

COMPOSITIO MATHEMATICA

On a classification of irreducible admissible modulo p representations of a p-adic split reductive group

Noriyuki Abe

Compositio Math. 149 (2013), 2139–2168.

 ${\rm doi:} 10.1112/S0010437X13007379$

On a classification of irreducible admissible modulo p representations of a p-adic split reductive group

Noriyuki Abe

Abstract

We give a classification of irreducible admissible modulo p representations of a split p-adic reductive group in terms of supersingular representations. This is a generalization of a theorem of Herzig.

1. Introduction

Let p be a prime number and F a finite extension of \mathbb{Q}_p . In this paper, we consider modulo p representations of (the group of F-valued points of) a split connected reductive group G over F. The study of such representations was started by Barthel–Livné [BL94, BL95] when $G = \operatorname{GL}_2(F)$. They defined the notion of supersingular representations and gave a classification of non-supersingular irreducible representations. In particular, they proved that a representation is supersingular if and only if it is supercuspidal. Here, a representation is called supercuspidal if and only if it does not appear as a subquotient of a parabolic induction from an irreducible representation of a proper parabolic subgroup. By this theorem, to classify irreducible representations. When $G = \operatorname{GL}_2(\mathbb{Q}_p)$, irreducible supersingular representations are classified by Breuil [Bre03]. However, when $F \neq \mathbb{Q}_p$ a classification seems more complicated [BP12].

Herzig [Her11a] gave a definition of a supersingular representation for any split G using the modulo p Satake transform [Her11b]. He also gave a classification of irreducible admissible representations in terms of supersingular representations when $G = \operatorname{GL}_n(F)$. This is a generalization of a theorem of Barthel–Livné. In this paper, we generalize his classification to any split G.

Now we state our main theorem. Let $\overline{\kappa}$ be an algebraic closure of the residue field of F. All representations in this paper are smooth representations over $\overline{\kappa} \simeq \overline{\mathbb{F}}_p$. Fix a reductive \mathcal{O} -form of G and denote it by the same letter G. Let K be the group of \mathcal{O} -valued points of G. We also fix a Borel subgroup B and a split maximal torus $T \subset B$ of G. Then we can define the notion of supersingular representations with respect to (K, T, B). (See Herzig's paper [Her11a, Definition 4.7] or Definition 5.1 in this paper.) Let Π be the set of simple roots. Each subset $\Theta \subset \Pi$ corresponds to the standard parabolic subgroup P_{Θ} . Let $P_{\Theta} = M_{\Theta}N_{\Theta}$ be the Levi decomposition such that $T \subset M_{\Theta}$ and N_{Θ} is the unipotent radical of P_{Θ} . Consider the set \mathcal{P} of all $\Lambda = (\Pi_1, \Pi_2, \sigma_1)$ such that:

- $-\Pi_1$ and Π_2 are subsets of Π ;
- Received 2 April 2012, accepted in final form 13 May 2013, published online 9 October 2013.

2010 Mathematics Subject Classification 22E50 (primary).

Keywords: p-adic group, modulo p representation, classification.

This journal is © Foundation Compositio Mathematica 2013.

- $-\sigma_1$ is an irreducible admissible representation of M_{Π_1} which is supersingular with respect to $(M_{\Pi_1} \cap K, T, M_{\Pi_1} \cap B)$;
- if we let ω_{σ_1} be the central character of σ_1 and put $\Pi_{\sigma_1} = \{\alpha \in \Pi \mid \langle \alpha, \dot{\Pi}_1 \rangle = 0, \ \omega_{\sigma_1} \circ \check{\alpha} = \mathbf{1}_{\mathrm{GL}_1(F)}\}$ then $\Pi_2 \subset \Pi_{\sigma_1}$.

Then the main theorem says that there exists a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations of G.

To state the theorem more precisely, we define the representation $I(\Lambda)$ for $\Lambda = (\Pi_1, \Pi_2, \sigma_1) \in \mathcal{P}$. Let $P_{\Lambda} = M_{\Lambda}N_{\Lambda}$ be the Levi decomposition of the standard parabolic subgroup corresponding to $\Pi_1 \cup \Pi_{\sigma_1}$. First we construct the representation σ_{Λ} of M_{Λ} . We can prove that σ_1 can be extended uniquely to M_{Λ} such that $[M_{\Pi_{\sigma_1}}(F), M_{\Pi_{\sigma_1}}(F)]$ acts on it trivially (Lemma 3.2). We denote the extended representation by the same letter σ_1 . Let Q be the parabolic subgroup of M_{Λ} corresponding to $\Pi_1 \cup \Pi_2$. Then Q defines the special representation of M_{Λ} [Gro]. We denote it by $\sigma_{\Lambda,2}$. From the definition of the special representation, the restriction of $\sigma_{\Lambda,2}$ to $M_{\Pi_{\sigma_1}}$ is the special representation of $M_{\Pi_{\sigma_1}}$ with respect to the standard parabolic subgroup corresponding to Π_2 . Now we define $\sigma_{\Lambda} = \sigma_1 \otimes \sigma_{\Lambda,2}$.

In the case of GL_n , the construction is as follows. The Levi subgroup M_{Λ} is given by a product $\operatorname{GL}_{n_1} \times \cdots \times \operatorname{GL}_{n_r}$. The extension of σ_1 to M_{Λ} is a tensor product $\tau'_1 \boxtimes \cdots \boxtimes \tau'_r$. For each *i*, define a representation τ_i of GL_{n_i} as follows. If $\operatorname{GL}_{n_i} \subset M_{\Pi_1}$, then τ'_i is a supersingular representation and put $\tau_i = \tau'_i$. If $\operatorname{GL}_{n_i} \not\subset M_{\Pi_1}$, then τ'_i is a character. In this case, the intersection of the roots of GL_{n_i} and Π_2 gives a parabolic subgroup Q_i of GL_{n_i} . Put $\tau_i = \tau'_i \otimes \operatorname{Sp}_{Q_i}$; here Sp_{Q_i} is the special representation corresponding to Q_i . Then σ_{Λ} is given by $\sigma_{\Lambda} = \tau_1 \boxtimes \cdots \boxtimes \tau_r$. Each τ_i is a supersingular representation or a special representation twisted by a character (cf. [Her11a, Theorem 1.1]).

Put $I(\Lambda) = \operatorname{Ind}_{P_{\Lambda}}^{G}(\sigma_{\Lambda})$. The following is the main theorem of this paper.

THEOREM 1.1 (Theorem 5.11). For $\Lambda \in \mathcal{P}$, $I(\Lambda)$ is irreducible and the correspondence $\Lambda \mapsto I(\Lambda)$ gives a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations of G.

Using this theorem, we get the relation between supersingular representations and supercuspidal representations. Recall that a representation is called *supersingular* if it is supersingular with respect to any 3-tuple (K, T, B) chosen as before.

THEOREM 1.2 (Corollary 5.13). For an irreducible admissible representation π of G, the following conditions are equivalent.

- (i) The representation π is supersingular with respect to the fixed (K, T, B).
- (ii) The representation π is supersingular.
- (iii) The representation π is supercuspidal.

These theorems are proved by Barthel–Livné [BL94, BL95] ($G = GL_2$) and Herzig [Her11a] ($G = GL_n$). (In these cases, the equivalence of (i) and (ii) in Theorem 1.2 is almost clear since there is only one hyperspecial maximal compact subgroup of G up to conjugate. See Herzig's argument [Her11a, § 4].)

We also give a criterion of the irreducibility of a principal series representation.

THEOREM 1.3. Let $\nu: T \to \overline{\kappa}^{\times}$ be a character. Then $\operatorname{Ind}_B^G \nu$ is irreducible if and only if $\nu \circ \check{\alpha} \neq \mathbf{1}_{\operatorname{GL}_1(F)}$ for all $\alpha \in \Pi$.

This is proved by Barthel–Livné when $G = GL_2$ [BL94, BL95] and Ollivier [Oll06] when $G = GL_n$. In fact, we can describe the composition factors of $\operatorname{Ind}_P^G(\sigma)$ where σ is an irreducible admissible supersingular representation of the Levi subgroup of a parabolic subgroup P (Lemma 5.8 and Remark 5.9). When $G = GL_n$, such description is given by Herzig [Her11a, Theorem 8.7].

Now we give an outline of the proof. Using a z-extension, we may assume that the derived group of G is simply connected. Let c-Ind^G_K(V) be the compact induction from an irreducible K-representation V and $\mathcal{H}_G(V)$ the endomorphism ring of c-Ind^G_K(V). Let X_* be the group of cocharacters of T and $X_{*,+} = \{\lambda \in X_* \mid \langle \lambda, \check{\Pi} \rangle \subset \mathbb{Z}_{\geq 0}\}$. Then by the Satake transform, we have $\mathcal{H}_G(V) \simeq \overline{\kappa}[X_{*,+}]$ [Her11b, Corollary 1.3]. In particular, $\mathcal{H}_G(V)$ is commutative. Therefore, for each irreducible admissible representation π of G, there exist an irreducible representation V of K and a character χ of $\mathcal{H}_G(V)$ such that π is a quotient of c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi$. To prove the main theorem, we reveal the relation between c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi$ and a parabolic induction.

The first comparison is given by Herzig [Her11a, Theorem 3.1]. He proved the following. Let P = MN be a standard parabolic subgroup and its Levi decomposition and Π_M the set of simple roots of M. By the partial Satake transform, we have an injective homomorphism $\mathcal{H}_G(V) \hookrightarrow \mathcal{H}_M(V^{\overline{N}(\mathcal{O})})$. Fix a character χ of $\mathcal{H}_G(V)$. Let P = MN be a standard parabolic subgroup such that χ factors through $\mathcal{H}_G(V) \to \mathcal{H}_M(V^{\overline{N}(\mathcal{O})})$. Let ν be a lowest weight of V and put $\Pi_V = \{\alpha \in \Pi \mid \langle \nu, \check{\alpha} \rangle = 0\}$. Herzig proved that if $\Pi_V \subset \Pi_M$ then we have

$$\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \simeq \operatorname{Ind}_{P}^{G}(\operatorname{c-Ind}_{M\cap K}^{M}(V^{N(\mathcal{O})}) \otimes_{\mathcal{H}_{M}(V^{\overline{N}(\mathcal{O})})} \chi).$$
(1.1)

(He proved this theorem for any split G.)

Unfortunately, in the above theorem, the condition $\Pi_V \subset \Pi_M$ is needed. For example, if V is the trivial representation, the above theorem does not hold. However, we can prove the following 'changing the weight theorem'. Let V' be another irreducible K-representation and ν' its lowest weight. Assume that there exists a simple root α such that $\alpha \notin \Pi_M$, $\alpha \in \Pi_V$ and $\nu' = \nu - (q-1)\omega_{\alpha}$ where ω_{α} is a fundamental weight corresponding to α . Moreover, assume that $\langle \check{\alpha}, \Pi_M \rangle \neq 0$ or $\chi(\check{\alpha}) \neq 1$. Then we have

$$\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \simeq \operatorname{c-Ind}_{K}^{G}(V') \otimes_{\mathcal{H}_{G}(V)} \chi$$

(Theorem 4.1). In this theorem, $\Pi_{V'} = \Pi_V \setminus \{\alpha\} \subsetneqq \Pi_V$. Therefore, at least if χ is generic, then (1.1) holds. Herzig proved this theorem under some assumptions (which are enough for $G = \operatorname{GL}_n$). We prove it for any split G in this paper.

Finally, we must treat the case when neither theorem can be applied. An argument using a tensor product deduces us to the case of P = B. To use such arguments, we need to express the Satake parameters of σ_{Λ} by those of σ_1 and $\sigma_{\Lambda,2}$. Such calculation is given in § 3. If $G = \operatorname{GL}_n$, this calculation is almost obvious since any Levi subgroup of GL_n is a product of smaller groups GL_m .

Assume that P = B. In this case, Herzig studied the structure of the left-hand side of (1.1) by a (mysterious) calculation of the affine Hecke algebra when $G = \operatorname{GL}_n$. Our method is different from his, and ours gives more information on the structure of the left-hand side. In fact, we prove that both sides of (1.1) have a finite length and the same composition factors (Proposition 4.7). To prove it, we prove that $\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \mathcal{H}_{T}(V^{\overline{U}(\mathcal{O})})$ is free as a $\mathcal{H}_{T}(V^{\overline{U}(\mathcal{O})})$ -module (Proposition 4.22). By the theorem of changing the weight, for a generic χ , c-Ind_{K}^{G}(V) $\otimes_{\mathcal{H}_{G}(V)} \chi$ only depends on $V^{\overline{U}(\mathcal{O})}$ and χ . Using the freeness, it follows that the composition factors of c-Ind_{K}^{G}(V) $\otimes_{\mathcal{H}_{G}(V)} \chi$ only depend on $V^{\overline{U}(\mathcal{O})}$ and χ . Such an argument can

be found in the paper of Barthel–Livné [BL95] when $G = \text{GL}_2$. They proved the freeness (see Remark 4.23) by the detailed study of a compact induction. We prove the freeness by embedding c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \mathcal{H}_T(V^{\overline{U}(\mathcal{O})})$ to a principal series and considering the filtration coming from the Bruhat decomposition (Lemma 4.21).

Such comparisons are given in $\S4$. Using these comparisons, the main theorem is proved in $\S5$.

2. Preliminaries

2.1 Notation

In this paper, we use the following notation. Let p be a prime number, F a finite extension of \mathbb{Q}_p , \mathcal{O} its ring of integers, $\varpi \in \mathcal{O}$ a uniformizer, $\kappa = \mathcal{O}/(\varpi)$ the residue field and $q = \#\kappa$. Let G be a connected split reductive group over \mathcal{O} . Fix a Borel subgroup $B \subset G$ and a split maximal torus $T \subset B$. Let U be the unipotent radical of B. Then B = TU is a Levi decomposition of B. Let $\overline{B} = T\overline{U}$ be a Levi decomposition of the opposite group of B. We also denote the group of F-valued points of G by the same letter G. The only confusion coming from using the same letter is the notation '[G, G]'. In this paper, [G, G] means the derived group of G as an algebraic group. In general, $[G(F), G(F)] \subset [G, G](F)$ and it is not equal. If [G, G] is simply connected, then [G, G](F) = [G(F), G(F)].

We use similar notation for other groups (for example, B = B(F)). Set $K = G(\mathcal{O})$. For any algebraic group H, let Z° be the connected component of H containing the unit element and Z_H the center of H. We also use the notation Z_H for the center of any group H. For closed subgroups $H_1, H_2 \subset H$, we define a closed subgroup $Z_{H_1}(H_2)$ of H_1 by $Z_{H_1}(H_2) = \{h_1 \in$ $H_1 \mid h_1h_2 = h_2h_1$ for all $h_2 \in H_2\}$. For a group Γ , $\mathbf{1}_{\Gamma}$ is the trivial representation of Γ . For a representation V of Γ , V^{Γ} is the space of invariants and V_{Γ} is the space of coinvariants.

Let $(X^*, \Delta, X_*, \check{\Delta})$ be the root datum of (G, T). Then *B* determines the set of positive roots $\Delta^+ \subset \Delta$ and the set of simple roots $\Pi \subset \Delta^+$. Let *W* be its Weyl group. Let red: $K = G(\mathcal{O}) \to G(\kappa)$ be the canonical morphism. The set of dominant (respectively anti-dominant) elements in X^* is denoted by X^*_+ (respectively X^*_-). We also use notation $X_{*,+}$ and $X_{*,-}$. For $\lambda, \mu \in X_*$, we denote $\mu \leq \lambda$ if $\lambda - \mu \in \mathbb{Z}_{\geq 0} \check{\Pi}$.

Let P be a standard parabolic subgroup. It has a Levi decomposition P = MN. In this paper, we only consider the decomposition such that $T \subset M$. The opposite parabolic subgroup of P is denoted by $\overline{P} = M\overline{N}$. We denote the Levi decomposition of the standard parabolic subgroup corresponding to $\Theta \subset \Pi$ by $P_{\Theta} = M_{\Theta}N_{\Theta}$. The subset of Π corresponding to P is denoted by Π_P or Π_M . Put $\Delta_M = \Delta \cap \mathbb{Z}\Pi_M$ and $\Delta_M^+ = \Delta^+ \cap \Delta_M$. Let W_M be the Weyl group of Δ_M . For dominant $\nu \in X^*$, let $P_{\nu} = M_{\nu}N_{\nu}$ be the standard parabolic subgroup corresponding to $\Pi_{\nu} = \{\alpha \in \Pi \mid \langle \nu, \check{\alpha} \rangle = 0\}$. Put $W_{\nu} = \operatorname{Stab}_W(\nu), \ \Delta_{\nu} = \{\alpha \in \Delta \mid \langle \nu, \check{\alpha} \rangle = 0\}$ and $\Delta_{\nu}^+ = \Delta^+ \cap \Delta_{\nu}$. We use similar notation for dominant $\lambda \in X_*$.

For a subset $A \subset X^*$ and $A' \subset X_*$, $\langle A, A' \rangle = 0$ means $\langle \nu, \lambda \rangle = 0$ for all $\nu \in A$ and $\lambda \in A'$. Notice that this condition is automatically satisfied if A or A' is empty. We write $\langle A, \lambda \rangle = 0$ (respectively $\langle \nu, A' \rangle = 0$) instead of $\langle A, \{\lambda\} \rangle = 0$ (respectively $\langle \{\nu\}, A' \rangle = 0$).

A z-extension of G (over F) is a surjective homomorphism (as algebraic groups) $\widetilde{G} \to G \times_{\mathcal{O}} F$ over F such that the derived group of \widetilde{G} is simply connected and the kernel is a split torus which is central in $G \times_{\mathcal{O}} F$. Since the Galois cohomology of a split torus is trivial, the homomorphism $\widetilde{G} = \widetilde{G}(F) \to G(F) = G$ is also surjective. It is known that a z-extension exists. LEMMA 2.1. Let $\widetilde{G} \to G$ be a z-extension. Then there exists a hyperspecial maximal compact subgroup \widetilde{K} of \widetilde{G} such that the following conditions hold.

(i) The homomorphism $\widetilde{G} \to G$ induces a surjective homomorphism $\widetilde{K} \to K$.

(ii) The induced homomorphism $\widetilde{K} \to K$ induces a surjective homomorphism $\widetilde{G}(\kappa) \to G(\kappa)$.

(Here, we denote the \mathcal{O} -form of \widetilde{G} corresponding to \widetilde{K} by the same letter \widetilde{G} .)

(iii) The derived group of $\widetilde{G} \times_{\mathcal{O}} \kappa$ is simply connected.

Proof. Let $G_{ad} = \widetilde{G}_{ad}$ be the adjoint group of G, \mathcal{B} its building and $x \in \mathcal{B}$ the hyperspecial point corresponding to K. The point x defines the hyperspecial maximal compact subgroup \widetilde{K} of \widetilde{G} . Then (i) follows from [HR08, Proof of Proposition 3]. Since $\operatorname{Ker}(K \to G(\kappa))$ is the maximal normal pro-p subgroup of K, $\widetilde{K} \to K$ induces $\widetilde{G}(\kappa) \to G(\kappa)$. By (i), this homomorphism is surjective. Since $\widetilde{G} \times_{\mathcal{O}} F$ and $\widetilde{G} \times_{\mathcal{O}} \kappa$ have the same root data, (iii) follows.

LEMMA 2.2. The subgroup [G(F), G(F)] is closed in G(F) (with respect to the p-adic topology).

Proof. Let $1 \to Z \to \widetilde{G} \xrightarrow{r} G \to 1$ be a z-extension. By the surjectivity of $\widetilde{G}(F) \to G(F)$, we have $[G(F), G(F)] = r([\widetilde{G}(F), \widetilde{G}(F)])$. Since $[\widetilde{G}, \widetilde{G}]$ is simply connected, we have $[\widetilde{G}(F), \widetilde{G}(F)] = [\widetilde{G}, \widetilde{G}](F)$. The map $[\widetilde{G}, \widetilde{G}](F) \to [G, G](F)$ is an open map [BZ76, A.3. Lemma]. Therefore [G(F), G(F)] is open in [G, G](F). Hence [G(F), G(F)] is closed in [G, G](F). Since [G, G](F) is a closed subgroup of G(F), [G(F), G(F)] is closed in G(F).

2.2 Satake transform and irreducible representations of K

Let $\overline{\kappa}$ be an algebraic closure of κ . Recall that all representations in this paper are smooth representations over $\overline{\kappa}$. For a finite-dimensional representation V of K, let c-Ind^G_KV be a representation defined by

c-Ind^G_K
$$V = \{f : G \to V \mid f(xk) = k^{-1}f(x) (x \in G, k \in K), \text{ supp } f \text{ is compact}\}.$$

The action of $g \in G$ is given by $(gf)(x) = f(g^{-1}x)$. For $x \in G$ and $v \in V$, let $[x, v] \in \text{c-Ind}_{K}^{G}(V)$ be the element defined by supp([x, v]) = xK and [x, v](x) = v. Then g[x, v] = [gx, v] and [xk, v] = [x, kv] for $g \in G$ and $k \in K$. For finite-dimensional representations V_1, V_2 of K, $\text{Hom}_{G}(\text{c-Ind}_{K}^{G}V_1, \text{c-Ind}_{K}^{G}V_2)$ is identified with

$$\mathcal{H}_G(V_1, V_2) = \left\{ \varphi \colon G \to \operatorname{Hom}_{\overline{\kappa}}(V_1, V_2) \middle| \begin{array}{l} \varphi(k_2 x k_1) = k_2 \varphi(x) k_1 \ (k_1, k_2 \in K, x \in G), \\ \operatorname{supp} \varphi \text{ is compact} \end{array} \right\}.$$

The operator corresponding to $\varphi \in \mathcal{H}_G(V_1, V_2)$ is given by $f \mapsto \varphi * f$ where

$$(\varphi * f)(x) = \sum_{y \in G/K} \varphi(y) f(xy).$$

We denote $\mathcal{H}_G(V, V)$ by $\mathcal{H}_G(V)$. Let π be a representation of G. Then by the Frobenius reciprocity law, we have $\operatorname{Hom}_K(V, \pi) \simeq \operatorname{Hom}_G(\operatorname{c-Ind}_K^G(V), \pi)$. Hence $\operatorname{Hom}_K(V, \pi)$ is a right $\mathcal{H}_G(V)$ -module. We denote the action of $\varphi \in \mathcal{H}_G(V)$ on $\psi \in \operatorname{Hom}_K(V, \pi)$ by $\psi * \varphi$.

When V is irreducible, the structure of $\mathcal{H}_G(V)$ is given by the Satake transform [Her11b]. Namely, the Satake transform $S_G: \mathcal{H}_G(V) \to \mathcal{H}_T(V^{\overline{U}(\kappa)})$ defined by

$$S_G(\varphi)(t) = \sum_{u \in \overline{U}/\overline{U}(\mathcal{O})} \varphi(ut)|_{V^{\overline{U}(\kappa)}}$$

is injective and its image is $\{\varphi \in \mathcal{H}_T(V^{\overline{U}(\kappa)}) \mid \operatorname{supp} \varphi \subset T_+\}$ where $T_+ = \{t \in T \mid \alpha(t) \in \mathcal{O} \mid (\alpha \in \Delta^+)\}.$

Remark 2.3. The convention about positive and negative are interchanged comparing to Herzig's papers [Her11a, Her11b].

Herzig [Her11a] defined another homomorphism $S_G: \mathcal{H}_G(V) \to \mathcal{H}_T(V_{U(\kappa)})$ and, under the identification $V^{\overline{U}(\kappa)} \xrightarrow{\sim} V_{U(\kappa)}$, he proved $S_G = S_G$ if the derived group of G is simply connected [Her11a, Corollary 2.19].

LEMMA 2.4. For any G, $S_G = S_G$.

Proof. Let $\widetilde{G} \to G$ be a z-extension and Z the kernel of $\widetilde{G} \to G$. Take a hyperspecial maximal compact subgroup $\widetilde{K} \subset \widetilde{G}$ as in Lemma 2.1. Using the surjective homomorphism $\widetilde{K} \to K$, we regard V as an irreducible representation of \widetilde{K} . Define $\mathcal{H}_{\widetilde{G}}(V) \to \mathcal{H}_{G}(V)$ by $\varphi \mapsto (g \mapsto \sum_{z \in Z/(Z \cap \widetilde{K})} \varphi(\widetilde{g}z))$; here $\widetilde{g} \in \widetilde{G}$ is a lift of $g \in G$. (Notice that $Z \cap \widetilde{K}$ acts on V trivially.) The same formula defines a homomorphism $\mathcal{H}_{\widetilde{T}}(V^{\overline{U}(\kappa)}) \to \mathcal{H}_{T}(V^{\overline{U}(\kappa)})$, here \widetilde{T} is the inverse image of T. Then we have the following commutative diagram.

We have a similar diagram for $S_{\widetilde{G}}$ and S_G . Since $\mathcal{H}_{\widetilde{G}}(V) \to \mathcal{H}_G(V)$ is surjective, $S_{\widetilde{G}} = S_{\widetilde{G}}$ implies $S_G = S_G$.

Using this lemma, we identify S_G with S_G and we always denote it by S_G .

A homomorphism $X_* \times T(\mathcal{O}) \to T$ defined by $(\lambda, t_0) \mapsto \lambda(\varpi)t_0$ is an isomorphism and it induces $X_{*,+} \times T(\mathcal{O}) \simeq T_+$. Hence S_G gives an isomorphism $\mathcal{H}_G(V) \simeq \overline{\kappa}[X_{*,+}]$. For $\lambda \in X_{*,+}$, there exists $T_\lambda \in \mathcal{H}_G(V)$ such that $\operatorname{supp} T_\lambda = K\lambda(\varpi)K$ and $T_\lambda(\lambda(\varpi))$ is given by $V \to V_{N_\lambda(\kappa)} \simeq V^{\overline{N_\lambda}(\kappa)} \hookrightarrow V$. Then $\{T_\lambda \mid \lambda \in X_{*,+}\}$ gives a basis of $\mathcal{H}_G(V)$. When we want to emphasize the group G, we write T_λ^G instead of T_λ . For $\lambda \in X_*$, let $\tau_\lambda \in \overline{\kappa}[X_*]$ be an element corresponding to λ . (As an element of $\mathcal{H}_T(V^{\overline{U}(\kappa)})$, the support of τ_λ is $T(\mathcal{O})\lambda(\varpi)$ and $\tau_\lambda(\lambda(\varpi)) = \operatorname{id.}$) Then $\{\tau_\lambda \mid \lambda \in X_{*,+}\}$ gives a basis of $\overline{\kappa}[X_{*,+}]$. The relation between $S_G(T_\lambda)$ and τ_λ is given by Herzig [Her11a, Proposition 5.1]. An algebra homomorphism $\overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ is parameterized by (M, χ_M) where M is the Levi subgroup of a standard parabolic subgroup and χ_M is a group homomorphism $X_{M,*,0} \to \overline{\kappa}^{\times}$ where $X_{M,*,0} = \{\lambda \in X_* \mid \langle \lambda, \Pi_M \rangle = 0\}$ [Her11a, Proposition 4.1]. Therefore, an algebra homomorphism $\mathcal{H}_G(V) \to \overline{\kappa}$ is parameterized by the same pair.

Remark 2.5. Since the isomorphism $\mathcal{H}_T(V^{\overline{U}(\kappa)}) \simeq \overline{\kappa}[X_*]$ depends on a choice of a uniformizer ϖ , the above parameterization is not natural. A more natural way is given by Herzig [Her11b, Corollary 1.5]. In this paper, we fix a uniformizer and identify $\mathcal{H}_G(V)$ with $\overline{\kappa}[X_{*,+}]$. (It is only for a simplification of notation.)

Let P = MN be the Levi decomposition of a standard parabolic subgroup. Then the partial Satake transform $S_G^M : \mathcal{H}_G(V) \to \mathcal{H}_M(V^{\overline{N}(\kappa)})$ is injective and it satisfies $S_M \circ S_G^M = S_G$ [Her11a, § 2.3]. We also have S_G^M . By Lemma 2.4, we have $S_G^M = S_G^M$ under the identification $V^{\overline{N}(\kappa)} \simeq V_{N(\kappa)}$. Assume that $\chi : \mathcal{H}_G(V) \to \overline{\kappa}$ is parameterized by (M, χ_M) . Then M is characterized by the following property: χ factors through $S_G^{M'}$ if and only if $M' \supset M$. We also have the following: $\chi_M(\lambda) = \chi(\tau_\lambda)^{-1}$ for all $\lambda \in X_{M,*,0} \cap X_{*,+}$.

Let V_1, V_2 be irreducible representations of K. For each $\lambda \in X_{*,+}$, there exists $\varphi \in \mathcal{H}(V_1, V_2) \setminus \{0\}$ whose support is $K\lambda(\varpi)K$ if and only if $(V_1)_{N_\lambda(\kappa)} \simeq (V_2)_{N_\lambda(\kappa)}$ as $M_\lambda(\kappa)$ -representations. Moreover, such φ is unique up to a constant multiple. The homomorphism $\varphi(\lambda(\varpi))$ is given by $V_1 \twoheadrightarrow (V_1)_{N_\lambda(\kappa)} \simeq V_2^{\overline{N_\lambda}(\kappa)} \hookrightarrow V_2$. (See the proof of [Her11a, Proposition 6.3].) All irreducible representations of K factor through $K \to G(\kappa)$. If the derived group of G is

All irreducible representations of K factor through $K \to G(\kappa)$. If the derived group of G is simply connected, such representation is parameterized by its lowest weight. If $\nu \in X^*$ satisfies $-q < \langle \nu, \check{\alpha} \rangle \leq 0$ for all $\alpha \in \Pi$ then the restriction of the irreducible representation of $G(\bar{\kappa})$ with lowest weight ν to $G(\kappa)$ is irreducible and they give all irreducible representations of $G(\kappa)$. When V is the restriction of an irreducible representation with lowest weight ν , we call ν a lowest weight of V. (For $\nu_0 \in X^*$ such that $\langle \nu_0, \check{\Pi} \rangle = 0$, the restriction of the irreducible representations with lowest weight ν and $\nu + (q-1)\nu_0$ are isomorphic to each other. Hence ν is not determined by Vuniquely.)

3. Satake parameters

3.1 Definition and some lemmas

We start with the following definition.

DEFINITION 3.1. Let π be a representation of G. An algebra homomorphism $\chi \colon \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ is called a *Satake parameter of* π if there exist an irreducible K-representation V and $\psi \in$ $\operatorname{Hom}_{K}(V,\pi) \setminus \{0\}$ such that for all $\varphi \in \mathcal{H}_{G}(V), \ \psi * \varphi = \chi(S_{G}(\varphi))\psi$.

Let $S(\pi, V)$ be the set of Satake parameters appearing in $\operatorname{Hom}_K(V, \pi)$. We denote the set of Satake parameters of π by $S(\pi)$. Then we have $S(\pi) = \bigcup_V S(\pi, V)$. If π is admissible, then $S(\pi) \neq \emptyset$. We give some propositions about Satake parameters. Before proving some properties of Satake parameters, we give some fundamental facts about a structure of G.

LEMMA 3.2. Let $\Pi = \Pi_1 \cup \Pi_2$ be a partition of Π such that $\langle \Pi_1, \check{\Pi}_2 \rangle = 0$ and $P_i = M_i N_i$ the standard parabolic subgroup corresponding to Π_i . Let L_2 be the subgroup of $T \subset M_1$ generated by $\{\check{\alpha}(F^{\times}) \mid \alpha \in \Pi_2\}$. Then we have $G/[M_2(F), M_2(F)] \simeq M_1/L_2$.

Notice that L_2 is not the group of F-valued points of an algebraic group in general.

Proof. First we assume that the derived group of G is simply connected. Let \overline{F} be a separable closure of F. In this proof, we write $\mathbf{G} = G(\overline{F})$. (The same notation is used for other groups.) Let \mathbf{L}_2 be the subgroup of \mathbf{T} generated by $\{\check{\alpha}(\overline{F}^{\times}) \mid \alpha \in \Pi_2\}$. Namely, \mathbf{L}_2 is the image of $(\overline{F}^{\times})^{\Pi_2} \to \mathbf{T}$. Since the derived group of G is simply connected, this map is injective. Therefore, $L_2 = \mathbf{L}_2^{\operatorname{Gal}(\overline{F}/F)}$.

Set $\check{\Pi}_{2}^{\perp} = \{\nu \in X^* \mid \langle \nu, \check{\Pi}_2 \rangle = 0\}$. Since $\mathbf{G}/[\mathbf{M}_2, \mathbf{M}_2]$ and $\mathbf{M}_1/\mathbf{L}_2$ have the same root data $(\check{\Pi}_{2}^{\perp}, \Delta_{M_1}, X_*/\mathbb{Z}\check{\Pi}_2, \check{\Delta}_{M_1})$, these are isomorphic. Since the derived group of \mathbf{G} is simply connected, so is $[\mathbf{M}_2, \mathbf{M}_2]$. Hence the Galois cohomology $H^1(F, [\mathbf{M}_2, \mathbf{M}_2])$ is trivial. Therefore $(\mathbf{G}/[\mathbf{M}_2, \mathbf{M}_2])^{\mathrm{Gal}(\overline{F}/F)} = G/([M_2, M_2](F))$. Using the fact that $[\mathbf{M}_2, \mathbf{M}_2]$ is simply connected again, $[M_2, M_2](F) = [M_2(F), M_2(F)]$. Since \mathbf{L}_2 is a split torus, $H^1(F, \mathbf{L}_2)$ is trivial. Hence $(\mathbf{M}_1/\mathbf{L}_2)^{\mathrm{Gal}(\overline{F}/F)} = M_1/\mathbf{L}_2^{\mathrm{Gal}(\overline{F}/F)} = M_1/L_2$. The lemma follows in this case.

In general, let $r: \widetilde{G} \to G$ be a z-extension of G. Define \widetilde{M}_1 (respectively $\widetilde{M}_2, \widetilde{L}_2$) in the same way as M_1 (respectively M_2, L_2). Then \widetilde{M}_1 and \widetilde{M}_2 are the inverse images of M_1 and M_2 , respectively. In particular, $r([\widetilde{M}_2(F), \widetilde{M}_2(F)]) = [M_2(F), M_2(F)]$. By the definition, $r(\widetilde{L}_2) = L_2$. By the above argument, we have $\widetilde{G}/[\widetilde{M}_2(F), \widetilde{M}_2(F)] \simeq \widetilde{M}_1/\widetilde{L}_2$. Consider $f: M_1 \hookrightarrow G \to G/[M_2(F), M_2(F)]$. $M_2(F)$]. We prove f is surjective and $\operatorname{Ker}(f) = L_2$.

Let $g \in G$ and take $\tilde{g} \in \tilde{G}$ such that $r(\tilde{g}) = g$. Then there exist $\tilde{m}_1 \in \tilde{M}_1$ and $\tilde{m}_2 \in [\tilde{M}_2(F), \tilde{M}_2(F)]$ such that $\tilde{g} = \tilde{m}_1 \tilde{m}_2$. Hence $g = r(\tilde{g}) = r(\tilde{m}_1)r(\tilde{m}_2) \in M_1[M_2(F), M_2(F)]$. Therefore, f is surjective.

Take $m \in M_1 \cap [M_2(F), M_2(F)]$. Take $\widetilde{m}_1 \in \widetilde{M}_1$ and $\widetilde{m}_2 \in [\widetilde{M}_2(F), \widetilde{M}_2(F)]$ such that $m = r(\widetilde{m}_1) = r(\widetilde{m}_2)$. Then $\widetilde{m}_2 \in \widetilde{m}_1 \operatorname{Ker}(r) \subset \widetilde{M}_1 \operatorname{Ker}(r) = \widetilde{M}_1$. Hence $\widetilde{m}_2 \in \widetilde{M}_1 \cap [\widetilde{M}_2(F), \widetilde{M}_2(F)] \subset \widetilde{L}_2$. Therefore, $m = r(\widetilde{m}_2) \in L_2$. Hence $\operatorname{Ker}(f) \subset L_2$. Let $m \in L_2$ and take $\widetilde{m} \in \widetilde{L}_2$ such that $r(\widetilde{m}) = m$. Then $\widetilde{m} \in [\widetilde{M}_2(F), \widetilde{M}_2(F)]$. Hence $m \in r([\widetilde{M}_2(F), \widetilde{M}_2(F)]) = [M_2(F), M_2(F)]$. Hence $L_2 \subset \operatorname{Ker}(f)$.

PROPOSITION 3.3. There is a one-to-one correspondence between characters ν_G of G and characters ν_T of T such that $\nu_T \circ \check{\alpha}$ is trivial for all $\alpha \in \Pi$. It is characterized by $\nu_T = \nu_G|_T$.

Proof. Apply the previous lemma for $\Pi_1 = \emptyset$ and $\Pi_2 = \Pi$.

COROLLARY 3.4. Let ν_K be a character of K. Then there exists a character ν_G of G such that $\nu_K = \nu_G|_K$. Moreover, there is a unique character ν_G of G such that $\nu_K = \nu_G|_K$ and $\nu_G(\lambda(\varpi)) = 1$ for all $\lambda \in X_*$.

Proof. If the derived group of G is simply connected, it is known that ν_K has a lowest weight ν which satisfies $(\nu \circ \check{\alpha})(\mathcal{O}^{\times}) = 1$ for all $\alpha \in \Pi$. Therefore, the corollary follows from the above proposition. In general, let $1 \to Z \to \widetilde{G} \to G \to 1$ be a z-extension of G, \widetilde{K} as in Lemma 2.1 and \widetilde{T} the inverse image of T in \widetilde{G} . Then there exists a character $\nu_{\widetilde{G}}$ such that $\nu_{\widetilde{G}}|_{\widetilde{K}}$ is a pull-back of ν_K and $\nu_{\widetilde{G}}(\lambda(\varpi)) = 1$ for all $\lambda \in X_*(\widetilde{T})$. Hence $\nu_{\widetilde{G}}|_Z$ is trivial. Therefore, it gives a character ν_G of G and $\nu_G|_K = \nu_K$.

For a character ν of G, $\varphi \mapsto (g \mapsto \varphi_{\nu}(g) = \varphi(g)\nu(g))$ gives an isomorphism $\mathcal{H}_G(V) \simeq \mathcal{H}_G(V \otimes \nu|_K)$. The following lemma and propositions are essentially proved in [Her11a].

LEMMA 3.5 [Her11a, Lemma 4.6]. For a standard parabolic subgroup P = MN, the homomorphism $\varphi \mapsto \varphi_{\nu}$ is compatible with the partial Satake transform S_G^M .

Proof. We have

$$(S_G^M \varphi_{\nu})(m) = \sum_{\overline{n} \in \overline{N}/(\overline{N} \cap K)} \nu(m\overline{n})\varphi(m\overline{n}).$$

Since $\overline{N} \subset [G, G]$, we have $\nu(\overline{n}) = 1$. Therefore,

$$\sum_{\overline{n}\in\overline{N}/(\overline{N}\cap K)}\nu(m\overline{n})\varphi(m\overline{n}) = \nu(m)\sum_{\overline{n}\in\overline{N}/(\overline{N}\cap K)}\varphi(m\overline{n}) = \nu(m)(S_G^M\varphi)(m).$$

Now we give some properties on Satake parameters. The following proposition is obvious.

PROPOSITION 3.6. If $\pi' \subset \pi$, then $\mathcal{S}(\pi', V) \subset \mathcal{S}(\pi, V)$.

The following proposition follows from [Her11a, Lemma 2.14].

PROPOSITION 3.7. Let P = MN be a parabolic subgroup, σ a representation of M and V an irreducible representation of K. Then we have $\mathcal{S}(\operatorname{Ind}_P^G(\sigma), V) = \mathcal{S}(\sigma, V^{\overline{N}(\kappa)})|_{\overline{\kappa}[X_{*,+}]}$. In particular, we have $\mathcal{S}(\operatorname{Ind}_P^G(\sigma)) = \mathcal{S}(\sigma)|_{\overline{\kappa}[X_{*,+}]}$.

Let $\chi_1, \chi_2 : \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ be algebra homomorphisms. Define $\chi_1 \otimes \chi_2 : \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ by $(\chi_1 \otimes \chi_2)(\tau_\lambda) = \chi_1(\tau_\lambda)\chi_2(\tau_\lambda)$.

PROPOSITION 3.8. Assume χ_i is parameterized by (M_i, χ_{M_i}) . Then $\chi_1 \otimes \chi_2$ is parameterized by (M, χ_M) where $\Pi_M = \Pi_{M_1} \cup \Pi_{M_2}$ and $\chi_M = \chi_{M_1}|_{X_{M,*,0}}\chi_{M_2}|_{X_{M,*,0}}$.

Proof. If $\chi: \overline{\kappa}[X_*] \to \overline{\kappa}$ corresponds to (M, χ_M) , for $\lambda \in X_{*,+}, \lambda(\varpi) \in Z_M$ if and only if $\chi(\tau_\lambda) \neq 0$ [Her11a, Corollary 4.2]. Hence $\Pi_M = \Pi_{M_1} \cup \Pi_{M_2}$. The formula $\chi_M = \chi_{M_1}|_{X_{M,*,0}}\chi_{M_2}|_{X_{M,*,0}}$ follows from [Her11a, Corollary 4.2].

PROPOSITION 3.9 [Her11a, Lemma 4.6]. Let ν be a character of G and π a representation of G. Then $\mathcal{S}(\pi \otimes \nu) = \mathcal{S}(\pi) \otimes \chi_{\nu}$ where $\chi_{\nu} \colon \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ is given by $\chi_{\nu}(\tau_{\lambda}) = \nu(\lambda(\varpi))^{-1}$.

Proof. This follows from Lemma 3.5.

PROPOSITION 3.10. Let ν be a character of G. Then $S(\nu) = \{\chi_{\nu}\}.$

Proof. We have an injective homomorphism $\nu \hookrightarrow \operatorname{Ind}_B^G(\nu|_T)$. Hence we have $\emptyset \neq \mathcal{S}(\nu) \subset \mathcal{S}(\operatorname{Ind}_B^G(\nu|_T)) = \mathcal{S}(\nu|_T)|_{\overline{\kappa}[X_{*,+}]} = \{\chi_{\nu}\}.$

3.2 Restriction and Satake parameter

Let G_1 be a connected subgroup of G which contains the derived group of G. Put $K_1 = G_1 \cap K$. This is a hyperspecial maximal compact subgroup of G_1 . We also denote the \mathcal{O} -form corresponding to K_1 by the same letter G_1 .

LEMMA 3.11. The restriction of an irreducible K-representation to K_1 is also irreducible.

Proof. We may replace K (respectively K_1) with $G(\kappa)$ (respectively $G_1(\kappa)$). Let V be an irreducible representation of $G(\kappa), V_1 \subset V$ a non-zero $G_1(\kappa)$ -subrepresentation of V. Since $U(\kappa) \subset G_1(\kappa)$, we have $V_1^{U(\kappa)} \subset V^{U(\kappa)}$. The group $U(\kappa)$ is a p-group, hence $V_1^{U(\kappa)} \neq 0$. Since dim $V^{U(\kappa)} = 1$, we have $V_1^{U(\kappa)} = V^{U(\kappa)}$. Let $\tau : G \to G$ be an anti-involution such that $\tau|_T = \operatorname{id}_T$. Since G_1 is generated by U, \overline{U} and $T \cap G_1$, and we have $\tau(T \cap G_1) = T \cap G_1, \tau(U) = \overline{U}$ and $\tau(\overline{U}) = U$, τ preserves G_1 . We have a perfect paring $\langle \cdot, \cdot \rangle \colon V \times V \to \overline{\kappa}$ such that $\langle gv, v' \rangle = \langle v, \tau(g)v' \rangle$ for $g \in G, v, v' \in V$ and $\langle V^{U(\kappa)}, V^{U(\kappa)} \rangle \neq 0$. (See an argument in [Hum06, p. 18].) Put $V'_1 = \{v \in V \mid \langle v, V_1 \rangle = 0\}$. Then this is a $G_1(\kappa)$ -subrepresentation. If it is not zero, then, by the above argument, we have $(V'_1)^{U(\kappa)} = V^{U(\kappa)}$. This contradicts $\langle V^{U(\kappa)}, V^{U(\kappa)} \rangle \neq 0$. Therefore, $V'_1 = 0$. Hence $V = V_1$.

Let $X_{G_1,*}$ be the group of cocharacters of $G_1 \cap T$. Put $X_{G_1,*,+} = X_{*,+} \cap X_{G_1,*}$. Then we have $\mathcal{H}_{G_1}(V) \simeq \overline{\kappa}[X_{G_1,*,+}]$. Since $X_{G_1,*,+} \subset X_{*,+}$, we have an injective homomorphism $\overline{\kappa}[X_{G_1,*,+}] \hookrightarrow \overline{\kappa}[X_{*,+}]$. This induces $\Phi \colon \mathcal{H}_{G_1}(V) \hookrightarrow \mathcal{H}_G(V)$.

LEMMA 3.12. We have Im $\Phi = \{\varphi \in \mathcal{H}_G(V) \mid \text{supp } \varphi \subset G_1K\}$ and the isomorphism Im $\Phi \simeq \mathcal{H}_{G_1}(V)$ is given by $\varphi \mapsto \varphi|_{G_1}$.

Proof. Put $\mathcal{H}_1 = \{\varphi \in \mathcal{H}_G(V) \mid \text{supp } \varphi \subset G_1K\}$. Then \mathcal{H}_1 has a basis $\{T_\lambda^G \mid \lambda \in X_{G_1,*,+}\}$. To prove the first statement of the lemma, it is sufficient to prove that if $\lambda \in X_{G_1,*,+}$ then $S_G(T_\lambda^G) \in \overline{\kappa}[X_{G_1,*,+}]$ and $\{S_G(T_\lambda^G) \mid \lambda \in X_{G_1,*,+}\}$ is a basis of $\overline{\kappa}[X_{G_1,*,+}]$. We have $S_G(T_\lambda^G) \in \tau_\lambda + \sum_{\mu < \lambda} \overline{\kappa} \tau_\mu$. Since $\Pi \subset X_{G_1,*}, \lambda \in X_{G_1,*}$ and $\mu \leq \lambda$ imply $\mu \in X_{G_1,*}$. Therefore we get the first statement.

Since U is the unipotent radical of the Borel subgroup $B \cap G_1$ of G_1 , we have $S_G(T_{\lambda}^G) = S_{G_1}(T_{\lambda}^G|_{G_1})$ for $\lambda \in X_{G_1,*,+}$ by the definition of the Satake transform. We get the second statement.

LEMMA 3.13. Let ω be a character of Z_G , V_1 an irreducible representation of K_1 such that Z_{K_1} acts on it by $\omega | Z_{K_1}$. Then there exists an irreducible representation V of K such that $V|_{K_1} = V_1$ and the center of K acts on it by ω .

Proof. Using a z-extension and the argument in the proof of Lemma 3.11, we may assume that the derived group of G is simply connected. Let $\nu_1 \in X_{G_1}^*$ be a lowest weight of V_1 . There exists $\omega_1 \in X_{Z_G}^*$ such that $\omega|_{Z_G \cap K}$ is given by $Z_G \cap K \xrightarrow{\omega_1} \mathcal{O}^{\times} \to \kappa^{\times}$. (The character ω_1 gives a continuous character $Z_G \to F^{\times}$ and the image of $Z_G \cap K$ is a compact subgroup, hence it is contained in \mathcal{O}^{\times} .) By the assumption, $\nu_1|_{Z_{G_1}}$ and $\omega_1|_{Z_{G_1}}$ give the same character of $Z_{G_1} \cap K$. Therefore $\nu_1|_{Z_{G_1}} - \omega_1|_{Z_{G_1}} = (q-1)\omega_2$ for some $\omega_2 \in X_{Z_{G_1}}^*$. Take $\omega_3 \in X_{Z_G}^*$ such that $\omega_3|_{Z_{G_1}} = \omega_2$. Set $\omega_4 = \omega_1 + (q-1)\omega_3$. Then ω_4 gives the character $\omega|_{Z_G \cap K}$ of $Z_G \cap K$ and $\nu_1|_{Z_{G_1}} = \omega_4|_{Z_{G_1}}$. We have an exact sequence $1 \to Z_{G_1} \to Z_G \times (G_1 \cap T) \to T \to 1$ as algebraic groups. Hence we get an exact sequence $0 \to X_G^* \to X_{G_1}^* \oplus X_{Z_G}^* \to X_{Z_{G_1}}^* \to 0$. Therefore there exists $\nu \in X_G^*$ such that $\nu|_{T \cap G_1} = \nu_1$ and $\nu|_{Z_G} = \omega_4$. Then the irreducible representation V of K with a lowest weight ν satisfies the condition of the lemma.

PROPOSITION 3.14. Let π be a representation of G and V an irreducible representation of K. Then we have $S(\pi, V)|_{\overline{\kappa}[X_{G_1,*,+}]} \subset S(\pi|_{G_1}, V|_{G_1 \cap K})$. Hence $S(\pi)|_{\overline{\kappa}[X_{G_1,*,+}]} \subset S(\pi|_{G_1})$.

Moreover, if π has a central character, then for each irreducible $(G_1 \cap K)$ -representation V_1 , we have $\mathcal{S}(\pi|_{G_1}, V_1) = \bigcup_{V|_{G_1 \cap K} = V_1} \mathcal{S}(\pi, V)|_{\overline{\kappa}[X_{G_1,*,+}]}$. Hence $\mathcal{S}(\pi|_{G_1}) = \mathcal{S}(\pi)|_{\overline{\kappa}[X_{G_1,*,+}]}$.

Proof. Let V be an irreducible representation of K. We prove $S(\pi, V)|_{\overline{\kappa}[X_{G_1,*,+}]} \subset S(\pi|_{G_1}, V|_{K_1})$. It is sufficient to prove that

$$\operatorname{Hom}_{K}(V,\pi) \hookrightarrow \operatorname{Hom}_{K_{1}}(V,\pi)$$

is an $\mathcal{H}_{G_1}(V)$ -module homomorphism. Let $\varphi \in \mathcal{H}_{G_1}(V)$ and $\psi \in \operatorname{Hom}_K(V, \pi)$. Then for each $v \in V$,

$$(\psi * \Phi(\varphi))(v) = \sum_{g \in G/K} g\psi(\Phi(\varphi)(g^{-1})v) = \sum_{g \in G_1K/K} g\psi(\Phi(\varphi)(g^{-1})v).$$

The claim follows from $G_1/K_1 \simeq G_1 K/K$.

Assume that π has a central character. Let V_1 be an irreducible representation of K_1 . By the above lemma, there exists an irreducible representation V of K such that $V|_{K_1} = V_1$ and a central character of V is the same as that of π . Set $K' = K_1 Z_K$. Since K_1 is open in G_1 and Z_K is open in Z_G , K' is open in $G_1(F)Z_G(F)$. Applying [BZ76, A.3. Lemma] to $G_1 \times Z_G \to G$, $G_1(F)Z_G(F)$ is open in G = G(F). Hence K' is open in G. Therefore, K' has a finite index in K. We have

$$\operatorname{Hom}_{K_1}(V,\pi) = \operatorname{Hom}_{K'}(V,\pi) \simeq \operatorname{Hom}_K(\operatorname{Ind}_{K'}^K(V),\pi)$$

Since V has a structure of a representation of K, we have $\operatorname{Ind}_{K'}^{K}(V) \simeq \operatorname{Ind}_{K'}^{K}(\mathbf{1}_{K'}) \otimes V$. Therefore we have

$$\Psi$$
: Hom_{K₁} $(V, \pi) \simeq$ Hom_K $(Ind_{K'}^{K}(\mathbf{1}_{K'}) \otimes V, \pi).$

Explicitly, this isomorphism is given by

$$\Psi(\psi)(f\otimes v) = \sum_{x\in K/K'} f(x)x\psi(x^{-1}(v)).$$

Therefore, for $\varphi \in \mathcal{H}_{G_1}(V)$, we have

$$\begin{split} \Psi(\psi * \varphi)(f \otimes v) &= \sum_{x \in K/K'} f(x) x \sum_{g \in G_1/K_1} g \psi(\varphi(g^{-1}) x^{-1} v) \\ &= \sum_{x \in K/K'} \sum_{g \in G_1/K_1} f(x)(xg) \psi(\Phi(\varphi)((xg)^{-1}) v). \end{split}$$

Replacing g with $x^{-1}gx$, we have

$$\Psi(\psi * \varphi)(f \otimes v) = \sum_{x \in K/K'} \sum_{g \in G_1/K_1} f(x)gx\psi(x^{-1}\varphi(g^{-1})v) = \sum_{g \in G_1/K_1} g\Psi(\psi)(f \otimes \varphi(g^{-1})v).$$

Since K' is a normal subgroup of K and K/K' is commutative, the representation $\operatorname{Ind}_{K'}^{K}(\mathbf{1}_{K'})$ has a filtration $\{X_i\}$ such that $X_i/X_{i-1} \simeq \nu_i$ for some character ν_i of K. Set $X = \operatorname{Ind}_{K'}^{K}(\mathbf{1}_{K'})$, $Y = \operatorname{Hom}_K(X \otimes V, \pi)$ and $Y_i = \operatorname{Hom}_K(X/X_i \otimes V, \pi)$. Then we see that $\{Y_i\}$ is a filtration of Yand $Y_{i-1}/Y_i \hookrightarrow \operatorname{Hom}_K(\nu_i \otimes V, \pi)$. By the above formula, Y_i is stable under the action of $\varphi \in \mathcal{H}_{G_1}(V)$. Hence φ acts on Y_{i-1}/Y_i . Extend ν_i to a character of G such that ν_i is trivial on G_1 . Then we have $\mathcal{H}_G(V) \simeq \mathcal{H}_G(\nu_i \otimes V)$ by $\varphi' \mapsto \varphi'_{\nu_i}$. We have an action of $\Phi(\varphi)_{\nu_i} \in \mathcal{H}_G(\nu_i \otimes V)$ on $\operatorname{Hom}_K(\nu_i \otimes V, \pi)$. We prove that these actions are compatible with $Y_{i-1}/Y_i \hookrightarrow \operatorname{Hom}_K(\nu_i \otimes V, \pi)$.

Since ν_i is trivial on G_1 , we have $a \otimes \varphi(g^{-1})v = \Phi(\varphi)_{\nu_i}(g^{-1})(a \otimes v)$ for $g \in G_1$. The function $g \mapsto g\Psi(\psi)(\Phi(\varphi)_{\nu_i}(g^{-1})(a \otimes v))$ is right K-invariant. Therefore,

$$\sum_{g \in G_1/K_1} g\Psi(\psi)(a \otimes \varphi(g^{-1})v) = \sum_{g \in G_1K/K} g\Psi(\psi)(\Phi(\varphi)_{\nu_i}(g^{-1})(a \otimes v))$$
$$= \sum_{g \in G/K} g\Psi(\psi)(\Phi(\varphi)_{\nu_i}(g^{-1})(a \otimes v)) = (\Psi(\psi) * \Phi(\varphi)_{\nu_i})(a \otimes v).$$

This means that the actions are compatible.

Hence each element of $\mathcal{S}(\pi|_{G_1}, V)$ appears in $\mathcal{S}(\pi, \nu_i \otimes V)|_{\overline{\kappa}[X_{G_1,*,+}]}$ for some *i*. Since ν_i is trivial on K_1 , $(\nu_i \otimes V)|_{K_1} \simeq V|_{K_1} \simeq V_1$. We get $\mathcal{S}(\pi|_{G_1}, V) \subset \bigcup_{V'|_{K_1} = V|_{K_1}} \mathcal{S}(\pi, V')|_{\overline{\kappa}[X_{G_1,*,+}]}$. \Box

3.3 Satake parameter of tensor product

Consider the setting in Lemma 3.2. Namely, let $\Pi = \Pi_1 \cup \Pi_2$ be a partition of Π such that $\langle \Pi_1, \check{\Pi}_2 \rangle = 0$. Let $P_i = M_i N_i$ be the standard parabolic subgroup corresponding to Π_i . Set $H_2 = Z_{M_2}([M_1, M_1])^\circ$. Put $\Pi_1^{\perp} = \{\lambda \in X_* \mid \langle \lambda, \Pi_1 \rangle = 0\}$. Then the group of cocharacters of $H_2 \cap T$ is Π_1^{\perp} . We also have $[M_2, M_2] \subset H_2 \subset M_2$ (as algebraic groups). Put $X_{H_2,*,+} = X_{*,+} \cap \Pi_1^{\perp}$. We have $N_2 \subset [M_1, M_1]$.

Fix an irreducible representation V of K and put $V_2 = V^{\overline{N}_2(\kappa)}$. Then V_2 is irreducible as a representation of $M_2 \cap K$. Since $[M_2, M_2] \subset H_2 \subset M_2$ (as algebraic groups), V_2 is also irreducible as a representation of $H_2 \cap K$ (Lemma 3.11). We have $\overline{\kappa}[X_{H_2,*,+}] \hookrightarrow \overline{\kappa}[X_{*,+}]$. Hence we get $\Phi' \colon \mathcal{H}_{H_2}(V_2) \hookrightarrow \mathcal{H}_G(V)$.

LEMMA 3.15. For $m \in M_2$ and $\overline{n} \in \overline{N}_2$, if $m\overline{n} \in KH_2K$, then $\overline{n} \in K$.

Proof. By the Cartan decompositions, we can choose $\lambda \in X_{H_2,*,+}$, $\lambda_2 \in X_{M_2,*,+}$ and $k_1 \in M_2 \cap K$ such that $m\overline{n} \in K\lambda(\varpi)K$ and $m \in (M_2 \cap K)\lambda_2(\varpi)k_1$. Then we have $\lambda_2(\varpi)(k_1nk_1^{-1}) \in K\lambda(\varpi)K$. Put $\overline{n}_1 = k_1\overline{n}k_1^{-1} \in \overline{N}_2$. We prove $\overline{n}_1 \in K$.

By the assumption, we have $\overline{N}_2 \subset M_1$. Therefore, $\lambda_2(\varpi)\overline{n}_1$ is in M_1 . Take $\lambda_1 \in X_{M_1,*,+}$ such that $\lambda_2(\varpi)\overline{n}_1 \in (M_1 \cap K)\lambda_1(\varpi)(M_1 \cap K)$. Then $K\lambda_1(\varpi)K \cap K\lambda(\varpi)K \neq \emptyset$. Therefore, $\lambda_1 \in W\lambda$. The Weyl group W preserves each connected component of the root system Δ . Hence W

preserves Π_1^{\perp} . Hence $\lambda_1 \in \Pi_1^{\perp}$. Therefore, $\lambda_1(\varpi)$ commutes with any element of M_1 . Hence $\lambda_2(\varpi)\overline{n}_1 \in (M_1 \cap K)\lambda_1(\varpi)(M_1 \cap K) = \lambda_1(\varpi)(M_1 \cap K)$. Therefore, $\lambda_1(\varpi)^{-1}\lambda_2(\varpi)\overline{n}_1 \in K$. We get $\overline{n}_1 \in K$.

LEMMA 3.16. If $\varphi \in \mathcal{H}_G(V)$ satisfies supp $\varphi \subset KH_2K$, then $S_G^{M_2}(\varphi)(m) = \varphi(m)|_{V_2}$ for $m \in M_2$.

Proof. By the definition, we have

$$S_G^{M_2}(\varphi)(m) = \sum_{\overline{n} \in \overline{N}_2 / \overline{N}_2 \cap K} \varphi(m\overline{n})|_{V_2}.$$

Since supp $\varphi \subset KH_2K$, this is equal to $\varphi(m)|_{V_2}$ by the above lemma.

LEMMA 3.17. If $\lambda, \mu \in X_{*,+}$ satisfies $\mu \leq \lambda$ and $\lambda \in X_{H_2,*,+}$, then $\lambda - \mu \in \mathbb{Z}_{\geq 0} \Pi_2$. In particular, $\mu \in X_{H_2,*,+}$.

Proof. For each $\alpha \in \Pi$, take $n_{\alpha} \in \mathbb{Z}_{\geq 0}$ such that $\lambda - \mu = \sum_{\alpha \in \Pi} n_{\alpha} \check{\alpha}$. Then for $\beta \in \Pi_1$, we have $\sum_{\alpha \in \Pi_1} n_{\alpha} \langle \beta, \check{\alpha} \rangle = -\langle \beta, \mu \rangle \leq 0$. Since $(d_{\beta} \langle \beta, \check{\alpha} \rangle)_{\alpha,\beta \in \Pi_1}$ is symmetric and positive definite for some $d_{\alpha} > 0$, we have $n_{\alpha} = 0$ for all $\alpha \in \Pi_1$.

By the above two lemmas and the argument in the proof of Lemma 3.12, we get the following lemma. (Notice that $\varphi(h)$ induces $V_2 \to V_2$ for $h \in H_2$ since H_2 and N_2 commute with each other.)

LEMMA 3.18. We have Im $\Phi' = \{\varphi \in \mathcal{H}_G(V) \mid \text{supp } \varphi \subset KH_2K\}$ and the isomorphism Im $\Phi' \simeq \mathcal{H}_{H_2}(V_2)$ is given by $\varphi \mapsto \varphi|_{H_2}$.

By Lemma 3.16, we get $S_G(\varphi) = S_{M_2}(\varphi|_{M_2})$ if $\operatorname{supp}(\varphi) \subset KH_2K$. This means that the map is given by the restriction.

Let π be a representation of G. Consider the following homomorphism

$$\operatorname{Hom}_{K}(V,\pi) \to \operatorname{Hom}_{M_{2}\cap K}(V_{2},\pi).$$

Since V is generated by V_2 as a K-representation, this is injective. The left-hand side is $\mathcal{H}_G(V) \simeq \overline{\kappa}[X_{*,+}]$ -module and the right-hand side is $\mathcal{H}_{M_2}(V_2) \simeq \overline{\kappa}[X_{M_2,*,+}]$ -module where $X_{M_2,*,+} = \{\lambda \in X_* \mid \langle \lambda, \alpha \rangle \ge 0 \ (\alpha \in \Pi_{M_2})\}$. Therefore, both sides are $\overline{\kappa}[X_{H_2,*,+}]$ -modules. We prove that the above embedding is a $\overline{\kappa}[X_{H_2,*,+}]$ -modules homomorphism.

LEMMA 3.19. Let π be a representation of G. The homomorphism

 $\operatorname{Hom}_{K}(V,\pi) \to \operatorname{Hom}_{M_{2}\cap K}(V_{2},\pi)$

is a $\overline{\kappa}[X_{H_2,*,+}]$ -module homomorphism.

Proof. Let $\varphi \in \mathcal{H}_{H_2}(V_2)$. Take $\psi \in \operatorname{Hom}_K(V, \pi)$ and $v \in V_2$. We have

$$(\psi * \Phi'(\varphi))(v) = \sum_{g \in G/K} g\psi(\Phi'(\varphi)(g^{-1})v)$$
$$= \sum_{m \in M_2/(M_2 \cap K)} \sum_{\overline{n} \in \overline{N}_2/(\overline{N}_2 \cap K)} m\overline{n}\psi(\Phi'(\varphi)(\overline{n}^{-1}m^{-1})v).$$

Since supp $\Phi'(\varphi) \subset KH_2K$, $\Phi'(\varphi)(\overline{n}^{-1}m^{-1}) = 0$ if $\overline{n} \notin \overline{N}_2 \cap K$ by the above lemma. Therefore, we have

$$(\psi * \Phi'(\varphi))(v) = \sum_{m \in M_2/(M_2 \cap K)} m\psi(\Phi'(\varphi)(m^{-1})v).$$

Using Lemma 3.16, we obtain the lemma.

Let π_1, π_2 be representations of G with the central characters such that $[M_2(F), M_2(F)]$ acts on π_1 trivially and the center of M_1 acts on π_1 by a character. Put $\pi = \pi_1 \otimes \pi_2$.

Remark 3.20. The group H_2 is generated by $H_2 \cap T$ and the one-dimensional unipotent subgroup corresponding to each $\alpha \in \Delta \cap \mathbb{Z}\Pi_2$. Since $H_2 \cap T \subset Z^{\circ}_{M_1}$ and the one-dimensional unipotent subgroup corresponding to $\alpha \in \Delta \cap \mathbb{Z}\Pi_2$ is a subgroup of $[M_2(F), M_2(F)]$, H_2 is generated by $[M_2(F), M_2(F)]$ and $Z^{\circ}_{M_1}$. Therefore, H_2 acts on π_1 by a scalar.

PROPOSITION 3.21. We have $\mathcal{S}(\pi)|_{\overline{\kappa}[X_{H_2,*,+}]} \subset \mathcal{S}(\pi_1|_{H_2}) \otimes \mathcal{S}(\pi_2|_{H_2}).$

Proof. We have $S(\pi)|_{\overline{\kappa}[X_{H_2,*,+}]} \subset S(\pi|_{M_2})|_{\overline{\kappa}[X_{H_2,*,+}]}$ by the above lemma. By Proposition 3.14, we have $S(\pi|_{M_2})|_{\overline{\kappa}[X_{H_2,*,+}]} \subset S(\pi|_{H_2})$. Since H_2 acts on π_1 by a scalar, $S(\pi|_{H_2}) = S(\pi_1|_{H_2}) \otimes S(\pi_2|_{H_2})$ by Lemma 3.9 and Proposition 3.10.

We give some corollaries of Proposition 3.21 which we will use. We make the following additional assumptions.

- The derived group $[M_1(F), M_1(F)]$ acts on π_2 trivially and the center of M_2 acts on π_2 by a character.
- We have $\#S(\pi_1|_{M_1}) = \#S(\pi_2|_{M_2}) = 1.$

Since $\#S(\pi_1|_{M_1}) = \#S(\pi_2|_{M_2}) = 1$, there exists a unique parabolic subgroup P = MN such that $S(\pi_1|_{M_1}) = \{\chi_1 = (M \cap M_1, \chi_{M \cap M_1})\}$ and $S(\pi_2|_{M_2}) = \{\chi_2 = (M \cap M_2, \chi_{M \cap M_2})\}$ for some $\chi_{M \cap M_1}$ and $\chi_{M \cap M_2}$.

COROLLARY 3.22. Any $\chi \in \mathcal{S}(\pi)$ is parameterized by (M, χ_M) for some χ_M .

Proof. Take M' and $\chi_{M'}$ such that χ is parameterized by $(M', \chi_{M'})$. For each $\alpha \in \Pi$, take $\lambda_{\alpha} \in X_{*,+}$ such that $\langle \Pi \setminus \{\alpha\}, \lambda_{\alpha} \rangle = 0$ and $\langle \alpha, \lambda_{\alpha} \rangle \neq 0$. Then M' corresponds to $\{\alpha \in \Pi \mid \chi(\tau_{\lambda_{\alpha}}) = 0\}$ [Her11a, Proof of Proposition 2.12]. If $\alpha \in \Pi_2$, then $\lambda_{\alpha} \in X_{H_2,*,+}$. Therefore, there exist $\chi'_1 \in \mathcal{S}(\pi_1|_{H_2})$ and $\chi'_2 \in \mathcal{S}(\pi_2|_{H_2})$ such that $\chi(\tau_{\lambda_{\alpha}}) = \chi'_1(\tau_{\lambda_{\alpha}})\chi'_2(\tau_{\lambda_{\alpha}})$ by Proposition 3.21. Since $\pi_1|_{H_2}$ is a direct sum of characters, $\chi'_1(\tau_{\lambda_{\alpha}}) \neq 0$ by Proposition 3.10. Hence $\chi(\tau_{\lambda_{\alpha}}) = 0$ if and only if $\chi'_2(\tau_{\lambda_{\alpha}}) = 0$. By Proposition 3.14, $\mathcal{S}(\pi_2|_{H_2}) = \mathcal{S}(\pi_2|_{M_2})|_{\overline{\kappa}[X_{H_2,*,+}]} = \{\chi_2\}|_{\overline{\kappa}[X_{H_2,*,+}]}$. Therefore, we have $\chi'_2(\tau_{\lambda_{\alpha}}) = \chi_2(\tau_{\lambda_{\alpha}})$. It is zero if and only if $\alpha \in \Pi_M \cap \Pi_2$. By the same argument, for $\alpha \in \Pi_1$, $\chi(\tau_{\lambda_{\alpha}}) = 0$ if and only if $\alpha \in \Pi_M \cap \Pi_1$. Hence M' = M.

Moreover, we assume the following conditions.

- The representation π_1 is an admissible *G*-representation.
- The representation π_2 is an admissible $[M_2(F), M_2(F)]$ -representation.

LEMMA 3.23. Under the above conditions, π is admissible as a representation of G.

Proof. Let K' be a compact open subgroup. Then we have $\pi^{K'} = (\pi_1 \otimes \pi_2^{[M_2(F), M_2(F)] \cap K'})^{K'}$. Since $\pi_2^{[M_2(F), M_2(F)] \cap K'}$ is finite dimensional, there exists a compact open subgroup $K'' \subset K'$ which acts on $\pi_2^{[M_2(F), M_2(F)] \cap K'}$ trivially. Hence $\pi^{K'} \subset (\pi_1 \otimes \pi_2^{[M_2(F), M_2(F)] \cap K'})^{K''} = \pi_1^{K''} \otimes \pi_2^{[M_2(F), M_2(F)] \cap K'}$. The right-hand side is finite dimensional.

COROLLARY 3.24. If $M = M_1$, then $\mathcal{S}(\pi) = \mathcal{S}(\pi_1) \otimes \mathcal{S}(\pi_2) = \{(M_1, \chi_{M \cap M_1}(\chi_{M \cap M_2}|_{X_{M_1,*,0}}))\}.$

Proof. Take $\chi \in \mathcal{S}(\pi)$ and let $\chi_M \colon X_{M,*,0} \to \overline{\kappa}^{\times}$ such that χ is parameterized by (M, χ_M) . The character χ_M^{-1} is given by a restriction of χ on $X_{*,+} \cap \Pi_M^{\perp} = X_{*,+} \cap \Pi_1^{\perp} = X_{H_2,*,+}$. By Proposition 3.21, we have $\chi|_{\overline{\kappa}[X_{H_2,*,+}]} = (\chi_1 \otimes \chi_2)|_{\overline{\kappa}[X_{H_2,*,+}]}$. Hence, by Proposition 3.8, we have $\chi_M|_{X_{H_2,*}} = (\chi_{M\cap M_1}|_{X_{M,*,0}\cap X_{H_2,*}})(\chi_{M\cap M_2}|_{X_{M,*,0}\cap X_{H_2,*}})$. Since $M = M_1, X_{H_2,*} = X_{M,*,0}$.

Therefore, $\chi_M = \chi_{M \cap M_1}(\chi_{M \cap M_2}|_{X_{M_1,*,0}})$. Since π is admissible, $\mathcal{S}(\pi) \neq \emptyset$. So we get the corollary.

3.4 z-extension and Satake parameters

Let $\widetilde{G} \to G$ be a z-extension and take a hyperspecial maximal compact subgroup \widetilde{K} as in Lemma 2.1. A representation π of G can be regarded as a representation of \widetilde{G} . Let $\widetilde{\pi}$ be this representation. Denote the inverse image of T by \widetilde{T} and let $X_{\widetilde{G},*}$ be the group of cocharacters of \widetilde{T} . We have a surjective map $X_{\widetilde{G},*} \to X_*$ which induces $X_{\widetilde{G},*,+} \to X_{*,+}$.

LEMMA 3.25. Let $r: \overline{\kappa}[X_{\widetilde{G},*,+}] \to \overline{\kappa}[X_{*,+}]$ be the induced homomorphism.

(i) We have $\mathcal{S}(\widetilde{\pi}) = \{\chi \circ r \mid \chi \in \mathcal{S}(\pi)\}.$

(ii) If $\chi: \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ is parameterized by (M, χ_M) , then $\chi \circ r$ is parameterized by $(\widetilde{M}, \chi_{\widetilde{M}})$; here \widetilde{M} is the inverse image of M in \widetilde{G} and $\chi_{\widetilde{M}}$ is the composition $X_{\widetilde{M},*,0} \to X_{M,*,0} \xrightarrow{\chi} \overline{\kappa}^{\times}$.

Proof. Let Z be the kernel of $\widetilde{G} \to G$. If an irreducible \widetilde{K} -representation V' is a subrepresentation of $\widetilde{\pi}$, then $Z \cap \widetilde{K}$ acts on V' trivially. Therefore, V' comes from an irreducible representation of K. Let \widetilde{V} be an irreducible representation of \widetilde{K} coming from an irreducible representation V of K. To prove (i), it is sufficient to prove that $\operatorname{Hom}_{\widetilde{K}}(\widetilde{V}, \widetilde{\pi}) \simeq \operatorname{Hom}_{K}(V, \pi)$ as $\overline{\kappa}[X_{\widetilde{G},*,+}]$ -modules. (Here, $\overline{\kappa}[X_{\widetilde{G},*,+}]$ acts on $\operatorname{Hom}_{K}(V, \pi)$ through r.)

As a vector space, $\operatorname{Hom}_{\widetilde{K}}(\widetilde{V}, \widetilde{\pi}) \simeq \operatorname{Hom}_{K}(V, \pi)$. So it is sufficient to prove that this isomorphism is $\overline{\kappa}[X_{\widetilde{G},*,+}]$ -equivariant. Define $r_{G} \colon \mathcal{H}_{\widetilde{G}}(\widetilde{V}) \to \mathcal{H}_{G}(V)$ as in the proof of Lemma 2.4. Then it is easy to see that the isomorphism $\operatorname{Hom}_{\widetilde{K}}(\widetilde{V}, \widetilde{\pi}) \simeq \operatorname{Hom}_{K}(V, \pi)$ is $\mathcal{H}_{\widetilde{G}}(\widetilde{V})$ -equivariant; here $\mathcal{H}_{\widetilde{G}}(\widetilde{V})$ acts on $\operatorname{Hom}_{K}(V, \pi)$ through r_{G} . Hence by the commutative diagram in Lemma 2.4, it is sufficient to prove that $r = r_{T}|_{\overline{\kappa}[X_{\widetilde{G},*,+}]}$, where $r_{T} \colon \overline{\kappa}[X_{\widetilde{G},*}] \simeq \mathcal{H}_{\widetilde{T}}(\widetilde{V}^{\overline{U}(\kappa)}) \to \mathcal{H}_{T}(V^{\overline{U}(\kappa)}) \simeq$ $\overline{\kappa}[X_{*}]$ is the homomorphism defined in the proof of Lemma 2.4. This follows from the definition of r and r_{T} .

Take $(\widetilde{M}_1, \chi'_{\widetilde{M}_1})$ which corresponds to $\chi \circ r$. For $\alpha \in \Pi$, take $\widetilde{\lambda}_{\alpha} \in X_{\widetilde{G},*,+}$ such that $\langle \widetilde{\lambda}_{\alpha}, \Pi \setminus \{\alpha\} \rangle = 0$ and $\langle \widetilde{\lambda}_{\alpha}, \alpha \rangle \neq 0$. Put $\lambda_{\alpha} = r(\widetilde{\lambda}_{\alpha})$. Then $\Pi_{\widetilde{M}} = \Pi_M = \{\alpha \in \Pi \mid \chi(\tau_{\lambda_{\alpha}}) = 0\} = \{\alpha \in \Pi \mid \chi \circ r(\tau_{\widetilde{\lambda}_{\alpha}}) = 0\} = \Pi_{\widetilde{M}_1}$. Hence $\widetilde{M}_1 = \widetilde{M}$. The homomorphism $\chi'_{\widetilde{M}_1}$ is characterized by $\chi'_{\widetilde{M}_1}|_{X_{\widetilde{M},*,0}\cap X_{\widetilde{G},*,+}} = (\chi \circ r|_{X_{\widetilde{M},*,0}\cap X_{\widetilde{G},*,+}})^{-1}$. The homomorphism $\chi_{\widetilde{M}}$ satisfies the same characterization. Hence $\chi'_{\widetilde{M}_1} = \chi_{\widetilde{M}}$.

4. A theorem of changing the weight

In this section, we assume that the derived group of G is simply connected. For $\alpha \in \Pi$, we denote a fundamental weight corresponding to α by ω_{α} .

4.1 Changing the weight

We prove the following theorem, which is a generalization of Herzig's theorem [Her11a, Corollary 6.11].

THEOREM 4.1. Let V_1, V_2 be irreducible representations of K with lowest weight ν_1, ν_2 , respectively. Assume that $\langle \nu_1, \check{\alpha} \rangle = 0$ and $\nu_2 = \nu_1 - (q-1)\omega_{\alpha}$ for some $\alpha \in \Pi$. Let $\chi \colon \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ be an algebra homomorphism parameterized by (M, χ_M) . Assume that $\alpha \notin \Pi_M$. If $\check{\alpha} \notin X_{M,*,0}$ or $\chi_M(\check{\alpha}) \neq 1$, then

$$\operatorname{c-Ind}_{K}^{G} V_{1} \otimes_{\mathcal{H}_{G}(V_{1})} \chi \simeq \operatorname{c-Ind}_{K}^{G} V_{2} \otimes_{\mathcal{H}_{G}(V_{2})} \chi.$$

Let V_1, V_2, ν_1, ν_2 be as above. Fix $\lambda \in X_{*,+}$ such that $\langle \lambda, \Pi \setminus \{\alpha\} \rangle = 0$ and $\langle \lambda, \alpha \rangle \neq 0$. Then there exist non-zero $\varphi_{21} \in \mathcal{H}_G(V_1, V_2)$ and $\varphi_{12} \in \mathcal{H}_G(V_2, V_1)$ whose support is $K\lambda(\varpi)K$. By the proof of [Her11a, Corollary 6.11], Theorem 4.1 follows from the following lemma.

LEMMA 4.2. We have $S_G(\varphi_{12} * \varphi_{21}) \in \overline{\kappa}^{\times}(\tau_{2\lambda} - \tau_{2\lambda - \check{\alpha}}).$

This lemma follows from the following two lemmas by [Her11a, Proposition 5.1]. These also answer Herzig's question [Her11a, Question 6.9].

LEMMA 4.3. The composition $\varphi_{12} * \varphi_{21}$ is non-zero and its support is $K\lambda(\varpi)^2 K$.

LEMMA 4.4. For $\mu \in X_{*,+}$, if $\mu \leq 2\lambda$ then $\mu = 2\lambda$ or $\mu \leq 2\lambda - \check{\alpha}$.

First, we prove Lemma 4.3. For each $w \in W \simeq N_K(T(\mathcal{O}))/T(\mathcal{O})$, we fix a representative of w and denote it by the same letter w.

LEMMA 4.5. Let P = MN be a standard parabolic subgroup. Then we have

$$G(\mathcal{O}) = \coprod_{w \in W/W_M} w(w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))P(\mathcal{O}).$$

Proof. Since $(w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))(w^{-1}\overline{I}w \cap P(\mathcal{O})) = w^{-1}\overline{I}w$, it is sufficient to prove $G(\mathcal{O}) = \prod_{w \in W/W_M} \overline{I}wP(\mathcal{O})$. By the Bruhat decomposition $G(\kappa) = \prod_{w \in W/W_M} \overline{B}(\kappa)wP(\kappa)$, for $g \in G(\mathcal{O})$, there exists $w \in W$ and $p \in P(\mathcal{O})$ such that $(\operatorname{red}(wp))^{-1}\operatorname{red}(g) \in \overline{B}$. Hence $(wp)^{-1}g \in \overline{I}$. Therefore, $g \in \overline{I}wp$. Hence $G(\mathcal{O}) = \bigcup_{w \in W} \overline{I}wP(\mathcal{O})$. Assume that $\overline{I}w_1P(\mathcal{O}) \cap \overline{I}w_2P(\mathcal{O}) \neq \emptyset$ for $w_1, w_2 \in W$. Applying red, we have $\overline{B}(\kappa)w_1P(\kappa) \cap \overline{B}(\kappa)w_2P(\kappa) \neq \emptyset$. Therefore, by the Bruhat decomposition of $G(\kappa)$, we have $w_1 \in w_2W_M$.

To prove Lemma 4.3, we use the following lemma. We use the argument in the proof of [Her11a, Proposition 6.7].

LEMMA 4.6. Let V, V' be irreducible representations of K with lowest weight ν, ν' , and lowest weight vector $v \in V, v' \in V'$, respectively. Assume that for $\mu \in X_{*,+}$, $V^{\overline{N_{\mu}}(\kappa)} \simeq (V')^{\overline{N_{\mu}}(\kappa)}$ as $M_{\mu}(\kappa)$ -representations. Let $\varphi \in \mathcal{H}_G(V, V')$ be such that supp $\varphi = K\mu(\varpi)K$ and $\varphi(\mu(\varpi))v = v'$. Put $\overline{I} = \mathrm{red}^{-1}(\overline{B}(\kappa))$ and $t = \mu(\varpi)$. Then we have

$$\varphi * [1, v] = \sum_{w \in W_{-\nu}/(W_{-\nu} \cap W_{\mu})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t} [wat^{-1}, v'].$$

Proof. We have

$$(\varphi\ast [1,v])(x) = \sum_{y\in G/K} \varphi(y)[1,v](xy) = \sum_{y\in KtK/K} \varphi(y)[1,v](xy)$$

If this is not zero, then $xy \in K$ for some $y \in KtK$. Hence $x \in Kt^{-1}K$. Namely, $supp(\varphi * [1, v]) \subset Kt^{-1}K$. The value at $x = kt^{-1}$ for $k \in K$ is

$$(\varphi * [1, v])(kt^{-1}) = \sum_{y \in KtK/K} \varphi(y)[1, v](kt^{-1}y) = \varphi(t)[1, v](k) = \varphi(t)k^{-1}v.$$

Therefore, we have

$$\varphi\ast [1,v] = \sum_{k\in K/(K\cap t^{-1}Kt)} [kt^{-1},\varphi(t)k^{-1}v].$$

Put $P = P_{\mu}$. We have $K \cap t^{-1}Kt \supset P(\mathcal{O})$ and $\operatorname{red}(K \cap t^{-1}Kt) = P(\kappa)$. Therefore, we have a surjective map $G(\mathcal{O})/P(\mathcal{O}) \twoheadrightarrow K/(K \cap t^{-1}Kt)$. For each $w \in W \simeq N_K(T(\mathcal{O}))/T(\mathcal{O})$, we fix a representative of w and denote it by the same letter w. Then, by the above lemma, we have

$$G(\mathcal{O}) = \coprod_{w \in W/W_{\mu}} w(w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))P(\mathcal{O}).$$

Hence $\varphi * [1, v]$ is a sum of a form $[wat^{-1}, \varphi(t)a^{-1}w^{-1}v]$ for $a \in w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O})$ and $w \in W/W_{\mu}$. We prove that $\varphi(t)a^{-1}w^{-1}v \neq 0$ implies $w \in W_{-\nu}W_{\mu}$. Since $\operatorname{red}(a) \in w^{-1}\overline{B}(\kappa)w \cap \overline{N}(\kappa) \subset w^{-1}\overline{U}(\kappa)w$, we have $a^{-1}w^{-1}v = w^{-1}v$. The homomorphism $\varphi(t)$ is given by $V \twoheadrightarrow (V)_{N_{\mu}(\kappa)} \simeq (V')^{\overline{N_{\mu}}(\kappa)} \hookrightarrow V'$. Hence if $\varphi(t)w^{-1}v \neq 0$, then $w^{-1}v \in V^{\overline{N_{\mu}}(\kappa)}$. Since $\{g \in G(\kappa) \mid gv \in \overline{\kappa}v\} = \overline{P_{-\nu}}(\kappa)$, we have $\overline{P_{-\nu}}(\kappa) \supset w\overline{N_{\mu}}(\kappa)w^{-1}$. Then $\Delta_{-\nu}^{-} \cup \Delta^{+} \supset w(\Delta^{+} \setminus \Delta_{\mu}^{+})$. Hence, $(\Delta^{-} \setminus \Delta_{-\nu}^{-}) \cap w(\Delta^{+} \setminus \Delta_{\mu}^{+}) = \emptyset$. Take $w' \in W_{-\nu}wW_{\mu}$ such that w' is shortest in $W_{-\nu}wW_{\mu}$ [Bou02, ch. IV, Exercises, §1 (3)]. Then $(\Delta^{-} \setminus \Delta_{-\nu}^{-}) \cap w'(\Delta^{+} \setminus \Delta_{\mu}^{+}) = \emptyset$. By the condition of $w', \Delta^{-} \cap w'\Delta^{+} = \emptyset$. Hence w' = 1. We have $w \in W_{-\nu}W_{\mu}/W_{\mu} = W_{-\nu}/(W_{-\nu} \cap W_{\mu})$. Hence we may assume $w \in W_{-\nu}$. Therefore, $\varphi(t)w^{-1}v = \varphi(t)v = v'$. Hence,

$$\varphi * [1, v] = \sum_{w \in W_{-\nu}/(W_{-\nu} \cap W_{\mu})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/(w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}) \cap t^{-1}Kt)} [wat^{-1}, v'].$$

Since $\langle \alpha, \mu \rangle < 0$ for all weights α of \overline{N} , $t = \mu(\pi)$ satisfies $t\overline{N}(\mathcal{O})t^{-1} \supset \overline{N}(\mathcal{O})$. Hence $t\overline{N}(\mathcal{O})t^{-1} \cap K = \overline{N}(\mathcal{O})$. Equivalently, we have $\overline{N}(\mathcal{O}) \cap t^{-1}Kt = t^{-1}\overline{N}(\mathcal{O})t$. We also have that $\operatorname{red}(t^{-1}\overline{N}(\mathcal{O})t)$ is trivial. Hence $t^{-1}\overline{N}(\mathcal{O})t \subset w^{-1}\overline{I}w$. Therefore, $w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}) \cap t^{-1}Kt = t^{-1}\overline{N}(\mathcal{O})t$. Hence we have

$$\varphi * [1, v] = \sum_{w \in W_{-\nu}/(W_{-\nu} \cap W_{\mu})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t} [wat^{-1}, v'].$$

Proof of Lemma 4.3. Put $t = \lambda(\varpi)$. Let $v_1 \in V_1, v_2 \in V_2$ be lowest weight vectors. We may assume $\varphi_{21}(t)v_1 = v_2$ and $\varphi_{12}(t)v_2 = v_1$. By Lemma 4.6, we have

$$\varphi_{21} * [1, v_1] = \sum_{w \in W_{-\nu_1}/(W_{-\nu_1} \cap W_{\lambda})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t} [wat^{-1}, v_2].$$

By the assumption, $W_{-\nu_2} \cap W_{\lambda} = W_{-\nu_2}$. Hence we have

$$\varphi_{12} * [1, v_2] = \sum_{b \in \overline{N}(\mathcal{O})/t^{-1}\overline{N}(\mathcal{O})t} [bt^{-1}, v_1]$$

by Lemma 4.6. Therefore, we have

$$\begin{split} \varphi_{12} * \varphi_{21} * [1, v_1] &= \varphi_{12} * \left(\sum_{w \in W_{-\nu_1}/(W_{\lambda} \cap W_{-\nu_1})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t} [wat^{-1}, v_2] \right) \\ &= \sum_{w \in W_{-\nu_1}/(W_{\lambda} \cap W_{-\nu_1})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t} wat^{-1}\varphi_{12} * [1, v_2] \\ &= \sum_{w \in W_{-\nu_1}/(W_{\lambda} \cap W_{-\nu_1})} \sum_{a \in (w^{-1}\overline{I}w \cap \overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t} \sum_{b \in \overline{N}(\mathcal{O})/t^{-1}\overline{N}(\mathcal{O})t} [wat^{-1}bt^{-1}, v_1] \end{split}$$

2154

$$=\sum_{w\in W_{-\nu_{1}}/(W_{\lambda}\cap W_{-\nu_{1}})}\sum_{a\in(w^{-1}\overline{I}w\cap\overline{N}(\mathcal{O}))/t^{-1}\overline{N}(\mathcal{O})t}\sum_{b\in t^{-1}\overline{N}(\mathcal{O})t/t^{-2}\overline{N}(\mathcal{O})t^{2}}[wabt^{-2},v_{1}]$$
$$=\sum_{w\in W_{-\nu_{1}}/(W_{\lambda}\cap W_{-\nu_{1}})}\sum_{c\in(w^{-1}\overline{I}w\cap\overline{N}(\mathcal{O}))/t^{-2}\overline{N}(\mathcal{O})t^{2}}[wct^{-2},v_{1}].$$

Let $\varphi \in \mathcal{H}_G(V_1)$, whose support is $K\lambda(\varpi)^2 K$, and $\varphi(\lambda(\varpi)^2)v_1 = v_1$. By Lemma 4.6, the righthand side of the above equation is $\varphi * [1, v_1]$. (Notice that $W_\lambda = W_{2\lambda}$.) Since $[1, v_1]$ generates c-Ind^G_K(V₁), we obtain the lemma.

Finally, we prove Lemma 4.4.

Proof of Lemma 4.4. Assume that $\mu \leq 2\lambda$ and $\mu \leq 2\lambda - \check{\alpha}$. Since $\mu \leq 2\lambda$, there exists $n_{\beta} \in \mathbb{Z}_{\geq 0}$ such that $2\lambda - \mu = \sum_{\beta \in \Pi} n_{\beta}\check{\beta}$. Then for $\gamma \in \Pi \setminus \{\alpha\}$, we have $\sum_{\beta} n_{\beta} \langle \gamma, \check{\beta} \rangle = \langle \gamma, 2\lambda - \mu \rangle = -\langle \gamma, \mu \rangle \leq 0$. By the assumption, $n_{\alpha} = 0$. Then $\sum_{\beta \neq \alpha} n_{\beta} \langle \gamma, \check{\beta} \rangle \leq 0$. Since $(d_{\gamma} \langle \gamma, \check{\beta} \rangle)_{\beta,\gamma \in \Pi \setminus \{\alpha\}}$ is symmetric and positive definite for some $d_{\gamma} > 0$, we have $n_{\beta} = 0$ for all $\beta \in \Pi \setminus \{\alpha\}$. Hence $\mu = 2\lambda$.

4.2 Comparison of composition factors

We prove the following proposition in this section.

PROPOSITION 4.7. Let $\chi: \overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ be an algebra homomorphism and V an irreducible representation of K. Assume that χ can be extended to $\overline{\kappa}[X_*] \to \overline{\kappa}$. Then $\operatorname{c-Ind}_K^G(V) \otimes_{\mathcal{H}_G(V)} \chi$ has a finite length and its composition factors depend only on χ and the $T(\kappa)$ -representation $V^{\overline{U}(\kappa)}$.

When $G = GL_2$, this proposition is proved by Barthel–Livné [BL95, Theorem 20].

Before proving this proposition, we give an application. For a parabolic subgroup $P \subset G$, let Sp_P be the special representation [Gro]. If we want to emphasize G, we write $\operatorname{Sp}_{P,G}$. We have the following corollary.

COROLLARY 4.8. Let V be an irreducible K-representation such that $V^{\overline{U}(\kappa)}$ is the trivial representation and $\chi \colon \overline{\kappa}[X_*] \to \overline{\kappa}$ an algebra homomorphism parameterized by $(T, \mathbf{1}_{X_{T,*,0}} = \mathbf{1}_{X_*})$. Then the composition factors of c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi$ are {Sp_P | $P \subset G$ }.

Proof. Let V_1 be the irreducible K-representation with lowest weight $-\sum_{\alpha \in \Pi} (q-1)\omega_{\alpha}$. Then we have $V^{\overline{U}(\kappa)} \simeq V_1^{\overline{U}(\kappa)} \simeq \mathbf{1}_{T(\kappa)}$. By Proposition 4.7, we have that $\operatorname{c-Ind}_K^G(V) \otimes_{\mathcal{H}_G(V)} \chi$ and $\operatorname{c-Ind}_K^G(V_1) \otimes_{\mathcal{H}_G(V_1)} \chi$ have the same composition factors. By Herzig's theorem [Her11a, Theorem 3.1], we have

$$\operatorname{c-Ind}_{K}^{G}(V_{1}) \otimes_{\mathcal{H}_{G}(V_{1})} \chi \simeq \operatorname{Ind}_{B}^{G}(\operatorname{c-Ind}_{T \cap K}^{T}(\mathbf{1}_{T \cap K}) \otimes_{\mathcal{H}_{T}(\mathbf{1}_{T \cap K})} \chi) = \operatorname{Ind}_{B}^{G}(\mathbf{1}_{T}).$$

Hence the corollary follows from [Her11a, Corollary 7.3].

This corollary implies the following proposition. This proposition is proved by Herzig when $G = \operatorname{GL}_n$ [Her11a, Proposition 9.1] in a different way. Let $\operatorname{Ord}_{\overline{P}}(\pi)$ be the ordinary part of π defined by Emerton [Eme10].

PROPOSITION 4.9. Let π be an admissible representation of G which contains the trivial representation of K. Assume that there exists $\chi \in \mathcal{S}(\pi, \mathbf{1}_K)$ which is parameterized by $(T, \mathbf{1}_{X_{T,*,0}} = \mathbf{1}_{X_*})$. Then π contains the trivial representation, or $\operatorname{Ord}_{\overline{P}}(\pi) \neq 0$ for some proper parabolic subgroup P.

Proof. From the assumption, we have a non-zero homomorphism $\operatorname{c-Ind}_{K}^{G}(\mathbf{1}_{K}) \otimes_{\mathcal{H}_{G}(\mathbf{1}_{K})} \chi \to \pi$. Hence π contains an irreducible subquotient of $\operatorname{c-Ind}_{K}^{G}(\mathbf{1}_{K}) \otimes_{\mathcal{H}_{G}(\mathbf{1}_{K})} \chi$ as a subrepresentation. By Corollary 4.8, such subquotient is Sp_{P} for a parabolic subgroup P. If P = G, then $\mathbf{1}_{G} = \operatorname{Sp}_{G} \subset \pi$. If $P \neq G$, then $0 \neq \operatorname{Ord}_{\overline{P}}(\operatorname{Sp}_{P}) \hookrightarrow \operatorname{Ord}_{\overline{P}}(\pi)$.

Remark 4.10. If π is irreducible, then $\pi \simeq \text{Sp}_P$. Since π contains the trivial K-representation, π is trivial by [Her11a, Proposition 7.4].

In the rest of this section, we prove Proposition 4.7. We use the following theorem due to Herzig [Her11a, Theorem 3.1].

THEOREM 4.11. Let V be an irreducible representation of K with lowest weight ν , P = MN a standard parabolic subgroup. Assume that $\operatorname{Stab}_W(\nu) \subset W_M$. Then we have

$$\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \mathcal{H}_{M}(V^{\overline{N}(\kappa)}) \simeq \operatorname{Ind}_{P}^{G}(\operatorname{c-Ind}_{M \cap K}^{M} V^{\overline{N}(\kappa)})$$

as G-representations and $\mathcal{H}_M(V^{\overline{N}(\kappa)})$ -modules.

Remark 4.12. In fact, the theorem of Herzig is weaker than this theorem. However, his proof can be applicable for this theorem. See a paper of Henniart and Vigneras [HV12], in which this theorem is proved for a more general G.

For a parabolic subgroup P = MN, let V_P be the irreducible representation of K with lowest weight $-\sum_{\alpha \in \Pi \setminus \Pi_M} (q-1)\omega_{\alpha}$. Put $\pi_P = \operatorname{Ind}_K^G(V_P) \otimes_{\mathcal{H}_G(V_P)} \overline{\kappa}[X_*]$. Then we have $\pi_P \simeq \operatorname{Ind}_P^G(\operatorname{c-Ind}_{M \cap K}^M(\mathbf{1}_{M \cap K}) \otimes_{\mathcal{H}_M(\mathbf{1}_{M(\kappa)})} \overline{\kappa}[X_*])$ by Theorem 4.11. (Notice that $(V_P)^{\overline{N}(\kappa)}$ is the trivial representation.) In particular, we have $\pi_B \simeq \operatorname{Ind}_B^G(\overline{\kappa}[X_*])$. Here, T acts on $\overline{\kappa}[X_*]$ by $T \to T/T(\mathcal{O}) \simeq X_* \to \operatorname{End}(\overline{\kappa}[X_*])$. (The last map is given by the multiplication.)

LEMMA 4.13. For parabolic subgroups $P \subset P'$, there exist $\Phi_{P,P'}: \pi_{P'} \to \pi_P$ and $\Phi_{P',P}: \pi_P \to \pi_{P'}$ which have the following properties:

- (i) $\Phi_{P,P'}$ and $\Phi_{P',P}$ are G- and $\overline{\kappa}[X_*]$ -equivariant;
- (ii) $\Phi_{P,P} = \mathrm{id};$
- (iii) for $P_1 \subset P_2 \subset P_3$, $\Phi_{P_1,P_2} \circ \Phi_{P_2,P_3} = \Phi_{P_1,P_3}$ and $\Phi_{P_3,P_2} \circ \Phi_{P_2,P_1} = \Phi_{P_3,P_1}$;
- (iv) for $P \subset P'$, compositions $\Phi_{P,P'} \circ \Phi_{P',P}$ and $\Phi_{P',P} \circ \Phi_{P,P'}$ are given by $\prod_{\alpha \in \Pi_{P'} \setminus \Pi_P} (\tau_{\tilde{\alpha}} 1)$.

Proof. For each $\alpha \in \Pi$, fix $\lambda_{\alpha} \in X_{*,+}$ such that $\langle \lambda_{\alpha}, \Pi \setminus \{\alpha\} \rangle = 0$ and $\langle \lambda_{\alpha}, \alpha \rangle \neq 0$. We also fix a lowest weight vector v_P of V_P .

Let $P_1 \subset P_2$ be parabolic subgroups such that $\#\Pi_{P_2} = \#\Pi_{P_1} + 1$ and $\Pi_{P_2} = \Pi_{P_1} \cup \{\alpha\}$. Take $\varphi_{P_2,P_1} \in \mathcal{H}_G(V_{P_1}, V_{P_2})$ and $\varphi_{P_1,P_2} \in \mathcal{H}_G(V_{P_2}, V_{P_1})$ such that their support is $K\lambda_{\alpha}(\varpi)K$ and their values at $\lambda_{\alpha}(\varpi)$ send the lowest weight vector to the lowest weight vector (as in §4.1). The elements φ_{P_2,P_1} and φ_{P_1,P_2} give homomorphisms $\pi_{P_1} \to \pi_{P_2}$ and $\pi_{P_2} \to \pi_{P_1}$. Let Φ_{P_1,P_2} (respectively Φ_{P_2,P_1}) be a homomorphism given by φ_{P_1,P_2} (respectively $-\tau_{\dot{\alpha}-2\lambda_{\alpha}}\varphi_{P_2,P_1}$). By Lemma 4.2, these homomorphisms satisfy condition (iv). For general $P' \subset P$, take a chain of parabolic subgroups $P' = P_1 \subset \cdots \subset P_r = P$ such that $\#\Pi_{P_{i+1}} = \#\Pi_{P_i} + 1$. Define $\Phi_{P',P} = \Phi_{P_1,P_2} \circ \cdots \circ \Phi_{P_r-1,P_r}$ and $\Phi_{P,P'} = \Phi_{P_r,P_{r-1}} \circ \cdots \circ \Phi_{P_2,P_1}$. Then by [Her11a, Proposition 6.3], condition (iv) is satisfied.

It is sufficient to prove that $\Phi_{P',P}$ and $\Phi_{P,P'}$ are independent of the choice of a chain. To prove this, we may assume that the length of the chain is 2. So let P, P', P_1, P_2 be parabolic

subgroups and $\alpha, \beta \in \Pi$ such that $\alpha \neq \beta$, $\alpha, \beta \notin \Pi_P$, $\Pi_{P_1} = \Pi_P \cup \{\alpha\}$, $\Pi_{P_2} = \Pi_P \cup \{\beta\}$ and $\Pi_{P'} = \Pi_P \cup \{\alpha, \beta\}$. Put $t_{\alpha} = \lambda_{\alpha}(\varpi)$ and $t_{\beta} = \lambda_{\beta}(\varpi)$. Then by Lemma 4.6, we have

$$\begin{split} (\Phi_{P',P_1} \circ \Phi_{P_1,P})([1,v_P]) &= \sum_{a \in \overline{N}(\mathcal{O})/t_{\alpha}^{-1}\overline{N}(\mathcal{O})t_{\alpha}} \Phi_{P',P_1}([at_{\alpha}^{-1},v_{P_1}]) \\ &= \sum_{a \in \overline{N}(\mathcal{O})/t_{\alpha}^{-1}\overline{N}(\mathcal{O})t_{\alpha}} \sum_{b \in \overline{N}(\mathcal{O})/t_{\beta}^{-1}\overline{N}(\mathcal{O})t_{\beta}} [at_{\alpha}^{-1}bt_{\beta}^{-1},v_{P'}] \\ &= \sum_{c \in \overline{N}(\mathcal{O})/(t_{\alpha}t_{\beta})^{-1}\overline{N}(\mathcal{O})(t_{\alpha}t_{\beta})} [c(t_{\alpha}t_{\beta})^{-1},v_{P'}]. \end{split}$$

Hence we have $(\Phi_{P',P_1} \circ \Phi_{P_1,P})([1, v_P]) = (\Phi_{P',P_2} \circ \Phi_{P_2,P})([1, v_P])$. Therefore, we have $\Phi_{P',P_1} \circ \Phi_{P_1,P} = \Phi_{P',P_2} \circ \Phi_{P_2,P}$.

Since $\Phi_{P',P_1} \circ \Phi_{P_1,P}$ satisfies condition (iv),

$$(\tau_{\check{\alpha}}-1)(\tau_{\check{\beta}}-1)(\Phi_{P,P_{2}}\circ\Phi_{P_{2},P'})=(\Phi_{P,P_{2}}\circ\Phi_{P_{2},P'})\circ(\Phi_{P',P_{1}}\circ\Phi_{P_{1},P}\circ\Phi_{P,P_{1}}\circ\Phi_{P_{1},P'}).$$

By $\Phi_{P',P_1} \circ \Phi_{P_1,P} = \Phi_{P',P_2} \circ \Phi_{P_2,P}$, the right-hand side is equal to

$$(\Phi_{P,P_2} \circ \Phi_{P_2,P'} \circ \Phi_{P',P_2} \circ \Phi_{P_2,P}) \circ (\Phi_{P,P_1} \circ \Phi_{P_1,P'}).$$

Using condition (iv) for $\Phi_{P,P_2} \circ \Phi_{P_2,P'}$, this is equal to

$$(\tau_{\check{\alpha}}-1)(\tau_{\check{\beta}}-1)(\Phi_{P,P_1}\circ\Phi_{P_1,P'})$$

Since π_P is a torsion-free $\overline{\kappa}[X_*]$ -module [Her11a, Corollary 6.5], we have $\Phi_{P,P_2} \circ \Phi_{P_2,P'} = \Phi_{P,P_1} \circ \Phi_{P_1,P'}$. We get the lemma.

We fix such homomorphisms. Since π_P is a torsion-free $\overline{\kappa}[X_*]$ -module [Her11a, Corollary 6.5], condition (iv) implies $\Phi_{P,P'}$ and $\Phi_{P',P}$ are injective.

LEMMA 4.14. We have $\pi_P^K \simeq \overline{\kappa}[X_*]$.

Proof. We have $\pi_P \simeq \operatorname{Ind}_{P \cap K}^K(\operatorname{c-Ind}_{M \cap K}^M(\mathbf{1}_{M \cap K}) \otimes_{\mathcal{H}_M(\mathbf{1}_{M \cap K})} \overline{\kappa}[X_*])$ by the Iwasawa decomposition G = KP. Therefore, we have

$$\pi_P^K = \operatorname{Hom}_K(\mathbf{1}_K, \operatorname{Ind}_{P\cap K}^K(\operatorname{c-Ind}_{M\cap K}^M(\mathbf{1}_{M\cap K}) \otimes_{\mathcal{H}_M(\mathbf{1}_{M\cap K})} \overline{\kappa}[X_*]))$$

$$\simeq \operatorname{Hom}_{M\cap K}(\mathbf{1}_{M\cap K}, \operatorname{c-Ind}_{M\cap K}^M(\mathbf{1}_{M\cap K}) \otimes_{\mathcal{H}_M(\mathbf{1}_{M\cap K})} \overline{\kappa}[X_*])$$

$$\simeq \operatorname{End}_M(\operatorname{c-Ind}_{M\cap K}^M(\mathbf{1}_{M\cap K})) \otimes_{\mathcal{H}_M(\mathbf{1}_{M\cap K})} \overline{\kappa}[X_*] \simeq \overline{\kappa}[X_*].$$

Remark 4.15. The homomorphism $\operatorname{Ind}_B^G(\overline{\kappa}[X_*]) \ni f \mapsto f(1) \in \overline{\kappa}[X_*]$ gives an isomorphism $\pi_B^K \simeq \overline{\kappa}[X_*]$.

Set $f_0 = [1, 1] \otimes 1 \in \text{c-Ind}_K^G(\mathbf{1}_K) \otimes_{\mathcal{H}_G(\mathbf{1}_K)} \overline{\kappa}[X_*] = \pi_G$. Then π_G^K is generated by f_0 as a $\overline{\kappa}[X_*]$ -module. We also have that π_G is generated by $\pi_G^K = \overline{\kappa}[X_*]f_0$ as a *G*-module. We can prove the following lemma using an argument of Vigneras [Vig08]. This lemma also follows from [Eme10, Proposition 4.3.4, Theorem 4.4.6].

LEMMA 4.16. Let P = MN be a parabolic subgroup and σ_1, σ_2 representations of M. Then we have $\operatorname{Hom}_M(\sigma_1, \sigma_2) \simeq \operatorname{Hom}_G(\operatorname{Ind}_P^G(\sigma_1), \operatorname{Ind}_P^G(\sigma_2))$.

Proof. Set $W(M) = \{w \in W \mid w(\Pi_M) \subset \Delta^+\}$. Then this is a set of complete representatives of W/W_M [Bou02, ch. IV, Exercises, §1 (3)]. Hence we have the Bruhat decomposition

$$G/P = \coprod_{w \in W(M)} UwP/P. \text{ For } w \in W(M), \text{ set}$$
$$\pi'_w = \left\{ f \colon UwP \to \sigma_1 \middle| \begin{array}{c} f \text{ is a locally constant function, supp } f \text{ is compact modulo } P, \\ f(gp) = p^{-1}f(g) \text{ for } g \in UwP, \ p \in P \end{array} \right\}.$$

This is a representation of U and it is sufficient to prove that $(\pi'_w)_N = 0$ if $w \neq 1$. We have $UwP/P \simeq U \cap w\overline{N}w^{-1}$. Since $w \in W(M)$, $U \cap w\overline{N}w^{-1} = U \cap w\overline{U}w^{-1}$. Therefore, as a representation of $U \cap w\overline{U}w^{-1}$, $\pi'_w \simeq \pi_{w^{-1}} \otimes \sigma_1$ where $\pi_{w^{-1}}$ is the representation defined in [Vig08, Definition 1]. If $w \neq 1$, then $w^{-1} \notin W_M$. Hence there exists $\alpha \in \Delta^+ \setminus \Delta_M^+$ such that $w^{-1}(\alpha) < 0$. Let $U_\alpha \subset G$ be the one-dimensional subgroup corresponding to α . Then $U_\alpha \subset N$ and as a representation of U_α , we have $\pi'_w \simeq \pi_{w^{-1}} \otimes \sigma_1$. Hence $(\pi'_w)_{U_\alpha} = (\pi_{w^{-1}})_{U_\alpha} \otimes \sigma_1$. By [Vig08, Proposition 2], $(\pi_{w^{-1}})_{U_\alpha} = 0$. Hence $(\pi'_w)_{U_\alpha} = 0$. Since $U_\alpha \subset N$, we have $(\pi'_w)_N = 0$. Now the lemma follows from the argument in the proof of [Vig08, Théorème 8]. \Box

LEMMA 4.17. The element $\tau_{\check{\alpha}} - 1 \in \overline{\kappa}[X_*]$ is irreducible.

Proof. Take $d \in \mathbb{Z}_{>0}$ and $\lambda \in X_*$ such that $\langle \alpha, X_* \rangle = d\mathbb{Z}$ and $\langle \alpha, \lambda \rangle = d$. Then we have $X_* = \mathbb{Z}\lambda \oplus$ Ker α . Let $a, b \in \overline{\kappa}[X_*]$ such that $\tau_{\check{\alpha}} - 1 = ab$. Put $t = \tau_{\lambda}$. Then we have $a = \sum_n a_n t^n$ and $b_n = \sum_n b_n t^n$ where $a_n, b_n \in \overline{\kappa}[\text{Ker }\alpha]$. Put $k_a = \max\{n \mid a_n \neq 0\}$, $l_a = \min\{n \mid a_n \neq 0\}$, $k_b = \max\{n \mid b_n \neq 0\}$, $l_b = \min\{n \mid b_n \neq 0\}$. We may assume $k_a - l_a \leq k_b - l_b$. Take $c \in \mathbb{Z}$ and $\lambda_0 \in \text{Ker }\alpha$ such that $\check{\alpha} = c\lambda + \lambda_0$. Then c = 1 or 2 and we have $ab = \tau_{\check{\alpha}} - 1 = t^c \tau_{\lambda_0} - 1$. Therefore, $k_a + k_b = c$ and $a_{k_a} b_{k_b} = \tau_{\lambda_0} \in \overline{\kappa}[\text{Ker }\alpha]^{\times}$. Replacing (a, b) with (au^{-1}, bu) for $u = t^{k_a - 1}a_{k_a} \in \overline{\kappa}[X_*]^{\times}$, we may assume $k_a = 1$ and $a_{k_a} = 1$. Hence $k_b = c - 1$. We prove $a \in \overline{\kappa}[X_*]^{\times}$. If $k_a = l_a$, then $a = t \in \overline{\kappa}[X_*]^{\times}$. Hence we may assume $k_a \neq l_a$. By $ab = \tau_{\check{\alpha}} - 1 = t^c \tau_{\lambda_0} - 1$, we have $l_a + l_b = 0$. Therefore, (c, k_a, l_a, k_b, l_b) satisfies the following conditions:

$$c = 1 \text{ or } 2, \quad k_a = 1, \quad k_b = c - 1, \quad l_a < k_a, \quad k_a - l_a \leq k_b - l_b, \quad l_a + l_b = 0.$$

From $k_a = 1$, $k_b = c - 1$ and $k_a - l_a \leq k_b - l_b$, we have $1 - l_a \leq c - 1 - l_b$. Since $l_a + l_b = 0$, we have $1 - l_a \leq c - 1 + l_a$. Therefore, $l_a \geq 1 - c/2$. We also have $1 = k_a > l_a$. Hence $l_a \leq 0$. From this, $0 \geq 1 - c/2$. Hence c = 2. Therefore $0 \leq l_a \leq 1 - c/2 = 0$. Hence $l_a = 0$ and $l_b = -l_a = 0$. We get $(c, k_a, l_a, k_b, l_b) = (2, 1, 0, 1, 0)$.

Now we have $a = t + a_0$ and $b = b_1 t + b_0$. Since $ab = \tau_{\lambda_0} t^2 - 1$, we have

 $b_1 = \tau_{\lambda_0}, \quad a_0 b_1 + b_0 = 0 \quad \text{and} \quad a_0 b_0 = -1.$

By the last equation, $b_0 \in \overline{\kappa}[X_*]^{\times}$. Hence $b_0 \in \overline{\kappa}^{\times} \tau_{\mu}$ for some $\mu \in X_*$. We have $\tau_{\lambda_0} = b_1 = -b_0 a_0^{-1} = b_0^2$. Therefore, $\lambda_0 = 2\mu$. Hence $\check{\alpha} = 2(\lambda + \mu) \in 2X_*$. This is a contradiction since we assume that the derived group of G is simply connected.

LEMMA 4.18. The image of f_0 under $\Phi_{B,G}$ is a basis of π_B^K .

Proof. It is sufficient to prove that $\Phi_{B,G}(\pi_G^K) = \pi_B^K$. We prove $\Phi_{B,G}(\pi_G^K) \supset \prod_{\beta \in \Pi \setminus \{\alpha\}} (\tau_{\check{\beta}} - 1) \pi_B^K$ for all $\alpha \in \Pi$. Then for each $\alpha \in \Pi$, there exists $a_\alpha \in \overline{\kappa}[X_*]$ such that $a_\alpha \Phi_{B,G}(f_0) = \prod_{\beta \in \Pi \setminus \{\alpha\}} (\tau_{\check{\beta}} - 1) f'_0$ where f'_0 is a basis of π_B^K . Since $(\tau_{\check{\alpha}} - 1)$ are distinct irreducible elements and $\overline{\kappa}[X_*]$ is a unique factorization domain, we have $\Phi_{B,G}(f_0) \in \overline{\kappa}[X_*]^{\times} f'_0$. Hence the lemma is proved.

So it is sufficient to prove $\Phi_{B,G}(\pi_G^K) \supset \prod_{\beta \in \Pi \setminus \{\alpha\}} (\tau_{\check{\beta}} - 1)\pi_B^K$ for all $\alpha \in \Pi$. Fix $\alpha \in \Pi$ and let P be the parabolic subgroup corresponding to $\{\alpha\}$. Since $\Phi_{P,G}(\pi_G^K) \supset \Phi_{P,G}(\Phi_{G,P}(\pi_P^K)) = \prod_{\beta \in \Pi \setminus \{\alpha\}} (\tau_{\check{\beta}} - 1)\pi_P^K$, it is sufficient to prove $\Phi_{B,P}(\pi_P^K) = \pi_B^K$. By Lemma 4.16, $\Phi_{B,P}$ is given by a certain homomorphism Φ : c-Ind $_{M\cap K}^M(\mathbf{1}_{M\cap K}) \otimes_{\mathcal{H}_M(\mathbf{1}_{M\cap K})} \overline{\kappa}[X_*] \rightarrow \operatorname{Ind}_{M\cap B}^M(\mathbf{1}_{M\cap B})$. We also have that $\Phi_{P,B}$ is induced by some Φ' : Ind $_{M\cap B}^M(\mathbf{1}_{M\cap B}) \rightarrow \operatorname{c-Ind}_{M\cap K}^M(\mathbf{1}_{M\cap K}) \otimes_{\mathcal{H}_M(\mathbf{1}_{M\cap K})} \overline{\kappa}[X_*]$. It is sufficient to prove that Φ induces surjective homomorphism between the spaces of K-invariants. Since $\Phi_{P,G} \circ \Phi_{G,P} = (\tau_{\check{\alpha}} - 1)$ (respectively $\Phi_{G,P} \circ \Phi_{P,G} = (\tau_{\check{\alpha}} - 1)$), $\Phi' \circ \Phi$ (respectively $\Phi \circ \Phi'$) is induced by $(\tau_{\check{\alpha}} - 1)$. Hence $\Phi' \circ \Phi = (\tau_{\check{\alpha}} - 1)$ and $\Phi \circ \Phi' = (\tau_{\check{\alpha}} - 1)$ by Lemma 4.16. Namely, Φ' and Φ satisfy the conditions of Lemma 4.13 for M. Therefore, it is sufficient to prove the lemma for G = M. We assume that the semisimple rank of G is one.

Now we assume that the semisimple rank of G is one. Let $\Pi = \{\alpha\}$. Take $a, b \in \overline{\kappa}[X_*]$ such that $\Phi_{B,G}(\pi_G^K) = a\pi_B^K$, $\Phi_{G,B}(\pi_B^K) = b\pi_G^K$ and $ab = \tau_{\bar{\alpha}} - 1$. Assume $\Phi_{B,G}(\pi_G^K) \neq \pi_B^K$. It is equivalent to $a \notin \overline{\kappa}[X_*]^{\times}$. By the above lemma, $b \in \overline{\kappa}[X_*]^{\times}$. Hence $\Phi_{G,B}(\pi_B^K) = \pi_G^K$. Since π_G is generated by π_G^K , $\Phi_{G,B}$ is surjective. Therefore, $\Phi_{G,B}$ is isomorphic. Let $\chi : \overline{\kappa}[X_*] \to \overline{\kappa}$ be a homomorphism defined by $\chi(\tau_{\lambda}) = 1$ for all $\lambda \in X_*$. Then we have $\pi_B \otimes_{\overline{\kappa}[X_*]} \chi = \operatorname{Ind}_B^G(\mathbf{1}_T)$. Hence we have $\operatorname{Ind}_B^G(\mathbf{1}_T) \simeq \pi_G \otimes_{\overline{\kappa}[X_*]} \chi$. Consider a homomorphism c- $\operatorname{Ind}_K^G(\mathbf{1}_K) \to \mathbf{1}_G$ defined by $f \mapsto \sum_{g \in G/K} f(g)$. This gives a homomorphism $\pi_G \otimes_{\overline{\kappa}[X_*]} \chi \to \mathbf{1}_G$ and the induced homomorphism $(\pi_G \otimes_{\overline{\kappa}[X_*]} \chi)^K \to (\mathbf{1}_G)^K = \mathbf{1}_G$ is surjective since an image of $[1, 1] \in (\operatorname{c-Ind}_K^G(\mathbf{1}_K))^K$ is nonzero. Consider the following maps: $\mathbf{1}_G \hookrightarrow \operatorname{Ind}_B^G(\mathbf{1}_T) \simeq \pi_G \otimes_{\overline{\kappa}[X_*]} \chi \to \mathbf{1}_G$. Take K-invariants. Then we have that $\mathbf{1}_G = (\mathbf{1}_G)^K \hookrightarrow (\operatorname{Ind}_B^G(\mathbf{1}_T))^K$ is isomorphic (by the Iwasawa decomposition) and $(\pi_G \otimes_{\overline{\kappa}[X_*]})^K \chi \to (\mathbf{1}_G)^K = \mathbf{1}_G$ is surjective. Hence the composition $\mathbf{1}_G \to \mathbf{1}_G$ is surjective. Since both sides are one-dimensional, it is isomorphic. Hence $\mathbf{1}_G$ is a direct summand of $\operatorname{Ind}_B^G(\mathbf{1}_T)$. Therefore, $\operatorname{End}_G(\operatorname{Ind}_B^G(\mathbf{1}_T))$ has a non-trivial idempotent. However, by Lemma 3.19, $\operatorname{End}_G(\operatorname{Ind}_B^G(\mathbf{1}_T)) \simeq \operatorname{End}_T(\mathbf{1}_T) \simeq \overline{\kappa}$. This is a contradiction. \Box

By this lemma, Im $\Phi_{B,G}$ is a subrepresentation of π_B generated by π_B^K . For each $w \in W \simeq N_K(T(\mathcal{O}))/T(\mathcal{O})$, we fix a representative of w and denote it by the same letter w. For a subset $A \subset W$ of W, let $X_{G,A} \subset \pi_B = \operatorname{Ind}_B^G \overline{\kappa}[X_*]$ be a B-stable subspace defined by $X_{G,A} = \{f \in \pi_B \mid \operatorname{supp} f \subset \bigcup_{w' \in A} Bw'B/B\}$. For $w \in W$, put $X_{G,>w} = X_{G,\{w' \in W \mid w' > w\}}$ and $X_{G,>w} = X_{G,\{w' \in W \mid w' > w\}}$. Set $X_A = X_{G,A}, X_{\geq w} = X_{G,\geq w}$ and $X_{>w} = X_{G,>w}$ for $A \subset W, w \in W$. Set $Y = \Phi_{B,G}(\pi_G), Y_A = Y \cap X_A$. For a parabolic subgroup P = MN, put $W(M) = \{w \in W \mid w(\Pi_M) \subset \Delta^+\}$. Then $W(M) \times W_M \to W$ is bijective [Bou02, ch. IV, Exercises, §1 (3)].

Let $A \subset W$ be a subset such that $\bigcup_{w \in A} BwB$ is open. (In other words, if $w \in A$ and w' > w then $w' \in A$.) Let $w \in A$ be a minimal element and set $A' = A \setminus \{w\}$.

LEMMA 4.19. Let $I \subset \overline{\kappa}[X_*]$ be a principal ideal. For $f \in \pi_B$, $f \in X_A + I\pi_B$ if and only if $f(x) \in I$ for all $x \in BvB$ and $v \in W \setminus A$. In particular, if $I_1, I_2 \subset \overline{\kappa}[X_*]$ are principal ideals then $(X_A + I_1\pi_B) \cap (X_A + I_2\pi_B) = X_A + (I_1 \cap I_2)\pi_B$.

Proof. It is obvious that if $f \in X_A + I\pi_B$ then $f(x) \in I$ for all $x \in BvB$ and $v \in W \setminus A$. Assume that $f(x) \in I$ for all $x \in BvB$ and $v \in W \setminus A$. Let $a \in I$ be a generator of I. Since $\overline{\kappa}[X_*]$ is an integral domain, there exists a locally constant function $f_0: \bigcup_{v \in W \setminus A} BvB \to \overline{\kappa}[X_*]$ such that $f(x) = af_0(x)$. Since $\bigcup_{v \in W \setminus A} BvB$ is closed, there exists $f_1 \in \pi_B$ such that $f_1|_{\bigcup_{v \in W \setminus A} BvB} = f_0$. Then $f = (f - af_1) + af_1$ and $f - af_1 \in X_A$, $af_1 \in I\pi_B$.

Since $\overline{\kappa}[X_*]$ is a unique factorization domain, if I_1, I_2 are principal ideals, then $I_1 \cap I_2$ is also a principal ideal. Hence the second statement follows from the first statement.

LEMMA 4.20. Let P = MN be a parabolic subgroup, $w, v_0 \in W(M)$ and $v_1 \in W_M$. Then $v_0v_1 \ge w$ if and only if $v_0 \ge w$.

Proof. Put $v = v_0 v_1$. Let ℓ be the length function of W. Then $\ell(v) = \ell(v_0) + \ell(v_1)$ [Bou02, ch. IV, Exercises, §1 (3)]. Hence $v \ge v_0$. Therefore, $v_0 \ge w$ implies $v \ge w$.

We prove $v \ge w$ implies $v_0 \ge w$ by induction on $\ell(v_1)$. If $\ell(v_1) = 0$, then $v_1 = 1$. Hence there is nothing to prove. Assume that $\ell(v_1) > 0$ and take $\alpha \in \prod_M$ such that $v_1 s_\alpha < v_1$ where $s_\alpha \in W_M$

is the reflection corresponding to α . Put $s = s_{\alpha}$. Then $\ell(v_0v_1s) = \ell(v_0) + \ell(v_1s) = \ell(v_0) + \ell(v_1) - 1 = \ell(v_0v_1) - 1$. Hence vs < v. By the definition of W(M), we have ws > w. Hence we get $vs \ge w$ [Deo77, Theorem 1.1 (II, ii)]. Therefore, $v_0(v_1s) \ge w$. Since $\ell(v_1s) < \ell(v_1)$, we have $v_0 \ge w$ by inductive hypothesis.

LEMMA 4.21. We have $Y_A/Y_{A'} = \prod_{\alpha \in \Pi, ws_\alpha < w} (\tau_{\check{\alpha}} - 1)(X_A/X_{A'}).$

Proof. Set $\Theta = \{\alpha \in \Pi \mid ws_{\alpha} < w\}$ and put $I = \prod_{\alpha \in \Theta} (\tau_{\check{\alpha}} - 1)\overline{\kappa}[X_*]$. First we prove $Y_A/Y_{A'} \subset I(X_A/X_{A'})$; namely, we prove $Y_A \subset I\pi_B + X_{A'}$. Let $I_{\alpha} = (\tau_{\check{\alpha}} - 1)\overline{\kappa}[X_*]$. By Lemma 4.19, it is sufficient to prove $Y_A \subset I_{\alpha}\pi_B + X_{A'}$ for all $\alpha \in \Theta$. Let $P_{\alpha} = M_{\alpha}N_{\alpha}$ be the parabolic subgroup corresponding to $\{\alpha\}$. Recall that T acts on $\overline{\kappa}[X_*]$ and $\pi_B = \operatorname{Ind}_B^G(\overline{\kappa}[X_*])$. This action induces the action of T on $\overline{\kappa}[X_*]/I_{\alpha}$. The image of $\check{\alpha}$ acts on $\overline{\kappa}[X_*]/I_{\alpha}$ trivially. Therefore, the action of T on $\overline{\kappa}[X_*]/I_{\alpha}$ is extended to the action of M_{α} such that $[M_{\alpha}(F), M_{\alpha}(F)]$ acts on it trivially by Lemma 3.2. We have $\operatorname{Ind}_{P_{\alpha}}^G(\overline{\kappa}[X_*]/I_{\alpha}) \subset \operatorname{Ind}_B^G(\overline{\kappa}[X_*]/I_{\alpha}) = \pi_B/I_{\alpha}\pi_B$.

Let $f \in (\pi_B/I_\alpha \pi_B)^K = (\operatorname{Ind}_B^G(\overline{\kappa}[X_*]/I_\alpha))^K$. We prove $f \in \operatorname{Ind}_{P_\alpha}^G(\overline{\kappa}[X_*]/I_\alpha)$; namely, $f(gp) = p^{-1}f(g)$ for $g \in G$ and $p \in P_\alpha$. Let $g_0 \in G$ and $p_0 \in P_\alpha$. By the Iwasawa decomposition $G = KP_\alpha$, there exist $k_0 \in K$ and $p'_0 \in P_\alpha$ such that $g_0 = k_0p'_0$. Since $P_\alpha = M_\alpha N_\alpha = [M_\alpha(F), M_\alpha(F)]TN_\alpha = ([M_\alpha(F), M_\alpha(F)] \cap K)([M_\alpha(F), M_\alpha(F)] \cap B)TN_\alpha = ([M_\alpha(F), M_\alpha(F)] \cap K)B$, there exist $k'_0 \in [M_\alpha(F), M_\alpha(F)] \cap K$ and $b_0 \in B$ such that $p'_0p_0 = k'_0b_0$. Hence $f(g_0p_0) = f(k_0p'_0p_0) = f(k_0p'_0p_0)$

For $f \in \pi_B$, let \overline{f} be the image of f under the canonical projection $\pi_B \to \pi_B/I_\alpha \pi_B = \operatorname{Ind}_B^G(\overline{\kappa}[X_*]/I_\alpha)$. Let $f \in Y_A$. Then $\operatorname{supp} \overline{f} \subset \bigcup_{w' \in A} Bw'B/B$. Since $\overline{f} \in \operatorname{Ind}_{P_\alpha}^G(\overline{\kappa}[X_*]/I_\alpha)$, its support is right P_α -invariant. Hence if $\operatorname{supp} \overline{f} \cap BwB/B \neq \emptyset$, $\operatorname{supp} \overline{f} \cap Bws_\alpha B/B \neq \emptyset$. By the definition of Θ , $ws_\alpha < w$. This contradicts $\operatorname{supp} \overline{f} \subset \bigcup_{w' \in A} Bw'B/B$ and the minimality of w. So we have $\operatorname{supp} \overline{f} \subset \bigcup_{w' \in A'} Bw'B/B$. Hence $f \in X_{A'} + I_\alpha \pi_B$.

We prove $Y_A/Y_{A'} \supset I(X_A/X_{A'})$. Let P = MN be a parabolic subgroup corresponding to $\Pi \setminus \Theta$. First we prove that $\Phi_{B,P}(\pi_P) \cap X_A \to X_A/X_{A'}$ is surjective. Since $X_A/X_{A'} \simeq X_{\geqslant w}/X_{>w}$ and $X_A \supset X_{\geqslant w}$, we may assume $A = \{w' \in W \mid w' \geqslant w\}$. For each parabolic subgroup $P_1 = M_1N_1 \subset P$, put $\pi_{M,P_1} = \operatorname{Ind}_{M\cap P_1}^M(\operatorname{c-Ind}_{M_1\cap K}^{M_1} \mathbf{1}_{M_1\cap K} \otimes_{\mathcal{H}_{M_1}(\mathbf{1}_{M_1\cap K})} \overline{\kappa}[X_*])$. Then $\pi_{P_1} = \operatorname{Ind}_{P}^G(\pi_{M,P_1})$. By Lemma 4.16, for each $P_1 \subset P_2 \subset P$, Φ_{P_1,P_2} and Φ_{P_2,P_1} are induced by some $\Phi_{P_1,P_2}^M: \pi_{M,P_2} \to \pi_{M,P_1}$ and $\Phi_{P_2,P_1}^M: \pi_{M,P_1} \to \pi_{M,P_2}$. Such homomorphisms satisfy the conditions of Lemma 4.13. Therefore, Φ_{P_1,P_2}^M induces a bijection $\pi_{M,P_2}^{M\cap K} \simeq \pi_{M,P_1}^{M\cap K}$ by Lemma 4.18. Put $\Phi = \Phi_{B,P}^M$. Then $\Phi_{B,P}(\pi_P) = \operatorname{Ind}_{P}^G(\Phi(\pi_{M,P}))$.

Let $f \in \Phi_{B,P}(\pi_P)$. By the definition of $X_{\geq w}$, $f \in X_{\geq w}$ if and only if $\sup f \subset \bigcup_{v \geq w} BvB$. For $v \in W$, take $v_0 \in W(M)$ and $v_1 \in W_M$ such that $v = v_0v_1$. Since $w \in W(M)$, $v \geq w$ if and only if $v_0 \geq w$ by the above lemma. Hence $\bigcup_{v \geq w} BvB = \bigcup_{v \geq w, v \in W(M)} BvW_MB = \bigcup_{v \geq w, v \in W(M)} BvP$. Therefore, $\Phi_{B,P}(\pi_P) \cap X_{\geq w} = \{f \in \operatorname{Ind}_P^G(\Phi(\pi_{M,P})) \mid \sup f \subset \bigcup_{v \geq w, v \in W(M)} BvP/P\}$. Let $Z_{\geq w}$ be this space. Put $Z_{>w} = \{f \in \operatorname{Ind}_P^G(\Phi(\pi_{M,P})) \mid \sup f \subset \bigcup_{v \geq w, v \in W(M)} BvP/P\}$. Then the homomorphism $Z_{\geq w} = \Phi_{B,P}(\pi_{M,P}) \cap X_{\geq w} \to X_{\geq w}/X_{>w}$ induces $Z_{\geq w}/Z_{>w} \to X_{\geq w}/X_{>w}$. By the Bruhat decomposition $G/P = \bigcup_{v \in W(M)} BvP/P$, the space $Z_{\geq w}/Z_{>w}$ is isomorphic to the space of locally constant compact support $\Phi(\pi_{M,P})$ -valued functions on $BwP/P \simeq BwB/B$. The space $X_{\geq w}/X_{>w}$ is isomorphic to the space of locally constant compact support $\overline{\kappa}[X_*]$ -valued functions on BwB/B. The homomorphism $Z_{\geq w}/Z_{>w} \to X_{\geq w}/X_{>w}$ is induced by $\Phi(\pi_{M,P}) \hookrightarrow \pi_{M,B} \to \pi_{M,B}/X_{M,>1} \simeq \overline{\kappa}[X_*]$. By Remark 4.15, $\pi_{M,B}^{M\cap K} \hookrightarrow \pi_{M,B} \to \pi_{M,B}/X_{M,>1} \simeq \overline{\kappa}[X_*]$ is isomorphic. Since Φ induces $\pi_{M,P}^{M\cap K} \simeq \pi_{M,B}^{M\cap K}$, $\Phi(\pi_{M,P}) \hookrightarrow \pi_{M,B} \to \pi_{M,B}/X_{M,>1} \simeq \overline{\kappa}[X_*]$ is surjective. Therefore $\Phi_{B,P}(\pi_P) \cap X_{\geq w} \to X_{\geq w}/X_{>w}$ is surjective.

By the above argument, we get $(\Phi_{B,P}(\pi_P) \cap X_A) + X_{A'} = X_A$. Hence we get $I\Phi_{B,P}(\pi_P) = \Phi_{B,P}(I\pi_P) = \Phi_{B,P}(\Phi_{P,G}(\Phi_{G,P}(\pi_P))) = \Phi_{B,G}(\Phi_{G,P}(\pi_P)) \subset \Phi_{B,G}(\pi_G) = Y$, $IX_A \subset Y \cap X_A + IX_{A'} \subset Y_A + X_{A'}$. This gives us the lemma.

From this lemma, we obtain the following proposition.

PROPOSITION 4.22. Let V be an irreducible representation of K. The module c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \overline{\kappa}[X_*]$ is free as a $\overline{\kappa}[X_*]$ -module.

Remark 4.23. Barthel–Livné proved that, as an $\operatorname{End}_{G}(\operatorname{c-Ind}_{KZ_{G}}^{G}(V))$ -module, $\operatorname{c-Ind}_{KZ_{G}}^{G}(V)$ is free if $G = \operatorname{GL}_{2}$ [BL94, Theorem 19].

Proof. Let ν be a lowest weight of V. By Theorem 4.11, we have $\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \overline{\kappa}[X_{*}] \simeq \operatorname{Ind}_{P_{-\nu}}^{G}(\operatorname{c-Ind}_{M_{-\nu}\cap K}^{M_{-\nu}}(V^{\overline{N_{-\nu}}(\kappa)}) \otimes_{\mathcal{H}_{M_{-\nu}}(V^{\overline{N_{-\nu}}(\kappa)})} \overline{\kappa}[X_{*}])$. Therefore, it is sufficient to prove that $\operatorname{c-Ind}_{M_{-\nu}\cap K}^{M_{-\nu}}(V^{\overline{N_{-\nu}}(\kappa)}) \otimes_{\mathcal{H}_{M_{-\nu}}(V^{\overline{N_{-\nu}}(\kappa)})} \overline{\kappa}[X_{*}]$ is free. Hence we may assume $P_{-\nu} = G$. Therefore, V is a character of K. By Corollary 3.4, there exists a character ν_{G} of G such that $\nu_{G}|_{K} \simeq V$. Then $\varphi \mapsto \varphi_{\nu_{G}^{-1}}$ gives an isomorphism $\mathcal{H}_{G}(V) \simeq \mathcal{H}_{G}(\mathbf{1}_{K})$ (see § 3.1). By this isomorphism, we can identify $\mathcal{H}_{G}(V)$ and $\mathcal{H}_{G}(\mathbf{1}_{K})$. Under this identification, we have $\operatorname{c-Ind}_{K}^{G}(V) \otimes \nu_{G}^{-1} \simeq \operatorname{c-Ind}_{K}^{G}(\mathbf{1}_{K})$. Hence we may assume $V = \mathbf{1}_{K}$. Therefore, $\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \overline{\kappa}[X_{*}] = \pi_{G} \simeq Y$. Since $X_{A}/X_{A'}$ is free [Vig08, Lemma 3], $Y_{A}/Y_{A'}$ is free by Lemma 4.21. Hence Y is free.

Proof of Proposition 4.7. We prove the proposition by induction on $\#\Pi_{-\nu}$. Namely, we prove the following by induction on n: if ν satisfies $\#\Pi_{-\nu} \leq n$ then the module $\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ has a finite length and its composition factors depend only on χ and the $T(\kappa)$ -representation $V^{\overline{U}(\kappa)}$.

If $\Pi_{-\nu} = \emptyset$, then c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi$ is isomorphic to a principal series representation [Her11a, Theorem 3.1]. Hence the proposition follows.

Assume $\Pi_{-\nu} \neq \emptyset$ and take $\alpha \in \Pi_{-\nu}$. Put $\nu' = \nu - (q-1)\omega_{\alpha}$ and let V' be the irreducible *K*-representation with lowest weight ν' . By inductive hypothesis, $\operatorname{c-Ind}_{K}^{G}(V') \otimes_{\mathcal{H}_{G}(V')} \chi$ has a finite length. Define $\chi' : \overline{\kappa}[X_{*}] \to \overline{\kappa}[t, t^{-1}]$ by $\chi'(\tau_{\lambda}) = \chi(\tau_{\lambda})t^{\langle \omega_{\alpha}, \lambda \rangle}$ for $\lambda \in X_{*}$. (Here, tis an indeterminant.) Then χ factors through χ' . Put $\pi = \operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi'$ and $\pi' =$ $\operatorname{c-Ind}_{K}^{G}(V') \otimes_{\mathcal{H}_{G}(V')} \chi'$. These are free $\overline{\kappa}[t, t^{-1}]$ -modules by Proposition 4.22. Take $\lambda \in X_{*}$ such that $\langle \lambda, \Pi \setminus \{\alpha\} \rangle = 0$ and $\langle \lambda, \alpha \rangle \neq 0$. Put $a = \chi(\tau_{\alpha})$. As in §4.1, λ gives $\Phi : \pi \to \pi'$ and $\Phi' : \pi' \to$ π such that $\Phi \circ \Phi' = (at - 1)$. Therefore, Φ' is injective and $\operatorname{Im} \Phi' \subset (at - 1)\pi$. By [CG97, Lemma 2.3.4], $\pi/(t-1)\pi$ has a finite length and $\pi/(t-1)\pi$ and $\pi'/(t-1)\pi'$ have the same composition factors.

5. Classification theorem

Using results in $\S\S 3$ and 4, we prove the main theorem. Almost all the proof of the theorem is a copy of Herzig's proof.

5.1 Construction of representations

We recall the definition of supersingular representations. Recall that a character $\overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ is parameterized by a pair (M, χ_M) where M is the Levi subgroup of a standard parabolic subgroup of G and $\chi_M \colon X_{M,*,0} \to \overline{\kappa}^{\times}$ is a character of $X_{M,*,0}$ where $X_{M,*,0} = \{\lambda \in X_* \mid \langle \lambda, \Pi_M \rangle = 0\}$. (See § 2.2.)

DEFINITION 5.1 (Herzig [Her11a, Definition 4.7]). Let π be an irreducible admissible representation of G.

(i) The representation π is supersingular with respect to (K, T, B) if each $\chi \in \mathcal{S}(\pi)$ corresponds to (G, χ_G) for some $\chi_G \colon X_{G,*,0} \to \overline{\kappa}^{\times}$.

(ii) The representation π is supersingular if it is supersingular with respect to all (K, T, B).

It will be proved that π is supersingular if and only if π is supersingular with respect to (K, T, B) for a fixed (K, T, B) (Corollary 5.13).

Now we introduce the set of parameters $\mathcal{P} = \mathcal{P}_G$. It will parameterize the isomorphism classes of irreducible admissible representations. Before giving \mathcal{P} , we give one notation. Let M be the Levi subgroup of a standard parabolic subgroup and σ its representation with the central character ω_{σ} . Then set $\Pi_{\sigma} = \{\alpha \in \Pi \mid \langle \Pi_M, \check{\alpha} \rangle = 0, \ \omega_{\sigma} \circ \check{\alpha} = \mathbf{1}_{\mathrm{GL}_1(F)} \}$.

Let $\mathcal{P} = \mathcal{P}_G$ be the set of $\Lambda = (\Pi_1, \Pi_2, \sigma_1)$ such that:

- Π_1 and Π_2 are subsets of Π ;
- $-\sigma_1$ is an irreducible admissible representation of M_{Π_1} with central character ω_{σ_1} , which is supersingular with respect to $(M_{\Pi_1} \cap K, T, M_{\Pi_1} \cap B)$;
- $-\Pi_2 \subset \Pi_{\sigma_1}.$

We consider $\Lambda = (\Pi_1, \Pi_2, \sigma_1)$ and $\Lambda' = (\Pi'_1, \Pi'_2, \sigma'_1)$ to be equal to each other if $\Pi_1 = \Pi'_1, \Pi_2 = \Pi'_2$ and $\sigma_1 \simeq \sigma'_1$.

For $\Lambda = (\Pi_1, \Pi_2, \sigma_1) \in \mathcal{P}$, we attach the representation $I(\Lambda)$ of G in the following way. Let $P_{\Lambda} = M_{\Lambda}N_{\Lambda}$ be the standard parabolic subgroup corresponding to $\Pi_1 \cup \Pi_{\sigma_1}$. By Lemma 3.2, there exists the unique extension of σ_1 to M_{Λ} such that $[M_{\Pi_{\sigma_1}}(F), M_{\Pi_{\sigma_1}}(F)]$ acts on it trivially. We denote this representation by the same letter σ_1 . By the definition, $\Pi_1 \cup \Pi_2$ is a subset of $\Pi_1 \cup \Pi_{\sigma_1}$. Hence this set defines a standard parabolic subgroup of M_{Λ} . Let $\sigma_{\Lambda,2}$ be the special representation of M_{Λ} corresponding to this parabolic subgroup. By the construction, $\sigma_{\Lambda,2}|_{M_{\Pi_{\sigma_1}}}$ is a special representation of $M_{\Pi_{\sigma_1}}$. By the following general lemma, the restriction of $\sigma_{\Lambda,2}$ to $[M_{\Pi_{\sigma_1}}(F), M_{\Pi_{\sigma_1}}(F)]$ is irreducible and admissible [Her11a, Theorem 7.2].

LEMMA 5.2. Let π be a special representation of G. Then the restriction of π to [G(F), G(F)] is irreducible and admissible.

Proof. By the definition of a special representation, the restriction of π to [G, G](F) is a special representation of [G, G](F). Hence it is irreducible and admissible [Her11a, Theorem 7.2]. If the derived group of G is simply connected, [G, G](F) = [G(F), G(F)]. Hence the lemma follows. In general, let $\tilde{G} \to G$ be a z-extension of G. Then the pull-back $\tilde{\pi}$ of π to \tilde{G} is a special representation of \tilde{G} and by the above argument, the restriction of $\tilde{\pi}$ to $[\tilde{G}(F), \tilde{G}(F)]$ is irreducible and admissible. Since the image of $[\tilde{G}(F), \tilde{G}(F)]$ in G is $[G(F), G(F)], \pi$ is irreducible and admissible as a representation of [G(F), G(F)].

Put $\sigma_{\Lambda} = \sigma_1 \otimes \sigma_{\Lambda,2}$ and $I(\Lambda) = I_G(\Lambda) = \operatorname{Ind}_{P_{\Lambda}}^G(\sigma_{\Lambda})$. It is easy to check that the tuple $(M_1, M_2, \sigma_1, \sigma_2) = (M_{\Pi_1}, M_{\Pi_{\sigma}}, \sigma_1, \sigma_{\Lambda,2})$ satisfies the conditions of § 3.3. By Lemma 3.23, σ_{Λ} is

admissible. Hence $I(\Lambda)$ is admissible. By the following lemma, σ_{Λ} is irreducible. (Apply for $H = M_{\Lambda}$ and $H' = [M_{\Pi_{\sigma_1}}(F), M_{\Pi_{\sigma_1}}(F)]$.)

LEMMA 5.3. Let H be a group, H' a normal subgroup of H and σ_2 a representation of Hwhich is irreducible as a representation of H' and $\operatorname{End}_{H'}(\sigma_2) = \overline{\kappa}$. For a representation σ of H, $\operatorname{Hom}_{H'}(\sigma_2, \sigma)$ has a structure of a representation of H/H' defined by $(h\psi)(v) = h\psi(h^{-1}v)$ for $h \in H, \psi \in \operatorname{Hom}_{H'}(\sigma_2, \sigma)$ and $v \in \sigma_2$.

- (i) The natural homomorphism $\operatorname{Hom}_{H'}(\sigma_2, \sigma) \otimes \sigma_2 \to \sigma$ is injective.
- (ii) If σ is irreducible, then $\operatorname{Hom}_{H'}(\sigma_2, \sigma)$ is zero or irreducible.
- (iii) For an irreducible representation σ_1 of H/H', $\sigma_1 \otimes \sigma_2$ is an irreducible H-representation.

Proof. (i) Assume that the kernel of the homomorphism is non-zero. Take a non-zero finitedimensional subspace $V \subset \operatorname{Hom}_{H'}(\sigma_2, \sigma)$ such that $V \otimes \sigma_2 \to \sigma$ is not injective. This is an H'-homomorphism. Therefore, there exists a non-zero subspace V_1 of V such that the kernel is $V_1 \otimes \sigma_2$. This means $V_1 = 0$ in $\operatorname{Hom}_{H'}(\sigma_2, \sigma)$. This is a contradiction.

(ii) Assume that σ is irreducible and $\operatorname{Hom}_{H'}(\sigma_2, \sigma) \neq 0$. Then by (i), we have an injective homomorphism $\operatorname{Hom}_{H'}(\sigma_2, \sigma) \otimes \sigma_2 \hookrightarrow \sigma$. Since σ is irreducible, we have $\operatorname{Hom}_{H'}(\sigma_2, \sigma) \otimes \sigma_2 \simeq \sigma$. Therefore, $\operatorname{Hom}_{H'}(\sigma_2, \sigma)$ is irreducible.

(iii) Let $\sigma \subset \sigma_1 \otimes \sigma_2$ be a non-zero subrepresentation. As a representation of H', $\sigma_1 \otimes \sigma_2$ is a direct sum of σ_2 . Hence $\operatorname{Hom}_{H'}(\sigma_2, \sigma) \neq 0$. Since $\operatorname{End}_{H'}(\sigma_2) = \overline{\kappa}$, we have $\operatorname{Hom}_{H'}(\sigma_2, \sigma_1 \otimes \sigma_2) \simeq \sigma_1$. This is an isomorphism between H/H'-representations. Therefore, we have $\operatorname{Hom}_{H'}(\sigma_2, \sigma) \subset \sigma_1$. Since σ_1 is irreducible, we have $\operatorname{Hom}_{H'}(\sigma_2, \sigma) = \sigma_1$. Therefore, $\sigma = \sigma_1 \otimes \sigma_2$. \Box

We have the following calculations of Satake parameters.

- If π is a special representation, then $\mathcal{S}(\pi) = \{(T, \chi_{\text{triv}})\}$ where $\chi_{\text{triv}} \colon X_{T,*,0} = X_* \to \overline{\kappa}^{\times}$ is given by $\lambda \mapsto 1$ [Her11a, Proposition 7.4].
- If π is supersingular with the central character ω_{π} , then $\mathcal{S}(\pi) = \{(G, \chi_{\omega_{\pi}})\}$; here, the homomorphism $\chi_{\omega_{\pi}} \colon X_{G,*,0} \to \overline{\kappa}^{\times}$ is defined by $\chi_{\omega_{\pi}}(\lambda) = \omega_{\pi}(\lambda(\varpi))$ [Her11a, Definition 4.7].

Applying Proposition 3.7 and Corollary 3.24 for $(M_1, M_2, \pi_1, \pi_2) = (M_{\Pi_1}, M_{\Pi_{\sigma_1}}, \sigma_1, \sigma_{\Lambda,2})$, we have the following lemma.

LEMMA 5.4. We have $\mathcal{S}(I(\Lambda)) = \{(M_{\Pi_1}, \chi_{\omega_{\sigma_1}})\}$; here, $\chi_{\omega_{\sigma_1}} \colon X_{M_{\Pi_1},*,0} \to \overline{\kappa}^{\times}$ is defined by $\chi_{\omega_{\sigma_1}}(\lambda) = \omega_{\sigma_1}(\lambda(\varpi))$.

5.2 Irreducibility of the representation

In this subsection, we assume that the derived group of G is simply connected. We prove the irreducibility of $I(\Lambda)$. We need a lemma.

LEMMA 5.5. Let $\Lambda = (\Pi_1, \Pi_2, \sigma_1) \in \mathcal{P}$, V an irreducible representation of K and ν its lowest weight. Assume that $\operatorname{Hom}_K(V, I(\Lambda)) \neq 0$ and $\alpha \in \Pi$ satisfies $\langle \Pi_1, \check{\alpha} \rangle = 0$. Then we have $\omega_{\sigma_1} \circ \check{\alpha}|_{\mathcal{O}^{\times}} = \nu \circ \check{\alpha}$.

Before the proof, we give a remark on a result of [Gro]. Let $\overline{I}_1 = \operatorname{red}^{-1}(\overline{U}(\kappa))$ and $\overline{\operatorname{Sp}}_P$ the special representation for the finite group $G(\kappa)$. Then we have a K-homomorphism $\overline{\operatorname{Sp}}_P \hookrightarrow \operatorname{Sp}_P$ and under this embedding, we have $\overline{\operatorname{Sp}}_P^{\overline{B}(\kappa)} = \operatorname{Sp}_P^{\overline{I}} = \operatorname{Sp}_P^{\overline{I}_1}$ [Her11a, (7.5)]. (See also the proof of [Gro, Corollary 4.3].) Since $\overline{\operatorname{Sp}}_P \hookrightarrow \operatorname{Sp}_P$ is a K-homomorphism, we have $\overline{\operatorname{Sp}}_P^{\overline{U}(\kappa)} = \overline{\operatorname{Sp}}_P^{\overline{I}_1} \subset \operatorname{Sp}_P^{\overline{I}_1}$. Obviously, $\overline{\operatorname{Sp}}_P^{\overline{B}(\kappa)} \subset \overline{\operatorname{Sp}}_P^{\overline{U}(\kappa)}$. Hence $\overline{\operatorname{Sp}}_P^{\overline{U}(\kappa)} = \overline{\operatorname{Sp}}_P^{\overline{B}(\kappa)}$. In other words, $T(\kappa)$ acts trivially on $\overline{\operatorname{Sp}}_P^{\overline{U}(\kappa)}$.

Proof. Set $V_1 = V^{\overline{N_{\Lambda}}(\kappa)}$. Then V_1 is an irreducible representation of $M_{\Lambda} \cap K$ with a lowest weight ν . Moreover, we have $\operatorname{Hom}_{M_{\Lambda} \cap K}(V_1, \sigma_{\Lambda}) \neq 0$.

Let Q be the parabolic subgroup of M_{Λ} corresponding to $\Pi_1 \cup \Pi_2$. Then we have $\sigma_{\Lambda,2} = \operatorname{Sp}_{Q,M_{\Lambda}}$. Put $L = [M_{\Pi_{\sigma_1}}, M_{\Pi_{\sigma_1}}]$. This is an algebraic group and, since we assumed that the derived group of G (hence, also of $M_{\Pi_{\sigma_1}}$) is simply connected, we have $L(F) = [M_{\Pi_{\sigma_1}}(F), M_{\Pi_{\sigma_1}}(F)]$. Then $\sigma_{\Lambda,2}|_L = \operatorname{Sp}_{Q\cap L,L}$. Put $\sigma_2 = \sigma_{\Lambda,2}$ and $M_1 = M_{\Pi_1}$.

Fix $\psi \in \operatorname{Hom}_{M_{\Lambda} \cap K}(V_{1}, \sigma_{\Lambda}) \setminus \{0\}$ and consider V_{1} as a subspace of σ_{Λ} . Let $v \in V_{1}$ be a lowest weight vector. Then we have $v \in \sigma_{\Lambda}^{\overline{I}_{M_{\Lambda},1}}$ where $\overline{I}_{M_{\Lambda},1}$ is the inverse image of $(M_{\Lambda} \cap \overline{U})(\kappa)$ in $M_{\Lambda} \cap K$. Since L acts on σ_{1} trivially, we have $v \in \sigma_{\Lambda}^{\overline{I}_{M_{\Lambda},1}} \subset \sigma_{\Lambda}^{\overline{I}_{M_{\Lambda},1} \cap L} = \sigma_{1} \otimes \sigma_{2}^{\overline{I}_{M_{\Lambda},1} \cap L}$. Let $\overline{\sigma_{2}}$ be the special representation of $M_{\Lambda}(\kappa)$ with respect to the parabolic subgroup $Q(\kappa)$. Then, by the remark before the proof, we have $\overline{\sigma_{2}} \hookrightarrow \sigma_{2}$ and we have $\overline{\sigma_{2}}^{(\overline{U} \cap L)(\kappa)} = \sigma_{2}^{\overline{I}_{M_{\Lambda},1} \cap L}$. Since $\langle \Pi_{\sigma_{1}}, \check{\Pi}_{1} \rangle = 0$, we have $\overline{U} \cap M_{\Lambda} \simeq (\overline{U} \cap L) \times (\overline{U} \cap [M_{1}, M_{1}])$ as algebraic groups. By the construction, $[M_{1}, M_{1}](\kappa)$ acts on $\overline{\sigma_{2}}$ trivially. Hence we have $\overline{\sigma_{2}}^{(\overline{U} \cap L)(\kappa)} = \overline{\sigma_{2}}^{(\overline{U} \cap M_{\Lambda})(\kappa)}$. By the remark before the proof, $T(\kappa)$ acts on $\overline{\sigma_{2}}^{(\overline{U} \cap M_{\Lambda})(\kappa)}$ trivially. Hence $T(\mathcal{O})$ acts on $\sigma_{2}^{\overline{I}_{M_{\Lambda},1} \cap L}$ trivially.

Take α as in the lemma. Then Im $\check{\alpha} \subset Z_{M_1}$. Hence for $t \in \mathcal{O}^{\times}$, $\check{\alpha}(t)$ acts on σ_1 by the scalar $\omega_{\sigma_1}(\check{\alpha}(t))$. By the above argument, $\check{\alpha}(t)$ acts on $\sigma_2^{\overline{I}_{M_{\Lambda},1}\cap L}$ trivially. Hence it acts on $\sigma_{\Lambda}^{\overline{I}_{M_{\Lambda},1}}$ by the scalar $\omega_{\sigma_1}(\check{\alpha}(t))$. On the other hand, $\check{\alpha}(t)$ acts on v by the scalar $t^{\langle \nu,\check{\alpha}\rangle} = \nu(\check{\alpha}(t))$. This gives the lemma.

Remark 5.6. If we treat the Satake transform in a natural way (see Remark 2.5), Lemma 5.4 should be $S(I(\Lambda)) = \{(M_{\Pi_1}, \omega_{\sigma_1})\}$. (We use a notation of Herzig [Her11a, Proposition 4.1].) Hence the above lemma should be a consequence of Lemma 5.4.

PROPOSITION 5.7. For $\Lambda \in \mathcal{P}$, $I(\Lambda)$ is irreducible.

Proof. Take $\Lambda = (\Pi_1, \Pi_2, \sigma_1) \in \mathcal{P}$ and put $M_1 = M_{\Pi_1}$ and $M_2 = M_{\Pi_2}$. Let χ be the algebra homomorphism $\overline{\kappa}[X_{*,+}] \to \overline{\kappa}$ corresponding to $(M_1, \chi_{\omega_{\sigma_1}})$. Then $\mathcal{S}(I(\Lambda)) = \{\chi\}$. Let $\pi \subset I(\Lambda)$ be a subrepresentation of $I(\Lambda)$. Take an irreducible K-subrepresentation V of π . Then $\emptyset \neq \mathcal{S}(\pi, V) \subset \mathcal{S}(I(\Lambda)) = \{\chi\}$. Therefore, we have a non-zero homomorphism c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi \to \pi$.

Let ν be a lowest weight of V. We take V such that the set $\{\alpha \in \Pi \setminus \Pi_{M_{\Lambda}} | \langle \nu, \check{\alpha} \rangle = 0\}$ is minimal. We claim that this set is empty. Assume that there exists $\alpha \in \Pi \setminus \Pi_{M_{\Lambda}}$ such that $\langle \check{\alpha}, \nu \rangle = 0$. Put $\nu' = \nu - (q-1)\omega_{\alpha}$ and let V' be the irreducible K-representation with lowest weight ν' . Since $\alpha \notin \Pi_{M_{\Lambda}}$, we have $\alpha \notin \Pi_{\sigma_1}$. By the definition of Π_{σ_1} , we have:

$$-\langle \check{\alpha}, \Pi_{M_1} \rangle \neq 0; \text{ or }$$

 $-\omega_{\sigma_1}(\check{\alpha}(\varpi)) \neq 1 \text{ or } \omega_{\sigma_1} \circ \check{\alpha}|_{\mathcal{O}^{\times}} \text{ is not trivial.}$

The above lemma shows that if $\langle \check{\alpha}, \Pi_{M_1} \rangle = 0$ then $\omega_{\sigma_1} \circ \check{\alpha}|_{\mathcal{O}^{\times}}$ is trivial. Therefore we have that $\langle \check{\alpha}, \Pi_{M_1} \rangle \neq 0$ or $\chi_{\omega_{\sigma_1}}(\check{\alpha}) \neq 1$. Hence we have c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi \simeq \text{c-Ind}^G_K(V') \otimes_{\mathcal{H}_G(V')} \chi$ by Theorem 4.1. Therefore, we get a non-zero homomorphism c-Ind^G_K(V') $\otimes_{\mathcal{H}_G(V')} \chi \to \pi$. Namely, V' is an irreducible K-subrepresentation of π . This contradicts the minimality of { $\alpha \in \Pi \setminus \Pi_{M_\Lambda} \mid \langle \check{\alpha}, \nu \rangle = 0$ }.

Therefore, we have $\langle \nu, \check{\alpha} \rangle \neq 0$ for $\alpha \in \Pi \setminus \Pi_{M_{\Lambda}}$. Put $V_1 = V^{\overline{N_{\Lambda}}(\kappa)}$. Since χ is parameterized by $(M_1, \chi_{\omega_{\sigma_1}})$ and $M_1 \subset M_{\Lambda}, \chi$ factors through $S_G^{M_{\Lambda}}$. By [Her11a, Theorem 3.1], c-Ind_K^G(V) \otimes_{\mathcal{H}_G(V)} \chi \simeq \operatorname{Ind}_{P_{\Lambda}}^G(\operatorname{c-Ind}_{M_{\Lambda}\cap K}^{M_{\Lambda}}(V_1) \otimes_{\mathcal{H}_{M_{\Lambda}}(V_1)} \chi). Therefore, we have $\operatorname{Ind}_{P_{\Lambda}}^G(\operatorname{c-Ind}_{M_{\Lambda}\cap K}^{M_{\Lambda}}(V_1) \otimes_{\mathcal{H}_{M_{\Lambda}}(V_1)} \chi) \to \pi \hookrightarrow \operatorname{Ind}_{P_{\Lambda}}^G \sigma_{\Lambda}$. By Lemma 4.16, the composition is given by a certain homomorphism

c-Ind^{$M_{\Lambda} \cap K$} $(V_1) \otimes_{\mathcal{H}_{M_{\Lambda}}(V_1)} \chi \to \sigma_{\Lambda}$. Since σ_{Λ} is irreducible, this homomorphism is surjective. Therefore, c-Ind^G_K $(V) \otimes_{\mathcal{H}_G(V)} \chi \to \operatorname{Ind}^{G}_{P_{\Lambda}}(\sigma_{\Lambda})$ is surjective. In particular, $\pi \hookrightarrow \operatorname{Ind}^{G}_{P_{\Lambda}}(\sigma_{\Lambda})$ is surjective. Hence $\pi = \operatorname{Ind}^{G}_{P_{\Lambda}}(\sigma_{\Lambda})$.

5.3 Classification theorem

We will use the following lemma.

LEMMA 5.8. Let P = MN be a parabolic subgroup, σ an irreducible admissible representation of M which is supersingular with respect to $(M \cap K, T, M \cap B)$ and ω_{σ} the central character of σ . Then $\operatorname{Ind}_{P}^{G}(\sigma)$ has a filtration whose graded pieces are $\{I(\Pi_{M}, \Pi_{2}, \sigma) \mid \Pi_{2} \subset \Pi_{\sigma}\}$.

Proof. Let P' = M'N' be the standard parabolic subgroup corresponding to $\Pi_M \cup \Pi_{\sigma}$. Then by Lemma 3.2, we can extend σ to M' such that $[M_{\Pi_{\sigma}}(F), M_{\Pi_{\sigma}}(F)]$ acts on it trivially. We have $\operatorname{Ind}_{P\cap M'}^{M'}(\sigma) = (\operatorname{Ind}_{P\cap M'}^{M'} \mathbf{1}_M) \otimes \sigma$. So we have $\operatorname{Ind}_{P}^{G}(\sigma) = \operatorname{Ind}_{P'}^{G}((\operatorname{Ind}_{P\cap M'}^{M'} \mathbf{1}_{M'}) \otimes \sigma)$. The definition of the special representations implies that $\operatorname{Ind}_{P\cap M'}^{M'} \mathbf{1}_{M'}$ has a filtration whose graded pieces are $\{\operatorname{Sp}_{Q_2,M'}\}$ where Q_2 is a parabolic subgroup of M' which contains $P \cap M'$. Hence $\operatorname{Ind}_{P}^{G}(\sigma)$ has a filtration whose graded pieces are $\{\operatorname{Ind}_{P'}^{G}(\operatorname{Sp}_{Q_2,M'} \otimes \sigma)\}$. Let $\Pi'_2 \subset \Pi_{M'}$ be a subset corresponding to Q_2 . Then we have $\operatorname{Ind}_{P'}^{G}(\operatorname{Sp}_{Q_2,M'} \otimes \sigma) = I(\Pi_M, \Pi'_2 \setminus \Pi_M, \sigma)$. \Box

Remark 5.9. If the derived group of G is simply connected, then $I(\Lambda)$ is irreducible by Proposition 5.7. Hence the above lemma gives the composition factors of $\operatorname{Ind}_P^G(\sigma)$. In particular, it has a finite length. The irreducibility of $I(\Lambda)$ will be proved in § 5.4. Hence the above lemma gives the composition factors of $\operatorname{Ind}_P^G(\sigma)$ for any G.

PROPOSITION 5.10. Assume that the derived group of G is simply connected. The correspondence $\Lambda \mapsto I(\Lambda)$ gives a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations.

Proof. First, we prove that the map is surjective by induction on $\#\Pi$. Let π be an irreducible admissible representation. Let χ be an element of $\mathcal{S}(\pi)$ and assume that it is parameterized by (M_1, χ_{M_1}) . We assume that M_1 is minimal. If $M_1 = G$, then π is supersingular. Therefore, we assume that $M_1 \neq G$. Take an irreducible K-representation V such that $\chi \in \mathcal{S}(\pi, V)$. Let ν be a lowest weight of V. We assume that $\Pi_{-\nu}$ is minimal with respect to the condition $\chi \in \mathcal{S}(\pi, V)$.

Assume that there exists $\alpha \in \Pi_{-\nu} \setminus \Pi_{M_1}$ such that $\langle \Pi_{M_1}, \check{\alpha} \rangle \neq 0$ or $\chi_{M_1}(\check{\alpha}) \neq 1$. Set $\nu' = \nu - (q-1)\omega_{\alpha}$ and let V' be the irreducible K-representation with lowest weight ν' . Then $\Pi_{-\nu'} = \Pi_{-\nu} \setminus \{\alpha\} \subsetneq \Pi_{-\nu}$. By Theorem 4.1, we have c-Ind^G_K(V) $\otimes_{\mathcal{H}_G(V)} \chi \simeq \text{c-Ind}^G_K(V') \otimes_{\mathcal{H}_G(V')} \chi$. Hence $\chi \in \mathcal{S}(\pi, V')$. This contradicts the minimality of $\Pi_{-\nu}$. Therefore, for all $\alpha \in \Pi_{-\nu} \setminus \Pi_{M_1}$, $\langle \Pi_{M_1}, \check{\alpha} \rangle = 0$ and $\chi_{M_1}(\check{\alpha}) = 1$. From the first condition, $\langle \Pi_{-\nu} \setminus \Pi_{M_1}, \check{\Pi}_{M_1} \rangle = 0$.

Let P = MN be a parabolic subgroup corresponding to $\Pi_{-\nu} \cup \Pi_{M_1}$. First assume that $M \neq G$. Put $V_1 = V^{\overline{N}(\kappa)}$. Then we have c-Ind $_K^G(V) \otimes_{\mathcal{H}_G(V)} \chi \simeq \operatorname{Ind}_P^G(\operatorname{c-Ind}_{M\cap K}^M(V_1) \otimes_{\mathcal{H}_M(V_1)} \chi)$ [Her11a, Theorem 3.1]. Recall that we have a surjective homomorphism c-Ind $_K^G(V) \otimes_{\mathcal{H}_G(V)} \chi \to \pi$. Hence there exist an irreducible admissible representation σ of M and a surjective homomorphism $\operatorname{Ind}_P^G(\sigma) \to \pi$ [Her11a, Lemma 9.9]. By inductive hypothesis, $\sigma = I_M(\Lambda')$ for some $\Lambda' \in \mathcal{P}_M$. Hence there exists a parabolic subgroup $P_0 = M_0 N_0 \subset P$ and an irreducible admissible representation σ_0 of M_0 which is supersingular with respect to $(M_0 \cap K, T, M_0 \cap B)$ such that σ is a subquotient of $\operatorname{Ind}_{P_0\cap M}^M \sigma_0$ by Lemma 5.8. Hence π is a subquotient of $\operatorname{Ind}_{P_0}^G(\sigma_0)$. By Lemma 5.8, all composition factors of $\operatorname{Ind}_{P_0}^G(\sigma_0)$ are $I(\Lambda)$ for some $\Lambda \in \mathcal{P}$. Hence $\pi = I(\Lambda)$ for some $\Lambda \in \mathcal{P}$.

Therefore, we may assume that $\Pi_{-\nu} \cup \Pi_{M_1} = \Pi$. Let P' = M'N' be the standard parabolic subgroup corresponding to $\Pi \setminus \Pi_{M_1}$. Then for all $\alpha \in \Pi_{M'}$, $\langle \nu, \check{\alpha} \rangle = 0$, $\langle \alpha, \check{\Pi}_{M_1} \rangle = 0$ and

 $\chi_{M_1}(\check{\alpha}) = 1.$ Set L' = [M', M']. Then the group of coweights $X_{L',*}$ of $L' \cap T$ is $\mathbb{Z}\check{\Pi}_{M'}$ which is a subgroup of $X_* \cap \Pi_{M_1}^{\perp}$. Put $X_{L',*,+} = X_{*,+} \cap \mathbb{Z}\check{\Pi}_{M'}$. By Lemma 3.19 and Proposition 3.14, we have $S(\pi, V)|_{\overline{\kappa}[X_{L',*,+}]} \subset S(\pi|_{M'}, V^{\overline{N'}(\kappa)})|_{\overline{\kappa}[X_{L',*,+}]} \subset S(\pi|_{L'}, V^{\overline{N'}(\kappa)}|_{L'\cap K})$. Since $\langle \nu, \check{\Pi}_{M'} \rangle = 0$, $V^{\overline{N'}(\kappa)}|_{L'\cap K}$ is trivial. Therefore, $\chi|_{\overline{\kappa}[X_{L',*,+}]} \in S(\pi|_{L'}, \mathbf{1}_{L'\cap K})$. Set $\chi' = \chi|_{\overline{\kappa}[X_{L',*,+}]}$. We have a non-zero homomorphism c-Ind $_{L'\cap K}^{L'} \mathbf{1}_{L'\cap K} \otimes_{\mathcal{H}_{L'}(\mathbf{1}_{L'\cap K})} \chi' \to \pi$. Since χ is parameterized by $(M_1, \chi_{M_1}), \chi'$ is parameterized by $(L' \cap T, \chi_{M_1}|_{X_{L',*}})$. Since we have $\chi_{M_1}(\check{\alpha}) = 1$ for all $\alpha \in$ $\Pi_{M'}$, we have $\chi_{M_1}|_{X_{L',*}} = \mathbf{1}_{X_{L',*}}$. Hence χ' is parameterized by $(L' \cap T, \mathbf{1}_{X_{L',*}})$. Therefore, by Proposition 4.7, the set of composition factors of c-Ind $_{L'\cap K}^{L'} \mathbf{1}_{L'\cap K} \otimes_{\mathcal{H}_{L'}(\mathbf{1}_{L'\cap K})} \chi'$ is $\{\operatorname{Sp}_{Q',L'} \mid Q' \subset L'$ is a parabolic subgroup}. Hence there exists a unique parabolic subgroup $P_2 = M_2 N_2$ such that $\Pi_{M_1} \subset \Pi_{M_2}$ and $\operatorname{Sp}_{P_2\cap L',L'} \hookrightarrow \pi$. Let σ_2 be the special representation Sp_{P_2} . Then the restriction of σ_2 to L' is $\operatorname{Sp}_{P_2\cap L',L'}$. Put $\sigma_1 = \operatorname{Hom}_{L'}(\sigma_2, \pi)$. This is non-zero. By Lemma 5.3, σ_1 is an irreducible representation of G and $\sigma_1 \otimes \sigma_2 \xrightarrow{\sim} \pi$.

We prove that σ_1 is admissible. Let K' be an open compact subgroup and take an open compact subgroup K'' such that $\sigma_2^{K''} \neq 0$. Let K''' be an open compact subgroup which is contained in K' and K''. Then we have $\sigma_1^{K'} \otimes \sigma_2^{K''} \subset \sigma_1^{K'''} \otimes \sigma_2^{K'''} \subset (\sigma_1 \otimes \sigma_2)^{K'''} = \pi^{K'''}$. Since π is admissible, $\pi^{K'''}$ is finite dimensional. Hence the dimension of $\sigma_1^{K'}$ is finite.

We prove σ_1 is supersingular with respect to $(M_1 \cap K, T, M_1 \cap B)$ as a representation of M_1 . Since L' acts on σ_1 trivially, σ_1 is regarded as a representation of G/L'. By Lemma 3.2, $M_1 \to G/L'$ is surjective. Therefore, $\sigma_1|_{M_1}$ is irreducible and admissible. By inductive hypothesis, $\sigma_1|_{M_1} \simeq I_{M_1}(\Lambda')$ for some $\Lambda' \in \mathcal{P}_{M_1}$. In particular, $\#\mathcal{S}(\sigma_1|_{M_1}) = 1$. Since $\chi \in \mathcal{S}(\sigma_1 \otimes \sigma_2)$ is parameterized by (M_1, χ_{M_1}) , the element of $\mathcal{S}(\sigma_1|_{M_1})$ is parameterized by (M_1, χ_{M_1}) for some χ'_{M_1} by Corollary 3.22. Hence σ_1 is supersingular.

We prove that the map is injective. Let $\Lambda' = (\Pi'_1, \Pi'_2, \sigma'_1)$ and assume that $I(\Lambda) \simeq I(\Lambda')$. Then we have $\mathcal{S}(I(\Lambda), V) = \mathcal{S}(I(\Lambda'), V) \neq \emptyset$ for some irreducible representation V of K. By Lemma 5.4, $(M_{\Pi_1}, \chi_{\omega_{\sigma_1}}) = (M_{\Pi'_1}, \chi_{\omega_{\sigma'_1}})$. Hence $\Pi_1 = \Pi'_1$. Let ν be a lowest weight of V. Then by Lemma 5.5, for $\alpha \in \Pi$ such that $\langle \Pi_1, \check{\alpha} \rangle = 0$, $\omega_{\sigma_1} \circ \check{\alpha}|_{\mathcal{O}^{\times}} = \nu \circ \check{\alpha} = \omega_{\sigma'_1} \circ \check{\alpha}|_{\mathcal{O}^{\times}}$. On the other hand, we have $\omega_{\sigma_1} \circ \check{\alpha}(\varpi) = \chi_{\omega_{\sigma_1}}(\check{\alpha}) = \omega_{\sigma'_1} \circ \check{\alpha}(\varpi)$. Hence $\omega_{\sigma_1} \circ \check{\alpha} = \omega_{\sigma'_1} \circ \check{\alpha}$. Therefore, we have $\Pi_{\sigma_1} = \Pi_{\sigma'_1}$. Hence $P_{\Lambda} = P_{\Lambda'}$.

Now we have $\operatorname{Ind}_{P_{\Lambda}}^{G}(\sigma_{\Lambda}) \simeq \operatorname{Ind}_{P_{\Lambda}}^{G}(\sigma_{\Lambda'})$. By Lemma 4.16, we have a non-zero homomorphism $\sigma_{\Lambda} \to \sigma_{\Lambda'}$. Since σ_{Λ} and $\sigma_{\Lambda'}$ are irreducible, $\sigma_{\Lambda} \simeq \sigma_{\Lambda'}$. Set $L = [M_{\Pi_{\sigma_1}}(F), M_{\Pi_{\sigma_1}}(F)]$. As a representation of L, σ_{Λ} is a direct sum of special representations $\operatorname{Sp}_{Q_2,L}$ where Q_2 is the parabolic subgroup of L corresponding to Π_2 . Hence we have $\Pi_2 = \Pi'_2$. Therefore, $\sigma_{\Lambda,2} \simeq \sigma_{\Lambda',2}$. Hence we have $\sigma_1 \simeq \operatorname{Hom}_L(\sigma_{2,\Lambda}, \sigma_{\Lambda}) \simeq \operatorname{Hom}_L(\sigma_{2,\Lambda'}, \sigma_{\Lambda'}) \simeq \sigma'_1$. We get $\Lambda = \Lambda'$.

5.4 General case and corollaries

THEOREM 5.11. Let G be a connected split reductive algebraic group. Then $I(\Lambda)$ is irreducible for all $\Lambda \in \mathcal{P}$ and $\Lambda \mapsto I(\Lambda)$ gives a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations.

Proof. Take a z-extension $1 \to Z \to \widetilde{G} \to G \to 1$ of G. For each parabolic subgroup P = MN, let \widetilde{M} be the Levi subgroup of the parabolic subgroup of \widetilde{G} corresponding to Π_M . Then $1 \to Z \to \widetilde{M} \to M \to 1$ is a z-extension of M. For each representation π of G, let $\widetilde{\pi}$ be the pullback of π to \widetilde{G} . Then we have $I_G(\Pi_1, \Pi_2, \sigma_1)^{\sim} = I_{\widetilde{G}}(\Pi_1, \Pi_2, \widetilde{\sigma_1})$. In general, the representation π of G is supersingular with respect to $(\widetilde{K}, \widetilde{B}, \widetilde{T})$ if and only if its pull-back to \widetilde{G} is supersingular with respect to (K, B, T) by Lemma 3.25; here, \widetilde{K} is as in Lemma 2.1 and $\widetilde{B}, \widetilde{T}$ are the inverse images of B, T, respectively. By Proposition 5.7, this is irreducible. Hence $I_G(\Lambda)$ is irreducible for $\Lambda \in \mathcal{P}$.

Obviously, we also have that $I_G(\Pi_1, \Pi_2, \sigma_1) \simeq I_G(\Pi'_1, \Pi'_2, \sigma'_1)$ if and only if $I_{\widetilde{G}}(\Pi_1, \Pi_2, \widetilde{\sigma_1}) \simeq I_{\widetilde{G}}(\Pi'_1, \Pi'_2, \widetilde{\sigma'_1})$. Hence we have $\Pi_1 = \Pi'_1, \ \Pi_2 = \Pi'_2$ and $\widetilde{\sigma_1} \simeq \widetilde{\sigma'_1}$ by Proposition 5.10. Hence we have $\sigma_1 \simeq \sigma'_1$.

Let π be an irreducible admissible representation of G. Then there exists $\Lambda_0 = (\Pi_1, \Pi_2, \sigma_{1,0}) \in \mathcal{P}_{\widetilde{G}}$ such that $\widetilde{\pi} = I_{\widetilde{G}}(\Lambda_0)$. Since Z is contained in the center of M_{Π_1} , it acts on $\sigma_{1,0}$ by a character. By the construction of $I_{\widetilde{G}}(\Lambda_0)$, Z acts on $I_{\widetilde{G}}(\Lambda_0) \simeq \widetilde{\pi}$ by the same scalar. It is trivial since Z acts on $\widetilde{\pi}$ trivially. Hence Z acts on $\sigma_{1,0}$ trivially; namely, $\sigma_{1,0} \simeq \widetilde{\sigma_1}$ for some representation of G. Hence $\pi = I_G(\Pi_1, \Pi_2, \sigma_1)$. This gives us the theorem.

We give corollaries of this theorem.

COROLLARY 5.12. For any irreducible admissible representation π of G, $\#S(\pi) = 1$.

Proof. Obvious from Lemma 5.4 and Theorem 5.11.

COROLLARY 5.13. Let π be an irreducible admissible representation of G. Then the following conditions are equivalent.

- (i) The representation π is supersingular.
- (ii) The representation π is supersingular with respect to (K, T, B).
- (iii) The representation π is supercuspidal.

Proof. Take $\Lambda = (\Pi_1, \Pi_2, \sigma_1) \in \mathcal{P}$ such that $\pi = I(\Lambda)$. Then by Lemma 5.4, π is supersingular with respect to (K, T, B) if and only if $\Pi_1 = \Pi$. By Lemma 5.8, π is a subquotient of $\operatorname{Ind}_{P_1}^G(\sigma_1)$. Hence, if π is not supersingular with respect to (K, T, B), then π is not supercuspidal.

Assume that π is a subquotient of $\operatorname{Ind}_{P_0}^G \sigma_0$ for a proper parabolic subgroup $P_0 = M_0 N_0$ and an irreducible admissible representation σ_0 . By Lemma 5.8, we may assume σ_0 is supersingular with respect to (K, T, B). By Lemma 5.8, $P_{\Pi_1} = P_0$. Hence π is not supersingular with respect to (K, T, B).

Hence (ii) and (iii) are equivalent. Since the property (iii) is independent of a choice of (K, T, B), (i) and (ii) are equivalent.

COROLLARY 5.14. Let P = MN be a parabolic subgroup and σ a finite length admissible representation of M. Then $\operatorname{Ind}_P^G \sigma$ has a finite length.

Proof. We may assume σ is irreducible. This follows from Lemma 5.8 and Remark 5.9.

COROLLARY 5.15. Let $\nu: T \to \overline{\kappa}^{\times}$ be a character. Then $\operatorname{Ind}_B^G(\nu)$ has a length 2^C where $C = #\{\alpha \in \Pi \mid \nu \circ \check{\alpha} = \mathbf{1}_{\operatorname{GL}_1}\}$. In particular, $\operatorname{Ind}_B^G(\nu)$ is irreducible if and only if $\nu \circ \check{\alpha} \neq \mathbf{1}_{\operatorname{GL}_1}$ for all $\alpha \in \Pi$.

Proof. Notice that any character of T is supersingular. Hence this follows from Lemma 5.8 and Remark 5.9.

Acknowledgements

I thank Florian Herzig and the referee for reading the manuscript and giving helpful comments. I also thank Tetsushi Ito for introducing me to the theory of modulo *p* representations of *p*-adic groups and Yoichi Mieda for helpful discussions. This work was supported by JSPS KAKENHI Grant Number 21840016.

References

- BL94 L. Barthel and R. Livné, Irreducible modular representations of GL₂ of a local field, Duke Math. J. **75** (1994), 261–292.
- BL95 L. Barthel and R. Livné, Modular representations of GL₂ of a local field: the ordinary, unramified case, J. Number Theory **55** (1995), 1–27.
- BZ76 I. N. Bernštein and A. V. Zelevinskii, Representations of the group GL(n, F), where F is a local non-Archimedean field, Uspekhi Mat. Nauk **31** (1976), 5–70.
- Bou02 N. Bourbaki, *Lie groups and Lie algebras. Chapters* 4–6, Elements of Mathematics (Springer, Berlin, 2002), translated from the 1968 French original by Andrew Pressley.
- Bre03 C. Breuil, Sur quelques représentations modulaires et p-adiques de $GL_2(\mathbf{Q}_p)$. I, Compositio Math. **138** (2003), 165–188.
- BP12 C. Breuil and V. Paškūnas, Towards a modulo p Langlands correspondence for GL₂, Mem. Amer. Math. Soc. 216 (2012).
- CG97 N. Chriss and V. Ginzburg, *Representation theory and complex geometry* (Birkhäuser, Boston, MA, 1997).
- Deo77 V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187–198.
- Eme10 M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Astérisque (2010), 355–402.
- Gro E. Große-Klönne, On special representations of p-adic reductive groups, Preprint, available at http://www.math.hu-berlin.de/~zyska/Grosse-Kloenne/spec.pdf.
- HR08 G. Haines and M. Rapoport, On parahoric subgroups, appendix to twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 188–198.
- Her11a F. Herzig, The classification of irreducible admissible mod p representations of a p-adic GL_n , Invent. Math. **186** (2011), 373–434.
- Her11b F. Herzig, A Satake isomorphism in characteristic p, Compositio Math. 147 (2011), 263–283.
- Hum06 J. E. Humphreys, *Modular representations of finite groups of Lie type*, London Mathematical Society Lecture Note Series, vol. 326 (Cambridge University Press, Cambridge, 2006).
- HV12 G. Henniart and M.-F. Vigneras, Comparison of compact induction with parabolic induction, Pacific J. Math. 260 (2012), 457–495.
- Ollo6 R. Ollivier, Critère d'irréductibilité pour les séries principales de $GL_n(F)$ en caractéristique p, J. Algebra **304** (2006), 39–72.
- Vig08 M.-F. Vignéras, Série principale modulo p de groupes réductifs p-adiques, Geom. Funct. Anal. 17 (2008), 2090–2112.

Noriyuki Abe abenori@math.sci.hokudai.ac.jp

Creative Research Institution (CRIS), Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan