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Abstract

We give a classification of irreducible admissible modulo p representations of a split
p-adic reductive group in terms of supersingular representations. This is a generalization
of a theorem of Herzig.

1. Introduction

Let p be a prime number and F a finite extension of Qp. In this paper, we consider modulo p
representations of (the group of F -valued points of) a split connected reductive group G
over F . The study of such representations was started by Barthel–Livné [BL94, BL95] when
G= GL2(F ). They defined the notion of supersingular representations and gave a classification
of non-supersingular irreducible representations. In particular, they proved that a representation
is supersingular if and only if it is supercuspidal. Here, a representation is called supercuspidal
if and only if it does not appear as a subquotient of a parabolic induction from an
irreducible representation of a proper parabolic subgroup. By this theorem, to classify irreducible
representations of GL2(F ), it is sufficient to classify irreducible supersingular representations.
When G= GL2(Qp), irreducible supersingular representations are classified by Breuil [Bre03].
However, when F 6= Qp a classification seems more complicated [BP12].

Herzig [Her11a] gave a definition of a supersingular representation for any split G
using the modulo p Satake transform [Her11b]. He also gave a classification of irreducible
admissible representations in terms of supersingular representations when G= GLn(F ). This
is a generalization of a theorem of Barthel–Livné. In this paper, we generalize his classification
to any split G.

Now we state our main theorem. Let κ be an algebraic closure of the residue field of F . All
representations in this paper are smooth representations over κ' Fp. Fix a reductive O-form
of G and denote it by the same letter G. Let K be the group of O-valued points of G. We
also fix a Borel subgroup B and a split maximal torus T ⊂B of G. Then we can define the
notion of supersingular representations with respect to (K, T, B). (See Herzig’s paper [Her11a,
Definition 4.7] or Definition 5.1 in this paper.) Let Π be the set of simple roots. Each subset
Θ⊂Π corresponds to the standard parabolic subgroup PΘ. Let PΘ =MΘNΘ be the Levi
decomposition such that T ⊂MΘ and NΘ is the unipotent radical of PΘ. Consider the set P of
all Λ = (Π1,Π2, σ1) such that:

– Π1 and Π2 are subsets of Π;
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– σ1 is an irreducible admissible representation of MΠ1 which is supersingular with respect
to (MΠ1 ∩K, T, MΠ1 ∩B);

– if we let ωσ1 be the central character of σ1 and put Πσ1 = {α ∈Π | 〈α, Π̌1〉= 0, ωσ1 ◦ α̌=
1GL1(F )} then Π2 ⊂Πσ1 .

Then the main theorem says that there exists a bijection between P and the set of isomorphism
classes of irreducible admissible representations of G.

To state the theorem more precisely, we define the representation I(Λ) for Λ = (Π1,Π2, σ1) ∈
P. Let PΛ =MΛNΛ be the Levi decomposition of the standard parabolic subgroup corresponding
to Π1 ∪Πσ1 . First we construct the representation σΛ of MΛ. We can prove that σ1 can be
extended uniquely to MΛ such that [MΠσ1

(F ), MΠσ1
(F )] acts on it trivially (Lemma 3.2). We

denote the extended representation by the same letter σ1. Let Q be the parabolic subgroup of
MΛ corresponding to Π1 ∪Π2. Then Q defines the special representation of MΛ [Gro]. We denote
it by σΛ,2. From the definition of the special representation, the restriction of σΛ,2 to MΠσ1

is the
special representation of MΠσ1

with respect to the standard parabolic subgroup corresponding
to Π2. Now we define σΛ = σ1 ⊗ σΛ,2.

In the case of GLn, the construction is as follows. The Levi subgroup MΛ is given by a
product GLn1 × · · · ×GLnr . The extension of σ1 to MΛ is a tensor product τ ′1 � · · ·� τ ′r. For
each i, define a representation τi of GLni as follows. If GLni ⊂MΠ1 , then τ ′i is a supersingular
representation and put τi = τ ′i . If GLni 6⊂MΠ1 , then τ ′i is a character. In this case, the intersection
of the roots of GLni and Π2 gives a parabolic subgroup Qi of GLni . Put τi = τ ′i ⊗ SpQi ; here SpQi
is the special representation corresponding to Qi. Then σΛ is given by σΛ = τ1 � · · ·� τr. Each τi
is a supersingular representation or a special representation twisted by a character (cf. [Her11a,
Theorem 1.1]).

Put I(Λ) = IndGPΛ
(σΛ). The following is the main theorem of this paper.

Theorem 1.1 (Theorem 5.11). For Λ ∈ P, I(Λ) is irreducible and the correspondence Λ 7→
I(Λ) gives a bijection between P and the set of isomorphism classes of irreducible admissible
representations of G.

Using this theorem, we get the relation between supersingular representations and
supercuspidal representations. Recall that a representation is called supersingular if it is
supersingular with respect to any 3-tuple (K, T, B) chosen as before.

Theorem 1.2 (Corollary 5.13). For an irreducible admissible representation π of G, the
following conditions are equivalent.

(i) The representation π is supersingular with respect to the fixed (K, T, B).

(ii) The representation π is supersingular.

(iii) The representation π is supercuspidal.

These theorems are proved by Barthel–Livné [BL94, BL95] (G= GL2) and Herzig [Her11a]
(G= GLn). (In these cases, the equivalence of (i) and (ii) in Theorem 1.2 is almost clear since
there is only one hyperspecial maximal compact subgroup of G up to conjugate. See Herzig’s
argument [Her11a, § 4].)

We also give a criterion of the irreducibility of a principal series representation.

Theorem 1.3. Let ν : T → κ× be a character. Then IndGB ν is irreducible if and only if ν ◦ α̌ 6=
1GL1(F ) for all α ∈Π.
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This is proved by Barthel–Livné when G= GL2 [BL94, BL95] and Ollivier [Oll06] when
G= GLn. In fact, we can describe the composition factors of IndGP (σ) where σ is an irreducible
admissible supersingular representation of the Levi subgroup of a parabolic subgroup P
(Lemma 5.8 and Remark 5.9). When G= GLn, such description is given by Herzig [Her11a,
Theorem 8.7].

Now we give an outline of the proof. Using a z-extension, we may assume that the derived
group of G is simply connected. Let c-IndGK(V ) be the compact induction from an irreducible
K-representation V and HG(V ) the endomorphism ring of c-IndGK(V ). Let X∗ be the group of
cocharacters of T and X∗,+ = {λ ∈X∗ | 〈λ, Π̌〉 ⊂ Z>0}. Then by the Satake transform, we have
HG(V )' κ[X∗,+] [Her11b, Corollary 1.3]. In particular, HG(V ) is commutative. Therefore, for
each irreducible admissible representation π of G, there exist an irreducible representation V of
K and a character χ of HG(V ) such that π is a quotient of c-IndGK(V )⊗HG(V ) χ. To prove the
main theorem, we reveal the relation between c-IndGK(V )⊗HG(V ) χ and a parabolic induction.

The first comparison is given by Herzig [Her11a, Theorem 3.1]. He proved the following.
Let P =MN be a standard parabolic subgroup and its Levi decomposition and ΠM the set
of simple roots of M . By the partial Satake transform, we have an injective homomorphism
HG(V ) ↪→HM (V N(O)). Fix a character χ of HG(V ). Let P =MN be a standard parabolic
subgroup such that χ factors through HG(V )→HM (V N(O)). Let ν be a lowest weight of V and
put ΠV = {α ∈Π | 〈ν, α̌〉= 0}. Herzig proved that if ΠV ⊂ΠM then we have

c-IndGK(V )⊗HG(V ) χ' IndGP (c-IndMM∩K(V N(O))⊗HM (V N(O)) χ). (1.1)

(He proved this theorem for any split G.)
Unfortunately, in the above theorem, the condition ΠV ⊂ΠM is needed. For example, if

V is the trivial representation, the above theorem does not hold. However, we can prove the
following ‘changing the weight theorem’. Let V ′ be another irreducible K-representation and
ν ′ its lowest weight. Assume that there exists a simple root α such that α 6∈ΠM , α ∈ΠV and
ν ′ = ν − (q − 1)ωα where ωα is a fundamental weight corresponding to α. Moreover, assume that
〈α̌,ΠM 〉 6= 0 or χ(α̌) 6= 1. Then we have

c-IndGK(V )⊗HG(V ) χ' c-IndGK(V ′)⊗HG(V ) χ

(Theorem 4.1). In this theorem, ΠV ′ = ΠV \{α}$ ΠV . Therefore, at least if χ is generic, then
(1.1) holds. Herzig proved this theorem under some assumptions (which are enough for G= GLn).
We prove it for any split G in this paper.

Finally, we must treat the case when neither theorem can be applied. An argument using a
tensor product deduces us to the case of P =B. To use such arguments, we need to express the
Satake parameters of σΛ by those of σ1 and σΛ,2. Such calculation is given in § 3. If G= GLn,
this calculation is almost obvious since any Levi subgroup of GLn is a product of smaller groups
GLm.

Assume that P =B. In this case, Herzig studied the structure of the left-hand side of
(1.1) by a (mysterious) calculation of the affine Hecke algebra when G= GLn. Our method
is different from his, and ours gives more information on the structure of the left-hand side.
In fact, we prove that both sides of (1.1) have a finite length and the same composition
factors (Proposition 4.7). To prove it, we prove that c-IndGK(V )⊗HG(V ) HT (V U(O)) is free as
a HT (V U(O))-module (Proposition 4.22). By the theorem of changing the weight, for a generic
χ, c-IndGK(V )⊗HG(V ) χ only depends on V U(O) and χ. Using the freeness, it follows that the
composition factors of c-IndGK(V )⊗HG(V ) χ only depend on V U(O) and χ. Such an argument can
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be found in the paper of Barthel–Livné [BL95] when G= GL2. They proved the freeness (see
Remark 4.23) by the detailed study of a compact induction. We prove the freeness by embedding
c-IndGK(V )⊗HG(V ) HT (V U(O)) to a principal series and considering the filtration coming from
the Bruhat decomposition (Lemma 4.21).

Such comparisons are given in § 4. Using these comparisons, the main theorem is proved
in § 5.

2. Preliminaries

2.1 Notation

In this paper, we use the following notation. Let p be a prime number, F a finite extension of
Qp, O its ring of integers, $ ∈ O a uniformizer, κ=O/($) the residue field and q = #κ. Let G
be a connected split reductive group over O. Fix a Borel subgroup B ⊂G and a split maximal
torus T ⊂B. Let U be the unipotent radical of B. Then B = TU is a Levi decomposition of
B. Let B = TU be a Levi decomposition of the opposite group of B. We also denote the group
of F -valued points of G by the same letter G. The only confusion coming from using the same
letter is the notation ‘[G, G]’. In this paper, [G, G] means the derived group of G as an algebraic
group. In general, [G(F ), G(F )]⊂ [G, G](F ) and it is not equal. If [G, G] is simply connected,
then [G, G](F ) = [G(F ), G(F )].

We use similar notation for other groups (for example, B =B(F )). Set K =G(O). For
any algebraic group H, let Z◦ be the connected component of H containing the unit element
and ZH the center of H. We also use the notation ZH for the center of any group H. For
closed subgroups H1, H2 ⊂H, we define a closed subgroup ZH1(H2) of H1 by ZH1(H2) = {h1 ∈
H1 | h1h2 = h2h1 for all h2 ∈H2}. For a group Γ, 1Γ is the trivial representation of Γ. For a
representation V of Γ, V Γ is the space of invariants and VΓ is the space of coinvariants.

Let (X∗,∆, X∗, ∆̌) be the root datum of (G, T ). Then B determines the set of positive roots
∆+ ⊂∆ and the set of simple roots Π⊂∆+. Let W be its Weyl group. Let red: K =G(O)→
G(κ) be the canonical morphism. The set of dominant (respectively anti-dominant) elements in
X∗ is denoted by X∗+ (respectively X∗−). We also use notation X∗,+ and X∗,−. For λ, µ ∈X∗, we
denote µ6 λ if λ− µ ∈ Z>0Π̌.

Let P be a standard parabolic subgroup. It has a Levi decomposition P =MN . In this paper,
we only consider the decomposition such that T ⊂M . The opposite parabolic subgroup of P is
denoted by P =MN . We denote the Levi decomposition of the standard parabolic subgroup
corresponding to Θ⊂Π by PΘ =MΘNΘ. The subset of Π corresponding to P is denoted by
ΠP or ΠM . Put ∆M = ∆ ∩ ZΠM and ∆+

M = ∆+ ∩∆M . Let WM be the Weyl group of ∆M .
For dominant ν ∈X∗, let Pν =MνNν be the standard parabolic subgroup corresponding to
Πν = {α ∈Π | 〈ν, α̌〉= 0}. Put Wν = StabW (ν), ∆ν = {α ∈∆ | 〈ν, α̌〉= 0} and ∆+

ν = ∆+ ∩∆ν .
We use similar notation for dominant λ ∈X∗.

For a subset A⊂X∗ and A′ ⊂X∗, 〈A, A′〉= 0 means 〈ν, λ〉= 0 for all ν ∈A and λ ∈A′.
Notice that this condition is automatically satisfied if A or A′ is empty. We write 〈A, λ〉= 0
(respectively 〈ν, A′〉= 0) instead of 〈A, {λ}〉= 0 (respectively 〈{ν}, A′〉= 0).

A z-extension of G (over F ) is a surjective homomorphism (as algebraic groups) G̃→G×O F
over F such that the derived group of G̃ is simply connected and the kernel is a split torus which
is central in G×O F . Since the Galois cohomology of a split torus is trivial, the homomorphism
G̃= G̃(F )→G(F ) =G is also surjective. It is known that a z-extension exists.
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Lemma 2.1. Let G̃→G be a z-extension. Then there exists a hyperspecial maximal compact
subgroup K̃ of G̃ such that the following conditions hold.

(i) The homomorphism G̃→G induces a surjective homomorphism K̃→K.

(ii) The induced homomorphism K̃→K induces a surjective homomorphism G̃(κ)→G(κ).
(Here, we denote the O-form of G̃ corresponding to K̃ by the same letter G̃.)

(iii) The derived group of G̃×O κ is simply connected.

Proof. Let Gad = G̃ad be the adjoint group of G, B its building and x ∈ B the hyperspecial
point corresponding to K. The point x defines the hyperspecial maximal compact subgroup
K̃ of G̃. Then (i) follows from [HR08, Proof of Proposition 3]. Since Ker(K→G(κ)) is the
maximal normal pro-p subgroup of K, K̃→K induces G̃(κ)→G(κ). By (i), this homomorphism
is surjective. Since G̃×O F and G̃×O κ have the same root data, (iii) follows. 2

Lemma 2.2. The subgroup [G(F ), G(F )] is closed in G(F ) (with respect to the p-adic topology).

Proof. Let 1→ Z→ G̃
r−→G→ 1 be a z-extension. By the surjectivity of G̃(F )→G(F ), we

have [G(F ), G(F )] = r([G̃(F ), G̃(F )]). Since [G̃, G̃] is simply connected, we have [G̃(F ), G̃(F )] =
[G̃, G̃](F ). The map [G̃, G̃](F )→ [G, G](F ) is an open map [BZ76, A.3. Lemma]. Therefore
[G(F ), G(F )] is open in [G, G](F ). Hence [G(F ), G(F )] is closed in [G, G](F ). Since [G, G](F )
is a closed subgroup of G(F ), [G(F ), G(F )] is closed in G(F ). 2

2.2 Satake transform and irreducible representations of K
Let κ be an algebraic closure of κ. Recall that all representations in this paper are smooth
representations over κ. For a finite-dimensional representation V of K, let c-IndGK V be a
representation defined by

c-IndGK V = {f : G→ V | f(xk) = k−1f(x)(x ∈G, k ∈K), supp f is compact}.

The action of g ∈G is given by (gf)(x) = f(g−1x). For x ∈G and v ∈ V , let [x, v] ∈ c-IndGK(V )
be the element defined by supp([x, v]) = xK and [x, v](x) = v. Then g[x, v] = [gx, v] and
[xk, v] = [x, kv] for g ∈G and k ∈K. For finite-dimensional representations V1, V2 of K,
HomG(c-IndGK V1, c-IndGK V2) is identified with

HG(V1, V2) =
{
ϕ : G→Homκ(V1, V2)

∣∣∣∣ ϕ(k2xk1) = k2ϕ(x)k1 (k1, k2 ∈K, x ∈G),
supp ϕ is compact

}
.

The operator corresponding to ϕ ∈HG(V1, V2) is given by f 7→ ϕ ∗ f where

(ϕ ∗ f)(x) =
∑

y∈G/K

ϕ(y)f(xy).

We denote HG(V, V ) by HG(V ). Let π be a representation of G. Then by the Frobenius
reciprocity law, we have HomK(V, π)'HomG(c-IndGK(V ), π). Hence HomK(V, π) is a right
HG(V )-module. We denote the action of ϕ ∈HG(V ) on ψ ∈HomK(V, π) by ψ ∗ ϕ.

When V is irreducible, the structure of HG(V ) is given by the Satake transform [Her11b].
Namely, the Satake transform SG : HG(V )→HT (V U(κ)) defined by

SG(ϕ)(t) =
∑

u∈U/U(O)

ϕ(ut)|V U(κ)

is injective and its image is {ϕ ∈HT (V U(κ)) | supp ϕ⊂ T+} where T+ = {t ∈ T | α(t) ∈ O
(α ∈∆+)}.
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Remark 2.3. The convention about positive and negative are interchanged comparing to Herzig’s
papers [Her11a, Her11b].

Herzig [Her11a] defined another homomorphism ′SG : HG(V )→HT (VU(κ)) and, under the
identification V U(κ) ∼−→ VU(κ), he proved SG = ′SG if the derived group of G is simply
connected [Her11a, Corollary 2.19].

Lemma 2.4. For any G, SG = ′SG.

Proof. Let G̃→G be a z-extension and Z the kernel of G̃→G. Take a hyperspecial maximal
compact subgroup K̃ ⊂ G̃ as in Lemma 2.1. Using the surjective homomorphism K̃→K,
we regard V as an irreducible representation of K̃. Define HG̃(V )→HG(V ) by ϕ 7→ (g 7→∑

z∈Z/(Z∩K̃) ϕ(g̃z)); here g̃ ∈ G̃ is a lift of g ∈G. (Notice that Z ∩ K̃ acts on V trivially.) The

same formula defines a homomorphism HT̃ (V U(κ))→HT (V U(κ)), here T̃ is the inverse image
of T . Then we have the following commutative diagram.

HG̃(V )
SG̃ //

��

HT̃ (V U(κ))

��
HG(V )

SG
// HT (V U(κ))

We have a similar diagram for ′SG̃ and ′SG. Since HG̃(V )→HG(V ) is surjective, SG̃ = ′SG̃ implies
SG = ′SG. 2

Using this lemma, we identify SG with ′SG and we always denote it by SG.
A homomorphism X∗ × T (O)→ T defined by (λ, t0) 7→ λ($)t0 is an isomorphism and it

induces X∗,+ × T (O)' T+. Hence SG gives an isomorphism HG(V )' κ[X∗,+]. For λ ∈X∗,+,
there exists Tλ ∈HG(V ) such that supp Tλ =Kλ($)K and Tλ(λ($)) is given by V � VNλ(κ) '
V Nλ(κ) ↪→ V . Then {Tλ | λ ∈X∗,+} gives a basis ofHG(V ). When we want to emphasize the group
G, we write TGλ instead of Tλ. For λ ∈X∗, let τλ ∈ κ[X∗] be an element corresponding to λ. (As an
element of HT (V U(κ)), the support of τλ is T (O)λ($) and τλ(λ($)) = id.) Then {τλ | λ ∈X∗,+}
gives a basis of κ[X∗,+]. The relation between SG(Tλ) and τλ is given by Herzig [Her11a,
Proposition 5.1]. An algebra homomorphism κ[X∗,+]→ κ is parameterized by (M, χM ) where
M is the Levi subgroup of a standard parabolic subgroup and χM is a group homomorphism
XM,∗,0→ κ× where XM,∗,0 = {λ ∈X∗ | 〈λ,ΠM 〉= 0} [Her11a, Proposition 4.1]. Therefore, an
algebra homomorphism HG(V )→ κ is parameterized by the same pair.

Remark 2.5. Since the isomorphism HT (V U(κ))' κ[X∗] depends on a choice of a uniformizer
$, the above parameterization is not natural. A more natural way is given by Herzig [Her11b,
Corollary 1.5]. In this paper, we fix a uniformizer and identify HG(V ) with κ[X∗,+]. (It is only
for a simplification of notation.)

Let P =MN be the Levi decomposition of a standard parabolic subgroup. Then the partial
Satake transform SMG : HG(V )→HM (V N(κ)) is injective and it satisfies SM ◦ SMG = SG [Her11a,
§ 2.3]. We also have ′SMG . By Lemma 2.4, we have SMG = ′SMG under the identification V N(κ) '
VN(κ). Assume that χ : HG(V )→ κ is parameterized by (M, χM ). Then M is characterized by
the following property: χ factors through SM

′

G if and only if M ′ ⊃M . We also have the following:
χM (λ) = χ(τλ)−1 for all λ ∈XM,∗,0 ∩X∗,+.
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Let V1, V2 be irreducible representations of K. For each λ ∈X∗,+, there exists ϕ ∈
H(V1, V2)\{0} whose support is Kλ($)K if and only if (V1)Nλ(κ) ' (V2)Nλ(κ) as Mλ(κ)-
representations. Moreover, such ϕ is unique up to a constant multiple. The homomorphism
ϕ(λ($)) is given by V1� (V1)Nλ(κ) ' V

Nλ(κ)
2 ↪→ V2. (See the proof of [Her11a, Proposition 6.3].)

All irreducible representations of K factor through K→G(κ). If the derived group of G is
simply connected, such representation is parameterized by its lowest weight. If ν ∈X∗ satisfies
−q < 〈ν, α̌〉6 0 for all α ∈Π then the restriction of the irreducible representation of G(κ) with
lowest weight ν to G(κ) is irreducible and they give all irreducible representations of G(κ). When
V is the restriction of an irreducible representation with lowest weight ν, we call ν a lowest weight
of V . (For ν0 ∈X∗ such that 〈ν0, Π̌〉= 0, the restriction of the irreducible representations with
lowest weight ν and ν + (q − 1)ν0 are isomorphic to each other. Hence ν is not determined by V
uniquely.)

3. Satake parameters

3.1 Definition and some lemmas
We start with the following definition.

Definition 3.1. Let π be a representation of G. An algebra homomorphism χ : κ[X∗,+]→ κ
is called a Satake parameter of π if there exist an irreducible K-representation V and ψ ∈
HomK(V, π)\{0} such that for all ϕ ∈HG(V ), ψ ∗ ϕ= χ(SG(ϕ))ψ.

Let S(π, V ) be the set of Satake parameters appearing in HomK(V, π). We denote the set
of Satake parameters of π by S(π). Then we have S(π) =

⋃
V S(π, V ). If π is admissible, then

S(π) 6= ∅. We give some propositions about Satake parameters. Before proving some properties
of Satake parameters, we give some fundamental facts about a structure of G.

Lemma 3.2. Let Π = Π1 ∪Π2 be a partition of Π such that 〈Π1, Π̌2〉= 0 and Pi =MiNi the
standard parabolic subgroup corresponding to Πi. Let L2 be the subgroup of T ⊂M1 generated
by {α̌(F×) | α ∈Π2}. Then we have G/[M2(F ), M2(F )]'M1/L2.

Notice that L2 is not the group of F -valued points of an algebraic group in general.

Proof. First we assume that the derived group of G is simply connected. Let F be a separable
closure of F . In this proof, we write G =G(F ). (The same notation is used for other groups.) Let
L2 be the subgroup of T generated by {α̌(F×) | α ∈Π2}. Namely, L2 is the image of (F×)Π2 →T.

Since the derived group of G is simply connected, this map is injective. Therefore, L2 = LGal(F/F )
2 .

Set Π̌⊥2 = {ν ∈X∗ | 〈ν, Π̌2〉= 0}. Since G/[M2,M2] and M1/L2 have the same root data
(Π̌⊥2 ,∆M1 , X∗/ZΠ̌2, ∆̌M1), these are isomorphic. Since the derived group of G is simply
connected, so is [M2,M2]. Hence the Galois cohomology H1(F, [M2,M2]) is trivial. Therefore
(G/[M2,M2])Gal(F/F ) =G/([M2, M2](F )). Using the fact that [M2,M2] is simply connected
again, [M2, M2](F ) = [M2(F ), M2(F )]. Since L2 is a split torus, H1(F, L2) is trivial. Hence

(M1/L2)Gal(F/F ) =M1/L
Gal(F/F )
2 =M1/L2. The lemma follows in this case.

In general, let r : G̃→G be a z-extension of G. Define M̃1 (respectively M̃2, L̃2) in the same
way as M1 (respectively M2, L2). Then M̃1 and M̃2 are the inverse images of M1 and M2, respec-
tively. In particular, r([M̃2(F ), M̃2(F )]) = [M2(F ), M2(F )]. By the definition, r(L̃2) = L2. By the
above argument, we have G̃/[M̃2(F ), M̃2(F )]' M̃1/L̃2. Consider f : M1 ↪→G→G/[M2(F ),
M2(F )]. We prove f is surjective and Ker(f) = L2.
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Let g ∈G and take g̃ ∈ G̃ such that r(g̃) = g. Then there exist m̃1 ∈ M̃1 and m̃2 ∈ [M̃2(F ),
M̃2(F )] such that g̃ = m̃1m̃2. Hence g = r(g̃) = r(m̃1)r(m̃2) ∈M1[M2(F ), M2(F )]. Therefore, f
is surjective.

Take m ∈M1 ∩ [M2(F ), M2(F )]. Take m̃1 ∈ M̃1 and m̃2 ∈ [M̃2(F ), M̃2(F )] such that m=
r(m̃1) = r(m̃2). Then m̃2 ∈ m̃1 Ker(r)⊂ M̃1 Ker(r) = M̃1. Hence m̃2 ∈ M̃1 ∩ [M̃2(F ), M̃2(F )]⊂
L̃2. Therefore, m= r(m̃2) ∈ L2. Hence Ker(f)⊂ L2. Let m ∈ L2 and take m̃ ∈ L̃2 such that
r(m̃) =m. Then m̃ ∈ [M̃2(F ), M̃2(F )]. Hence m ∈ r([M̃2(F ), M̃2(F )]) = [M2(F ), M2(F )]. Hence
L2 ⊂Ker(f). 2

Proposition 3.3. There is a one-to-one correspondence between characters νG of G and
characters νT of T such that νT ◦ α̌ is trivial for all α ∈Π. It is characterized by νT = νG|T .

Proof. Apply the previous lemma for Π1 = ∅ and Π2 = Π. 2

Corollary 3.4. Let νK be a character of K. Then there exists a character νG of G such that
νK = νG|K . Moreover, there is a unique character νG of G such that νK = νG|K and νG(λ($)) = 1
for all λ ∈X∗.

Proof. If the derived group of G is simply connected, it is known that νK has a lowest weight
ν which satisfies (ν ◦ α̌)(O×) = 1 for all α ∈Π. Therefore, the corollary follows from the above
proposition. In general, let 1→ Z→ G̃→G→ 1 be a z-extension of G, K̃ as in Lemma 2.1 and
T̃ the inverse image of T in G̃. Then there exists a character νG̃ such that νG̃|K̃ is a pull-back of
νK and νG̃(λ($)) = 1 for all λ ∈X∗(T̃ ). Hence νG̃|Z is trivial. Therefore, it gives a character νG
of G and νG|K = νK . 2

For a character ν of G, ϕ 7→ (g 7→ ϕν(g) = ϕ(g)ν(g)) gives an isomorphism HG(V )'HG(V ⊗
ν|K). The following lemma and propositions are essentially proved in [Her11a].

Lemma 3.5 [Her11a, Lemma 4.6]. For a standard parabolic subgroup P =MN , the homo-
morphism ϕ 7→ ϕν is compatible with the partial Satake transform SMG .

Proof. We have

(SMG ϕν)(m) =
∑

n∈N/(N∩K)

ν(mn)ϕ(mn).

Since N ⊂ [G, G], we have ν(n) = 1. Therefore,∑
n∈N/(N∩K)

ν(mn)ϕ(mn) = ν(m)
∑

n∈N/(N∩K)

ϕ(mn) = ν(m)(SMG ϕ)(m). 2

Now we give some properties on Satake parameters. The following proposition is obvious.

Proposition 3.6. If π′ ⊂ π, then S(π′, V )⊂ S(π, V ).

The following proposition follows from [Her11a, Lemma 2.14].

Proposition 3.7. Let P =MN be a parabolic subgroup, σ a representation of M and V an
irreducible representation of K. Then we have S(IndGP (σ), V ) = S(σ, V N(κ))|κ[X∗,+]. In particular,

we have S(IndGP (σ)) = S(σ)|κ[X∗,+].

Let χ1, χ2 : κ[X∗,+]→ κ be algebra homomorphisms. Define χ1 ⊗ χ2 : κ[X∗,+]→ κ by (χ1 ⊗
χ2)(τλ) = χ1(τλ)χ2(τλ).
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Proposition 3.8. Assume χi is parameterized by (Mi, χMi
). Then χ1 ⊗ χ2 is parameterized by

(M, χM ) where ΠM = ΠM1 ∪ΠM2 and χM = χM1 |XM,∗,0χM2 |XM,∗,0 .

Proof. If χ : κ[X∗]→ κ corresponds to (M, χM ), for λ ∈X∗,+, λ($) ∈ ZM if and only if χ(τλ) 6=
0 [Her11a, Corollary 4.2]. Hence ΠM = ΠM1 ∪ΠM2 . The formula χM = χM1 |XM,∗,0χM2 |XM,∗,0
follows from [Her11a, Corollary 4.2]. 2

Proposition 3.9 [Her11a, Lemma 4.6]. Let ν be a character of G and π a representation of
G. Then S(π ⊗ ν) = S(π)⊗ χν where χν : κ[X∗,+]→ κ is given by χν(τλ) = ν(λ($))−1.

Proof. This follows from Lemma 3.5. 2

Proposition 3.10. Let ν be a character of G. Then S(ν) = {χν}.

Proof. We have an injective homomorphism ν ↪→ IndGB(ν|T ). Hence we have ∅ 6= S(ν)⊂
S(IndGB(ν|T )) = S(ν|T )|κ[X∗,+] = {χν}. 2

3.2 Restriction and Satake parameter
Let G1 be a connected subgroup of G which contains the derived group of G. Put K1 =
G1 ∩K. This is a hyperspecial maximal compact subgroup of G1. We also denote the O-form
corresponding to K1 by the same letter G1.

Lemma 3.11. The restriction of an irreducible K-representation to K1 is also irreducible.

Proof. We may replace K (respectively K1) with G(κ) (respectively G1(κ)). Let V be an
irreducible representation ofG(κ), V1 ⊂ V a non-zeroG1(κ)-subrepresentation of V . Since U(κ)⊂
G1(κ), we have V U(κ)

1 ⊂ V U(κ). The group U(κ) is a p-group, hence V U(κ)
1 6= 0. Since dim V U(κ) =

1, we have V U(κ)
1 = V U(κ). Let τ : G→G be an anti-involution such that τ |T = idT . Since G1

is generated by U, U and T ∩G1, and we have τ(T ∩G1) = T ∩G1, τ(U) = U and τ(U) = U ,
τ preserves G1. We have a perfect paring 〈·, ·〉 : V × V → κ such that 〈gv, v′〉= 〈v, τ(g)v′〉 for
g ∈G, v, v′ ∈ V and 〈V U(κ), V U(κ)〉 6= 0. (See an argument in [Hum06, p. 18].) Put V ′1 = {v ∈
V | 〈v, V1〉= 0}. Then this is a G1(κ)-subrepresentation. If it is not zero, then, by the above
argument, we have (V ′1)U(κ) = V U(κ). This contradicts 〈V U(κ), V U(κ)〉 6= 0. Therefore, V ′1 = 0.
Hence V = V1. 2

Let XG1,∗ be the group of cocharacters of G1 ∩ T . Put XG1,∗,+ =X∗,+ ∩XG1,∗. Then we have
HG1(V )' κ[XG1,∗,+]. Since XG1,∗,+ ⊂X∗,+, we have an injective homomorphism κ[XG1,∗,+] ↪→
κ[X∗,+]. This induces Φ: HG1(V ) ↪→HG(V ).

Lemma 3.12. We have Im Φ = {ϕ ∈HG(V ) | supp ϕ⊂G1K} and the isomorphism Im Φ'
HG1(V ) is given by ϕ 7→ ϕ|G1 .

Proof. Put H1 = {ϕ ∈HG(V ) | supp ϕ⊂G1K}. Then H1 has a basis {TGλ | λ ∈XG1,∗,+}. To
prove the first statement of the lemma, it is sufficient to prove that if λ ∈XG1,∗,+ then
SG(TGλ ) ∈ κ[XG1,∗,+] and {SG(TGλ ) | λ ∈XG1,∗,+} is a basis of κ[XG1,∗,+]. We have SG(TGλ ) ∈
τλ +

∑
µ<λ κτµ. Since Π̌⊂XG1,∗, λ ∈XG1,∗ and µ6 λ imply µ ∈XG1,∗. Therefore we get the

first statement.
Since U is the unipotent radical of the Borel subgroup B ∩G1 of G1, we have SG(TGλ ) =

SG1(TGλ |G1) for λ ∈XG1,∗,+ by the definition of the Satake transform. We get the second
statement. 2

2147

https://doi.org/10.1112/S0010437X13007379 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007379


N. Abe

Lemma 3.13. Let ω be a character of ZG, V1 an irreducible representation of K1 such that ZK1

acts on it by ω|ZK1 . Then there exists an irreducible representation V of K such that V |K1 = V1

and the center of K acts on it by ω.

Proof. Using a z-extension and the argument in the proof of Lemma 3.11, we may assume
that the derived group of G is simply connected. Let ν1 ∈X∗G1

be a lowest weight of V1. There
exists ω1 ∈X∗ZG such that ω|ZG∩K is given by ZG ∩K

ω1−→O×→ κ×. (The character ω1 gives
a continuous character ZG→ F× and the image of ZG ∩K is a compact subgroup, hence it is
contained in O×.) By the assumption, ν1|ZG1

and ω1|ZG1
give the same character of ZG1 ∩K.

Therefore ν1|ZG1
− ω1|ZG1

= (q − 1)ω2 for some ω2 ∈X∗ZG1
. Take ω3 ∈X∗ZG such that ω3|ZG1

= ω2.
Set ω4 = ω1 + (q − 1)ω3. Then ω4 gives the character ω|ZG∩K of ZG ∩K and ν1|ZG1

= ω4|ZG1
. We

have an exact sequence 1→ ZG1 → ZG × (G1 ∩ T )→ T → 1 as algebraic groups. Hence we get
an exact sequence 0→X∗G→X∗G1

⊕X∗ZG →X∗ZG1
→ 0. Therefore there exists ν ∈X∗G such that

ν|T∩G1 = ν1 and ν|ZG = ω4. Then the irreducible representation V of K with a lowest weight ν
satisfies the condition of the lemma. 2

Proposition 3.14. Let π be a representation of G and V an irreducible representation of K.
Then we have S(π, V )|κ[XG1,∗,+] ⊂ S(π|G1 , V |G1∩K). Hence S(π)|κ[XG1,∗,+] ⊂ S(π|G1).

Moreover, if π has a central character, then for each irreducible (G1 ∩K)-representation V1,
we have S(π|G1 , V1) =

⋃
V |G1∩K=V1

S(π, V )|κ[XG1,∗,+]. Hence S(π|G1) = S(π)|κ[XG1,∗,+].

Proof. Let V be an irreducible representation of K. We prove S(π, V )|κ[XG1,∗,+] ⊂ S(π|G1 , V |K1).
It is sufficient to prove that

HomK(V, π) ↪→HomK1(V, π)

is an HG1(V )-module homomorphism. Let ϕ ∈HG1(V ) and ψ ∈HomK(V, π). Then for each
v ∈ V ,

(ψ ∗ Φ(ϕ))(v) =
∑

g∈G/K

gψ(Φ(ϕ)(g−1)v) =
∑

g∈G1K/K

gψ(Φ(ϕ)(g−1)v).

The claim follows from G1/K1 'G1K/K.
Assume that π has a central character. Let V1 be an irreducible representation of K1. By

the above lemma, there exists an irreducible representation V of K such that V |K1 = V1 and a
central character of V is the same as that of π. Set K ′ =K1ZK . Since K1 is open in G1 and
ZK is open in ZG, K ′ is open in G1(F )ZG(F ). Applying [BZ76, A.3. Lemma] to G1 × ZG→G,
G1(F )ZG(F ) is open in G=G(F ). Hence K ′ is open in G. Therefore, K ′ has a finite index in
K. We have

HomK1(V, π) = HomK′(V, π)'HomK(IndKK′(V ), π).

Since V has a structure of a representation of K, we have IndKK′(V )' IndKK′(1K′)⊗ V . Therefore
we have

Ψ: HomK1(V, π)'HomK(IndKK′(1K′)⊗ V, π).

Explicitly, this isomorphism is given by

Ψ(ψ)(f ⊗ v) =
∑

x∈K/K′
f(x)xψ(x−1(v)).
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Therefore, for ϕ ∈HG1(V ), we have

Ψ(ψ ∗ ϕ)(f ⊗ v) =
∑

x∈K/K′
f(x)x

∑
g∈G1/K1

gψ(ϕ(g−1)x−1v)

=
∑

x∈K/K′

∑
g∈G1/K1

f(x)(xg)ψ(Φ(ϕ)((xg)−1)v).

Replacing g with x−1gx, we have

Ψ(ψ ∗ ϕ)(f ⊗ v) =
∑

x∈K/K′

∑
g∈G1/K1

f(x)gxψ(x−1ϕ(g−1)v) =
∑

g∈G1/K1

gΨ(ψ)(f ⊗ ϕ(g−1)v).

Since K ′ is a normal subgroup of K and K/K ′ is commutative, the representation IndKK′(1K′)
has a filtration {Xi} such that Xi/Xi−1 ' νi for some character νi of K. Set X = IndKK′(1K′),
Y = HomK(X ⊗ V, π) and Yi = HomK(X/Xi ⊗ V, π). Then we see that {Yi} is a filtration of Y
and Yi−1/Yi ↪→HomK(νi ⊗ V, π). By the above formula, Yi is stable under the action of
ϕ ∈HG1(V ). Hence ϕ acts on Yi−1/Yi. Extend νi to a character of G such that νi is trivial on G1.
Then we have HG(V )'HG(νi ⊗ V ) by ϕ′ 7→ ϕ′νi . We have an action of Φ(ϕ)νi ∈HG(νi ⊗ V ) on
HomK(νi ⊗ V, π). We prove that these actions are compatible with Yi−1/Yi ↪→HomK(νi ⊗ V, π).

Since νi is trivial on G1, we have a⊗ ϕ(g−1)v = Φ(ϕ)νi(g−1)(a⊗ v) for g ∈G1. The function
g 7→ gΨ(ψ)(Φ(ϕ)νi(g−1)(a⊗ v)) is right K-invariant. Therefore,∑

g∈G1/K1

gΨ(ψ)(a⊗ ϕ(g−1)v) =
∑

g∈G1K/K

gΨ(ψ)(Φ(ϕ)νi(g
−1)(a⊗ v))

=
∑

g∈G/K

gΨ(ψ)(Φ(ϕ)νi(g
−1)(a⊗ v)) = (Ψ(ψ) ∗ Φ(ϕ)νi)(a⊗ v).

This means that the actions are compatible.
Hence each element of S(π|G1 , V ) appears in S(π, νi ⊗ V )|κ[XG1,∗,+] for some i. Since νi is

trivial on K1, (νi ⊗ V )|K1 ' V |K1 ' V1. We get S(π|G1 , V )⊂
⋃
V ′|K1=V |K1

S(π, V ′)|κ[XG1,∗,+]. 2

3.3 Satake parameter of tensor product
Consider the setting in Lemma 3.2. Namely, let Π = Π1 ∪Π2 be a partition of Π such that
〈Π1, Π̌2〉= 0. Let Pi =MiNi be the standard parabolic subgroup corresponding to Πi. Set H2 =
ZM2([M1, M1])◦. Put Π⊥1 = {λ ∈X∗ | 〈λ,Π1〉= 0}. Then the group of cocharacters of H2 ∩ T is
Π⊥1 . We also have [M2, M2]⊂H2 ⊂M2 (as algebraic groups). Put XH2,∗,+ =X∗,+ ∩Π⊥1 . We have
N2 ⊂ [M1, M1].

Fix an irreducible representation V of K and put V2 = V N2(κ). Then V2 is irreducible as a
representation of M2 ∩K. Since [M2, M2]⊂H2 ⊂M2 (as algebraic groups), V2 is also irreducible
as a representation of H2 ∩K (Lemma 3.11). We have κ[XH2,∗,+] ↪→ κ[X∗,+]. Hence we get
Φ′ : HH2(V2) ↪→HG(V ).

Lemma 3.15. For m ∈M2 and n ∈N2, if mn ∈KH2K, then n ∈K.

Proof. By the Cartan decompositions, we can choose λ ∈XH2,∗,+, λ2 ∈XM2,∗,+ and k1 ∈M2 ∩K
such that mn ∈Kλ($)K and m ∈ (M2 ∩K)λ2($)k1. Then we have λ2($)(k1nk

−1
1 ) ∈Kλ($)K.

Put n1 = k1nk
−1
1 ∈N2. We prove n1 ∈K.

By the assumption, we have N2 ⊂M1. Therefore, λ2($)n1 is in M1. Take λ1 ∈XM1,∗,+ such
that λ2($)n1 ∈ (M1 ∩K)λ1($)(M1 ∩K). Then Kλ1($)K ∩Kλ($)K 6= ∅. Therefore, λ1 ∈Wλ.
The Weyl group W preserves each connected component of the root system ∆. Hence W
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preserves Π⊥1 . Hence λ1 ∈Π⊥1 . Therefore, λ1($) commutes with any element of M1. Hence
λ2($)n1 ∈ (M1 ∩K)λ1($)(M1 ∩K) = λ1($)(M1 ∩K). Therefore, λ1($)−1λ2($)n1 ∈K. We
get n1 ∈K. 2

Lemma 3.16. If ϕ ∈HG(V ) satisfies supp ϕ⊂KH2K, then SM2
G (ϕ)(m) = ϕ(m)|V2 for m ∈M2.

Proof. By the definition, we have

SM2
G (ϕ)(m) =

∑
n∈N2/N2∩K

ϕ(mn)|V2 .

Since supp ϕ⊂KH2K, this is equal to ϕ(m)|V2 by the above lemma. 2

Lemma 3.17. If λ, µ ∈X∗,+ satisfies µ6 λ and λ ∈XH2,∗,+, then λ− µ ∈ Z>0Π2. In particular,
µ ∈XH2,∗,+.

Proof. For each α ∈Π, take nα ∈ Z>0 such that λ− µ=
∑

α∈Π nαα̌. Then for β ∈Π1, we have∑
α∈Π1

nα〈β, α̌〉=−〈β, µ〉6 0. Since (dβ〈β, α̌〉)α,β∈Π1 is symmetric and positive definite for some
dα > 0, we have nα = 0 for all α ∈Π1. 2

By the above two lemmas and the argument in the proof of Lemma 3.12, we get the following
lemma. (Notice that ϕ(h) induces V2→ V2 for h ∈H2 since H2 and N2 commute with each other.)

Lemma 3.18. We have Im Φ′ = {ϕ ∈HG(V ) | supp ϕ⊂KH2K} and the isomorphism Im Φ′ '
HH2(V2) is given by ϕ 7→ ϕ|H2 .

By Lemma 3.16, we get SG(ϕ) = SM2(ϕ|M2) if supp(ϕ)⊂KH2K. This means that the map
is given by the restriction.

Let π be a representation of G. Consider the following homomorphism

HomK(V, π)→HomM2∩K(V2, π).

Since V is generated by V2 as a K-representation, this is injective. The left-hand side is HG(V )'
κ[X∗,+]-module and the right-hand side is HM2(V2)' κ[XM2,∗,+]-module where XM2,∗,+ = {λ ∈
X∗ | 〈λ, α〉> 0 (α ∈ΠM2)}. Therefore, both sides are κ[XH2,∗,+]-modules. We prove that the
above embedding is a κ[XH2,∗,+]-modules homomorphism.

Lemma 3.19. Let π be a representation of G. The homomorphism

HomK(V, π)→HomM2∩K(V2, π)

is a κ[XH2,∗,+]-module homomorphism.

Proof. Let ϕ ∈HH2(V2). Take ψ ∈HomK(V, π) and v ∈ V2. We have

(ψ ∗ Φ′(ϕ))(v) =
∑

g∈G/K

gψ(Φ′(ϕ)(g−1)v)

=
∑

m∈M2/(M2∩K)

∑
n∈N2/(N2∩K)

mnψ(Φ′(ϕ)(n−1m−1)v).

Since supp Φ′(ϕ)⊂KH2K, Φ′(ϕ)(n−1m−1) = 0 if n 6∈N2 ∩K by the above lemma. Therefore,
we have

(ψ ∗ Φ′(ϕ))(v) =
∑

m∈M2/(M2∩K)

mψ(Φ′(ϕ)(m−1)v).

Using Lemma 3.16, we obtain the lemma. 2
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Let π1, π2 be representations of G with the central characters such that [M2(F ), M2(F )] acts
on π1 trivially and the center of M1 acts on π1 by a character. Put π = π1 ⊗ π2.

Remark 3.20. The group H2 is generated by H2 ∩ T and the one-dimensional unipotent subgroup
corresponding to each α ∈∆ ∩ ZΠ2. Since H2 ∩ T ⊂ Z◦M1

and the one-dimensional unipotent
subgroup corresponding to α ∈∆ ∩ ZΠ2 is a subgroup of [M2(F ), M2(F )], H2 is generated by
[M2(F ), M2(F )] and Z◦M1

. Therefore, H2 acts on π1 by a scalar.

Proposition 3.21. We have S(π)|κ[XH2,∗,+] ⊂ S(π1|H2)⊗ S(π2|H2).

Proof. We have S(π)|κ[XH2,∗,+] ⊂ S(π|M2)|κ[XH2,∗,+] by the above lemma. By Proposition 3.14, we
have S(π|M2)|κ[XH2,∗,+] ⊂ S(π|H2). Since H2 acts on π1 by a scalar, S(π|H2) = S(π1|H2)⊗ S(π2|H2)
by Lemma 3.9 and Proposition 3.10. 2

We give some corollaries of Proposition 3.21 which we will use. We make the following
additional assumptions.

– The derived group [M1(F ), M1(F )] acts on π2 trivially and the center of M2 acts on π2 by
a character.

– We have #S(π1|M1) = #S(π2|M2) = 1.

Since #S(π1|M1) = #S(π2|M2) = 1, there exists a unique parabolic subgroup P =MN such
that S(π1|M1) = {χ1 = (M ∩M1, χM∩M1)} and S(π2|M2) = {χ2 = (M ∩M2, χM∩M2)} for some
χM∩M1 and χM∩M2 .

Corollary 3.22. Any χ ∈ S(π) is parameterized by (M, χM ) for some χM .

Proof. Take M ′ and χM ′ such that χ is parameterized by (M ′, χM ′). For each α ∈Π, take
λα ∈X∗,+ such that 〈Π\{α}, λα〉= 0 and 〈α, λα〉 6= 0. Then M ′ corresponds to {α ∈Π | χ(τλα) =
0} [Her11a, Proof of Proposition 2.12]. If α ∈Π2, then λα ∈XH2,∗,+. Therefore, there exist
χ′1 ∈ S(π1|H2) and χ′2 ∈ S(π2|H2) such that χ(τλα) = χ′1(τλα)χ′2(τλα) by Proposition 3.21. Since
π1|H2 is a direct sum of characters, χ′1(τλα) 6= 0 by Proposition 3.10. Hence χ(τλα) = 0 if and only
if χ′2(τλα) = 0. By Proposition 3.14, S(π2|H2) = S(π2|M2)|κ[XH2,∗,+] = {χ2}|κ[XH2,∗,+]. Therefore, we
have χ′2(τλα) = χ2(τλα). It is zero if and only if α ∈ΠM ∩Π2. By the same argument, for α ∈Π1,
χ(τλα) = 0 if and only if α ∈ΠM ∩Π1. Hence M ′ =M . 2

Moreover, we assume the following conditions.

– The representation π1 is an admissible G-representation.

– The representation π2 is an admissible [M2(F ), M2(F )]-representation.

Lemma 3.23. Under the above conditions, π is admissible as a representation of G.

Proof. Let K ′ be a compact open subgroup. Then we have πK
′
= (π1 ⊗ π[M2(F ),M2(F )]∩K′

2 )K
′
.

Since π
[M2(F ),M2(F )]∩K′
2 is finite dimensional, there exists a compact open subgroup K ′′ ⊂K ′

which acts on π
[M2(F ),M2(F )]∩K′
2 trivially. Hence πK

′ ⊂ (π1 ⊗ π[M2(F ),M2(F )]∩K′
2 )K

′′
= πK

′′

1 ⊗
π

[M2(F ),M2(F )]∩K′
2 . The right-hand side is finite dimensional. 2

Corollary 3.24. If M =M1, then S(π) = S(π1)⊗ S(π2) = {(M1, χM∩M1(χM∩M2 |XM1,∗,0
))}.

Proof. Take χ ∈ S(π) and let χM : XM,∗,0→ κ× such that χ is parameterized by (M, χM ).
The character χ−1

M is given by a restriction of χ on X∗,+ ∩Π⊥M =X∗,+ ∩Π⊥1 =XH2,∗,+.
By Proposition 3.21, we have χ|κ[XH2,∗,+] = (χ1 ⊗ χ2)|κ[XH2,∗,+]. Hence, by Proposition 3.8,
we have χM |XH2,∗

= (χM∩M1 |XM,∗,0∩XH2,∗
)(χM∩M2 |XM,∗,0∩XH2,∗

). Since M =M1, XH2,∗ =XM,∗,0.
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Therefore, χM = χM∩M1(χM∩M2 |XM1,∗,0
). Since π is admissible, S(π) 6= ∅. So we get the

corollary. 2

3.4 z-extension and Satake parameters
Let G̃→G be a z-extension and take a hyperspecial maximal compact subgroup K̃ as in
Lemma 2.1. A representation π of G can be regarded as a representation of G̃. Let π̃ be this
representation. Denote the inverse image of T by T̃ and let XG̃,∗ be the group of cocharacters

of T̃ . We have a surjective map XG̃,∗→X∗ which induces XG̃,∗,+→X∗,+.

Lemma 3.25. Let r : κ[XG̃,∗,+]→ κ[X∗,+] be the induced homomorphism.

(i) We have S(π̃) = {χ ◦ r | χ ∈ S(π)}.

(ii) If χ : κ[X∗,+]→ κ is parameterized by (M, χM ), then χ ◦ r is parameterized by (M̃, χ
M̃

);
here M̃ is the inverse image of M in G̃ and χ

M̃
is the composition X

M̃,∗,0→XM,∗,0
χ−→ κ×.

Proof. Let Z be the kernel of G̃→G. If an irreducible K̃-representation V ′ is a subrepresent-
ation of π̃, then Z ∩ K̃ acts on V ′ trivially. Therefore, V ′ comes from an irreducible representation
ofK. Let Ṽ be an irreducible representation of K̃ coming from an irreducible representationV ofK.
To prove (i), it is sufficient to prove that HomK̃(Ṽ , π̃)'HomK(V, π) as κ[XG̃,∗,+]-modules. (Here,
κ[XG̃,∗,+] acts on HomK(V, π) through r.)

As a vector space, HomK̃(Ṽ , π̃)'HomK(V, π). So it is sufficient to prove that this
isomorphism is κ[XG̃,∗,+]-equivariant. Define rG : HG̃(Ṽ )→HG(V ) as in the proof of Lemma 2.4.

Then it is easy to see that the isomorphism HomK̃(Ṽ , π̃)'HomK(V, π) is HG̃(Ṽ )-equivariant;
here HG̃(Ṽ ) acts on HomK(V, π) through rG. Hence by the commutative diagram in Lemma 2.4,
it is sufficient to prove that r = rT |κ[XG̃,∗,+], where rT : κ[XG̃,∗]'HT̃ (Ṽ U(κ))→HT (V U(κ))'
κ[X∗] is the homomorphism defined in the proof of Lemma 2.4. This follows from the definition
of r and rT .

Take (M̃1, χ
′
M̃1

) which corresponds to χ ◦ r. For α ∈Π, take λ̃α ∈XG̃,∗,+ such that

〈λ̃α,Π\{α}〉= 0 and 〈λ̃α, α〉 6= 0. Put λα = r(λ̃α). Then Π
M̃

= ΠM = {α ∈Π | χ(τλα) = 0}=
{α ∈Π | χ ◦ r(τ

λ̃α
) = 0}= Π

M̃1
. Hence M̃1 = M̃ . The homomorphism χ′

M̃1
is characterized by

χ′
M̃1
|XM̃,∗,0∩XG̃,∗,+ = (χ ◦ r|XM̃,∗,0∩XG̃,∗,+)−1. The homomorphism χ

M̃
satisfies the same character-

ization. Hence χ′
M̃1

= χ
M̃

. 2

4. A theorem of changing the weight

In this section, we assume that the derived group of G is simply connected. For α ∈Π, we denote
a fundamental weight corresponding to α by ωα.

4.1 Changing the weight
We prove the following theorem, which is a generalization of Herzig’s theorem [Her11a,
Corollary 6.11].

Theorem 4.1. Let V1, V2 be irreducible representations of K with lowest weight ν1, ν2,
respectively. Assume that 〈ν1, α̌〉= 0 and ν2 = ν1 − (q − 1)ωα for some α ∈Π. Let χ : κ[X∗,+]→ κ
be an algebra homomorphism parameterized by (M, χM ). Assume that α 6∈ΠM . If α̌ 6∈XM,∗,0
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or χM (α̌) 6= 1, then

c-IndGK V1 ⊗HG(V1) χ' c-IndGK V2 ⊗HG(V2) χ.

Let V1, V2, ν1, ν2 be as above. Fix λ ∈X∗,+ such that 〈λ,Π\{α}〉= 0 and 〈λ, α〉 6= 0. Then
there exist non-zero ϕ21 ∈HG(V1, V2) and ϕ12 ∈HG(V2, V1) whose support is Kλ($)K. By the
proof of [Her11a, Corollary 6.11], Theorem 4.1 follows from the following lemma.

Lemma 4.2. We have SG(ϕ12 ∗ ϕ21) ∈ κ×(τ2λ − τ2λ−α̌).

This lemma follows from the following two lemmas by [Her11a, Proposition 5.1]. These also
answer Herzig’s question [Her11a, Question 6.9].

Lemma 4.3. The composition ϕ12 ∗ ϕ21 is non-zero and its support is Kλ($)2K.

Lemma 4.4. For µ ∈X∗,+, if µ6 2λ then µ= 2λ or µ6 2λ− α̌.

First, we prove Lemma 4.3. For each w ∈W 'NK(T (O))/T (O), we fix a representative of w
and denote it by the same letter w.

Lemma 4.5. Let P =MN be a standard parabolic subgroup. Then we have

G(O) =
∐

w∈W/WM

w(w−1Iw ∩N(O))P (O).

Proof. Since (w−1Iw ∩N(O))(w−1Iw ∩ P (O)) = w−1Iw, it is sufficient to prove G(O) =∐
w∈W/WM

IwP (O). By the Bruhat decomposition G(κ) =
∐
w∈W/WM

B(κ)wP (κ), for g ∈
G(O), there exists w ∈W and p ∈ P (O) such that (red(wp))−1red(g) ∈B. Hence (wp)−1g ∈ I.
Therefore, g ∈ Iwp. Hence G(O) =

⋃
w∈W IwP (O). Assume that Iw1P (O) ∩ Iw2P (O) 6= ∅ for

w1, w2 ∈W . Applying red, we have B(κ)w1P (κ) ∩B(κ)w2P (κ) 6= ∅. Therefore, by the Bruhat
decomposition of G(κ), we have w1 ∈ w2WM . 2

To prove Lemma 4.3, we use the following lemma. We use the argument in the proof of
[Her11a, Proposition 6.7].

Lemma 4.6. Let V, V ′ be irreducible representations of K with lowest weight ν, ν ′, and lowest
weight vector v ∈ V, v′ ∈ V ′, respectively. Assume that for µ ∈X∗,+, V Nµ(κ) ' (V ′)Nµ(κ) as
Mµ(κ)-representations. Let ϕ ∈HG(V, V ′) be such that supp ϕ=Kµ($)K and ϕ(µ($))v = v′.
Put I = red−1(B(κ)) and t= µ($). Then we have

ϕ ∗ [1, v] =
∑

w∈W−ν/(W−ν∩Wµ)

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

[wat−1, v′].

Proof. We have

(ϕ ∗ [1, v])(x) =
∑

y∈G/K

ϕ(y)[1, v](xy) =
∑

y∈KtK/K

ϕ(y)[1, v](xy).

If this is not zero, then xy ∈K for some y ∈KtK. Hence x ∈Kt−1K. Namely, supp(ϕ ∗ [1, v])⊂
Kt−1K. The value at x= kt−1 for k ∈K is

(ϕ ∗ [1, v])(kt−1) =
∑

y∈KtK/K

ϕ(y)[1, v](kt−1y) = ϕ(t)[1, v](k) = ϕ(t)k−1v.

Therefore, we have

ϕ ∗ [1, v] =
∑

k∈K/(K∩t−1Kt)

[kt−1, ϕ(t)k−1v].
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Put P = Pµ. We have K ∩ t−1Kt⊃ P (O) and red(K ∩ t−1Kt) = P (κ). Therefore, we have
a surjective map G(O)/P (O)�K/(K ∩ t−1Kt). For each w ∈W 'NK(T (O))/T (O), we fix a
representative of w and denote it by the same letter w. Then, by the above lemma, we have

G(O) =
∐

w∈W/Wµ

w(w−1Iw ∩N(O))P (O).

Hence ϕ ∗ [1, v] is a sum of a form [wat−1, ϕ(t)a−1w−1v] for a ∈ w−1Iw ∩N(O) and w ∈
W/Wµ. We prove that ϕ(t)a−1w−1v 6= 0 implies w ∈W−νWµ. Since red(a) ∈ w−1B(κ)w ∩
N(κ)⊂ w−1U(κ)w, we have a−1w−1v = w−1v. The homomorphism ϕ(t) is given by V �
(V )Nµ(κ) ' (V ′)Nµ(κ) ↪→ V ′. Hence if ϕ(t)w−1v 6= 0, then w−1v ∈ V Nµ(κ). Since {g ∈G(κ) |
gv ∈ κv}= P−ν(κ), we have P−ν(κ)⊃ wNµ(κ)w−1. Then ∆−−ν ∪∆+ ⊃ w(∆+\∆+

µ ). Hence,
(∆−\∆−−ν) ∩ w(∆+\∆+

µ ) = ∅. Take w′ ∈W−νwWµ such that w′ is shortest in W−νwWµ [Bou02,
ch. IV, Exercises, § 1 (3)]. Then (∆−\∆−−ν) ∩ w′(∆+\∆+

µ ) = ∅. By the condition of w′, ∆− ∩
w′(∆+\∆+

µ ) = ∆− ∩ w′∆+ and (∆−\∆−−ν) ∩ w′∆+ = ∆− ∩ w′∆+. Therefore, we have ∆− ∩
w′∆+ = ∅. Hence w′ = 1. We have w ∈W−νWµ/Wµ =W−ν/(W−ν ∩Wµ). Hence we may assume
w ∈W−ν . Therefore, ϕ(t)w−1v = ϕ(t)v = v′. Hence,

ϕ ∗ [1, v] =
∑

w∈W−ν/(W−ν∩Wµ)

∑
a∈(w−1Iw∩N(O))/(w−1Iw∩N(O)∩t−1Kt)

[wat−1, v′].

Since 〈α, µ〉< 0 for all weights α of N , t= µ(π) satisfies tN(O)t−1 ⊃N(O). Hence tN(O)t−1 ∩
K =N(O). Equivalently, we have N(O) ∩ t−1Kt= t−1N(O)t. We also have that red(t−1N(O)t)
is trivial. Hence t−1N(O)t⊂ w−1Iw. Therefore, w−1Iw ∩N(O) ∩ t−1Kt= t−1N(O)t. Hence we
have

ϕ ∗ [1, v] =
∑

w∈W−ν/(W−ν∩Wµ)

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

[wat−1, v′]. 2

Proof of Lemma 4.3. Put t= λ($). Let v1 ∈ V1, v2 ∈ V2 be lowest weight vectors. We may
assume ϕ21(t)v1 = v2 and ϕ12(t)v2 = v1. By Lemma 4.6, we have

ϕ21 ∗ [1, v1] =
∑

w∈W−ν1/(W−ν1∩Wλ)

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

[wat−1, v2].

By the assumption, W−ν2 ∩Wλ =W−ν2 . Hence we have

ϕ12 ∗ [1, v2] =
∑

b∈N(O)/t−1N(O)t

[bt−1, v1]

by Lemma 4.6. Therefore, we have

ϕ12 ∗ ϕ21 ∗ [1, v1] = ϕ12 ∗
( ∑
w∈W−ν1/(Wλ∩W−ν1 )

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

[wat−1, v2]
)

=
∑

w∈W−ν1/(Wλ∩W−ν1 )

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

wat−1ϕ12 ∗ [1, v2]

=
∑

w∈W−ν1/(Wλ∩W−ν1 )

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

∑
b∈N(O)/t−1N(O)t

[wat−1bt−1, v1]
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=
∑

w∈W−ν1/(Wλ∩W−ν1 )

∑
a∈(w−1Iw∩N(O))/t−1N(O)t

∑
b∈t−1N(O)t/t−2N(O)t2

[wabt−2, v1]

=
∑

w∈W−ν1/(Wλ∩W−ν1 )

∑
c∈(w−1Iw∩N(O))/t−2N(O)t2

[wct−2, v1].

Let ϕ ∈HG(V1), whose support is Kλ($)2K, and ϕ(λ($)2)v1 = v1. By Lemma 4.6, the right-
hand side of the above equation is ϕ ∗ [1, v1]. (Notice that Wλ =W2λ.) Since [1, v1] generates
c-IndGK(V1), we obtain the lemma. 2

Finally, we prove Lemma 4.4.

Proof of Lemma 4.4. Assume that µ6 2λ and µ 66 2λ− α̌. Since µ6 2λ, there exists nβ ∈
Z>0 such that 2λ− µ=

∑
β∈Π nββ̌. Then for γ ∈Π\{α}, we have

∑
β nβ〈γ, β̌〉= 〈γ, 2λ− µ〉=

−〈γ, µ〉6 0. By the assumption, nα = 0. Then
∑

β 6=α nβ〈γ, β̌〉6 0. Since (dγ〈γ, β̌〉)β,γ∈Π\{α}
is symmetric and positive definite for some dγ > 0, we have nβ = 0 for all β ∈Π\{α}. Hence
µ= 2λ. 2

4.2 Comparison of composition factors
We prove the following proposition in this section.

Proposition 4.7. Let χ : κ[X∗,+]→ κ be an algebra homomorphism and V an irreducible
representation of K. Assume that χ can be extended to κ[X∗]→ κ. Then c-IndGK(V )⊗HG(V ) χ
has a finite length and its composition factors depend only on χ and the T (κ)-representation

V U(κ).

When G= GL2, this proposition is proved by Barthel–Livné [BL95, Theorem 20].
Before proving this proposition, we give an application. For a parabolic subgroup P ⊂G, let

SpP be the special representation [Gro]. If we want to emphasize G, we write SpP,G. We have
the following corollary.

Corollary 4.8. Let V be an irreducible K-representation such that V U(κ) is the trivial
representation and χ : κ[X∗]→ κ an algebra homomorphism parameterized by (T, 1XT,∗,0 = 1X∗).
Then the composition factors of c-IndGK(V )⊗HG(V ) χ are {SpP | P ⊂G}.

Proof. Let V1 be the irreducible K-representation with lowest weight −
∑

α∈Π(q − 1)ωα.

Then we have V U(κ) ' V U(κ)
1 ' 1T (κ). By Proposition 4.7, we have that c-IndGK(V )⊗HG(V ) χ

and c-IndGK(V1)⊗HG(V1) χ have the same composition factors. By Herzig’s theorem [Her11a,
Theorem 3.1], we have

c-IndGK(V1)⊗HG(V1) χ' IndGB(c-IndTT∩K(1T∩K)⊗HT (1T∩K) χ) = IndGB(1T ).

Hence the corollary follows from [Her11a, Corollary 7.3]. 2

This corollary implies the following proposition. This proposition is proved by Herzig when
G= GLn [Her11a, Proposition 9.1] in a different way. Let OrdP (π) be the ordinary part of π
defined by Emerton [Eme10].

Proposition 4.9. Let π be an admissible representation of G which contains the trivial
representation of K. Assume that there exists χ ∈ S(π, 1K) which is parameterized by
(T, 1XT,∗,0 = 1X∗). Then π contains the trivial representation, or OrdP (π) 6= 0 for some proper
parabolic subgroup P .
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Proof. From the assumption, we have a non-zero homomorphism c-IndGK(1K)⊗HG(1K) χ→ π.
Hence π contains an irreducible subquotient of c-IndGK(1K)⊗HG(1K) χ as a subrepresentation. By
Corollary 4.8, such subquotient is SpP for a parabolic subgroup P . If P =G, then 1G = SpG ⊂ π.
If P 6=G, then 0 6= OrdP (SpP ) ↪→OrdP (π). 2

Remark 4.10. If π is irreducible, then π ' SpP . Since π contains the trivial K-representation, π
is trivial by [Her11a, Proposition 7.4].

In the rest of this section, we prove Proposition 4.7. We use the following theorem due to
Herzig [Her11a, Theorem 3.1].

Theorem 4.11. Let V be an irreducible representation of K with lowest weight ν, P =MN a
standard parabolic subgroup. Assume that StabW (ν)⊂WM . Then we have

c-IndGK(V )⊗HG(V ) HM (V N(κ))' IndGP (c-IndMM∩K V N(κ))

as G-representations and HM (V N(κ))-modules.

Remark 4.12. In fact, the theorem of Herzig is weaker than this theorem. However, his proof
can be applicable for this theorem. See a paper of Henniart and Vigneras [HV12], in which this
theorem is proved for a more general G.

For a parabolic subgroup P =MN , let VP be the irreducible representation of K with
lowest weight −

∑
α∈Π\ΠM (q − 1)ωα. Put πP = IndGK(VP )⊗HG(VP ) κ[X∗]. Then we have πP '

IndGP (c-IndMM∩K(1M∩K)⊗HM (1M(κ)) κ[X∗]) by Theorem 4.11. (Notice that (VP )N(κ) is the trivial
representation.) In particular, we have πB ' IndGB(κ[X∗]). Here, T acts on κ[X∗] by T →
T/T (O)'X∗→ End(κ[X∗]). (The last map is given by the multiplication.)

Lemma 4.13. For parabolic subgroups P ⊂ P ′, there exist ΦP,P ′ : πP ′ → πP and ΦP ′,P : πP →
πP ′ which have the following properties:

(i) ΦP,P ′ and ΦP ′,P are G- and κ[X∗]-equivariant;

(ii) ΦP,P = id;

(iii) for P1 ⊂ P2 ⊂ P3, ΦP1,P2 ◦ ΦP2,P3 = ΦP1,P3 and ΦP3,P2 ◦ ΦP2,P1 = ΦP3,P1 ;

(iv) for P ⊂ P ′, compositions ΦP,P ′ ◦ ΦP ′,P and ΦP ′,P ◦ ΦP,P ′ are given by
∏
α∈ΠP ′\ΠP

(τα̌ − 1).

Proof. For each α ∈Π, fix λα ∈X∗,+ such that 〈λα,Π\{α}〉= 0 and 〈λα, α〉 6= 0. We also fix a
lowest weight vector vP of VP .

Let P1 ⊂ P2 be parabolic subgroups such that #ΠP2 = #ΠP1 + 1 and ΠP2 = ΠP1 ∪ {α}.
Take ϕP2,P1 ∈HG(VP1 , VP2) and ϕP1,P2 ∈HG(VP2 , VP1) such that their support is Kλα($)K
and their values at λα($) send the lowest weight vector to the lowest weight vector (as in
§ 4.1). The elements ϕP2,P1 and ϕP1,P2 give homomorphisms πP1 → πP2 and πP2 → πP1 . Let
ΦP1,P2 (respectively ΦP2,P1) be a homomorphism given by ϕP1,P2 (respectively −τα̌−2λαϕP2,P1).
By Lemma 4.2, these homomorphisms satisfy condition (iv). For general P ′ ⊂ P , take a chain
of parabolic subgroups P ′ = P1 ⊂ · · · ⊂ Pr = P such that #ΠPi+1 = #ΠPi + 1. Define ΦP ′,P =
ΦP1,P2 ◦ · · · ◦ ΦPr−1,Pr and ΦP,P ′ = ΦPr,Pr−1 ◦ · · · ◦ ΦP2,P1 . Then by [Her11a, Proposition 6.3],
condition (iv) is satisfied.

It is sufficient to prove that ΦP ′,P and ΦP,P ′ are independent of the choice of a chain. To
prove this, we may assume that the length of the chain is 2. So let P, P ′, P1, P2 be parabolic
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subgroups and α, β ∈Π such that α 6= β, α, β 6∈ΠP , ΠP1 = ΠP ∪ {α}, ΠP2 = ΠP ∪ {β} and
ΠP ′ = ΠP ∪ {α, β}. Put tα = λα($) and tβ = λβ($). Then by Lemma 4.6, we have

(ΦP ′,P1 ◦ ΦP1,P )([1, vP ]) =
∑

a∈N(O)/t−1
α N(O)tα

ΦP ′,P1([at−1
α , vP1 ])

=
∑

a∈N(O)/t−1
α N(O)tα

∑
b∈N(O)/t−1

β N(O)tβ

[at−1
α bt−1

β , vP ′ ]

=
∑

c∈N(O)/(tαtβ)−1N(O)(tαtβ)

[c(tαtβ)−1, vP ′ ].

Hence we have (ΦP ′,P1 ◦ ΦP1,P )([1, vP ]) = (ΦP ′,P2 ◦ ΦP2,P )([1, vP ]). Therefore, we have ΦP ′,P1 ◦
ΦP1,P = ΦP ′,P2 ◦ ΦP2,P .

Since ΦP ′,P1 ◦ ΦP1,P satisfies condition (iv),

(τα̌ − 1)(τβ̌ − 1)(ΦP,P2 ◦ ΦP2,P ′) = (ΦP,P2 ◦ ΦP2,P ′) ◦ (ΦP ′,P1 ◦ ΦP1,P ◦ ΦP,P1 ◦ ΦP1,P ′).

By ΦP ′,P1 ◦ ΦP1,P = ΦP ′,P2 ◦ ΦP2,P , the right-hand side is equal to

(ΦP,P2 ◦ ΦP2,P ′ ◦ ΦP ′,P2 ◦ ΦP2,P ) ◦ (ΦP,P1 ◦ ΦP1,P ′).

Using condition (iv) for ΦP,P2 ◦ ΦP2,P ′ , this is equal to

(τα̌ − 1)(τβ̌ − 1)(ΦP,P1 ◦ ΦP1,P ′).

Since πP is a torsion-free κ[X∗]-module [Her11a, Corollary 6.5], we have ΦP,P2 ◦ ΦP2,P ′ =
ΦP,P1 ◦ ΦP1,P ′ . We get the lemma. 2

We fix such homomorphisms. Since πP is a torsion-free κ[X∗]-module [Her11a, Corollary 6.5],
condition (iv) implies ΦP,P ′ and ΦP ′,P are injective.

Lemma 4.14. We have πKP ' κ[X∗].

Proof. We have πP ' IndKP∩K(c-IndMM∩K(1M∩K)⊗HM (1M∩K) κ[X∗]) by the Iwasawa decomposi-
tion G=KP . Therefore, we have

πKP = HomK(1K , IndKP∩K(c-IndMM∩K(1M∩K)⊗HM (1M∩K) κ[X∗]))

' HomM∩K(1M∩K , c-IndMM∩K(1M∩K)⊗HM (1M∩K) κ[X∗])

' EndM (c-IndMM∩K(1M∩K))⊗HM (1M∩K) κ[X∗]' κ[X∗]. 2

Remark 4.15. The homomorphism IndGB(κ[X∗]) 3 f 7→ f(1) ∈ κ[X∗] gives an isomorphism πKB '
κ[X∗].

Set f0 = [1, 1]⊗ 1 ∈ c-IndGK(1K)⊗HG(1K) κ[X∗] = πG. Then πKG is generated by f0 as a κ[X∗]-
module. We also have that πG is generated by πKG = κ[X∗]f0 as a G-module. We can prove the
following lemma using an argument of Vigneras [Vig08]. This lemma also follows from [Eme10,
Proposition 4.3.4, Theorem 4.4.6].

Lemma 4.16. Let P =MN be a parabolic subgroup and σ1, σ2 representations of M . Then we
have HomM (σ1, σ2)'HomG(IndGP (σ1), IndGP (σ2)).

Proof. Set W (M) = {w ∈W | w(ΠM )⊂∆+}. Then this is a set of complete representatives
of W/WM [Bou02, ch. IV, Exercises, § 1 (3)]. Hence we have the Bruhat decomposition
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G/P =
∐
w∈W (M) UwP/P . For w ∈W (M), set

π′w =
{
f : UwP → σ1

∣∣∣∣ f is a locally constant function, supp f is compact modulo P ,
f(gp) = p−1f(g) for g ∈ UwP , p ∈ P

}
.

This is a representation of U and it is sufficient to prove that (π′w)N = 0 if w 6= 1. We
have UwP/P ' U ∩ wNw−1. Since w ∈W (M), U ∩ wNw−1 = U ∩ wUw−1. Therefore, as a
representation of U ∩ wUw−1, π′w ' πw−1 ⊗ σ1 where πw−1 is the representation defined in
[Vig08, Definition 1]. If w 6= 1, then w−1 6∈WM . Hence there exists α ∈∆+\∆+

M such that
w−1(α)< 0. Let Uα ⊂G be the one-dimensional subgroup corresponding to α. Then Uα ⊂N and
as a representation of Uα, we have π′w ' πw−1 ⊗ σ1. Hence (π′w)Uα = (πw−1)Uα ⊗ σ1. By [Vig08,
Proposition 2], (πw−1)Uα = 0. Hence (π′w)Uα = 0. Since Uα ⊂N , we have (π′w)N = 0. Now the
lemma follows from the argument in the proof of [Vig08, Théorème 8]. 2

Lemma 4.17. The element τα̌ − 1 ∈ κ[X∗] is irreducible.

Proof. Take d ∈ Z>0 and λ ∈X∗ such that 〈α, X∗〉= dZ and 〈α, λ〉= d. Then we have X∗ = Zλ⊕
Ker α. Let a, b ∈ κ[X∗] such that τα̌ − 1 = ab. Put t= τλ. Then we have a=

∑
n ant

n and bn =∑
n bnt

n where an, bn ∈ κ[Ker α]. Put ka = max{n | an 6= 0}, la = min{n | an 6= 0}, kb = max{n |
bn 6= 0}, lb = min{n | bn 6= 0}. We may assume ka − la 6 kb − lb. Take c ∈ Z and λ0 ∈Ker α such
that α̌= cλ+ λ0. Then c= 1 or 2 and we have ab= τα̌ − 1 = tcτλ0 − 1. Therefore, ka + kb = c
and akabkb = τλ0 ∈ κ[Ker α]×. Replacing (a, b) with (au−1, bu) for u= tka−1aka ∈ κ[X∗]×, we
may assume ka = 1 and aka = 1. Hence kb = c− 1. We prove a ∈ κ[X∗]×. If ka = la, then
a= t ∈ κ[X∗]×. Hence we may assume ka 6= la. By ab= τα̌ − 1 = tcτλ0 − 1, we have la + lb = 0.
Therefore, (c, ka, la, kb, lb) satisfies the following conditions:

c= 1 or 2, ka = 1, kb = c− 1, la < ka, ka − la 6 kb − lb, la + lb = 0.

From ka = 1, kb = c− 1 and ka − la 6 kb − lb, we have 1− la 6 c− 1− lb. Since la + lb = 0, we
have 1− la 6 c− 1 + la. Therefore, la > 1− c/2. We also have 1 = ka > la. Hence la 6 0. From
this, 0> 1− c/2. Hence c= 2. Therefore 06 la 6 1− c/2 = 0. Hence la = 0 and lb =−la = 0. We
get (c, ka, la, kb, lb) = (2, 1, 0, 1, 0).

Now we have a= t+ a0 and b= b1t+ b0. Since ab= τλ0t
2 − 1, we have

b1 = τλ0 , a0b1 + b0 = 0 and a0b0 =−1.

By the last equation, b0 ∈ κ[X∗]×. Hence b0 ∈ κ×τµ for some µ ∈X∗. We have τλ0 = b1 =
−b0a−1

0 = b20. Therefore, λ0 = 2µ. Hence α̌= 2(λ+ µ) ∈ 2X∗. This is a contradiction since we
assume that the derived group of G is simply connected. 2

Lemma 4.18. The image of f0 under ΦB,G is a basis of πKB .

Proof. It is sufficient to prove that ΦB,G(πKG ) = πKB . We prove ΦB,G(πKG )⊃
∏
β∈Π\{α}(τβ̌ − 1)πKB

for all α ∈Π. Then for each α ∈Π, there exists aα ∈ κ[X∗] such that aαΦB,G(f0) =
∏
β∈Π\{α}

(τβ̌ − 1)f ′0 where f ′0 is a basis of πKB . Since (τα̌ − 1) are distinct irreducible elements and κ[X∗]
is a unique factorization domain, we have ΦB,G(f0) ∈ κ[X∗]×f ′0. Hence the lemma is proved.

So it is sufficient to prove ΦB,G(πKG )⊃
∏
β∈Π\{α}(τβ̌ − 1)πKB for all α ∈Π. Fix α ∈Π and

let P be the parabolic subgroup corresponding to {α}. Since ΦP,G(πKG )⊃ ΦP,G(ΦG,P (πKP )) =∏
β∈Π\{α}(τβ̌ − 1)πKP , it is sufficient to prove ΦB,P (πKP ) = πKB . By Lemma 4.16, ΦB,P is given by a

certain homomorphism Φ: c-IndMM∩K(1M∩K)⊗HM (1M∩K) κ[X∗]→ IndMM∩B(1M∩B). We also have
that ΦP,B is induced by some Φ′ : IndMM∩B(1M∩B)→ c-IndMM∩K(1M∩K)⊗HM (1M∩K) κ[X∗]. It is
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sufficient to prove that Φ induces surjective homomorphism between the spaces of K-invariants.
Since ΦP,G ◦ ΦG,P = (τα̌ − 1) (respectively ΦG,P ◦ ΦP,G = (τα̌ − 1)), Φ′ ◦ Φ (respectively Φ ◦ Φ′)
is induced by (τα̌ − 1). Hence Φ′ ◦ Φ = (τα̌ − 1) and Φ ◦ Φ′ = (τα̌ − 1) by Lemma 4.16. Namely,
Φ′ and Φ satisfy the conditions of Lemma 4.13 for M . Therefore, it is sufficient to prove the
lemma for G=M . We assume that the semisimple rank of G is one.

Now we assume that the semisimple rank of G is one. Let Π = {α}. Take a, b ∈ κ[X∗]
such that ΦB,G(πKG ) = aπKB , ΦG,B(πKB ) = bπKG and ab= τα̌ − 1. Assume ΦB,G(πKG ) 6= πKB . It is
equivalent to a 6∈ κ[X∗]×. By the above lemma, b ∈ κ[X∗]×. Hence ΦG,B(πKB ) = πKG . Since πG
is generated by πKG , ΦG,B is surjective. Therefore, ΦG,B is isomorphic. Let χ : κ[X∗]→ κ be a
homomorphism defined by χ(τλ) = 1 for all λ ∈X∗. Then we have πB ⊗κ[X∗] χ= IndGB(1T ). Hence
we have IndGB(1T )' πG ⊗κ[X∗] χ. Consider a homomorphism c-IndGK(1K)→ 1G defined by f 7→∑

g∈G/K f(g). This gives a homomorphism πG ⊗κ[X∗] χ→ 1G and the induced homomorphism
(πG ⊗κ[X∗] χ)K → (1G)K = 1G is surjective since an image of [1, 1] ∈ (c-IndGK(1K))K is non-
zero. Consider the following maps: 1G ↪→ IndGB(1T )' πG ⊗κ[X∗] χ→ 1G. Take K-invariants.
Then we have that 1G = (1G)K ↪→ (IndGB(1T ))K is isomorphic (by the Iwasawa decomposition)
and (πG⊗κ[X∗])

Kχ→ (1G)K = 1G is surjective. Hence the composition 1G→ 1G is surjective.
Since both sides are one-dimensional, it is isomorphic. Hence 1G is a direct summand of
IndGB(1T ). Therefore, EndG(IndGB(1T )) has a non-trivial idempotent. However, by Lemma 3.19,
EndG(IndGB(1T ))' EndT (1T )' κ. This is a contradiction. 2

By this lemma, Im ΦB,G is a subrepresentation of πB generated by πKB . For each w ∈
W 'NK(T (O))/T (O), we fix a representative of w and denote it by the same letter w.
For a subset A⊂W of W , let XG,A ⊂ πB = IndGB κ[X∗] be a B-stable subspace defined
by XG,A = {f ∈ πB | supp f ⊂

⋃
w′∈A Bw

′B/B}. For w ∈W , put XG,>w =XG,{w′∈W |w′>w} and
XG,>w =XG,{w′∈W |w′>w}. Set XA =XG,A, X>w =XG,>w and X>w =XG,>w for A⊂W , w ∈W .
Set Y = ΦB,G(πG), YA = Y ∩XA. For a parabolic subgroup P =MN , put W (M) = {w ∈W |
w(ΠM )⊂∆+}. Then W (M)×WM →W is bijective [Bou02, ch. IV, Exercises, § 1 (3)].

Let A⊂W be a subset such that
⋃
w∈A BwB is open. (In other words, if w ∈A and w′ >w

then w′ ∈A.) Let w ∈A be a minimal element and set A′ =A\{w}.

Lemma 4.19. Let I ⊂ κ[X∗] be a principal ideal. For f ∈ πB, f ∈XA + IπB if and only if
f(x) ∈ I for all x ∈BvB and v ∈W\A. In particular, if I1, I2 ⊂ κ[X∗] are principal ideals then
(XA + I1πB) ∩ (XA + I2πB) =XA + (I1 ∩ I2)πB.

Proof. It is obvious that if f ∈XA + IπB then f(x) ∈ I for all x ∈BvB and v ∈W\A. Assume
that f(x) ∈ I for all x ∈BvB and v ∈W\A. Let a ∈ I be a generator of I. Since κ[X∗] is an
integral domain, there exists a locally constant function f0 :

⋃
v∈W\A BvB→ κ[X∗] such that

f(x) = af0(x). Since
⋃
v∈W\A BvB is closed, there exists f1 ∈ πB such that f1|⋃

v∈W\A BvB
= f0.

Then f = (f − af1) + af1 and f − af1 ∈XA, af1 ∈ IπB.
Since κ[X∗] is a unique factorization domain, if I1, I2 are principal ideals, then I1 ∩ I2 is also

a principal ideal. Hence the second statement follows from the first statement. 2

Lemma 4.20. Let P =MN be a parabolic subgroup, w, v0 ∈W (M) and v1 ∈WM . Then v0v1 >
w if and only if v0 > w.

Proof. Put v = v0v1. Let ` be the length function of W . Then `(v) = `(v0) + `(v1) [Bou02, ch. IV,
Exercises, § 1 (3)]. Hence v > v0. Therefore, v0 > w implies v > w.

We prove v > w implies v0 > w by induction on `(v1). If `(v1) = 0, then v1 = 1. Hence there
is nothing to prove. Assume that `(v1)> 0 and take α ∈ΠM such that v1sα < v1 where sα ∈WM
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is the reflection corresponding to α. Put s= sα. Then `(v0v1s) = `(v0) + `(v1s) = `(v0) + `(v1)−
1 = `(v0v1)− 1. Hence vs < v. By the definition of W (M), we have ws > w. Hence we get
vs> w [Deo77, Theorem 1.1 (II, ii)]. Therefore, v0(v1s)> w. Since `(v1s)< `(v1), we have v0 > w
by inductive hypothesis. 2

Lemma 4.21. We have YA/YA′ =
∏
α∈Π,wsα<w

(τα̌ − 1)(XA/XA′).

Proof. Set Θ = {α ∈Π | wsα <w} and put I =
∏
α∈Θ(τα̌ − 1)κ[X∗]. First we prove YA/YA′ ⊂

I(XA/XA′); namely, we prove YA ⊂ IπB +XA′ . Let Iα = (τα̌ − 1)κ[X∗]. By Lemma 4.19, it is
sufficient to prove YA ⊂ IαπB +XA′ for all α ∈Θ. Let Pα =MαNα be the parabolic subgroup
corresponding to {α}. Recall that T acts on κ[X∗] and πB = IndGB(κ[X∗]). This action induces
the action of T on κ[X∗]/Iα. The image of α̌ acts on κ[X∗]/Iα trivially. Therefore, the action of
T on κ[X∗]/Iα is extended to the action of Mα such that [Mα(F ), Mα(F )] acts on it trivially by
Lemma 3.2. We have IndGPα(κ[X∗]/Iα)⊂ IndGB(κ[X∗]/Iα) = πB/IαπB.

Let f ∈ (πB/IαπB)K = (IndGB(κ[X∗]/Iα))K . We prove f ∈ IndGPα(κ[X∗]/Iα); namely, f(gp) =
p−1f(g) for g ∈G and p ∈ Pα. Let g0 ∈G and p0 ∈ Pα. By the Iwasawa decomposition G=KPα,
there exist k0 ∈K and p′0 ∈ Pα such that g0 = k0p

′
0. Since Pα =MαNα = [Mα(F ), Mα(F )]TNα =

([Mα(F ), Mα(F )] ∩K)([Mα(F ), Mα(F )] ∩B)TNα = ([Mα(F ), Mα(F )] ∩K)B, there exist k′0 ∈
[Mα(F ), Mα(F )] ∩K and b0 ∈B such that p′0p0 = k′0b0. Hence f(g0p0) = f(k0p

′
0p0) =

f(k0k
′
0b0) = b−1

0 f(1). Since k′0 ∈ [Mα(F ), Mα(F )], we have (k′0)−1f(1) = f(1). Hence f(g0p0) =
(k′0b0)−1f(1) = (p′0p0)−1f(1). Let g ∈G and p ∈ Pα. Take k ∈K and p′ ∈ Pα such that g = kp′.
Then applying the above formula for g0 = g, k0 = k, p′0 = p′ and p0 = p, we have f(gp) =
(p′p)−1f(1). Applying the above formula for g0 = 1, k0 = 1, p′0 = 1 and p0 = p′, we get f(p′) =
(p′)−1f(1). Hence f(gp) = p−1f(p′) = p−1f(kp′) = p−1f(g). So f ∈ IndGPα(κ[X∗]/Iα). Hence the
image of ΦG,B(f0) under πB → πB/IαπB is in IndGPα(κ[X∗]/Iα). (Recall that f0 = [1, 1]⊗ 1 ∈ πKG .)
Since πG is generated by f0, the image of Y is contained in IndGPα(κ[X∗]/Iα).

For f ∈ πB, let f be the image of f under the canonical projection πB → πB/IαπB =
IndGB(κ[X∗]/Iα). Let f ∈ YA. Then supp f ⊂

⋃
w′∈A Bw

′B/B. Since f ∈ IndGPα(κ[X∗]/Iα), its
support is right Pα-invariant. Hence if supp f ∩BwB/B 6= ∅, supp f ∩BwsαB/B 6= ∅. By the
definition of Θ, wsα <w. This contradicts supp f ⊂

⋃
w′∈A Bw

′B/B and the minimality of w.
So we have supp f ⊂

⋃
w′∈A′ Bw

′B/B. Hence f ∈XA′ + IαπB.
We prove YA/YA′ ⊃ I(XA/XA′). Let P =MN be a parabolic subgroup corresponding to Π\Θ.

First we prove that ΦB,P (πP ) ∩XA→XA/XA′ is surjective. Since XA/XA′ 'X>w/X>w and
XA ⊃X>w, we may assume A= {w′ ∈W | w′ > w}. For each parabolic subgroup P1 =M1N1 ⊂
P , put πM,P1 = IndMM∩P1

(c-IndM1
M1∩K 1M1∩K ⊗HM1 (1M1∩K) κ[X∗]). Then πP1 = IndGP (πM,P1). By

Lemma 4.16, for each P1 ⊂ P2 ⊂ P , ΦP1,P2 and ΦP2,P1 are induced by some ΦM
P1,P2

: πM,P2 →
πM,P1 and ΦM

P2,P1
: πM,P1 → πM,P2 . Such homomorphisms satisfy the conditions of Lemma 4.13.

Therefore, ΦM
P1,P2

induces a bijection πM∩KM,P2
' πM∩KM,P1

by Lemma 4.18. Put Φ = ΦM
B,P . Then

ΦB,P (πP ) = IndGP (Φ(πM,P )).
Let f ∈ ΦB,P (πP ). By the definition of X>w, f ∈X>w if and only if supp f ⊂

⋃
v>w BvB. For

v ∈W , take v0 ∈W (M) and v1 ∈WM such that v = v0v1. Since w ∈W (M), v > w if and only if
v0 > w by the above lemma. Hence

⋃
v>w BvB =

⋃
v>w,v∈W (M) BvWMB =

⋃
v>w,v∈W (M) BvP .

Therefore, ΦB,P (πP ) ∩X>w = {f ∈ IndGP (Φ(πM,P )) | supp f ⊂
⋃
v>w,v∈W (M) BvP/P}. Let Z>w

be this space. Put Z>w = {f ∈ IndGP (Φ(πM,P )) | supp f ⊂
⋃
v>w,v∈W (M) BvP/P}. Then the

homomorphism Z>w = ΦB,P (πM,P ) ∩X>w→X>w/X>w induces Z>w/Z>w→X>w/X>w.
By the Bruhat decomposition G/P =

⋃
v∈W (M) BvP/P , the space Z>w/Z>w is isomorphic
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to the space of locally constant compact support Φ(πM,P )-valued functions on BwP/P '
BwB/B. The space X>w/X>w is isomorphic to the space of locally constant compact support
κ[X∗]-valued functions on BwB/B. The homomorphism Z>w/Z>w→X>w/X>w is induced by
Φ(πM,P ) ↪→ πM,B → πM,B/XM,>1 ' κ[X∗]. By Remark 4.15, πM∩KM,B ↪→ πM,B → πM,B/XM,>1 '
κ[X∗] is isomorphic. Since Φ induces πM∩KM,P ' πM∩KM,B , Φ(πM,P ) ↪→ πM,B → πM,B/XM,>1 ' κ[X∗]
is surjective. Therefore ΦB,P (πP ) ∩X>w→X>w/X>w is surjective.

By the above argument, we get (ΦB,P (πP ) ∩XA) +XA′ =XA. Hence we get IΦB,P (πP ) =
ΦB,P (IπP )=ΦB,P (ΦP,G(ΦG,P (πP )))=ΦB,G(ΦG,P (πP ))⊂ ΦB,G(πG)=Y , IXA ⊂ Y ∩XA + IXA′

⊂ YA +XA′ . This gives us the lemma. 2

From this lemma, we obtain the following proposition.

Proposition 4.22. Let V be an irreducible representation ofK. The module c-IndGK(V )⊗HG(V )

κ[X∗] is free as a κ[X∗]-module.

Remark 4.23. Barthel–Livné proved that, as an EndG(c-IndGKZG(V ))-module, c-IndGKZG(V ) is
free if G= GL2 [BL94, Theorem 19].

Proof. Let ν be a lowest weight of V . By Theorem 4.11, we have c-IndGK(V )⊗HG(V ) κ[X∗]'
IndGP−ν (c-IndM−νM−ν∩K(V N−ν(κ))⊗HM−ν (V N−ν (κ))

κ[X∗]). Therefore, it is sufficient to prove that

c-IndM−νM−ν∩K(V N−ν(κ))⊗HM−ν (V N−ν (κ))
κ[X∗] is free. Hence we may assume P−ν =G. Therefore,

V is a character of K. By Corollary 3.4, there exists a character νG of G such that νG|K ' V .
Then ϕ 7→ ϕν−1

G
gives an isomorphism HG(V )'HG(1K) (see § 3.1). By this isomorphism, we can

identify HG(V ) and HG(1K). Under this identification, we have c-IndGK(V )⊗ ν−1
G ' c-IndGK(1K).

Hence we may assume V = 1K . Therefore, c-IndGK(V )⊗HG(V ) κ[X∗] = πG ' Y . Since XA/XA′ is
free [Vig08, Lemma 3], YA/YA′ is free by Lemma 4.21. Hence Y is free. 2

Proof of Proposition 4.7. We prove the proposition by induction on #Π−ν . Namely, we prove
the following by induction on n: if ν satisfies #Π−ν 6 n then the module c-IndGK(V )⊗HG(V ) χ
has a finite length and its composition factors depend only on χ and the T (κ)-representation
V U(κ).

If Π−ν = ∅, then c-IndGK(V )⊗HG(V ) χ is isomorphic to a principal series representa-
tion [Her11a, Theorem 3.1]. Hence the proposition follows.

Assume Π−ν 6= ∅ and take α ∈Π−ν . Put ν ′ = ν − (q − 1)ωα and let V ′ be the irreducible
K-representation with lowest weight ν ′. By inductive hypothesis, c-IndGK(V ′)⊗HG(V ′) χ has
a finite length. Define χ′ : κ[X∗]→ κ[t, t−1] by χ′(τλ) = χ(τλ)t〈ωα,λ〉 for λ ∈X∗. (Here, t
is an indeterminant.) Then χ factors through χ′. Put π = c-IndGK(V )⊗HG(V ) χ

′ and π′ =
c-IndGK(V ′)⊗HG(V ′) χ

′. These are free κ[t, t−1]-modules by Proposition 4.22. Take λ ∈X∗ such
that 〈λ,Π\{α}〉= 0 and 〈λ, α〉 6= 0. Put a= χ(τα̌). As in § 4.1, λ gives Φ: π→ π′ and Φ′ : π′→
π such that Φ ◦ Φ′ = (at− 1). Therefore, Φ′ is injective and Im Φ′ ⊂ (at− 1)π. By [CG97,
Lemma 2.3.4], π/(t− 1)π has a finite length and π/(t− 1)π and π′/(t− 1)π′ have the same
composition factors. 2

5. Classification theorem

Using results in §§ 3 and 4, we prove the main theorem. Almost all the proof of the theorem is
a copy of Herzig’s proof.

2161

https://doi.org/10.1112/S0010437X13007379 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007379


N. Abe

5.1 Construction of representations
We recall the definition of supersingular representations. Recall that a character κ[X∗,+]→ κ is
parameterized by a pair (M, χM ) where M is the Levi subgroup of a standard parabolic subgroup
of G and χM : XM,∗,0→ κ× is a character of XM,∗,0 where XM,∗,0 = {λ ∈X∗ | 〈λ,ΠM 〉= 0}. (See
§ 2.2.)

Definition 5.1 (Herzig [Her11a, Definition 4.7]). Let π be an irreducible admissible represen-
tation of G.

(i) The representation π is supersingular with respect to (K, T, B) if each χ ∈ S(π)
corresponds to (G, χG) for some χG : XG,∗,0→ κ×.

(ii) The representation π is supersingular if it is supersingular with respect to all (K, T, B).

It will be proved that π is supersingular if and only if π is supersingular with respect to
(K, T, B) for a fixed (K, T, B) (Corollary 5.13).

Now we introduce the set of parameters P = PG. It will parameterize the isomorphism classes
of irreducible admissible representations. Before giving P, we give one notation. Let M be
the Levi subgroup of a standard parabolic subgroup and σ its representation with the central
character ωσ. Then set Πσ = {α ∈Π | 〈ΠM , α̌〉= 0, ωσ ◦ α̌= 1GL1(F )}.

Let P = PG be the set of Λ = (Π1,Π2, σ1) such that:

– Π1 and Π2 are subsets of Π;

– σ1 is an irreducible admissible representation of MΠ1 with central character ωσ1 , which is
supersingular with respect to (MΠ1 ∩K, T, MΠ1 ∩B);

– Π2 ⊂Πσ1 .

We consider Λ = (Π1,Π2, σ1) and Λ′ = (Π′1,Π
′
2, σ
′
1) to be equal to each other if Π1 = Π′1, Π2 = Π′2

and σ1 ' σ′1.
For Λ = (Π1,Π2, σ1) ∈ P, we attach the representation I(Λ) of G in the following way. Let

PΛ =MΛNΛ be the standard parabolic subgroup corresponding to Π1 ∪Πσ1 . By Lemma 3.2,
there exists the unique extension of σ1 to MΛ such that [MΠσ1

(F ), MΠσ1
(F )] acts on it trivially.

We denote this representation by the same letter σ1. By the definition, Π1 ∪Π2 is a subset of
Π1 ∪Πσ1 . Hence this set defines a standard parabolic subgroup of MΛ. Let σΛ,2 be the special
representation of MΛ corresponding to this parabolic subgroup. By the construction, σΛ,2|MΠσ1

is a special representation of MΠσ1
. By the following general lemma, the restriction of σΛ,2 to

[MΠσ1
(F ), MΠσ1

(F )] is irreducible and admissible [Her11a, Theorem 7.2].

Lemma 5.2. Let π be a special representation of G. Then the restriction of π to [G(F ), G(F )]
is irreducible and admissible.

Proof. By the definition of a special representation, the restriction of π to [G, G](F ) is a special
representation of [G, G](F ). Hence it is irreducible and admissible [Her11a, Theorem 7.2]. If the
derived group of G is simply connected, [G, G](F ) = [G(F ), G(F )]. Hence the lemma follows. In
general, let G̃→G be a z-extension ofG. Then the pull-back π̃ of π to G̃ is a special representation
of G̃ and by the above argument, the restriction of π̃ to [G̃(F ), G̃(F )] is irreducible and admissible.
Since the image of [G̃(F ), G̃(F )] in G is [G(F ), G(F )], π is irreducible and admissible as a
representation of [G(F ), G(F )]. 2

Put σΛ = σ1 ⊗ σΛ,2 and I(Λ) = IG(Λ) = IndGPΛ
(σΛ). It is easy to check that the tuple

(M1, M2, σ1, σ2) = (MΠ1 , MΠσ , σ1, σΛ,2) satisfies the conditions of § 3.3. By Lemma 3.23, σΛ is
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admissible. Hence I(Λ) is admissible. By the following lemma, σΛ is irreducible. (Apply for
H =MΛ and H ′ = [MΠσ1

(F ), MΠσ1
(F )].)

Lemma 5.3. Let H be a group, H ′ a normal subgroup of H and σ2 a representation of H
which is irreducible as a representation of H ′ and EndH′(σ2) = κ. For a representation σ of H,
HomH′(σ2, σ) has a structure of a representation of H/H ′ defined by (hψ)(v) = hψ(h−1v) for
h ∈H, ψ ∈HomH′(σ2, σ) and v ∈ σ2.

(i) The natural homomorphism HomH′(σ2, σ)⊗ σ2→ σ is injective.

(ii) If σ is irreducible, then HomH′(σ2, σ) is zero or irreducible.

(iii) For an irreducible representation σ1 of H/H ′, σ1 ⊗ σ2 is an irreducible H-representation.

Proof. (i) Assume that the kernel of the homomorphism is non-zero. Take a non-zero finite-
dimensional subspace V ⊂HomH′(σ2, σ) such that V ⊗ σ2→ σ is not injective. This is an
H ′-homomorphism. Therefore, there exists a non-zero subspace V1 of V such that the kernel
is V1 ⊗ σ2. This means V1 = 0 in HomH′(σ2, σ). This is a contradiction.

(ii) Assume that σ is irreducible and HomH′(σ2, σ) 6= 0. Then by (i), we have an injective
homomorphism HomH′(σ2, σ)⊗ σ2 ↪→ σ. Since σ is irreducible, we have HomH′(σ2, σ)⊗ σ2 ' σ.
Therefore, HomH′(σ2, σ) is irreducible.

(iii) Let σ ⊂ σ1 ⊗ σ2 be a non-zero subrepresentation. As a representation of H ′, σ1 ⊗ σ2 is
a direct sum of σ2. Hence HomH′(σ2, σ) 6= 0. Since EndH′(σ2) = κ, we have HomH′(σ2, σ1 ⊗
σ2)' σ1. This is an isomorphism between H/H ′-representations. Therefore, we have
HomH′(σ2, σ)⊂ σ1. Since σ1 is irreducible, we have HomH′(σ2, σ) = σ1. Therefore, σ = σ1 ⊗ σ2. 2

We have the following calculations of Satake parameters.

– If π is a special representation, then S(π) = {(T, χtriv)} where χtriv : XT,∗,0 =X∗→ κ× is
given by λ 7→ 1 [Her11a, Proposition 7.4].

– If π is supersingular with the central character ωπ, then S(π) = {(G, χωπ)}; here, the
homomorphism χωπ : XG,∗,0→ κ× is defined by χωπ(λ) = ωπ(λ($)) [Her11a, Definition 4.7].

Applying Proposition 3.7 and Corollary 3.24 for (M1, M2, π1, π2) = (MΠ1 , MΠσ1
, σ1, σΛ,2), we

have the following lemma.

Lemma 5.4. We have S(I(Λ)) = {(MΠ1 , χωσ1
)}; here, χωσ1

: XMΠ1 ,∗,0→ κ× is defined by
χωσ1

(λ) = ωσ1(λ($)).

5.2 Irreducibility of the representation
In this subsection, we assume that the derived group of G is simply connected. We prove the
irreducibility of I(Λ). We need a lemma.

Lemma 5.5. Let Λ = (Π1,Π2, σ1) ∈ P, V an irreducible representation of K and ν its lowest
weight. Assume that HomK(V, I(Λ)) 6= 0 and α ∈Π satisfies 〈Π1, α̌〉= 0. Then we have ωσ1 ◦
α̌|O× = ν ◦ α̌.

Before the proof, we give a remark on a result of [Gro]. Let I1 = red−1(U(κ)) and SpP the
special representation for the finite group G(κ). Then we have a K-homomorphism SpP ↪→ SpP
and under this embedding, we have SpB(κ)

P = SpIP = SpI1
P [Her11a, (7.5)]. (See also the proof of

[Gro, Corollary 4.3].) Since SpP ↪→ SpP is a K-homomorphism, we have SpU(κ)
P = SpI1

P ⊂ SpI1
P .

Obviously, SpB(κ)
P ⊂ SpU(κ)

P . Hence SpU(κ)
P = SpB(κ)

P . In other words, T (κ) acts trivially on SpU(κ)
P .
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Proof. Set V1 = V NΛ(κ). Then V1 is an irreducible representation of MΛ ∩K with a lowest
weight ν. Moreover, we have HomMΛ∩K(V1, σΛ) 6= 0.

Let Q be the parabolic subgroup of MΛ corresponding to Π1 ∪Π2. Then we have σΛ,2 =
SpQ,MΛ

. Put L= [MΠσ1
, MΠσ1

]. This is an algebraic group and, since we assumed that the derived
group of G (hence, also of MΠσ1

) is simply connected, we have L(F ) = [MΠσ1
(F ), MΠσ1

(F )]. Then
σΛ,2|L = SpQ∩L,L. Put σ2 = σΛ,2 and M1 =MΠ1 .

Fix ψ ∈HomMΛ∩K(V1, σΛ)\{0} and consider V1 as a subspace of σΛ. Let v ∈ V1 be a lowest

weight vector. Then we have v ∈ σIMΛ,1

Λ where IMΛ,1 is the inverse image of (MΛ ∩ U)(κ)

in MΛ ∩K. Since L acts on σ1 trivially, we have v ∈ σIMΛ,1

Λ ⊂ σIMΛ,1∩L
Λ = σ1 ⊗ σ

IMΛ,1∩L
2 . Let

σ2 be the special representation of MΛ(κ) with respect to the parabolic subgroup Q(κ).

Then, by the remark before the proof, we have σ2 ↪→ σ2 and we have σ2
(U∩L)(κ) = σ

IMΛ,1∩L
2 .

Since 〈Πσ1 , Π̌1〉= 0, we have U ∩MΛ ' (U ∩ L)× (U ∩ [M1, M1]) as algebraic groups. By the
construction, [M1, M1](κ) acts on σ2 trivially. Hence we have σ2

(U∩L)(κ) = σ2
(U∩MΛ)(κ). By

the remark before the proof, T (κ) acts on σ2
(U∩MΛ)(κ) trivially. Hence T (O) acts on σ

IMΛ,1∩L
2

trivially.
Take α as in the lemma. Then Im α̌⊂ ZM1 . Hence for t ∈ O×, α̌(t) acts on σ1 by the scalar

ωσ1(α̌(t)). By the above argument, α̌(t) acts on σIMΛ,1∩L
2 trivially. Hence it acts on σIMΛ,1

Λ by the
scalar ωσ1(α̌(t)). On the other hand, α̌(t) acts on v by the scalar t〈ν,α̌〉 = ν(α̌(t)). This gives
the lemma. 2

Remark 5.6. If we treat the Satake transform in a natural way (see Remark 2.5), Lemma 5.4
should be S(I(Λ)) = {(MΠ1 , ωσ1)}. (We use a notation of Herzig [Her11a, Proposition 4.1].)
Hence the above lemma should be a consequence of Lemma 5.4.

Proposition 5.7. For Λ ∈ P, I(Λ) is irreducible.

Proof. Take Λ = (Π1,Π2, σ1) ∈ P and put M1 =MΠ1 and M2 =MΠ2 . Let χ be the algebra
homomorphism κ[X∗,+]→ κ corresponding to (M1, χωσ1

). Then S(I(Λ)) = {χ}. Let π ⊂ I(Λ) be
a subrepresentation of I(Λ). Take an irreducible K-subrepresentation V of π. Then ∅ 6= S(π, V )⊂
S(I(Λ)) = {χ}. Therefore, we have a non-zero homomorphism c-IndGK(V )⊗HG(V ) χ→ π.

Let ν be a lowest weight of V . We take V such that the set {α ∈Π\ΠMΛ | 〈ν, α̌〉= 0} is
minimal. We claim that this set is empty. Assume that there exists α ∈Π\ΠMΛ such that
〈α̌, ν〉= 0. Put ν ′ = ν − (q − 1)ωα and let V ′ be the irreducible K-representation with lowest
weight ν ′. Since α 6∈ΠMΛ , we have α 6∈Πσ1 . By the definition of Πσ1 , we have:

– 〈α̌,ΠM1〉 6= 0; or

– ωσ1(α̌($)) 6= 1 or ωσ1 ◦ α̌|O× is not trivial.

The above lemma shows that if 〈α̌,ΠM1〉= 0 then ωσ1 ◦ α̌|O× is trivial. Therefore we have that
〈α̌,ΠM1〉 6= 0 or χωσ1

(α̌) 6= 1. Hence we have c-IndGK(V )⊗HG(V ) χ' c-IndGK(V ′)⊗HG(V ′) χ by
Theorem 4.1. Therefore, we get a non-zero homomorphism c-IndGK(V ′)⊗HG(V ′) χ→ π. Namely,
V ′ is an irreducible K-subrepresentation of π. This contradicts the minimality of {α ∈Π\ΠMΛ |
〈α̌, ν〉= 0}.

Therefore, we have 〈ν, α̌〉 6= 0 for α ∈Π\ΠMΛ . Put V1 = V NΛ(κ). Since χ is parameterized by
(M1, χωσ1

) and M1 ⊂MΛ, χ factors through SMΛ
G . By [Her11a, Theorem 3.1], c-IndGK(V )⊗HG(V )

χ' IndGPΛ
(c-IndMΛ

MΛ∩K(V1)⊗HMΛ (V1) χ). Therefore, we have IndGPΛ
(c-IndMΛ

MΛ∩K(V1)⊗HMΛ (V1) χ)→
π ↪→ IndGPΛ

σΛ. By Lemma 4.16, the composition is given by a certain homomorphism
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c-IndMΛ
MΛ∩K(V1)⊗HMΛ (V1) χ→ σΛ. Since σΛ is irreducible, this homomorphism is surjective.

Therefore, c-IndGK(V )⊗HG(V ) χ→ IndGPΛ
(σΛ) is surjective. In particular, π ↪→ IndGPΛ

(σΛ) is
surjective. Hence π = IndGPΛ

(σΛ). 2

5.3 Classification theorem
We will use the following lemma.

Lemma 5.8. Let P =MN be a parabolic subgroup, σ an irreducible admissible representation
of M which is supersingular with respect to (M ∩K, T, M ∩B) and ωσ the central character
of σ. Then IndGP (σ) has a filtration whose graded pieces are {I(ΠM ,Π2, σ) |Π2 ⊂Πσ}.

Proof. Let P ′ =M ′N ′ be the standard parabolic subgroup corresponding to ΠM ∪Πσ. Then
by Lemma 3.2, we can extend σ to M ′ such that [MΠσ(F ), MΠσ(F )] acts on it trivially. We
have IndM

′

P∩M ′(σ) = (IndM
′

P∩M ′ 1M )⊗ σ. So we have IndGP (σ) = IndGP ′((IndM
′

P∩M ′ 1M ′)⊗ σ). The
definition of the special representations implies that IndM

′

P∩M ′ 1M ′ has a filtration whose graded
pieces are {SpQ2,M ′} where Q2 is a parabolic subgroup of M ′ which contains P ∩M ′. Hence
IndGP (σ) has a filtration whose graded pieces are {IndGP ′(SpQ2,M ′ ⊗ σ)}. Let Π′2 ⊂ΠM ′ be a subset
corresponding to Q2. Then we have IndGP ′(SpQ2,M ′ ⊗ σ) = I(ΠM ,Π′2\ΠM , σ). 2

Remark 5.9. If the derived group of G is simply connected, then I(Λ) is irreducible by
Proposition 5.7. Hence the above lemma gives the composition factors of IndGP (σ). In particular,
it has a finite length. The irreducibility of I(Λ) will be proved in § 5.4. Hence the above lemma
gives the composition factors of IndGP (σ) for any G.

Proposition 5.10. Assume that the derived group of G is simply connected. The
correspondence Λ 7→ I(Λ) gives a bijection between P and the set of isomorphism classes of
irreducible admissible representations.

Proof. First, we prove that the map is surjective by induction on #Π. Let π be an irreducible
admissible representation. Let χ be an element of S(π) and assume that it is parameterized by
(M1, χM1). We assume that M1 is minimal. If M1 =G, then π is supersingular. Therefore, we
assume that M1 6=G. Take an irreducible K-representation V such that χ ∈ S(π, V ). Let ν be a
lowest weight of V . We assume that Π−ν is minimal with respect to the condition χ ∈ S(π, V ).

Assume that there exists α ∈Π−ν\ΠM1 such that 〈ΠM1 , α̌〉 6= 0 or χM1(α̌) 6= 1. Set ν ′ =
ν − (q − 1)ωα and let V ′ be the irreducible K-representation with lowest weight ν ′. Then
Π−ν′ = Π−ν\{α}( Π−ν . By Theorem 4.1, we have c-IndGK(V )⊗HG(V ) χ' c-IndGK(V ′)⊗HG(V ′) χ.
Hence χ ∈ S(π, V ′). This contradicts the minimality of Π−ν . Therefore, for all α ∈Π−ν\ΠM1 ,
〈ΠM1 , α̌〉= 0 and χM1(α̌) = 1. From the first condition, 〈Π−ν\ΠM1 , Π̌M1〉= 0.

Let P =MN be a parabolic subgroup corresponding to Π−ν ∪ΠM1 . First assume thatM 6=G.
Put V1 = V N(κ). Then we have c-IndGK(V )⊗HG(V ) χ' IndGP (c-IndMM∩K(V1)⊗HM (V1) χ) [Her11a,
Theorem 3.1]. Recall that we have a surjective homomorphism c-IndGK(V )⊗HG(V ) χ→ π. Hence
there exist an irreducible admissible representation σ of M and a surjective homomorphism
IndGP (σ)→ π [Her11a, Lemma 9.9]. By inductive hypothesis, σ = IM (Λ′) for some Λ′ ∈ PM . Hence
there exists a parabolic subgroup P0 =M0N0 ⊂ P and an irreducible admissible representation σ0

of M0 which is supersingular with respect to (M0 ∩K, T, M0 ∩B) such that σ is a subquotient of
IndMP0∩M σ0 by Lemma 5.8. Hence π is a subquotient of IndGP0

(σ0). By Lemma 5.8, all composition
factors of IndGP0

(σ0) are I(Λ) for some Λ ∈ P. Hence π = I(Λ) for some Λ ∈ P.
Therefore, we may assume that Π−ν ∪ΠM1 = Π. Let P ′ =M ′N ′ be the standard parabolic

subgroup corresponding to Π\ΠM1 . Then for all α ∈ΠM ′ , 〈ν, α̌〉= 0, 〈α, Π̌M1〉= 0 and
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χM1(α̌) = 1. Set L′ = [M ′, M ′]. Then the group of coweights XL′,∗ of L′ ∩ T is ZΠ̌M ′ which
is a subgroup of X∗ ∩Π⊥M1

. Put XL′,∗,+ =X∗,+ ∩ ZΠ̌M ′ . By Lemma 3.19 and Proposition 3.14,

we have S(π, V )|κ[XL′,∗,+] ⊂ S(π|M ′ , V N
′
(κ))|κ[XL′,∗,+] ⊂ S(π|L′ , V N

′
(κ)|L′∩K). Since 〈ν, Π̌M ′〉= 0,

V N
′
(κ)|L′∩K is trivial. Therefore, χ|κ[XL′,∗,+] ∈ S(π|L′ , 1L′∩K). Set χ′ = χ|κ[XL′,∗,+]. We have

a non-zero homomorphism c-IndL
′

L′∩K 1L′∩K ⊗HL′ (1L′∩K) χ
′→ π. Since χ is parameterized by

(M1, χM1), χ′ is parameterized by (L′ ∩ T, χM1 |XL′,∗). Since we have χM1(α̌) = 1 for all α ∈
ΠM ′ , we have χM1 |XL′,∗ = 1XL′,∗ . Hence χ′ is parameterized by (L′ ∩ T, 1XL′,∗). Therefore, by
Proposition 4.7, the set of composition factors of c-IndL

′

L′∩K 1L′∩K ⊗HL′ (1L′∩K) χ
′ is {SpQ′,L′ |

Q′ ⊂ L′ is a parabolic subgroup}. Hence there exists a unique parabolic subgroup P2 =M2N2

such that ΠM1 ⊂ΠM2 and SpP2∩L′,L′ ↪→ π. Let σ2 be the special representation SpP2
. Then the

restriction of σ2 to L′ is SpP2∩L′,L′ . Put σ1 = HomL′(σ2, π). This is non-zero. By Lemma 5.3, σ1

is an irreducible representation of G and σ1 ⊗ σ2
∼−→ π.

We prove that σ1 is admissible. Let K ′ be an open compact subgroup and take an open
compact subgroup K ′′ such that σK

′′

2 6= 0. Let K ′′′ be an open compact subgroup which is
contained in K ′ and K ′′. Then we have σK

′

1 ⊗ σK
′′

2 ⊂ σK′′′1 ⊗ σK′′2 ⊂ (σ1 ⊗ σ2)K
′′′

= πK
′′′

. Since π
is admissible, πK

′′′
is finite dimensional. Hence the dimension of σK

′

1 is finite.
We prove σ1 is supersingular with respect to (M1 ∩K, T, M1 ∩B) as a representation of

M1. Since L′ acts on σ1 trivially, σ1 is regarded as a representation of G/L′. By Lemma 3.2,
M1→G/L′ is surjective. Therefore, σ1|M1 is irreducible and admissible. By inductive hypothesis,
σ1|M1 ' IM1(Λ′) for some Λ′ ∈ PM1 . In particular, #S(σ1|M1) = 1. Since χ ∈ S(σ1 ⊗ σ2) is
parameterized by (M1, χM1), the element of S(σ1|M1) is parameterized by (M1, χ

′
M1

) for some
χ′M1

by Corollary 3.22. Hence σ1 is supersingular.
We prove that the map is injective. Let Λ′ = (Π′1,Π

′
2, σ
′
1) and assume that I(Λ)' I(Λ′).

Then we have S(I(Λ), V ) = S(I(Λ′), V ) 6= ∅ for some irreducible representation V of K. By
Lemma 5.4, (MΠ1 , χωσ1

) = (MΠ′1 , χωσ′1
). Hence Π1 = Π′1. Let ν be a lowest weight of V . Then

by Lemma 5.5, for α ∈Π such that 〈Π1, α̌〉= 0, ωσ1 ◦ α̌|O× = ν ◦ α̌= ωσ′1 ◦ α̌|O× . On the other
hand, we have ωσ1 ◦ α̌($) = χωσ1

(α̌) = ωσ′1 ◦ α̌($). Hence ωσ1 ◦ α̌= ωσ′1 ◦ α̌. Therefore, we have
Πσ1 = Πσ′1 . Hence PΛ = PΛ′ .

Now we have IndGPΛ
(σΛ)' IndGPΛ

(σΛ′). By Lemma 4.16, we have a non-zero homomorphism
σΛ→ σΛ′ . Since σΛ and σΛ′ are irreducible, σΛ ' σΛ′ . Set L= [MΠσ1

(F ), MΠσ1
(F )]. As a

representation of L, σΛ is a direct sum of special representations SpQ2,L where Q2 is the parabolic
subgroup of L corresponding to Π2. Hence we have Π2 = Π′2. Therefore, σΛ,2 ' σΛ′,2. Hence we
have σ1 'HomL(σ2,Λ, σΛ)'HomL(σ2,Λ′ , σΛ′)' σ′1. We get Λ = Λ′. 2

5.4 General case and corollaries
Theorem 5.11. Let G be a connected split reductive algebraic group. Then I(Λ) is irreducible
for all Λ ∈ P and Λ 7→ I(Λ) gives a bijection between P and the set of isomorphism classes of
irreducible admissible representations.

Proof. Take a z-extension 1→ Z→ G̃→G→ 1 of G. For each parabolic subgroup P =MN ,
let M̃ be the Levi subgroup of the parabolic subgroup of G̃ corresponding to ΠM . Then
1→ Z→ M̃ →M → 1 is a z-extension of M . For each representation π of G, let π̃ be the pull-
back of π to G̃. Then we have IG(Π1,Π2, σ1)∼ = IG̃(Π1,Π2, σ̃1) . In general, the representation
π of G is supersingular with respect to (K̃, B̃, T̃ ) if and only if its pull-back to G̃ is supersingular
with respect to (K, B, T ) by Lemma 3.25; here, K̃ is as in Lemma 2.1 and B̃, T̃ are the inverse
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images of B, T , respectively. By Proposition 5.7, this is irreducible. Hence IG(Λ) is irreducible
for Λ ∈ P.

Obviously, we also have that IG(Π1,Π2, σ1)' IG(Π′1,Π
′
2, σ
′
1) if and only if IG̃(Π1,Π2, σ̃1)'

IG̃(Π′1,Π
′
2, σ̃
′
1). Hence we have Π1 = Π′1, Π2 = Π′2 and σ̃1 ' σ̃′1 by Proposition 5.10. Hence we

have σ1 ' σ′1.
Let π be an irreducible admissible representation of G. Then there exists Λ0 = (Π1,Π2, σ1,0) ∈

PG̃ such that π̃ = IG̃(Λ0). Since Z is contained in the center of MΠ1 , it acts on σ1,0 by a character.
By the construction of IG̃(Λ0), Z acts on IG̃(Λ0)' π̃ by the same scalar. It is trivial since Z
acts on π̃ trivially. Hence Z acts on σ1,0 trivially; namely, σ1,0 ' σ̃1 for some representation of G.
Hence π = IG(Π1,Π2, σ1). This gives us the theorem. 2

We give corollaries of this theorem.

Corollary 5.12. For any irreducible admissible representation π of G, #S(π) = 1.

Proof. Obvious from Lemma 5.4 and Theorem 5.11. 2

Corollary 5.13. Let π be an irreducible admissible representation of G. Then the following
conditions are equivalent.

(i) The representation π is supersingular.

(ii) The representation π is supersingular with respect to (K, T, B).

(iii) The representation π is supercuspidal.

Proof. Take Λ = (Π1,Π2, σ1) ∈ P such that π = I(Λ). Then by Lemma 5.4, π is supersingular
with respect to (K, T, B) if and only if Π1 = Π. By Lemma 5.8, π is a subquotient of IndGP1

(σ1).
Hence, if π is not supersingular with respect to (K, T, B), then π is not supercuspidal.

Assume that π is a subquotient of IndGP0
σ0 for a proper parabolic subgroup P0 =M0N0 and

an irreducible admissible representation σ0. By Lemma 5.8, we may assume σ0 is supersingular
with respect to (K, T, B). By Lemma 5.8, PΠ1 = P0. Hence π is not supersingular with respect
to (K, T, B).

Hence (ii) and (iii) are equivalent. Since the property (iii) is independent of a choice of
(K, T, B), (i) and (ii) are equivalent. 2

Corollary 5.14. Let P =MN be a parabolic subgroup and σ a finite length admissible
representation of M . Then IndGP σ has a finite length.

Proof. We may assume σ is irreducible. This follows from Lemma 5.8 and Remark 5.9. 2

Corollary 5.15. Let ν : T → κ× be a character. Then IndGB(ν) has a length 2C where C =
#{α ∈Π | ν ◦ α̌= 1GL1}. In particular, IndGB(ν) is irreducible if and only if ν ◦ α̌ 6= 1GL1 for all
α ∈Π.

Proof. Notice that any character of T is supersingular. Hence this follows from Lemma 5.8 and
Remark 5.9. 2

Acknowledgements

I thank Florian Herzig and the referee for reading the manuscript and giving helpful comments.
I also thank Tetsushi Ito for introducing me to the theory of modulo p representations of p-adic
groups and Yoichi Mieda for helpful discussions. This work was supported by JSPS KAKENHI
Grant Number 21840016.

2167

https://doi.org/10.1112/S0010437X13007379 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007379


N. Abe

References
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