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A Boltzmann Approach to Percolation on
Random Triangulations

Olivier Bernardi, Nicolas Curien, and Grégory Miermont

Abstract. We study the percolationmodel on Boltzmann triangulations using a generating function
approach. More precisely, we consider a Boltzmann model on the set of ûnite planar triangulations,
together with a percolation conûguration (either site-percolation or bond-percolation) on this tri-
angulation. By enumerating triangulations with boundaries according to both the boundary length
and the number of vertices/edges on the boundary, we are able to identify a phase transition for the
geometry of the origin cluster. For instance,we show that the probability that a percolation interface
has length n decays exponentially with n except at a particular value pc of the percolation parame-
ter p for which the decay is polynomial (of order n−10/3). Moreover, the probability that the origin
cluster has size n decays exponentially if p < pc and polynomially if p ≥ pc .

_e critical percolation value is pc = 1/2 for site percolation, and pc = (2
√

3 − 1)/11 for bond
percolation. _ese values coincide with critical percolation thresholds for inûnite triangulations
identiûed byAngel for site-percolation, and byAngel and Curien for bond-percolation, andwe give
an independent derivation of these percolation thresholds.

Lastly,we revisit the criticality conditions for random Boltzmannmaps, and argue that at pc , the
percolation clusters conditioned to have size n should converge toward the stablemap of parameter
7
6 introduced by Le Gall and Miermont. _is enables us to derive heuristically some new critical
exponents.

1 Introduction

_e percolationmodel on random planarmaps has been extensively studied in recent
years, in particular through the peeling process. Indeed, it is o�en possible to use the
spatial Markov property of the underlying lattice to deûne an exploration along the
percolation interface and get access to the percolation threshold. _is approach was
ûrst developed in the pioneer work of Angel [1] for site-percolation on the Uniform
Inûnite Planar Triangulation (UIPT) and later extended to other models of percola-
tion and maps [2, 10, 20, 25]. As opposed to the “dynamical” approach of the peeling
process, the work [11] uses a “ûxed” combinatorial decomposition (inspired by [5])
and known enumeration results on triangulations to study the scaling limit of perco-
lation cluster conditioned on having a large boundary. All the above works focused,
in a sense, on the geometry of one percolation interface, hence studied the geometry
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of the outer boundary of a large percolation cluster. _is paper however, genuinely
studies the geometry of the full cluster of the origin in a ûnitemap.

Let us give a rough idea of our setting before giving more precise deûnitions. We
consider a critical Boltzmann triangulation, that is, a random ûnite planar triangula-
tion M chosen with probability proportional to z#triangles0 , where z0 = 432−1/4 is the
maximal value for which this deûnition makes sense. Under this law, the probability
that M has n triangles decays polynomially in n. We then endow M with a Bernoulli
bond or site percolation model with parameter p ∈ [0, 1], and consider the origin
cluster C(p). _e cluster C(p) is a random planar map that also has a Boltzmann dis-
tribution, in the sense that there is a sequence (qk)k>0 of non-negative numbers de-
pending on the parameter p such that the probability that C(p) is equal to anymapm
is proportional to the product over all faces f ofm of qdeg( f ) (see below). We show that
there is a phase transition of the percolation model at a certain critical value p = pc
(with pc = 1/2 for site-percolation, and pc = (2

√
3 − 1)/11 for bond-percolation). _is

phase transition manifests itself in at least three ways:
(a) the probability that the cluster C(p) has n vertices decays exponentially in n for

p < pc and polynomially for p ≥ pc ;
(b) the probability that the percolation interface surrounding C(p) has length ℓ de-

cays exponentially in ℓ for p /= pc and polynomially for p = pc ;
(c) the asymptotic form of the sequence (qk)k>0 is diòerent for p < pc , p = pc and

p > pc .
_e result (a) is closely related to the usual deûnition of the critical percolation thresh-
old on inûnite graphs (the inûmum of the p’s for which the origin cluster can be
inûnite). We indeed establish a link between our critical values of pc and the criti-
cal percolation thresholds previously obtained for percolation on the uniform inûnite
planar triangulation (UIPT) of Angel and Schramm [3] and its half-plane analog. _e
result (b) indicates that the critical cluster C(pc) conditioned to have many vertices
will have some faces of polynomially large degrees. _e result (c) allows us to show
that the critical cluster C(pc) is a non-regular critical Boltzmann map in the sense of
LeGall andMiermont [17]. It strongly suggests (although we do not attempt to prove
this) that the rescaled critical percolation cluster conditioned to have n vertices con-
verges in law toward the so-called stable map of parameter 7

6 . _is conjectural limit
leads us to make several additional conjectures on the geometry of C(pc).

Boltzmann maps and percolated triangulations We will now give precise deûni-
tions and state ourmain results. We use the standard terminology for planarmaps; see
Section 2.1 for precise deûnitions. In this article, all our maps are planar and rooted.
Following [18,21], given a (non-zero) sequence of non-negative weights q = (qk)k≥1,
we deûne the q-Boltzmann measure Boltq on the set of ûnite (rooted planar) maps by
the formula:
(1.1) Boltq(m) = ∏

f ∈Face(m)
qdeg( f ) .

When the total mass of Boltq,

(1.2) Zq = ∑
m rooted planar map

Boltq(m) <∞,
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is ûnite, we say that q is admissible, and we can then renormalize Boltq into a proba-
bility measure that we call the q-Boltzmann probability distribution. _e usual deû-
nition of admissibility in [21] requires the apparently stronger condition

(1.3) Z●q =∑
m

Boltq(m) v(m) <∞,

where v(m) is the number of vertices of m, although (1.2) and (1.3) turn out to be
equivalent, as we will see in Proposition 4.1. We say that the admissible weight se-
quence q is critical if

(1.4) ∑
m

Boltq(m) v(m)
2
=∞,

and subcritical otherwise. We will see in Section 4 that this deûnition coincides with
the original one in [21], which will be recalled in due time.
A particular case of weight sequence is given by q = (z δk ,3)k≥1 (where δ i , j is the

Kronecker notation) so that the associated Boltzmann measure gives a weight zn to
each triangulation (type-I where loops andmultiple edges are allowed) with n faces,
and weight zero to any other map. By a classical result of Tutte [28] we have1

#{triangulations with n faces} ∼
n→∞

c0 4√432
n
n−5/2 ,

for some c0 > 0, and so the lastweight sequence is admissible if and only if z ≤ 1/ 4
√

432.
For z = z0 ∶= 1/ 4

√
432, the weight sequence, denoted below by q0, is furthermore

critical (and subcritical if z < z0), and we call the renormalized measure the critical
Boltzmann measure on triangulations.
For p ∈ [0, 1], under the criticalBoltzmannmeasure on triangulations,we perform

a site (resp. bond) percolation on the underlying triangulation M by independently
coloring each vertex (resp. edge) of M in black with probability p and in white with
probability 1−p. On the event that the root edge is colored in black in the case of bond-
percolation, or that its endpoints are colored black in the case of site-percolation, we
consider themap Ċ(p) (in the case of site-percolation) or C(p) (in the case of bond-
percolation) made of the black cluster of the origin in the percolated triangulation,
naturally rooted at the same edge as M (see Figure 1). By convention, in the case
where the root edge of M is not colored black (which in the case of site percolation
means that at least one extremity of the root edge is colored white), we let Ċ(p) and
C(p) be the atomicmaps, with only one vertex and no edge.

To state our theorem in a condensed form, let us say that a sequence u = (uk)k≥1
of non-negative numbers is orthodox with growth constant R > 0 and exponent β ∈ R
if for some constant c > 0, we have

uk ∼
k→∞

c × Rk
× k−β .

_eorem 1.1 (Main result) For any p ∈ [0, 1] and under the critical Boltzmann mea-
sure on triangulations, conditionally on the event that the root edge is colored black,
both random maps Ċ(p) and C(p) are Boltzmann distributed with admissible ortho-
dox weight sequences q̇(p) and q(p) for p ∈ [0, 1] and conditioned on having at least

1Here and later, by an ∼ bn we will mean that an/bn → 1 as n →∞.
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one edge. If we set

ṗc =
1
2

and pc =
2
√

3 − 1
11

,

then the exponents β̇(p) and β(p) of q̇(p) and q(p) satisfy

p ∈ (0, ṗc) p = ṗc p ∈ (ṗc , 1)
β̇(p) 5/2 5/3 3/2

p ∈ (0, pc) p = pc p ∈ (pc , 1)
β(p) 5/2 5/3 3/2

.

Furthermore, for p < ṗc (resp. p < pc), the distribution of the Boltzmann map Ċ(p)
(resp. C(p)) is subcritical, and the probability that this map has size n decreases expo-
nentially with n. For p ≥ ṗc (resp. p ≥ pc), the distribution of the Boltzmann map Ċ(p)
(resp. C(p)) is critical, and the probability that this map has size n decreases polynomi-
ally with n.

Note that the cases p ∈ {0, 1} are special and always implicitly omitted from the
discussions: for p = 0, Ċ(0) = C(0) is the edge-map, and for p = 1, Ċ(1) = C(1) is the
full triangulation.

Roughly speaking, the above theorem (which follows from our Propositions 2.2,
2.4, 5.1, and 5.2 below) indicates a phase transition for the geometry of the origin
cluster of percolated critical Boltzmann triangulations: for p < pc , the origin cluster
is “small”, while for p ≥ pc this cluster may be “large”. We recover in this result the
particular role played by the critical values ṗc = 1

2 and pc = (2
√

3 − 1)/11, which
had already been identiûed as the almost sure critical percolation thresholds for site
and bond-percolations on inûnite random triangulations; see [1] for the case of site-
percolation on the UIPT and [2] for site and bond percolations on the half-planar
version of the UIPT. Notice also that the value ṗc = 1

2 is also pivotal in the work
[11] dealing with scaling limit of cluster boundaries on the UIPT. _is is of course
not surprising, and our work furnishes an independent proof that ṗc and pc are the
percolation thresholds for site and bond percolation on the UIPT (a result which is
new in the case of bond percolation) togetherwith a proof of exponential decay of the
cluster size in the subcritical phase:

_eorem 1.2 (Percolation on the UIPT) _e (almost surely quenched) percolation
thresholds for site and bond percolations on the Uniform Inûnite Planar Triangulation
are given by

ṗc(UIPT) = ṗc =
1
2

and pc(UIPT) = pc =
2
√

3 − 1
11

,

and moreover, in the subcritical case p < ṗc (resp. p < pc), the tail distribution of the
number of vertices in the origin site (resp. bond) percolation cluster decays exponentially.
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Figure 1: Le� column: a piece of a percolated triangulation (site-percolation on the ûrst row,
bond-percolation on the second row). Right column: the resulting black cluster of the origin.

Our main result should also imply that the large scale geometry of the critical per-
colation clusters Ċ(ṗc) andC(pc) are described by the stablemaps2 of parameter3 7/6
introduced in [17]. Unfortunately, thework [17] only dealswith bipartite planarmaps,
whereas our clusters are not always bipartite. However, performing a leap of faith we
proceed in Section 5.4 to the non-rigorous derivation of several critical exponents
based on the approach of [17].

A word on the proofs As mentioned above, our approach is based ûrst on a com-
binatorial decomposition of percolated triangulations (Section 2), which, roughly
speaking, enables us to decouple between the cluster of the origin and the “islands”
it splits in themap. _is directly entails that the clusters Ċ and C are Boltzmann dis-
tributedwithweights related to the Boltzmannweight of the “islands”. A�er a further
reduction, these weights are computed using a generating function approach “à la
Tutte” and solved using themethods pioneered by Bousquet-Mélou and Jehanne [7].
For the site-percolation model, this boils down to the enumeration of triangulations
with boundary according to the number of outer vertices. For the bond-percolation

2For the connoisseur, note that the uniqueness of the stablemaps is still an open problem and so, as
in [17], we would need to pass to a subsequence to establish scaling limits results.

3In the notation of [17], we have α = 7/6 as well as a = 5/3 so that 7/6 = α = a − 1/2.
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model, this boils down to the enumeration of triangulationswith simple boundary ac-
cording to the number of edges incident to outer vertices. _ese calculations, which
are the core of this work, are performed in Section 3 and eventually yield the asymp-
totic form of the weight sequences presented in _eorem 1.1.

Most of the enumeration results in the case of site-percolation could be derived
from thework [11] (see Remark 3.6); however, our angle here is diòerent, sincewe use
generating functions and analytic combinatorics methods as opposed to purely prob-
abilistic arguments (Galton–Watson trees and local limit theorems) in [11]. _is also
shows the robustness of the present approachwhich alsoworks for bond-percolation.
As proved in Section 4, the criticality or subcriticality of the origin clusters men-

tioned in _eorem 1.1 are consequences of the form of the exponents provided in
_eorem 1.1. _is may be surprising at ûrst glance since the (sub)criticality condition
[21] for a q-Boltzmann map cannot in general be deduced from the asymptotic be-
havior of qk , k ≥ 1. However, the weights q that arise in the context of percolation
are special, and as noticed in [5] in a slightly diòerent context, the weight sequences
q̇(p) and q(p) also encode an exact information about the Boltzmannmeasure, since
the weight qk is closely related to the so-called disk partition function Boltq(M(k)),
whereM(k) is the set of all maps of perimeter k. Using this precise link as well as our
Proposition 4.3, we are thus able to deduce the criticality condition based only on the
asymptotic of the weight sequence.
Finally, our results are transferred to the case of the UIPT using local absolute

continuity relations and the exponential decay of the cluster size in the subcritical
regime; see Section 5.3.

2 Percolation Models and Island Decomposition

In this sectionwe recall some basic deûnitions about planarmaps. We then deûne the
island decomposition, which enables us to decouple the origin black cluster from the
“islands” that it cuts out of the percolatedmap.

2.1 Maps

A planar map (or map for short) is a proper embedding of a ûnite connected graph
into the two-dimensional sphere, considered up to orientation-preserving homeo-
morphisms of the sphere. _e faces of themap are the connected components of the
complement of edges, and the degree of a face is the number of edges that are incident
to it,with the convention that if both sides of an edge are incident to the same face, this
edge is counted twice. A corner is the angular section between two consecutive edges
around a vertex. Note that the degree of a face or vertex is the number of incident
corners.
As usual in combinatorics,wewill only consider rootedmaps,which aremapswith

a distinguished oriented edge, called the root edge. _e origin of the root edge is called
the root vertex. _e face at the right of the root edge is called the root face. _e corner
following the root edge clockwise around the root vertex is called the root corner. Note
that the oriented root edge is uniquely determined by the root corner, and in ûgures
we will sometime indicate the rooting of our map by drawing an arrow pointing to
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the root corner. We call the rootedmap with one vertex and no edge the atomicmap
(it still has a root corner). For a rooted map, the vertices and edges incident to the
root face are called outer, and the other vertices and edges are called inner.
A triangulation is a (rooted) planar map whose faces are all triangles, that is, have

degree three. We call a rooted planar map where every non-root face has degree 3
(and the root face has degree k) a triangulation with boundary (of length k). It is a
triangulation with simple boundary if the outer edges form a simple cycle. We denote
by T the set of triangulations with boundary; by convention, it includes the atomic
map. We denote by S the set of triangulations with simple boundary; by convention,
it does not include the atomicmap (so that the boundary length is at least 3).

2.2 Decomposition for Site-percolation

Let t be a site-percolated triangulation of the sphere. Recall our convention that the
endpoints of the root edgemust be colored in black. _e origin cluster Ċ is the planar
map obtained by keeping only those edges of the map t whose endpoints are in the
black cluster of the root edge (this map is obviously rooted at the root edge of t).

2.2.1 Isolating the islands

Clearly, the origin cluster Ċmight not be a triangulation anymore, and its faces could
be of two types: either anoriginal face of t, or aunion of several faces of t that surround
some white vertices of t. By cutting along both sides of the edges of Ċ, the interior of
each face of Ċ gets separated into a site-percolated map that we call a site-island; see
Figure 2. Observe that the site-islands obtained by this decomposition have a simple
boundary, even if they correspond to a non-simple face of Ċ (see again Figure 2). We
now give amore precise characterization of the site-islands.

Deûnition 2.1 A site-island is a triangulation with simple boundary together with
a site-percolation conûguration such that
(i) all the outer vertices are black;
(ii) all the inner edges incident to an outer vertex are also incident to a white inner

vertex.

Examples of site islands are given in Figure 2 (right) and Figure 3 (le�).
Actually, the above decomposition requires us to choose a rooting convention that

picks a root edge for each site-island of t and amirror edge on the corresponding faces
of the origin cluster (see Figure 2). However,we shall not specify a precise convention,
since any deterministic rule (depending on Ċ) would work for us. If t is a random
critical Boltzmann triangulation, recall that the probability that t is equal to a ûxed
triangulationwith n faces is proportional to zn

0 where z0 = 1/ 4
√

432. If i is a site-island
and p ∈ [0, 1], we deûne the p-weight of this site-island by putting

Ẇ(i; p) = pv●(i)(1 − p)v○(i)zfin(i)0 ,(2.1)

where fin(i) is the number of inner triangles of i, and v●(i) and v○(i) are the number

https://doi.org/10.4153/CJM-2018-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-009-x


8 O. Bernardi, N. Curien, and G. Miermont
27/01/2017 islands.svg

file:///Users/nicolascurien/Desktop/islands.svg 1/1

= +

origin
originRoot
Root
Root

= +

Figure 2: Isolating one site-island in a site-percolated triangulation. In the center, we have
depicted in gray the face cut in the cluster Ċ,while on the rightwe have depicted the site-island
corresponding to this face (it is obtained by cutting along both sides of the edges of Ċ). Note
that some vertices of Ċ are duplicated, and that this leads to a simple boundary for the site
island.

of black and white inner vertices, respectively. We then deûne

Ẇk(p) ∶= ∑
i∈İk

Ẇ(i; p) = ∑
i∈İk

pv●(i)(1 − p)v○(i)zfin(i)0 ,(2.2)

where İk is the set of site-islands having boundary length k. Now, using the above
decomposition, it is clear that for any (non-atomic) planar map c, the total critical
Boltzmannweight of all percolated triangulationswith origin cluster c is proportional
to

P(Ċ(p) = c) ∝ pv(c) ∏
f ∈Face(c)

Ẇdeg( f )(p).

Using the Euler formula we have v(c) − 2 = ∑ f ∈Face(c)(deg( f )/2 − 1), and so the last
equation becomes

P( ˙C(p) = c) ∝ ∏
f ∈Face(c)

p
deg( f )

2 −1
× Ẇdeg( f )(p).(2.3)

We deduce that conditionally on the event that it is non-atomic, Ċ(p) indeed follows
a Boltzmann distribution with admissible weights given by

q̇k(p) = pk/2−1Ẇk(p)

for k ≥ 1. _e admissibility of this sequence (in the sense of deûnition (1.2) or even
(1.3)) follows from the fact that the critical triangulation corresponds itself to the ad-
missibleweight sequence (z0δk ,3)k . _e asymptotic formof theweights given in_e-
orem 1.1 in the case of site-percolation follows immediately from the asymptotic form
of the sequence Ẇk(p) as k →∞ provided in the next proposition.
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A Boltzmann Approach to Percolation on Random Triangulations 9

Proposition 2.2 (Asymptotic weights for site-islands) For all p ∈ [0, 1], the total
weight Ẇk(p) of the site-islands of boundary length k is orthodox (as k → ∞) with
exponent β̇(p) (deûned as in _eorem 1.1) and growth constant given by

z0
1 − z2/3

0 ṙ(p)
,

where the function ṙ(p) is as deûned in Proposition 3.4.

2.2.2 Reef Decomposition and Triangulation with Boundary

In order to prove Proposition 2.2 (which is done in Section 3.1),we describe a decom-
position of site-islands into two pieces, which is illustrated in Figure 3. _is decom-
position is inspired by the work [5] and already used in [11] with a slightly diòerent
notion of rooting, andwhere the authors used theword necklace instead of reef. How-
ever, we proceed from scratch for the reader’s convenience.

We call a site-island without inner vertices an empty site-island (a triangle). We
now consider a non-empty site-island i. We call the inner edges (resp. non-root faces)
incident to an outer vertex the reef edges (resp. reef triangles) of i. We call the non-
reef inner edges (resp. triangles) midland edges (resp. midland triangles). Note that
condition (ii) in the deûnition of a site-island i implies that a reef triangle is incident
to two reef-edges and either an outer edge or amidland edge.

i

m

n

Figure 3: Decomposition of a site-percolation site-island i into a midland m and a reef n. In
this picture, the vertices are colored either black, or white if their state is imposed, and gray
otherwise. _e reef edges are indicated in thin blue lines.

We call themapmmade of the inner vertices andmidland edges themidland of i.
It is not hard to see thatm is indeed amap, that is, it is connected. We canonically root
themidlandm by requiring that the reef triangle incident to the root edge of i is also
incident to the root corner ofm. _is makes m a triangulation with (non-necessarily
simple) boundary together with a site-percolation conûguration such that all outer
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vertices are white. Note that any triangulation with boundary can occur, including
themap with a single vertex and no edge.

Nowwe consider the rootedmap n obtained from i by cutting along the boundary
of m, called the reef of i. If i and m have boundary length k and ℓ respectively, then
the reef n has a simple root face of degree k, a simple marked face of degree ℓ, and
k + ℓ reef triangles. More precisely, n has k inward triangles that share one edge with
the root face and one vertex with themarked inner face, and ℓ outward triangles that
share one edge with the marked inner face and one vertex with the root face. Note
that there are

(
k + ℓ − 1
k − 1

)

possible reefs of this type, since the triangle incident to the root edge is inward and
starting from there any sequence of inward and outward triangles is possible. More-
over, it is easy to see that the decomposition of non-empty site-islands into amidland
and a reef is bijective. Precisely, non-empty site-islands of boundary length k are in
bijection with pairs (m, n), where
● m is a midland, that is, a non-empty triangulation with (non-necessarily simple)
boundary togetherwith a site-percolation conûguration such that all outer vertices
are white;

● n is a reef with k inward triangles and ℓ outward triangles, where ℓ is the boundary
length ofm.
_is decomposition leads us to introduce the generating function

(2.4) T(x , y, z) ∶=∑
t∈T

x length(t)yvout(t)ze(t) ,

where we recall that T is the set of triangulations with a (non-necessarily simple)
boundary, length(t) is the boundary length of t, the quantity vout(t) is the number of
outer vertices of t, and e(t) is the number of edges. Notice that herewe count triangu-
lations according to the number of edges via the variable z rather than via the number
of faces as done in the preceding section. We do so because the equations we get on
T (see Section 3) are a bit simpler to manipulate. Using the above decomposition and
summing over all percolation conûgurations in t, we can reinterpret Ẇk(p), deûned
in (2.2), as

Ẇk(p) = z0 × δk ,3 +∑
ℓ≥0

(
k + ℓ − 1
k − 1

)zℓ+k
0 ∑

t∈T
length(t)=ℓ

(1 − p)vout(t)zfin(t)0 .

However, since we have 3fin(t) + length(t) = 2e(t), the last display becomes

Ẇk(p) = z0 × δk ,3 +∑
ℓ≥0

(
k + ℓ − 1
k − 1

)zℓ+k
0 z−ℓ/30 [xℓ]T(x , 1 − p, z̃0),(2.5)

where [xℓ]T is the coeõcient of xℓ in the series T and

z̃0 ∶= (z0)2/3
= (432)−1/6 .

We now see that computing Ẇk boils down to counting triangulations with bound-
ary according to the number of outer vertices (for the particular value z = z̃0). In
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Section 3.1 we establish an algebraic equation for T(x , y, z), and proceed to use gen-
erating function techniques to deduce the asymptotic behavior of Ẇk for large k.

2.3 Decomposition for Bond Percolation

We now consider the bond-percolation model and deûne a decomposition of bond-
percolated triangulations analogous to the one presented for site-percolation. Let t
be a bond-percolated triangulation of the sphere. Recall our convention that the root
edge must be colored in black. _e origin cluster C is the planar map obtained by
keeping only those edges of the map t that are in the black cluster of the root edge
(rooted at the root edge of t).

2.3.1 Isolating the Islands

Exactly as in the site-percolation setup, we imagine that we cut along (both sides) of
the edges belonging to the bond-percolation cluster of the origin C. _is separates a
map from each face of C, and we call these maps bond-islands. Let us give a precise
characterization of thesemaps.

Deûnition 2.3 A bond-island is a triangulationwith simple boundary, togetherwith
a bond-percolation conûguration such that
(i) all the outer edges are black;
(ii) all the inner edges incident to an outer vertex are white.
See Figure 4 for an example.

26/04/2017 16:25

Page 1 sur 1file:///Users/nicolascurien/Desktop/island-bond.svg

= +

Figure 4: Isolating one bond-island in a bond-percolated triangulation. In the center, we have
depicted in gray the face cut in the cluster C, while on the right we have depicted the bond-
island corresponding to this face (note that it has a simple boundary).

Here again, one implicitly uses a rooting convention for the bond-islands and for
the faces of the cluster. We then proceed as above and deûne the p-weight of a bond-
island i by

W(i; p) = pe●(i)(1 − p)e○(i)zfin(i)0 ,
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12 O. Bernardi, N. Curien, and G. Miermont

where z0 = 1/ 4
√

432 and e●(i) and e○(i) are respectively the number of black andwhite
inner edges of i. Accordingly, we then deûne

W k(p) ∶= ∑
i∈Ik

W(i; p) = ∑
i∈Ik

pe●(i)(1 − p)e○(i)zfin(i)0 ,

where Ik is the set of bond-islands having boundary length k. By the above decompo-
sition,we can then compute the probability that a criticalBoltzmann bond-percolated
triangulation has the origin cluster equal to a ûxed c, and the later is proportional to

P(C(p) = c)∝ pe(c) ∏
f ∈Face(c)

Wdeg( f )(p),

Using the fact that e(c) = ∑ f ∈Face(c) deg( f )/2 we can then reinterpret the last dis-
play in a fashion similar to (2.3). We conclude that C indeed follows an admissible
Boltzmann distribution with weight sequence given by qk(p) = pk/2W k(p). Again,
the admissibility of this sequence (in the sense of deûnition (1.2) or even (1.3)) follows
from the fact that the critical triangulation corresponds itself to the admissibleweight
sequence (z0δk ,3)k . Also, the asymptotic form of the weight sequence q(p) given in
_eorem 1.1 is a direct consequence of the following proposition.

Proposition 2.4 (Asymptotic weights for bond-islands) For all p ∈ [0, 1] the total
weight W k(p) of the bond-islands of boundary length k is orthodox (as k → ∞) with
exponent β(p) (deûned in _eorem 1.1) and growth constant given by

r(p)
(1 − p)z1/30

,

where r(p) is as deûned in Proposition 3.13.

2.3.2 Generating Function Reduction

Similarly as in Section 2.2.2, we present here the generating function that we will use
in order to prove Proposition 2.4. It should be clear from the above deûnition of
bond-islands that computing the weight W k boils down to counting triangulations
with a simple boundary of length k according to the number of reef edges (inner edges
incident to an outer vertex). Formally, we denote by S′ the set of triangulations with
a simple boundary together with themap made of one edge and two vertices, and we
denote

(2.6) S(x , y, z) = ∑
t∈S′

x length(t)yreef(t)ze(t) ,

where length(t) is the boundary length of t, and reef(t) is the number of edges
incident to an outer vertex. Notice that, denoting by ereef(t) the number of reef
edges (that is, inner edges incident to an outer vertex), we have reef(t) = ereef(t) +
length(t). Moreover, denoting by fin(t) the number of internal triangles of t, we
have 3fin(t) + length(t) = 2e(t). Using these relations and recalling the notation
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z̃0 = z2/3
0 = (432)−1/6, we obtain

(2.7) W k(p) =
1

(1 − p)kzk/3
0

[xk
](S(x , 1 − p, z̃0) − x2

(1 − p)z̃0) ,

because themapwith one edge and two vertices contributes x2(1−p)z to S(x , 1−p, z).
In Section 3.1, we establish an algebraic equation for S(x , y, z) and proceed to use
generating function techniques to deduce the asymptotic behavior of W k for large
k. In particular, Proposition 2.4 is a direct consequence of (2.7) together with the
forthcoming Proposition 3.13.

3 Weight of Islands via a Generating Function Approach

In this section we prove Propositions 2.2 and 2.4. As we have already noted, for the
site-percolation model, this boils down to the enumeration of triangulations with
boundary according to the number of outer vertices. For the bond-percolationmodel,
this boils down to the enumeration of triangulationswith simple boundary according
to the number of edges incident to outer vertices. Some of the computations require
the help of a computer, andMaple sessions detailing these computations can be found
accompanying the online version of this article [23,24].

3.1 Site-percolation Case

3.1.1 Triangulations with Boundary and Outer Vertices

Recall that the generating function T(x , y, z) is deûned by (2.4).

Lemma 3.1 _e generating function T(x) ≡ T(x , y, z) satisûes the functional equa-
tion

(3.1) T(x) = y + x2z T(x)2
+
z (y − 1)(T(x) − y)2

y x T(x)
+

z
yx

(T(x) − y − x T1),

where T1 = [x]T(x).

Proof _is result translates a recursive decomposition ofmaps (à la Tutte). We ûrst
partition the set T according to the situation around the root: amap t in T is either
(i) the atomicmap, or
(ii) a non-atomicmap such that the root edge is a bridge, or
(iii) a non-atomicmap such that the root edge is not a bridge.
_is situation is represented in Figure 5. _e atomicmap contributes y to T(x). For
a map t satisfying (ii), deleting the root edge gives a pair of maps in T. _is gives a
bijection between maps corresponding to case (ii) and pairs ofmaps in T, and shows
that thesemaps contribute x2z T(x)2 to T(x) (where the factor x2z accounts for the
bridge). Finally, for a map t satisfying (iii), we consider the inner triangle t incident
to the root edge and deûne φ(t) as the map obtained by deleting the root edge and
transferring the root corner to the corner that was formerly opposite to the root edge
in the triangle t; see Figure 5. _e mapping φ is a bijection between maps corre-
sponding to case (iii) and triangulationswith boundary of length at least 2. Moreover,
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= + +

ϕ
(

,
)

Figure 5: Decomposition of triangulations with boundary, by deletion of the root edge. _e
arrows indicate the root-corners.

vout(t) = vout(φ(t)) if the root vertex of φ(t) is a cut-point (i.e., deleting itdisconnects
themap), and vout(t) = vout(φ(t)) − 1 otherwise; see Figure 6(a). We deûne

T̂(x) ≡ T̂(x , y, z) =∑
t∈T̂

x length(t)yvout(t)ze(t) ,

where T̂ is the set of of triangulationswith boundary such that the root vertex is not a
cut-point. It is easy to see that themaps such that the root vertex of φ(t) is a cut-point
contribute z/x(T(x) − T̂(x)) to T(x), while the maps such that the root vertex of
φ(t) is a not cut-point contribute z

yx (T̂(x)− y−xT1). _us, adding the contributions
of cases (i)–(iii) gives

(3.2) T(x) = y + x2z T(x)2
+
z
x
(T(x) − T̂(x)) + z

yx
( T̂(x) − y − x T1) .

Lastly, we observe that the non-atomic maps in T are in bijection with non-empty
sequences of non-atomicmaps in T̂; see Figure 6(b). _is gives

T(x) − y = T̂(x) − y
1 − (T̂(x) − y)/y

.

Solving for T̂(x) and plugging the result in (3.2) gives (3.1).

= +

( )
, , ,,,

(a) (b)

Figure 6: (a) Partition of the set of triangulations of boundary length at least 2. (b) Decompo-
sition of a non-atomicmap in T into a sequence of non-atomicmaps in T̂.

We then specialize the series to the value z = z̃0 = z2/3
0 = (432)−1/6 and introduce

T(x , y) ∶= T(x , y, z̃0) =∑
t∈T

x length(t)yvout(t)z̃e(t)0 .
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Lemma 3.2 _e series T ≡ T(x , y) satisûes the algebraic equation

(3.3) T3x3
− T2x22/3√3 + Txy22/3√3 − Tx2−1/3√3 + 3Tx2−4/3

+ T2
− 2Ty + T + y2

− y = 0.

Remark 3.3 We point out that plugging z = z̃0 in (3.1) gives a functional equation
relating T to its specialization [x]T, but this functional equation is not suitable for
the purpose of extracting the asymptotic information about the coeõcients [xn]T
(whereas the algebraic equation (3.3) involving onlyT is suitable). Let us alsomention
that the functional equation (3.1) cannot be directly specialized to give an equation for
[x]T alone, and more involved generating function techniques (pioneered by Tutte)
are needed here.

Proof We ûrst establish an equation for T̃(x) = T(x , 1, z); the computations can be
found in theMaple session [23]. Setting y = 1 in (3.1) gives

T̃(x) = 1 + x2z T̃(x)2
+
z
x
( T̃(x) − 1 − x T̃1) ,

where T̃(x) = T(x , 1, z) and T̃1 = [x]T̃(x). From this we can obtain an algebraic
equation for T̃1 by applying the standard quadraticmethod (see [16]). More precisely,
this equation (already obtained by Tutte [28]) reads Q(T̃1 , z) = 0, where

(3.4) Q(u, z) = 64u3z5 − 96u2z4 − 27 z5 + 30uz3
+ u2z + z2

− u.

Next, we observe that T1 = yT̃1. Eliminating T1 between the equation Q(T1/y, z) = 0
and (3.1) (e.g., using resultant) gives an equation of the form

R(T(x , y, z), x , y, z) = 0,

where R(u, x , y, z) is a polynomial of degree 9 in u (see the Maple session [23]). At
z = z̃0 = (432)−1/6, this polynomial factorizes as

R(u, x , y, z̃0) = R1(u, x , y)2R2(u, x , y),

where

R1(u, x , y) = u3x3
− u2x22/3√3 + uxy22/3√3 − ux2−1/3√3

+ 3ux2−4/3
+ u2

− 2uy + u + y2
− y,

and R2(u, x , y) = R1(u, x , y) − (27 × 22/3) x T/16. Hence, either R1(T, x , y) = 0, or
R2(T, x , y) = 0. We know thatT is a series inQ[y][[x]] such that [x0]T = y. _e only
series S with these properties satisfying R2(S , x , y) = 0 has some negative coeõcients
(e.g., the coeõcient of x2 y2 is negative), hence is distinct from T. _us, we conclude
that R1(T, x , y) = 0, which is precisely (3.3).

Proposition 3.4 For all y ∈ [0, 1], the coeõcients [xn]T(x , 1 − y) of T(x , 1 − y) =
T(x , 1− y, z̃0) are orthodox sequences in n ≥ 1with growth constant ṙ(y) and exponent
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β̇(y), where β̇ is deûned in _eorem 1.1, and for y ∈ (ṗc , 1], the growth constant ṙ(y)
is a root of

8 x3
− 12

√
3 22/3 x2

+ 9 3√2 x + 15
√

3 + 54(1 − y) − 27,
while for y ∈ [0, ṗc), we have ṙ(y) = 2−1/3

(
√

3 + 1 − 2y).

Remark 3.5 Notice thatweused the variable 1−y instead of simply y in the above re-
sult in order tomake the connectionwith the Proposition 2.2 and_eorem 1.1 clearer.

Remark 3.6 (Links with [11]) _e above proposition in the case y ≤ ṗc could di-
rectly be deduced from [11] and probably also for y > ṗc with a little more work.
Notice in particular that the weights [xn]T(x , y) can be related to

Qa({triangulations with a boundary of length n}),

where the measure Qa is deûned in [11, Eq. (12)] with a = y and estimated in [11,
Proposition 3.2]. Speciûcally with the notation of [11, Proposition 3.2] we have with
a = y,

2−1/3(
√

3 + 1 − 2(1 − y)) = (
rc(2a + γ)

2
)
12
z̃0

.

_e exponent 5/2 or 5/3 of the above proposition is in this framework related to expo-
nent of the tail of the probability that a certain (subcritical or critical) Galton–Watson
tree has n vertices; see [11, Eq. (17)] in the case 1 − y = ṗc = 1/2. However, we pro-
ceed in this paper with a totally diòerent purely analytic approach compared to the
probabilistic one in [11].

Proof For any given value y ≥ 0, the algebraic equation (3.3) gives an equation for
T(x) ≡ T(x , y) of the form P(T(x), x) = 0,where P(u, x) is a polynomial inR[u, x].
Since T(x) is a power series with non-negative coeõcients, one can use standard
methods of analytic combinatorics (see [14]) in order to obtain the asymptotic formof
the coeõcients [xn]T(x). In particular,we know (see [14, ChapterVII.7]) that, unless
T(x) has several dominant singularities, its coeõcients have an asymptotic behavior
of the form

(3.5) [xn
]T(x) ≡ c nαρ−n ,

where ρ > 0 is the radius of convergence of T(x), and α is a rational number. More-
over, ρ is either a root of the leading coeõcient C(x) of P with respect to u, or a root
of the discriminant ∆(x) of P(u, x)with respect to u. Here C(x) = 4x3, so ρ is a root
of ∆(x). Moreover, the exponent α is determined by the type of singularity ofT(x) at
x = ρ. _e diõculty here is tomake this analysis uniform in y. Below,we ûrst explain
in some details the cases y = 1 and y = 1/2, and then sketch the proof for the other
values y ∈ [0, 1]. _eMaple session [23] contains all the necessary computations.

Let us ûrst set y = 1. In this case, (3.3) gives P(T(x), x) = 0, where

P(u, x) = u (4 x3u2
+ (−4 x22/3√3 + 4)u + 2 x22/3√3 + 3 x22/3

− 4) .

_e discriminant of P(u, x)/u is

∆(x) = 22/3
/3(2

√
3 + 3)(6x + 3 3√2 +

√
3 3√2)(

√
3 3√2 − 3√2 − 2 x) 3 .
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_e only positive root of ∆(x) is x = 2−2/3(
√

3 − 1), so ρ = 2−2/3(
√

3 − 1). _ere are
no other dominant singularities for T(x) (as these would need to be other roots of
∆(x) ofmodulus ρ), so (3.5) holds, and it remains to determine the singular behavior
of T(x) around x = ρ. First, we determine T(ρ). Sincewe know that T(x) is singular
at x = ρ, we conclude that T(ρ) is the double root of the polynomial Q(u) = P(u, ρ).
_is gives T(ρ) = (

√
3 + 1)/2. _en the singular behavior of T(x) at x = ρ is de-

termined from the expansion of the curve P(u, x) = 0 around (u, x) = (T(ρ), ρ).
_is expansion, in turn, can be determined using Newton’s polygon method (which
is implemented in the Puiseux command ofMaple). _is gives

T(x) =x→ρ T(ρ)−2−1/3(2
√

3+3)(ρ− x)+(7
√

2+4
√

6)(ρ− x)3/2
+ o((ρ− x)3/2

).

_e singular part is of order (ρ−x)3/2; therefore, α = −1−3/2 = −5/2. _us, for y = 1,

[xn
]T(x) ≡ c n−5/2 (2−2/3

(
√

3 − 1))−n

for some constant c (which could also be determined from the above). _is indeed
gives β̇(0) = 5/2 and ṙ(0) = (2−2/3(

√
3 − 1))−1 = 2−1/3(

√
3 + 1).

Next,we treat the case y = 1/2. In this case, the discriminant ∆(x) has two positive
roots x = 24/3/(5

√
3) and x = 21/3/

√
3. Moreover, the radiusof convergence ρ ofT(x)

at y = 1/2 needs to be larger than or equal to the radius 2−2/3(
√

3−1) obtained for y = 1
(since the coeõcients of T(x) are increasing in y). _us, ρ = 21/3/

√
3. Proceeding as

above we ûnd

T(x) =x→ρ T(ρ) − 2−11/937/6
(ρ − x)2/3

+ o((ρ − x)2/3) .

_e singular part is of order (ρ − x)2/3; hence, for y = 1/2,

[xn
]T(x) ≡ c n−5/3(21/3

/
√

3)−n ,

for some constant c.
Now let us consider a generic value of y in [0, 1]. Note that for y = 0, T(x) = 0

so we now suppose y > 0. _e discriminant ∆(x) of P(u, x) factorizes as ∆(x) =

16∆1(x)∆2(x)3, where

∆1(x) = (27 − 15
√

3 − 54y)x3
− 9 3√2 x2

+ 12
√

322/3 x − 8,

∆2(x) = (
√

3 + 2y − 1)x − 21/3 .

Let us denote the three roots of ∆1(x) by τ1(y), τ2(y), τ3(y) and the root of ∆2(x)
by σ(y) = 21/3/(

√
3 + 2y − 1). We know that the radius of convergence ρ(y) of T(x)

is in { τ1(y), τ2(y), τ3(y), σ(y)} . _ese are all real numbers for y in [0, 1] and all
distinct for y ∈ [0, 1] ∖ {1/2} (since the discriminant of the polynomial ∆1(x)∆2(x)
is non-zero). Moreover, { ∣τ1(y)∣, ∣τ2(y)∣, ∣τ3(y)∣, ∣σ(y)∣} are also distinct (since the
resultant of the polynomials ∆(x) and ∆(−x) is non-zero), henceT(x) does not have
several dominant singularities and the asymptotic form (3.5) is valid.

We will see that ρ(y) = σ(y) if and only if y ∈ [1/2, 1]. First observe that, from the
above, ρ(1) = σ(1). Moreover, σ(y) > max{τ1(y), τ2(y), τ3(y)} for all y ∈ (1/2, 1]
(since this is true for y = 1). Now, since ρ(y) is decreasing in y, these two facts imply
ρ(y) = σ(y) for all y ∈ (1/2, 1]. We can also determine the value of T(σ(y)), since
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it has to be the double root of the polynomial P(u, σ(y)). _en, applying Newton’s
polygons method, we get the expansion

T(x) =
x→σ(y)

T(σ(y)) −
√

3(
√

3 + 2y − 1)2

24/3(2y − 1)
(σ(y) − x)

+
(
√

3 + 2 y − 1)4√2y − 1
2
√

2(2y − 1)3
(σ(y) − x) 3/2

+ o((σ(y) − x)3/2) ,

for all y ∈ (1/2, 1]. _e singular part is of order (σ(y)−x)3/2, hence, for all y ∈ (1/2, 1],

[xn
]T(x) ≡ c(y) n−5/2σ(y)−n

for some constant c(y). Moreover, since the coeõcient of (σ(y)− x)3/2 is imaginary
for y < 1/2, we have ρ(y) /= σ(y) for y ∈ [0, 1/2). _us for y ∈ [0, 1/2), ρ(y) ∈

{τ1(y), τ2(y), τ3(y)} is a root of ∆1(x). _is implies that the term ṙ(1 − y) in the
expansion (3.5) is a root of x3∆1(1/x) as stated in the proposition.

It remains to determine the singular behavior of T(x) at

ρ(y) ∈ { τ1(y), τ2(y), τ3(y)}

for y in [0, 1/2). One could try to substitute x = τ i(y) in the equation P(T(x), x) =
0, and proceed as above. Unfortunately, the expressions for the roots τ i are rather
complicated, and we failed to get Maple to determine T(ρ(y)) and the expansion at
(ρ(y),T(ρ(y))). Instead, we computed (using polynomial eliminations) a polyno-
mial Q(U , X) (whose coeõcients depend on y) such that

Q(T(ρ(y)) − T(x), ρ(y) − x) = 0,

for all y in [0, 1/2). _e polynomial Q(U , X) is obtained as follows. We ûrst
deûne A(u) = Resultant(P(u, x), ∆1(x), x), so that A(T(ρ(y))) = 0 (because
x = ρ(y) is a root of P(T(ρ(y)), x) as well as of ∆1(x)). Deûne B(U , x) =

Resultant(A(u), P(u −U , x), u), so that B(T(ρ(y)) − T(x), x) = 0 (because u =

T(ρ(y)) is root of both A(u) and P(u − (T(ρ(y)) − T(x)), x)). Lastly, deûne
Q(U , X) = Resultant(∆1(x), B(U , x−X), x) , so thatQ(T(ρ(y))−T(x), ρ(y)−x) =
0 (because v = ρ(y) is root of both ∆1(v) and B(T(ρ(y)) − T(x), v − (ρ(y) − x))).
By examining the curve Q(U ,V) = 0 around (U ,V) = (0, 0), one can determine

the singular behavior of T(x) around ρ(y) by Newton’s polygon method. _is leads
to the expansion [xn]T(x , y) ∼n→∞ c(y) n−3/2 ṙ(1−y)n stated in Proposition 3.4. An
extra complication actually appears in Newton’s polygon method for some particular
values y1 , y2 , y3 of y, because some coeõcients of the polynomial Q(U ,V) become
0. _e values y1 , y2 , y3 are the roots of

R(y) = (1944
√

3y2
+ 5832 y3

− 1944
√

3y − 8748 y2
+ 252

√
3 + 3794 y − 439)

× (5
√

3 + 18y − 9)

lying in the interval [0, 1/2). _ese values can be treated separately (again using poly-
nomial elimination), and lead to the same expansion as the generic values of y in
[0, 1/2) (all computations are available in theMaple session [23]).
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We will now deduce from Proposition 3.4 the asymptotic behavior of the weights
Ẇn(p) stated in Proposition 2.2.

Proof of Proposition 2.2 We recall (2.5), assuming n > 3:

Ẇn(p) = zn
0 ∑
ℓ≥0

(
n + ℓ − 1
n − 1

)z̃0 ℓ[xℓ]T(x , 1 − p).

From Proposition 3.4 we know the asymptotic for [xℓ]T(x , 1 − p); we will now use a
residue calculation to show that this implies Proposition 2.2. First, we write the last
display as

Ẇn(p) = zn
0 [x0](

∞
∑
i=0

[x i
]T(x , 1 − p)z̃ i

0x i
)(

∞
∑
j=0

(
n + j − 1

j
)x− j

)

= zn
0 [x0]F(x)(1 − 1/x)−n ,

where F(x) ≡ F(x , p) = T(z̃0x , 1 − p). We know that F(x) is algebraic and has
unique dominant singularity ρ = ρ(p) = 1

z̃0 ṙ(p) , where ṙ(p) is the growth constant
deûned in Proposition 3.4. Hence F(x) admits an analytic continuation in a domain
Ω of the form {x ∈ C, ∣x∣ < θ}∖ [ρ,∞)with θ > ρ. We now ûx ρ′ ∈ (ρ, θ) and deûne
γn to be the curve represented in Figure 7. We perform the contour integral along γn .

ρ0
1/n2

ρ′ γn

1

Figure 7: _eHankel contour used in the residue calculation.

We note that ṙ(p) < 1/z̃0 for all p (since ṙ(p) ≤ ṙ(0) = 2−1/3(
√

3+1) < 1/z̃0), hence
ρ > 1. So the factor (1 − 1

x ) is largest for x in the part of γn close to ρ. In particular,
the part of γ on the circle ∣x∣ = ρ′ has asymptotically negligible contribution. More
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precisely,making the change of variable x = ρ (1 + u/n), we get

Ẇn(p) = zn
0 ∮γn

F(ρ (1 + u/n))( 1 − 1
ρ (1 + u/n)

)
−n du

2iπ(n + u)
,

∼
n→∞

zn
0

n ∫
nρ′

0
(F(ρ(1 + t/n)+) − F(ρ(1 + t/n)−))( 1 − 1

ρ (1 + t/n)
)
−n dt

2iπ
,

∼
n→∞

zn
0

n
( 1 − 1

ρ
)
−n
∫

∞

0
(F( ρ(1 + t/n)+) − F( ρ(1 + t/n)−)) e−t/(ρ−1) dt

2iπ
,

where for x ∈ [ρ, σ], F(x+) and F(x−) denote the value of F above and below the
cut, respectively. Now our asymptotic (Proposition 3.4) implies that the singularity of
F(x) at x = ρ has the form c̃′(ρ − x)β̇(p)−1, so that

(F(ρ(1 + t/n)+) − F(ρ(1 + t/n)−)) ∼
n→∞

c̃′((−ρt/n)β̇(p)−1
+ (−ρt/n)β̇(p)−1

− )

∼
n→∞

c̃′(ρt/n)β̇(p)−12i sin ( β̇(p)π) .

_us,

Ẇn(p) ∼
n→∞

(
z0

1 − z̃0 ṙ(p)
)

n
n−β̇(p) c̃

′ sin(β̇(p)π)
π ∫

∞

0
(ρt)β̇(p)−1e−t/(ρ−1)dt.

_is completes the proof of Proposition 2.2.

3.1.2 Analysis of the Derivative

In Section 5.2 we will derive information about the size (i.e., number of edges) of the
hulls of critical site-percolation clusters. _ese results are based on the analysis of the
derivative of the function T in the variable z,more precisely we consider

T(x , y) ∶= ∂
∂z

T(x , y, z)∣
z=z̃0

.

Proposition 3.7 For any y ∈ [0, 1], the coeõcients of [xn]T(x , 1− y) form an ortho-
dox sequence with the same growth constant ṙ(y) as in Proposition 3.4 and exponent
γ̇(y) equal to 1/2 except in the critical case where γ̇(ṗc) = 1/3.

Proof _e proof of Proposition 3.7 follows the same strategy as Proposition 3.4 (get-
ting an algebraic equation on T and proceeding to singularity analysis). Out of con-
cern for conciseness, we do not provide the details here, but the complete derivation
is provided in the associatedMaple session [23]. However, theMaple derivation does
use a preliminary claim: for all y ∈ [0, 1], the radius of convergence of the seriesT(x , y)
and T(x , y) (considered as power series in x) are equal. _is claim, in turn, is an easy
consequence of Lemma 3.17.

Remark 3.8 Proposition 3.7 could also be deduced from the results in [11], at least
in the case y ≤ ṗc .
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3.2 Bond-percolation Case

3.2.1 Triangulations with Simple Boundary and Reef Edges

Recall the generating function S(x , y, z) deûned by (2.6). As in the last section, we
specialize it for z = z̃0 and introduce

S(x , y) ∶= S(x , y, z̃0) = ∑
t∈S′

x length(t)yreef(t)z̃e(t)0 .

Proposition 3.9 _e series S ≡ S(x , y) satisûes the algebraic equation

(3.6) 6 y2
(y − 1)S3

−
3√2

√
3(xy2

+ 12 3√2(y − 1))xyS2

− ( y3 3√2
√

3 − 6 xy3
− 36 3√2(y − 1))x2S

−
√

3(
√

3y2
− 2

√
3y + 3/2y2

+ 21/3x2 y2
+ 6 22/3x(y − 1)) yx3

= 0.

In order to prove Proposition 3.9, we consider a class of triangulations with some
decorations on the outer vertices. We deûne R to be the set ofmaps in S′ with outer
vertices being either active or inactive and such that
● either all the outer vertices are active, or
● the root vertex is active; the other vertex incident to the root edge is inactive, and

the active outer-vertices are consecutive along the root face (see, for example, the
le�-hand side of Figure 8).

We denote
R(w; x , y, z) = ∑

t∈R
wvinact(t)xvact(t)yeact(t)ze(t) ,

where vact(t) and vinact(t) are respectively the active and inactive vertices of t, and
eact(t) are the number of edges incident to an active outer vertex. Observe that
S(x , y, z) = R(0; x , y, z).

Remark 3.10 _e reason for introducing the setR ofmaps (with active and inactive
outer vertices) is to be able to keep track of the number of reef edges of the initial
triangulation while we perform a recursive decomposition of this triangulation (see
Figure 8). Indeed, the active vertices are used to keep track of the outer vertices of the
initial triangulation (with all outer vertices initially active).

Lemma 3.11 _e series R(w) ≡ R(w; x , y, z) satisûes

(3.7) R(w) = xyz(x +w) +
yz
w

(R(w) − S) + yz
x
, R(w) S + yz

w
(R(w) − S) S̃(w),

where S = R(0) and S̃(w) = ∑t∈S′ w length(t)ze(t).

Proof _is follows from a recursive decomposition ofmaps inR represented in Fig-
ure 8. Let t be amap in R. If t has a single edge, then it has two vertices and the non-
root vertex can be either active or inactive. _is gives a contribution of xyz(x +w) to
R(w). We now suppose that t has several edges. In this case the root edge is incident
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to an inner triangle t, and we denote by v the vertex of t opposite to the root edge.
_ree situations could occur:
(i) v is an inner vertex of t;
(ii) v is an outer vertex of t that is active;
(iii) v is an outer vertex of t that is inactive.

= + + +

v

v v

(
,

) (
,

)
M1 M2 M ′

1 M ′
2

Figure 8: Recursive decomposition of maps in R by deletion of the root edge. _e arrows
indicate the root-corners. _e outer vertices of maps in R are indicated by squares colored
black if they are active, white if they are inactive, and gray when they could be either.

Let R(i) ,R(ii) ,R(iii) be the sets of maps corresponding to cases (i), (ii), and (iii), re-
spectively. _e set R(i) contributes yz

w (R(w) − S) to R(w), because deleting the root
edge gives a bijection between R(i) and the set of maps in R having some inactive
outer vertices; see Figure 8. _e set R(ii) contributes yz

x R(w) S, because deleting
the root edge gives a bijection between R(ii) and pairs of maps (t1 , t2) ∈ R2 such
that t1 has no inactive outer vertices; see Figure 8. Lastly, the set R(iii) contributes
yz
w (R(w) − S) S̃(w), because deleting the root edge gives a bijection between R(iii)

and pairs of maps (t′1 , t′2) ∈ R × S′ such that t1 has some inactive outer vertices; see
Figure 8. Adding these contributions gives (3.7).

We now complete the proof of Proposition 3.9; details can be found in theMaple
session [24]. We observe that S̃(w) = w[x 1]R(w; x , 1, z). Moreover, by specializ-
ing (3.7) to y = 1 and extracting the coeõcient of x 1, we obtain

(3.8) S̃(w) = w2z + z
w
( S̃(w) −w S̃1) +

z
w

S̃(w)
2 ,

where S̃1 = [w1]S̃(w). Eliminating S̃(w) between (3.7) and (3.8) gives

(3.9) A(R(w), S , S̃1 ,w , x , y, z) = 0,
where A ∶= A(r, s, t,w , x , y, z) is the polynomial given by

A = ( s2wy2z2
+ xyz(wy+ yz−2w)s+ x2

(w2 y2z2
− ty2z2

+ y2z−wy− yz+w)) r2

− xy( s2 yz(w+ z)− x(2wz2xy+2tyz2
−2yz+w+ z)s− x2z(wy+ yz−2w)(x +w)) r

− x2 y2z((w2z − tz + 1)s2 − x(w + z)(x +w)s +wx2z(x +w)
2) .
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We proceed to solve this equation using the method suggested in [7] (the theorem
proved there is not directly applicable). We start with an easy claim.

Claim 3.12 _ere exists a unique formal power series W(z) ≡ W(y, z) = yz +
O(z2) in Q(y)[[z]] such that

(3.10) A′1(R(W(z)), S , S̃1 ,W(z), x , y, z) = 0,

where A′1 denotes the derivative of the polynomial Awith respect to its ûrst variable.

Proof First note that one can determine the expansions of S̃1 and R(w) to an arbi-
trary order using (3.7) and (3.8). Plugging these expansions in (3.10) shows that the
solutionsW(z) of (3.10) must satisfy eitherW(z) = yz+O(z2) orW(z) = z+O(z2).
A�er setting W(z) = yz + z2W̃(z), one sees that (3.10) takes the form

W̃(z) = z Ser(W̃(z), z)
x4 y3(y − 1)

,

where Ser(u, z) is a power series in zwith coeõcientswhich are polynomial in u. _is
equation easily shows the existence and uniqueness of the series W̃(z) (by extracting
the coeõcient of zn inductively). _is completes the proof of the claim.

Now observe that because of (3.9), we also have

A(R(W(z)), S , S̃1 ,W(z), x , y, z) = 0,

and because of the derivative of (3.9) with respect to w is zero, we also have

(3.11) A′4(R(W(z)), S , S̃1 ,W(z), x , y, z) = 0,

where A′4 denotes the derivative of Awith respect to its fourth variable. We then use
polynomial elimination (e.g., resultant) to eliminate R(W(z)) andW(z) from (3.10)–
(3.11), and obtain a polynomial equation for S. Namely, B(S , S̃1 , x , y, z) = 0, where

B(s, f , x , y, z)
= −x5 y3z3

+ f x3 y3z3
− s2x2 y3z3

+ sx3 y3z2
− sx2 y3z3

+ s3 y3z2

− x3 y3z2
− s3 y2z2

− x4 y2z + x3 y2z2
− 2s2xy2z + x4 yz + 2s2xyz + sx2 y − sx2 .

Finally, we will eliminate S̃1 from this equation. Observe that S̃1 is actually equal to
the series denoted T̃1 in the proof of Lemma 3.2, and hence satisûes Q(S̃1 , z) = 0,
where Q(u, v) is the polynomial given by (3.4). A�er elimination of S̃1 between these
two equations, we obtain an equation of the form

(3.12) C(S , x , y, z) = 0,

where C(s, x , y, z) is a polynomial of degree 9 in s (see the Maple session [24]). At
z = z̃0 = (432)−1/6, this polynomial factorizes as

C(u, x , y, z̃0) = C1(u, x , y)2C2(u, x , y),
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where C1(u, x , y) is equal to

6 y2
(y − 1)u3

−
3√2

√
3(xy2

+ 12 3√2(y − 1))xyu2

− ( y3 3√2
√

3 − 6 xy3
− 36 3√2(y − 1))x2u

−
√

3(
√

3y2
− 2

√
3y + 3/2y2

+ 21/3x2 y2
+ 6 22/3x(y − 1)) yx3 ,

and C2(u, x , y) = C1(u, x , y) + 27
√

3y3x3/8. Hence, either C1(S, x , y) = 0 or
C2(S, x , y) = 0. By examining the ûrst coeõcients (in the variable y) of the solu-
tions of these equations, we can rule out the later equation, because it leads to some
negative coeõcients. _us, we get C1(S(x , y), x , y) = 0, which is precisely (3.6). _is
completes the proof of Proposition 3.9.

Proposition 3.13 For all y ∈ [0, 1], the coeõcients of [xn]S(x , 1− y) of S(x , 1− y) =
S(x , 1 − y, z̃0) form an orthodox sequence with growth constant r(y) and exponent
β(y),where β is as deûned in_eorem 1.1 andwhere for y ∈ (pc , 1] the growth constant
r(y) is a root of

3y(23(1 − y)2
− (6

√
3 + 27)y + 9 + 48

√
3)x2

+ 322/3(4
√

3 − 5) y(1 − y)(3y + 2
√

3)x − 2 3√2(1 − y)3
(2

√
3 + 9) ,

while for y ∈ [0, pc], we have

r(y) = 22/3(1 − y)
1 + (2

√
3 + 5)y

.

Proof _e proof is almost identical to that of Proposition 3.4, only slightly sim-
pler. _e interested reader can refer to the Maple session [24]. Let us simply men-
tion that the discriminant of the algebraic equation (3.6) with respect to S is ∆(x) =
−36 3

√
2x6 y6∆1(x)∆2(x)3, where

∆1(x) = 4x2 y3
+ 2 3√2(2

√
3 − 3)(−3y + 2

√
3 + 3)(y − 1)yx(3.13)

−
22/3

23
(2

√
3 − 9)(6

√
3y + 23y2

+ 42
√

3 + 27y − 18)(y − 1),

∆2(x) = 2xy +
3
√

2
13

(2
√

3 + 5)(13y − 18 + 2
√

3).(3.14)

As before, the radius of convergence of S is solution of ∆(x), and this leads to the
stated equations for r(y).

We recall that Proposition 3.13 together with (2.7) immediately implies Proposi-
tion 2.4.
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3.2.2 An Auxiliary Generating Function

In the sequel when analyzing bond-percolation, we will also need some information
about the asymptotic of the coeõcients of the “dual”4 generating function

U(x , y, z) =∑
t∈T

x length(t)yeout(t)ze(t) ,

where we recall that T is the set of triangulations with a boundary, length(t) is the
boundary length of t, and eout(t) is the number of edges incident to the outer face (not
counted with multiplicity, contrary to the deûnition of length(t)). If we specialize to
the value z = z̃0 and put U(x , y) ∶= U(x , y, z̃0), we can then prove the following
proposition.

Proposition 3.14 For any y ∈ [0, 1], the coeõcients [xn]U(x , y) form an orthodox
sequencewith exponent β(y) given by_eorem 1.1. Moreover, for y ∈ [pc , 1], the growth
constant r(y) is given by

(5 + 13y − 2
√

3)
(

3
√

2(10
√

3 − 12))
while, for y ∈ [0, pc) the inverse growth constant 1/¯̄r(y) is a root of

(23 y2
− 6

√
3y + 48

√
3 − 73 y + 32)yx2

− 2 3√2(5
√

3 − 12)(2
√

3 + 3y)yx

+ 4 22/3
(2

√
3 + 9)(y − 1).

Proof We ûrst establish an algebraic equation for U , hence for U. _e decomposi-
tion of triangulations illustrated in Figure 9 gives

(3.15) U = 1 + yx2zU2
+ zU − 1 − xU1

xy
+ (y − 1)xz2U (2U − 1 − 2yx2zU2

)

+ (y2
− 1)x3 yz3U 3 ,

where U1 = [x 1]U .
Next, we observe that U1 = yT̃1, where T̃1 is the solution of (3.4). Eliminating

U1 between (3.15) and (3.4), gives an equation of the form P(U , x , y, z) = 0 for a
polynomial P. Setting z = z̃0, this equation factorizes and gives an algebraic equation
for U:

(3.16) 0 = x4 y2
(y − 1)2U3

+ 2 3√2(
√

3 3√2y −
√

3 3√2 + 3 xy) yx2 U2

+22/3√3( −x2 y2
+22/3√3−6 3√2xy+x2 y)U−(2

√
3+3)(4

√
3 3√2−3 xy−6 3√2) .

Lastly, one can deduce from (3.16) the asymptotic behavior of [xn]U(x , y) for all
y ∈ [0, 1]. _e proof is again along the same lines as that of Proposition 3.4 (but
slightly simpler), and all the computations can be found in the Maple session [24].

4“Dual” refershere toduality in percolation, that is to say, the generating function of the complement
of an island in a percolatedmap. Note that we did not have to consider a “dual” generating function in
the case of site-percolation, because a�er the island and reef decompositions, the two sides of the reef
are both enumerated via T with mirror parameters p and 1 − p. _is is amanifestation of the fact that
site percolation on any triangulation is self-matching: black paths block white paths and vice-versa.
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= + + ++++

non-bridges non-bridges

U 1 yx2zU2 A2 = x3y3z3U3 A1 = xyz2U (2U − 1− 2yx2zU2) A0 = z U−1−xU1

xy − A1

y − A2

y2

= +

Figure 9: Recursive decomposition of triangulations in T giving (3.15). Among the triangu-
lations such that the root edge is not a bridge, we distinguish diòerent cases according to the
number of bridges created when deleting the root edge: we denote by A0 , A1 , A2 , respectively,
the contribution of the triangulations such that 0, 1, or 2 bridges are created.

Let us simply mention that the discriminant of the algebraic equation (3.16), with
respect to U is δ(x) = 3(1701+956

√
3)

50531 x5 y4δ1(x)δ2(x)3, where

δ1(x) = (23 y2
− 6

√
3y + 48

√
3 − 73 y + 32)yx2(3.17)

− 2 3√2(5
√

3 − 12)(2
√

3 + 3y)yx + 4 22/3
(2

√
3 + 9)(y − 1),

δ2(x) = (2
√

3 − 13y − 5)x + 10
√

3 3√2 − 12 3√2.(3.18)

As before, the radius of convergence of U is solution of δ(x), and this leads to the
stated equations for ¯̄r(p).

3.2.3 Analysis of the Derivatives

We now analyze the asymptotic form of the coeõcients of the derivatives of the se-
ries U and S with respect to z, evaluated at z = z̃0. _is will be useful to deduce
probabilistic estimates on the size of clusters in bond-percolated triangulations (see
Section 5.2).

We denote

U(x , y) ∶= ∂
∂z

U(x , y, z)∣
z=z̃0

and S(x , y) ∶= ∂
∂z

S(x , y, z)∣
z=z̃0

.

Proposition 3.15 For y ∈ [0, 1], the coeõcients [xn]S(x , 1 − y) (resp. [xn]U(x , y))
form an orthodox sequence having the same growth constants as [xn]S(x , 1 − y)
(resp. [xn]U(x , y)) andwith exponent γ(y) equal to 1/2 except in the critical casewhere
γ(pc) = 1/3.

_e ûrst step in theproof ofProposition 3.15 is to get algebraic equations forS(x , y)
and U(x , y).

Lemma 3.16 _e series S satisûes an algebraic equation of the form

(3.19) ∆1(x)∆2(x)((y − 1)y2S3
− (xy2

− 21/3 12(y − 1))xyS2)

+ B1(x , y)S + B0(x , y) = 0,
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where ∆1(x) and ∆2(x) are given by (3.13) and (3.14), respectively, and B0(x , y) and
B1(x , y) are polynomials (see Maple session [24]). Similarly, the series U satisûes an
algebraic equation of the form

(3.20) δ1(x)δ2(x)( y2
(y − 1)2x4U3

− 4
√

3( y
√

3 3√2 −
√

3 3√2 + 6 xy)x2 yU2)

+ b1(x , y)U + b0(x , y) = 0,

where δ1(x) and δ2(x) are given by (3.17) and (3.18), respectively, and b0(x , y) and
b1(x , y) are polynomials (seeMaple session [24]).

Proof Eliminating S(x , y, z) between (3.12) and its derivativewith respect to z gives
an algebraic equation for ∂S

∂z (x , y, z) (see Maple session [24]). Setting z = z̃0 then
gives an equation of the form P1(S(x , y), x , y)P2(S(x , y), x , y)2 = 0, where P1 and
P2 are polynomials. Moreover, we can rule out P1(S(x , y), x , y), because it would
imply negative coeõcients. Hence we get P2(S(x , y), x , y) = 0, which has the form
stated in (3.19). _e proof of (3.20) is similar.

Nextweprove two lemmas implying that for all y ∈ [0, 1], the radius of convergence
of the seriesS(x , y) and S(x , y) (resp. U(x , y) andU(x , y)) are equal. _e ûrst recalls
a known result (see [12, Proposition 9 and Section 6.1]) about the size of the boundary
of a critical percolation (a direct derivation by generating function is also provided in
theMaple session [24]).

Lemma 3.17 Let Sk be a random triangulation with simple boundary of length k
chosen with probability proportional to z̃e(Sk)

0 . _ere exists a constant C such that for
all k > 0,

(3.21) E[e(Sk)] ≤ Ck2 .

Lemma 3.18 Let T ′
k be a random triangulationwith simple boundary of length k cho-

sen with probability proportional to preef(T′k)z̃e(T
′
k)

0 . Let T ′′
k be a random triangulation

with (non-necessarily simple) boundary of length k chosenwith probability proportional
to peout(T

′′
k )z̃e(T

′′
k )

0 . _ere are constants C′, C′′ such that for all y ∈ [0, 1] and all k > 0,
E[e(T ′

k)] ≤ C
′ k2, and E[e(T ′′

k )] ≤ C′′ k2.

Figure 10: Decomposition of triangulations with boundary into triangulations with simple
boundary.

https://doi.org/10.4153/CJM-2018-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-009-x


28 O. Bernardi, N. Curien, and G. Miermont

Proof We ûrst prove the property for T ′′
k . We consider the decomposition of tri-

angulations with boundary into triangulations with simple boundary represented in
Figure 10. Clearly, T ′′

k is chosen with probability proportional to p−bridge(T ′′
k )z̃e(T

′′
k )

0 ,
where bridge(T ′′

k ) is the number of components that are just bridges. Moreover, con-
ditional on the number of bridges b and the boundary length k1 , . . . , k l of the other
components (whichmust satisfy 2b+∑i k i = k), each component is chosen indepen-
dently with probability proportional to z̃#edges0 . Hence (3.21) implies

E[e(T ′′
k )] ≤ C max

b ,k1 , . . . ,k l ∣2b+∑i k i=k
(b +∑ k2

i ) = Ck2 .

We now prove the property for T ′
k . Note that deleting the outer edges and the

reef-edges of T ′
k , we get a union of triangulations with total boundary length at most

reef(T ′
k) − 2k. Hence a reasoning similar as before gives E[e(T ′

k)∣ reef(T
′
k) = n] ≤

Cn2. _us,

E[e(T ′
k)] =∑

n
P( reef(T ′

k) = n)E[e(T ′
k) ∣ reef(T ′

k) = n]

≤ C∑
n
P( reef(T ′

k) = n)n2 .

Moreover, for all n, P(reef(T ′
k) ≥ n) is maximal for p = 1. _us, it suõces to show

that there exists D ∈ R such that for p = 1 and all k ≥ 0,

(3.22) ∑
n
P( reef(T ′

k) = n)n2
≤ D k2 .

For p = 1, we have

∑
n
P(reef(T ′

k) = n)n2
=

[xk]Sy y(x , 1) + Sy(x , 1)
[xk]S(x , 1)

.

From equation (3.6) for S(x , y), we can deduce (by diòerentiating with respect to
y and polynomial elimination) algebraic equations for Sy(x , y) and Sy y(x , y) (see
Maple session [24]). From there it is easy to get the asymptotic behaviorof [xk]Sy(x , 1)
and [xk]Sy y(x , 1). _is gives

∑
n
P(reef(T ′

k) = n)n2
∼k→∞ ck2

for some constant c > 0 (see Maple session [24]). _is implies (3.22) and completes
the proof.

Proof of Proposition 3.15 We need to determine the asymptotic behavior of
[xn]S(x , y) and [xn]U(x , y). We only sketch the process for S(x , y); the case of
U(x , y) is similar and the details can be found in the Maple session [24]. First,
Lemma 3.18 implies that for all y ∈ [0, 1] the radii of convergence of S(x , y) and
S(x , y) are equal, since

[xn
]S(x , y) ≤ [xn

]S(x , y) ≤ C′n2
[xn

]S(x , y).

Moreover, the formof (3.19) implies thatS(x , y) is inûnite at its radius of convergence.
Finally, treating the cases y = 1− pc , y < 1− pc , and y > 1− pc separately, we can apply
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Newton’s method to determine the singular behavior of the series S(x , y) at its radius
of convergence. _is translates into the stated properties of [xn]S(x , y).

4 On Admissibility and Criticality

In this section, in order to apply the results of the preceding section and interpret
them in terms of the (sub-)criticality of the various Boltzmann maps that intervene
in our main results, we revisit the notions of admissibility and criticality given in the
introduction and give alternative equivalent deûnitions, some of which appeared in
earlierwork [9,21]. Let us ûx aweight sequence q, and recall the deûnitions of Zq , Z●q
in (1.2) and (1.3).

Proposition 4.1 (Characterization of admissibility) For a given weight sequence q
one has Zq <∞ if and only if Z●q <∞ (in which case q is called admissible).

Following [21], for x , y ≥ 0, let

f ●q (x , y) = ∑
k ,k′≥0

xk yk′
(
2k + k′ + 1
k + 1, k, k′

)q2+2k+k′ ,

f ◇q (x , y) = ∑
k ,k′≥0

xk yk′
(
2k + k′

k, k, k′
)q1+2k+k′ .

Proposition 4.2 One has Z●q <∞ if and only if there exists a solution (x , y) ∈ R2
+ to

the system of equations

(4.1)
f ●q (x , y) = 1 − 1

x
,

f ◇q (x , y) = y.

In [9], a slightly weaker result is proved (see also [21] for a similar statement); it is
shown there that Z●q < ∞ if and only if there exists a solution (z+ , z◇) of (4.1) such
that

(4.2) (∂y +
√
x∂x) f ◇q (z+ , z◇) ≤ 1.

It is also proved in [9] that the solution of (4.1) satisfying (4.2) is unique in this case
(see Lemma 4.4 below). It will turn out from the proof of Proposition 4.2 that this
solution of (4.1) is characterized by the fact that both its coordinates areminimal. We
will show this at the very end of this section.

_e (admissible) weight sequence q is then called critical (in the sense of [9, 21])
if equality holds in (4.2), and subcritical otherwise. _e next proposition will show
that this notion coincides with the (formally simpler) one given in the introduction.
However, before giving the statement, we need additional notation.

Ifm is a planar map (with at least one face), we denote by fr the root face, which is
the face adjacent on the right of the root edge. Given an admissible weight sequence
q, we introduce the so-called disk partition function

Disk(ℓ)q = ∏
m∈M(ℓ)

∏
f ∈Face(m)/fr

qdeg( f ) ,
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whereM(ℓ) is the set of rooted planarmapswith a root face of degree ℓ, andwherewe
noticed that, in contrast to (1.1), the root face is not counted in the product. Here is the
main result of this section, which, combined with the forthcoming Propositions 5.1
and 5.2, completes the proof of ourmain theorem concerning criticality/subcriticality
of the admissible weight sequences q̇(p) and q(p).

Proposition 4.3 (Characterizations of criticality) Let q be an admissible weight se-
quence. _en the following conditions are equivalent:
(i) q is subcritical in the sense of [9, 21], meaning that there exists a solution (x , y)

of (4.1) such that (∂y +
√
x∂x) f ◇q (z+ , z◇) < 1;

(ii) ∑m Boltq(m) v(m)2 <∞;
(iii) the sequence Disk(ℓ)q is orthodox with exponent α = 3/2.

Notice that the fact that the disk partition function is orthodox with exponent 3/2
for admissible subcritical weight sequences is already used in [5] and in [10] but in
the case of bipartite Boltzmann maps. _e proofs of Propositions 4.1 and 4.3 are in
the spirit of these papers, and rely crucially on the detailed analysis of non-bipartite
Boltzmann maps in [9]. Let us ûrst introduce some notation and basic facts that will
be useful in both proofs.
First note that the partition function Z●q appearing in (1.3) can be written as

Z●q = 1 + 2Z+q + Z0
q ,

where
Z+q = ∑

(m,v)∈M+
Boltq(m) and Z0

q = ∑
(m,v)∈M0

Boltq(m),

whereM+ is the set of rooted and pointed maps (m, v) such that the root edge e of
m points toward v, in the sense that the graph distance from e+ to v is strictly smaller
than that of e− to v, andM0 is the analogous set where the two distances are equal.
_e term 2Z+q counts rooted and pointedmaps whose root edge links two vertices at
diòerent distances from the distinguished point (either v closer to e+, or v closer to
e−), and the addition of 1 allows us to take into account the atomicmap. _e following
fact was proved in [9,21].

Lemma 4.4 ([9, 21]) If Z●q < ∞, then the unique solution (z+ , z◇) of (4.1), (4.2) is
given by z+ = Z+q + 1 and z◇ =

√
Z0
q .

For g > 0, let qg be the sequence deûned by qg(k) = g(k−2)/2qk for k ≥ 1. By the
Euler formula,

(4.3) g Z●qg
=∑

m

gv(m)−1v(m) ∏
f ∈Face(m)

qdeg( f ) ,

so that gZ●qg
is a (possibly inûnite) increasing function of g. By the same argument,

Z+qg
and gZ0

qg
are increasing functions of g (we can avoid amultiplication by g in the

ûrst case, since themaps M+ all have at least two vertices) that converge to Z+q , Z0
q as
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g ↑ 1 by monotone convergence. We let

xg = g(Z+qg
+ 1) and yg =

√
gZ0

qg
,

which are increasing functions that converge to x1 = z+ and y1 = z◇ as g ↑ 1. Note
that f ●qg

(x , y) = f ●q (gx ,
√gy) and f ◇qg

(x , y) = f ◇q (gx ,
√gy)/√g. So if the sequence

qg satisûes Z●qg
<∞, then applying Lemma 4.4 to the sequence qg gives

(4.4) f ●q (xg , yg) = 1 − g
xg

and f ◇q (xg , yg) = yg .

We are now in position to prove themain results of this section.

Proof of Proposition 4.1 Clearly, Z●q < ∞ implies Zq < ∞. _e converse is similar
to [10, Corollary 23], which deals with the bipartite case. Assume that Zq < ∞. As
argued e.g., in [6, 10], one has

(4.5) Zq = ∫
1

0
g Z●qg

dg ,

which follows by (4.3) and monotone convergence. _is means that gZ●qg
< ∞ for

every g < 1, and so qg is admissible for every g < 1. _erefore, xg , yg are solutions
of (4.4). By taking a monotone limit as g ↑ 1, we get that (x1 , y1) = (Z+q + 1,

√
Z0
q) ∈

[0,∞]2 is a solution of (4.1). It is easy to see that qk > 0 for some k ≥ 3, then any
solution of (4.1) has ûnite coordinates, so Z●q = 2x1 + y2

1 − 1 <∞, and we have proved
that q is admissible. On the other hand, the case where qk = 0 for every k ≥ 3 is
straightforward, since Boltq is supported on maps with at most two vertices in this
case.

Proof of Proposition 4.3 Letq be an admissible sequence. Due to the easily checked
fact that
(4.6) ∂y f ●q = ∂x f ◇q and x∂x f ●q + f ●q = ∂y f ◇q ,
we deduce from (4.2) that thepartialderivatives of f ●q , f ◇q of order 1 have ûnite limits as
x → z+ , y → z◇ with x ≤ z+ , y ≤ z◇. By convention, for every (x , y) ∈ [0, z+]×[0, z◇],
we write e.g., ∂x f ●q (x , y) for the “le�” limit, limx′↑x ,y′↑y ∂x f ●q (x′ , y′).

It is obvious from (4.3) that qg is admissible for every g ∈ [0, 1]. _erefore, (xg , yg)
satisûes (4.4), which we recast as
(4.7) f(xg , yg) = (0, 1 − g),
where f(x , y) = (1 − f ◇q (x , y)/y, 1 − x + x f ●q (x , y)). More precisely, (xg , yg) is the
unique solution of (4.7) for which the analog of (4.2) holds; that is,

∂y f ◇q (xg , yg) +
√
xg ∂x f ◇q (xg , yg) ≤ 1,

and by strict monotonicity, a strict inequality must hold for g < 1, meaning that qg
is always subcritical in the sense of [9, 21]. A little work using (4.6) shows that the
Jacobian of f at the point (xg , yg) is given by

1
yg

(( 1 − ∂y f ◇q (xg , yg))
2
− (

√
xg∂x f ◇q (xg , yg))

2
) ,

which is non-zero for every g < 1, and also for g = 1 if and only if q is subcritical.
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Due to this discussion, the implicit functions theorem applies and shows that
(xg , yg) is continuously diòerentiable in the variable g ∈ (0, 1). By diòerentiating
(4.7), we obtain a�er some algebra that for g < 1,

(
g − 1
xg

+
(1 − ∂y f ◇q (xg , yg))

2 − (
√xg∂x f ◇q (xg , yg))

2

1 − ∂y f ◇q (xg , yg)
)x′g = 1,

where we note that the denominator 1 − ∂y f ◇q (xg , yg) is strictly positive, even when
g = 1, by (4.2). _erefore, by taking a limit as g ↑ 1,we see that x′1 =∞ if and only if q is
critical in the sense of [9,21] (and in this case, y′1 =∞ as well). Moreover, Lemma 4.4
gives Z●q = x1 + y2

1 − 1. _us, the (le�-)derivative of g ↦ Z●qg
at g = 1 is inûnite if and

only if q is critical. It is immediate by (4.3) that it is equivalent to (1.4). _is proves
the equivalence between (i) and (ii).

Now, in order to study the asymptotic of Disk(ℓ)q , we use ideas from [9, 10]. By
[9, Proposition 2] (and the discussion in Section 3.2 of this paper), one can use the
pointed analog Disk●,(ℓ)q of Disk(ℓ)q , deûned by

Disk●,(ℓ)q = ∏
m∈M(ℓ)

∏
f ∈Face(m)/fr

qdeg( f ) .

Following [9], one has
Disk●,(ℓ)q = (c+)ℓh(0)r (ℓ),

where c± = z◇ ± 2
√
z+, r = −c−/c+, and

h(0)r (ℓ) = 1
4ℓ

(
2ℓ
ℓ
)

ℓ
∑
n=0

(
2n
n )(

2ℓ−2n
ℓ−n )

(
2ℓ
ℓ )

(−r)n

satisûes the asymptotic h(0)r (ℓ) ∼ 1/
√
ℓπ(1 + r) as ℓ →∞, uniformly for r varying in

compact subsets of (−1, 1). Reasoning similar to that leading to (4.5) gives

Disk(ℓ)q = ∫

1

0
dg gℓ/2 Disk●,(ℓ)qg

= ∫

1

0
dg (√gc+(g))

ℓh(0)r(g)(ℓ).

Assuming that q is subcritical, one has c+ − c+(g) = (1− g) ⋅ Ag for some continuous
Ag converging to x′1 + y′1 as g ↑ 1. _is remains true in the critical case, but since the
derivatives explode, one has Ag → ∞ as g ↑ 1. Note that K = {r(g) ∶ g ∈ [0, 1]} is a
compact subset of (−1, 1) (the value 1 being attained only in the bipartite case, which
is easier and implicitly excluded here). _erefore, we obtain

(4.8) Disk(ℓ)q ∼ (c+)ℓ
√

1
ℓπ ∫

1

0
dg ( 1 − (1 − g)Bg)

ℓ 1 + η(r(g), g)
√

1 + r(g)
,

where Bg converges (as g → 1) to a ûnite constant B > 0 if q is subcritical, and to
∞ if q is critical, and supr∈K ∣η(r, g)∣ has limit 0 as g → 1. An application of Laplace’s
method entails thatDisk(ℓ)q is orthodox with exponent 3/2when q is subcritical. Note
that in any case, even if q is critical, the radius of convergence of the generating series
∑ℓ Disk

(ℓ)
q zℓ is equal to c+ by [9, (14)], so that lim supℓ→∞(Disk(ℓ)q )1/ℓ = c+. However,

when q is critical, the Laplacemethod applied to (4.8) shows thatDisk(ℓ)q = (c+)ℓϕ(ℓ)
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with ϕ(ℓ) = o(ℓ−3/2). Putting these two facts together shows that Disk(ℓ)q cannot be
orthodox with exponent 3/2.

Proof of Proposition 4.2 _e proof is mainly inspired by [13], which dealt with
ûnitely supported q. We already know from [21] that if q is admissible, then (4.1)
has a solution. Conversely, let us assume that (4.1) has a solution (x0 , y0). We need
to show that there exists a (possibly diòerent) solution that also satisûes (4.2).

To avoid trivialities, let us assume that there exists an odd integer k ≥ 3 such
that qk > 0, the bipartite case being well-studied, and the case where only q1 and
q2 are positive being trivial. We assume that there exists some (x0 , y0) ∈ R2

+ such that
f ●q (x0 , y0) = 1− 1/x0 and f ◇q (x0 , y0) = y0, and note that necessarily y0 > 0 and x0 > 1,
because f ◇q (x , 0) > 0 for every x > 0 and f ●q (1, y) > 0 for every y > 0.

Let us set G(x , y) = f ●q (x , y) − 1 + 1/x and H(x , y) = f ◇q (x , y) − y, which deûnes
two analytic functions on (0, x0) × (0, y0) such that
● G is strictly convex in x, and increasing in y;
● H is strictly convex in y, and increasing in x.
Let y ∈ (0, y0). _en G(x0 , y) < 0 since G(x0 , ⋅ ) is increasing. Since G(1, y) > 0 and
by convexity ofG( ⋅ , y), there exists a unique ϕ(y) ∈ (1, x0) such thatG(ϕ(y), y) = 0,
and since G(ϕ(y), y′) < 0 for every y′ < y, it follows that ϕ is a strictly increasing
function. For the same reason, there exists a strictly increasing function ψ on (1, x0)
such that H(x ,ψ(x)) = 0. Being increasing, they admit continuous extensions to
[0, y0] and [1, x0] respectively, and one has

{G = 0} ∩ ([0, x0] × [0, y0]) = {(ϕ(y), y) ∶ y ∈ [0, y0]} ∪ {(x0 , y0)} ,

and similarly for {H = 0}.
By analyticity ofG ,H in (0, x0)×(0, y0), the implicit function theorem shows that

ϕ,ψ are also analytic in this domain, and

ϕ′(y) = −
∂yG
∂xG

≥ 0 and ψ′(x) = −∂xH
∂yH

≥ 0,

thepartialderivatives ofG ,H being respectively evaluated at (ϕ(y), y) and (x ,ψ(x)).
Since clearly ∂yG ≥ 0 and ∂xH ≥ 0, this entails that ∂xG ≤ 0 and ∂yH ≤ 0 along the
graphs of ϕ,ψ, respectively. Taking a second derivative then gives

ϕ′′ = −
(ϕ′)2∂xxG + 2ϕ′∂x yG + ∂y yG

∂xG
≥ 0,

and similarly for ψ, so that ϕ,ψ are convex functions, as well as their respective ex-
tensions to [1, x0] and [0, y0].
By convexity, the graphs {(ϕ(y), y) ∶ y ∈ (0, y0]} and {(x ,ψ(x)) ∶ x ∈ (1, x0]}

necessarily intersect
● either at exactly one point in [1, x0] × [0, y0], pr
● exactly at two points, one in [1, x0) × [0, y0) and the other being (x0 , y0).
Let (xm , ym) be this intersection point, which in the second case is chosen to be the
one lying in [1, x0) × [0, y0). Since (x0 , y0) was initially chosen to be any solution
of G = H = 0, we see that for any such solution (x , y) diòerent from (xm , ym), one
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has xm < x and ym < y. Moreover, since we assumed that H(1, 0) > 0, wemust have
xm > 1 and ym > 0.
Again by convexity of ϕ,ψ, one can see that at the point (xm , ym), one has

det(∇G ,∇H) ≥ 0. Here, one should be careful to deûne the gradients by taking le�-
limits in the case where (xm , ym) = (x0 , y0), and note that the determinant vanishes
if and only if the curves G = 0,H = 0 are tangent at (xm , ym). By using (4.6), it is easy
to see that this inequality boils down to

(1 − ∂y f ◇q −
√
x∂x f ◇q )(1 − ∂y f ◇q +

√
x∂x f ◇q ) ≥ 0

at the point (xm , ym). But since (still at this point) 1 − ∂y f ◇q = −∂yH ≥ 0, we deduce
that 1− ∂y f ◇q −

√
x∂x f ◇q ≥ 0, and this is exactly (4.2), showing that q is admissible, as

wanted.

5 Applications

We now turn to applications of our results. In particular, we compute the tail distri-
bution of the length of a typical percolation interface. By relating the later to the disk
partition function, we are able, using our new criticality criterion (Proposition 4.3)
to prove that the clusters are subcritical Boltzmann maps if and only if p < pc . We
also compute the size of the hull of percolation clusters conditioned on having a large
boundary and recover the phenomenology of [11]. Last but not least, we show that
our results can easily be transferred to the inûnite setting of the UIPT yielding to an
new way of computing the critical percolation thresholds.

5.1 Behavior of Interface, Cluster Size, and Disk Partition Function

We start with the site-percolation case. Fix ℓ ≥ 4 and p ∈ [0, 1]. We write L̇(ℓ, p)
for the event on which the cluster Ċ(p) has a root-face of degree ℓ (recall that the
root face of a map is the face adjacent to the root edge on its right). Recall that we
required that both endpoints of the root edge be black. Hence on the event L̇(ℓ, p),
for ℓ ≥ 4, the third vertex of the root face of the percolated triangulation is always
white. By the island decomposition of Section 2.2.1, the event L̇(ℓ, p) happens if and
only if the underlying percolated triangulation is obtained by gluing a triangulation
with a general boundary of perimeter ℓ with all external vertices colored black onto
a site-island with (simple) boundary of perimeter ℓ whose external vertices are also
black. Using the notation of (2.1) and performing similar calculations as in (2.5), it
follows that the q0-Boltzmann weight of the event L̇(ℓ, p) is

Boltq0(L̇(ℓ, p)) = ∑
i∈İℓ

pv●(i)(1 − p)v○(i)zfin(i)0 ∑
t∈T

length(t)=ℓ

zfin(t)0 pvout(t)(5.1)

= Ẇℓ(p) × z−ℓ/30 [xℓ]T(x , p, z̃0).

Notice also, that since Ċ(p) is q̇(p)-Boltzmann distributed, we also have, by the very
deûnitions of the Boltzmann measure and the disk partition function,

Boltq0 ( L̇(ℓ, p)) ∝ Disk
(ℓ)
q̇(p) × q̇ℓ(p).(5.2)
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_e following proposition (and its analog Proposition 5.2 in the bond-percolation
case) together with Proposition 4.3 completes the proof of our _eorem 1.1.

Proposition 5.1
(i) _e probability that the degree of the root face of Ċ(p) is equal to ℓ decreases as

ℓ−10/3 if p = ṗc = 1/2 and decreases exponentially fast otherwise.
(ii) _e disk partition functionDisk(ℓ)q̇ (p) is orthodoxwith exponent 3/2 if p ∈ [0, ṗc),

with exponent 5/3 if p = ṗc , and with exponent 5/2 if p ∈ (ṗc , 1].
(iii) When p ∈ [0, ṗc), the tail distribution of the number of vertices of Ċ(p) decreases

exponentially.
(iv) When p ∈ (ṗc , 1], we have P(v(Ċ(p)) ≥ n) ∼ c n−3/2 for some c > 0 (depending

on p).

Proof Using Propositions 2.2 and 3.4 to compute the asymptotic of the right-hand
side of (5.1), we obtain

(5.3) Boltq0(L̇(ℓ, p))∝ ρ(p)ℓℓ−β̇(p)−β̇(1−p) ,

where ρ(p) = z̃0 ṙ(1 − p)/(1 − z̃0 ṙ(p)) andwhere ṙ(p) isdeûned in Proposition 3.4. A
resultant computation shows that the growth constant ρ(p) is diòerent from 1 (hence
smaller than 1, since we are dealing with a probability distribution) when p /= ṗc and
is easily seen to be equal to 1 in the case where p = ṗc . _is proves the ûrst point of
the proposition.

_e second point follows by comparing (5.2) and (5.3). Since by _eorem 1.1 the
sequence q̇(p) is orthodox with exponent β̇(p), necessarily Diskq̇(p)(ℓ) is orthodox
with exponent β̇(1 − p).

Let us come to point (iii). Let p ∈ [0, ṗc) and let q = q̇(p) for simplicity. Note
that from point (ii) and Proposition 4.3, the weight sequence q is subcritical. We use
notation from Section 4 and rewrite, for g ≥ 1

f ◇q (gz+ ,
√gz◇) =∑

ℓ≥0
q1+ℓ gℓ/2 ∑

2k+k′=ℓ
(

ℓ
k, k, k′

)(z+)k
(z◇)k′

=∑
ℓ≥0

qℓ+1 gℓ/2Disk●,(ℓ)q .

where we used the representation of Disk●,(ℓ)q given in [9, p. 31]. Since Disk●,(ℓ)q and
Disk(ℓ)q have the same growth constant,we deduce from (5.2) and (5.3) that the above
sum converges for every g ≤ 1/ρ(p). Since p < ṗc , we have 1/ρ(p) > 1, and therefore
f ◇q (gz+ ,

√gz◇) <∞ for some g > 1. Clearly, this implies that f ●q (gz+ ,
√gz◇) <∞ as

well, because of the identities (4.6). Using the fact that q is subcritical, we can then
solve (4.7) in an open neighborhood of g = 1 by using the implicit function theorem,
and this shows that qg is admissible for some g > 1. _is means that

g2Z●qg
=∑

m

gv(m)v(m)Boltq(m) <∞

for some g > 1, as wanted.
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Finally, we prove point (iv). Let p > ṗc be ûxed. By point (ii) and Proposition 4.3,
we know that Ċ(p) is a critical Boltzmann map, and by point (i) that the degree of
the root face has an exponential tail. _is is one way to state that it is a regular critical
Boltzmann map, as deûned in [21]. From this, one concludes that the tail distribution
for the number of vertices is given by

P (v(Ċ(p)) ≥ n) ∼ c n−3/2 ,

for some c ∈ (0,∞). _is was already implicitly used in [21] or [27, Section 6] and is
an easy consequence of
● the Bouttier–Di Francesco–Guitter bijection, which allows us to describe Boltz-

mann maps in terms of certain multitype Galton–Watson trees, in which the ver-
tices of a particular type correspond bijectively to the vertices of themap,

● a classical estimation (see, for instance, [22, Lemma 6]) on the probability that a
(multi type) critical Galton–Watson trees with a ûnite variance has at least n ver-
tices (of a given type). Notice that the criticality and the ûnite variance condition
is guaranteed by the condition of regular criticality of the underlying Boltzmann
map.

We now move to the case of bond-percolation. Fix ℓ ≥ 4 and p ∈ [0, 1]. We write
L(ℓ, p) for the event onwhich the degree of the root face ofC(p) has degree ℓ. Apply-
ing the island decomposition of Section 2.3.1, we see that the event L(ℓ, p) happens
if and only if the underlying percolated triangulation is obtained by gluing a triangu-
lation with a general boundary of perimeter ℓ with all external edges colored black
onto a bond-island with (simple) boundary of perimeter ℓ whose external edges are
also black. Using the notation of Section 2.3.1 and performing the same kind of cal-
culations, it follows that

Boltq0(L(ℓ, p)) = ∑
i∈Iℓ

pe●(i)(1 − p)e○(i)zfin(i)0 ∑
t∈T

length(t)=ℓ

zfin(t)0 peout(t)

=W ℓ(p) × z−ℓ/30 [xℓ]U(x , p, z̃0).

Moreover, since C(p) is q(p)-Boltzmann distributed, we also have

Boltq0(L(ℓ, p))∝ Disk
(ℓ)
q(p) × qℓ(p).

Proposition 5.2
(i) _e probability that the degree of the root face of C(p) is equal to ℓ decreases as

ℓ−10/3 if p = pc =
2
√

3−1
11 and decreases exponentially fast otherwise.

(ii) _e disk partition function Disk
(ℓ)
q(p) is orthodox with exponent 3/2 if p ∈ [0, pc),

with exponent 5/3 if p = pc , and with exponent 5/2 if p ∈ (pc , 1].
(iii) When p ∈ [0, pc), the tail distribution of the number of vertices of C(p) decreases

exponentially.
(iv) When p ∈ (pc , 1], we have P(v(C(p)) ≥ n) ∼ c n−3/2 for some c > 0 (depending

on p).
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Proof _e proof is similar to that of Proposition 5.1 and uses Propositions 2.4 and
3.14. We leave the details to the reader.

5.2 Sizes of Hulls

In this sectionwe show that the total size of thehull of the origin cluster behaves diòer-
ently in the subcritical, critical, and super-critical phases. More precisely, we denote
by Ḣ(p) and H(p) the hulls of the origin percolation clusters obtained respectively
from Ċ(p) and C(p) by ûlling-in all the faces of the cluster except for the root face.
In other words, Ċ(p) and C(p) are the parts of percolated triangulation on one side
of the percolation interface at the root. We are interested in the expected number of
edges of these submaps, as we condition the percolation interface at the root to be
long.

Recall the deûnition of the event L̇(ℓ, p) from Section 5.1.

Proposition 5.3 (Size of the hull of a large cluster) _e number of edges of the hull
of the origin cluster satisûes

E[e(Ḣ(p))∣ L̇(ℓ, p)] ∼
ℓ→∞

ċ(p)ℓδ̇(p) ,

where ċ(p) > 0 and δ̇(p) = 1 in the subcritical phase p ∈ [0, ṗc), in the critical case
δ̇(ṗc) = 4/3, and δ̇(p) = 2 in the supercritical phase p ∈ (ṗc , 1].

Proof On the event L̇(ℓ, p) the hull Ḣ(p) of the origin cluster is simply a triangula-
tion with a boundary of perimeter ℓ and sampled according to pvout(t)z̃e(t)0 . It follows
readily that the conditional expectation in the proposition is proportional to (we do
not count the normalization factors)

E[e(Ḣ(p)) ∣ L̇(ℓ, p)] ∝
[xℓ] ∂

∂zT(x , p, z)∣z=z̃0
[xℓ]T(x , p, z̃0)

=
[xℓ]T(x , p)
[xℓ]T(x , p)

.

_e result then follows by combining Propositions 3.4 and 3.7.

Remark 5.4 _e above result is in agreement with [11, _eorem 1.2]. Speciûcally,
when conditioning a subcritical cluster to have a very large root face, this face in fact
chooses the geometry of a tree. In this scenario, the hull of the cluster is obtained by
ûlling-in small holes and thus the total size is roughly proportional to the perimeter of
the root face, hence δ̇(p) = 1 when p ∈ [0, ṗc). In the supercritical phase, the easiest
way for the origin cluster tohave a large face iswhen the laterhas very fewpinchpoints
at large scale (it is almost “simple”). _e hull of the cluster is thus obtained by ûlling-
in an essentially unique simple hole of perimeter Θ(ℓ)with a generic triangulation of
size ℓ2.

As expected, a similar result holds in the case of bond percolation, and the proof
is mutatis mutandis the same as that of Proposition 5.3 using the functions U, U and
Propositions 3.15 and 3.14 instead of the functions T and T and Propositions 3.7 and
3.4.
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Proposition 5.5 (Size of the hull of a large cluster) _e number of edges of the hull
of the origin cluster satisûes

E[e(H(p))∣L(ℓ, p)] ∼
ℓ→∞

c(p)ℓδ(p) ,

where c(p) > 0 and δ(p) = 1 in the subcritical phase p ∈ [0, pc), in the critical case
δ(pc) = 4/3, and δ(p) = 2 in the supercritical phase p ∈ (pc , 1].

5.3 Links with Percolation on the UIPT

We now turn our attention to percolation models on the type-I Uniform Inûnite Pla-
nar Triangulation (UIPT), which was introduced in [3] and can be obtained as the
local limit as n →∞ of a critical Boltzmann triangulation M conditioned on ∣M∣ > n.
_is means that if Br(M) denotes the combinatorial ball of radius r centered at the
root edge ofM (i.e., themap obtained by keeping only those faces that have at least a
vertex at graph distance less than r− 1 from the origin of the root edge), then this con-
verges in distribution (for the discrete topology) to a limiting map Br(M∞), which
one interprets as the ball of radius r of an inûnite triangulation of the plane M∞; see
[3] for details. _e local convergence generalizes in an obvious way to the (site or
bond) percolation models on triangulations, where the convergence now deals with
maps in which the vertices or edges are colored.
For p ∈ [0, 1], we let Ċ∞(p),C∞(p) be the site/bond percolation cluster of the

root edge in M∞, which is now a ûnite or inûnite submap of M∞. We deûne the
(annealed) site-percolation threshold of theUIPT to be theminimal value of p ∈ [0, 1]
above which the origin cluster of the UIPT has a positive probability to be inûnite:

ṗc(UIPT) = inf { p ≥ 0 ∶ P(∣Ċ∞(p)∣ =∞) > 0} .

_e bond-percolation threshold of the UIPT is deûned similarly and is denoted
pc(UIPT). In [1], it was proved that ṗc(UIPT) = 1/2.

Remark 5.6 Notice that in the above deûnition the probability P averages in the
same time over the choice of the map and that of the percolation. We could have
deûned a quenched site-percolation threshold by putting

ṗc = inf{p ≥ 0 ∶ P(∣Ċ∞(p)∣ =∞) > 0 almost surely with respect to M∞},

where now the probability P only averages over the percolation. It was argued in [1]
that the two deûnitions coincide in the case of site percolation on the UIPT, and this
generalizes easily to bond percolation. We shall thenmakeno distinction in the sequel
between quenched and annealed percolation thresholds.

Angel and Curien [2] proved that pc(UIPT) = (2
√

3 − 1)/11, in the diòerent but
related model of the “half-planar” UIPT. Since these values coincide with the values
ṗc , pc that our paper identiûes as thresholds for the behavior of the cluster of the
origin in a critical Boltzmann triangulation, it is tempting to give a direct argument
based on our results that also identiûes these values with the percolation thresholds
for the UIPT.
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Proof of_eorem 1.2 We perform the proof only in the case of site percolation, the
arguments being exactly the same for bond percolation. Let p > ṗc be ûxed. Recall
that by Proposition 5.1(iv), we have

P (v(Ċ(p)) ≥ n) ∼ c n−3/2 ,

for some c ∈ (0,∞). Since the Boltzmann triangulation M itself is regular critical, its
number of vertices satisûes a similar tail estimate

P (v(M) ≥ n) ∼ C n−3/2 ,

for some C ∈ (0,∞). Since ˙C(p) is a submap of M, the event {v(Ċ(p)) ≥ n} is the
same as {v(Ċ(p)) ≥ n, v(M) ≥ n}. Hence, there exists n0 such that for every n ≥ n0,

0 < c
2C

≤
P (v(Ċ(p)) ≥ n)
P (v(M) ≥ n)

= P (v(Ċ(p)) ≥ n ∣ v(M) ≥ n) .

_erefore, for every N > 0, and for n ≥ max(n0 ,N), it holds that

P(v(Ċ(p)) ≥ N ∣ v(M) ≥ n) ≥ c/2C > 0.

Since the event v(Ċ(p)) ≥ N is a local event (which depends only on the ball of
radius n around the root edge), we obtain by passing to the limit that P(v(Ċ∞(p)) ≥
N) ≥ c/2C > 0. Letting N → ∞ shows that Ċ∞(p) is in fact inûnite with positive
probability, so that ṗc(UIPT) ≤ ṗc .

To show the other inequality,we prove thatwhen p < ṗc , the size of the origin clus-
ter in theUIPT has an exponential tail. We use absolute continuity relations between
theUIPT M∞ and the criticalBoltzmann triangulation M as proved in [12,_eorem 5
and Section 6.1] or [4, Proposition 7]: Given the critical Boltzmann triangulation M,
there is amartingale (Mr)r≥0 = (Mr(M))r≥0 depending only on the ball of radius r
such that for any positive function F, we have

E[F(Br(M∞))] = E[MrF(Br(M))] .

Clearly, this relation still holds if we consider percolatedmaps with the same param-
eter p ∈ (0, 1). Since the event on which the origin cluster has size at least r is mea-
surable with respect to the ball of radius r we deduce that

P(v(Ċ∞(p)) > r) = E[Mr1v(Ċ(p))>r]
= E[Mr1v(Ċ(p))>r1Mr≤e cr ] +E[Mr1v(Ċ(p))>r1Mr>e cr ]

≤ ecrP(v(Ċ(p)) > r) +E[Mr1Mr>e cr ].

From Proposition 5.1, we know that if p < ṗc then P(v(Ċ(p)) > r) ≤ c1e−c2 r for some
c1 , c2 > 0. It suõces to choose in the last display the constant c = c2/2 to deduce that
the ûrst term in the last display decays exponentially. For the second term, we use the
exact expression ofMr ≡ Mr(M) as given in [4, Proposition 7] and deduce that for
some a > 0, we have

Mr(M) ≤ a ⋅ ∑
C∈Cycles(∂Br(M))

v(C)3
≤ a ⋅ v(∂Br(M))

3
≤ a ⋅ v(Br(M))

3 .
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Hence, using [12,_eorem 5] again we get

E[Mr1Mr>e cr ] = E[1Mr(M∞)>e cr ]

≤ E[1a⋅v(Br(M∞))3>e cr ] ≤
Markov ineq.

a1/3E[v(Br(M∞))] e−cr/3 .

Moreover, it is well known that E[v(Br(M∞))] = Θ(r4) (see e.g., [19]), and so the
last display indeed decays exponentially as r →∞. _is completes the proof.

5.4 7/6-stable Map Paradigm

In [17], LeGall and the third author studied the scaling limits of bipartiteq-Boltzmann
maps where q is critical admissible and where the disk partition function Disk(ℓ)q is
orthodox with exponent a ∈ (3/2; 5/2). In particular, they encode (using the Bout-
tier, Di Francesco,Guitter bijection [8]) such random planarmaps by somemultitype
Galton–Watson trees such that the oòspring distribution is, in a sense, critical and is
in the domain of attraction of the spectrally positive stable law of parameter

α = a − 1/2 ∈ (1, 2).

In our case, by Proposition 5.1 and 5.2 we should have a = 5
3 hence α = 7

6 . But unfor-
tunately the analysis of [17] is not directly applicable to our case because our maps are
non-necessarily bipartite. However, viewing this more as a technical problem than
as a fundamental one5, it is natural to perform a leap of faith and imagine that the
large scale structure and critical exponents are the same as the ones found in [17].
_is leads us to conjecture in particular that the (rescaled) critical percolation cluster
C conditioned on having n vertices converges (in the Gromov-Hausdorò topology)
toward the 7/6-stablemap deûned in [17]6.

We will now describe the anatomy of the critical percolation cluster C (which can
be either Ċ(ṗc) or C(pc)) assuming that the results in [17] extend naturally to non-
bipartite maps. First, with a probability of order n−20/7 the cluster C has total size
(number of vertices) equal to n. On this event, the largest face in the cluster has a
perimeter of order n6/7 and the diameter of the cluster (for the graph distance re-
stricted on the cluster) is of order n3/7, see Figure 11 (le�).

One can alsowonder about the geometry of a large critical clusterwhenwe condi-
tion this cluster to have a root face of degree n (note that by the above discussion, the
cluster has size of order n7/6 in this case). As we have seen in Propositions 5.1 and 5.2
that the probability of this event decays like n−10/3. On this event, the external face
is not at all a simple face but is folded on itself in the same manner as typical faces
on 7/6-stablemaps. If one decomposes the cluster into blocks with simple boundary,
then the tree structure of those blocks is described in the discrete setting by a critical
random tree with oòspring distribution in the domain of attraction of the 3/2-stable
law (see [11] for a rigorous treatment in the case of site-percolation on triangulations,
and [26] for a general treatment in stable maps). In particular the largest of these

5In our case, we would be dealing with Galton–Watson trees with 3 types of vertices, whereas the
bipartite case treated in [17] has only 2 types of vertices.

6Recall, however, that the convergence in law of bipartite q-Boltzmann maps (in the Gromov–
Hausdorò topology) was only proved to hold along subsequences in [17].
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Diameter ≈ n3/7

Size = n

Big Faces

Perimeter = n

Largest Block

Volume ≈ n7/6

Perimeterdegrees ≈ n6/7 ≈ n2/3

Figure 11: Anatomy of a large critical percolation cluster on the (unlikely) event that it has size n
(le�). On the right, the geometry of a large critical percolationwith a boundary of perimeter n.

blocks has a perimeter of order n2/3. One conjectures that the total size of such a
block is already comparable to the total size of the cluster, which is of order n7/6.

We are thus led to the following conjecture.

Conjecture 5.7 Consider a critical random Boltzmann triangulation T(ℓ) of the
ℓ-gon and color in black its simple boundary. _en the cluster of the boundary C(ℓ)
of a critical (site or bond) percolation on T(ℓ) satisûes v(C(ℓ)) ≈ ℓ7/4 .

In Conjecture 5.7 and below, we use the notation Xn ≈ nα for a random variable
Xn to mean that for any є > 0 the probability that nα−є < Xn < nα+є tends to 1 as n
tends to inûnity, and we say that Xn is of order nα in this case. _e critical exponent
of Conjecture 5.7 can be used in conjunction with the recent work [15] to compute
the critical exponent of the size of the origin cluster in the UIPT.

Let us now examine, in each of the above pictures, the structure of the underlying
triangulation in which those large critical clusters are found. Let us again condition
on the origin cluster C having size n (as in the le� of Figure 11). Of course, the ran-
dom triangulation can be recovered by ûlling-in all the faces of the cluster C with the
appropriate percolated triangulations with a boundary. As we already noted above, a
face of the cluster of degree d is typically folded on itself andmade of a tree of simple
faces whose largest one is of degree d2/3. _en each of these simple faces must be
ûlled in by a Boltzmann triangulation with the appropriate perimeter. Since a Boltz-
mann triangulation with simple perimeter δ typically has size δ2, we deduce that the
size of the sub-triangulation inserted in a face of large degree d is expected to be of
order (d2/3)2 = d4/3 (because the size of this sub-triangulation should be comparable
to the size of the Boltzmann triangulation inserted in the largest simple boundary).
Recalling that themaximal degree of the faces of C is of order n6/7, we expect that the
total size of the triangulation containing the large cluster C of size n has size of order

(n6/7
)
4/3

= n8/7 .
_is is because, the size of the triangulation containing C should be comparable to
the sub-triangulation contained in the largest face of C. We also conjecture that a�er
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proceeding to this ûlling operation, the initial cluster C has a positive chance to be
the largest cluster in the obtained percolated triangulation and in fact conjecture the
following.

Conjecture 5.8 Consider a uniform triangulation with n faces and perform a crit-
ical (site or bond) percolation. _en, the largest black cluster Cmax in the percolated
triangulation satisûes v(Cmax) ≈ n7/8 .

Notice that the exponent 7/8 conjectured above is in agreement with the KPZ re-
lation and the known results for the largest cluster in critical site-percolation on n×n
boxes in the regular triangular lattice in dimension 2. Remark also that the two con-
jectures are linked to each other, since a triangulation with boundary ℓ has roughly
ℓ2 vertices and (ℓ2)7/8 = ℓ7/4.
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