (1, \infty)$.
- (b) What is the dual of $L^p_{\mathbf{a}}(w)$ in the case when the Bergman projection is not bounded on $L^p(w)$?

Acknowledgements. I thank the referee for bringing reference [2] to my attention.

116

References

- 1. M. V. FEDORYUK, Asymptotics integrals and series (Nauka, Moscow, 1987) (in Russian).
- 2. T. L. KRIETE III, Kernel functions and composition operators in weighted Bergman spaces, *Contemp. Math.* **213** (1998), 73–91.
- 3. P. LIN AND R. ROCHBERG, Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, *Pac. J. Math.* **173** (1996), 127–146.
- 4. K. ZHU, Operator theory in function spaces (Marcel Dekker, New York, 1990).