COMPOSITIO MATHEMATICA

On a classification of irreducible admissible modulo p representations of a p-adic split reductive group

Noriyuki Abe

Compositio Math. 149 (2013), 2139-2168.

LONDON
MATHEMATICAL
SOCIETY

On a classification of irreducible admissible modulo p representations of a p-adic split reductive group

Noriyuki Abe

Abstract

We give a classification of irreducible admissible modulo p representations of a split p-adic reductive group in terms of supersingular representations. This is a generalization of a theorem of Herzig.

1. Introduction

Let p be a prime number and F a finite extension of \mathbb{Q}_{p}. In this paper, we consider modulo p representations of (the group of F-valued points of) a split connected reductive group G over F. The study of such representations was started by Barthel-Livné [BL94, BL95] when $G=\mathrm{GL}_{2}(F)$. They defined the notion of supersingular representations and gave a classification of non-supersingular irreducible representations. In particular, they proved that a representation is supersingular if and only if it is supercuspidal. Here, a representation is called supercuspidal if and only if it does not appear as a subquotient of a parabolic induction from an irreducible representation of a proper parabolic subgroup. By this theorem, to classify irreducible representations of $\mathrm{GL}_{2}(F)$, it is sufficient to classify irreducible supersingular representations. When $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, irreducible supersingular representations are classified by Breuil [Bre03]. However, when $F \neq \mathbb{Q}_{p}$ a classification seems more complicated [BP12].

Herzig [Her11a] gave a definition of a supersingular representation for any split G using the modulo p Satake transform [Her11b]. He also gave a classification of irreducible admissible representations in terms of supersingular representations when $G=\mathrm{GL}_{n}(F)$. This is a generalization of a theorem of Barthel-Livné. In this paper, we generalize his classification to any split G.

Now we state our main theorem. Let $\bar{\kappa}$ be an algebraic closure of the residue field of F. All representations in this paper are smooth representations over $\bar{\kappa} \simeq \overline{\mathbb{F}}_{p}$. Fix a reductive \mathcal{O}-form of G and denote it by the same letter G. Let K be the group of \mathcal{O}-valued points of G. We also fix a Borel subgroup B and a split maximal torus $T \subset B$ of G. Then we can define the notion of supersingular representations with respect to (K, T, B). (See Herzig's paper [Her11a, Definition 4.7] or Definition 5.1 in this paper.) Let Π be the set of simple roots. Each subset $\Theta \subset \Pi$ corresponds to the standard parabolic subgroup P_{Θ}. Let $P_{\Theta}=M_{\Theta} N_{\Theta}$ be the Levi decomposition such that $T \subset M_{\Theta}$ and N_{Θ} is the unipotent radical of P_{Θ}. Consider the set \mathcal{P} of all $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right)$ such that:

- Π_{1} and Π_{2} are subsets of Π;

[^0]- σ_{1} is an irreducible admissible representation of $M_{\Pi_{1}}$ which is supersingular with respect to ($M_{\Pi_{1}} \cap K, T, M_{\Pi_{1}} \cap B$);
- if we let $\omega_{\sigma_{1}}$ be the central character of σ_{1} and put $\Pi_{\sigma_{1}}=\left\{\alpha \in \Pi \mid\left\langle\alpha, \check{\Pi}_{1}\right\rangle=0, \omega_{\sigma_{1}} \circ \check{\alpha}=\right.$ $\left.\mathbf{1}_{\mathrm{GL}_{1}(F)}\right\}$ then $\Pi_{2} \subset \Pi_{\sigma_{1}}$.
Then the main theorem says that there exists a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations of G.

To state the theorem more precisely, we define the representation $I(\Lambda)$ for $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right) \in$ \mathcal{P}. Let $P_{\Lambda}=M_{\Lambda} N_{\Lambda}$ be the Levi decomposition of the standard parabolic subgroup corresponding to $\Pi_{1} \cup \Pi_{\sigma_{1}}$. First we construct the representation σ_{Λ} of M_{Λ}. We can prove that σ_{1} can be extended uniquely to M_{Λ} such that $\left[M_{\Pi_{\sigma_{1}}}(F), M_{\Pi_{\sigma_{1}}}(F)\right]$ acts on it trivially (Lemma 3.2). We denote the extended representation by the same letter σ_{1}. Let Q be the parabolic subgroup of M_{Λ} corresponding to $\Pi_{1} \cup \Pi_{2}$. Then Q defines the special representation of M_{Λ} [Gro]. We denote it by $\sigma_{\Lambda, 2}$. From the definition of the special representation, the restriction of $\sigma_{\Lambda, 2}$ to $M_{\Pi_{\sigma_{1}}}$ is the special representation of $M_{\Pi_{\sigma_{1}}}$ with respect to the standard parabolic subgroup corresponding to Π_{2}. Now we define $\sigma_{\Lambda}=\sigma_{1} \otimes \sigma_{\Lambda, 2}$.

In the case of GL_{n}, the construction is as follows. The Levi subgroup M_{Λ} is given by a product $\mathrm{GL}_{n_{1}} \times \cdots \times \mathrm{GL}_{n_{r}}$. The extension of σ_{1} to M_{Λ} is a tensor product $\tau_{1}^{\prime} \boxtimes \cdots \boxtimes \tau_{r}^{\prime}$. For each i, define a representation τ_{i} of $\mathrm{GL}_{n_{i}}$ as follows. If $\mathrm{GL}_{n_{i}} \subset M_{\Pi_{1}}$, then τ_{i}^{\prime} is a supersingular representation and put $\tau_{i}=\tau_{i}^{\prime}$. If $\mathrm{GL}_{n_{i}} \not \subset M_{\Pi_{1}}$, then τ_{i}^{\prime} is a character. In this case, the intersection of the roots of $\mathrm{GL}_{n_{i}}$ and Π_{2} gives a parabolic subgroup Q_{i} of $\mathrm{GL}_{n_{i}}$. Put $\tau_{i}=\tau_{i}^{\prime} \otimes \operatorname{Sp}_{Q_{i}}$; here $\operatorname{Sp}_{Q_{i}}$ is the special representation corresponding to Q_{i}. Then σ_{Λ} is given by $\sigma_{\Lambda}=\tau_{1} \boxtimes \cdots \boxtimes \tau_{r}$. Each τ_{i} is a supersingular representation or a special representation twisted by a character (cf. [Her11a, Theorem 1.1]).

Put $I(\Lambda)=\operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda}\right)$. The following is the main theorem of this paper.
Theorem 1.1 (Theorem 5.11). For $\Lambda \in \mathcal{P}, I(\Lambda)$ is irreducible and the correspondence $\Lambda \mapsto$ $I(\Lambda)$ gives a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations of G.

Using this theorem, we get the relation between supersingular representations and supercuspidal representations. Recall that a representation is called supersingular if it is supersingular with respect to any 3 -tuple (K, T, B) chosen as before.

Theorem 1.2 (Corollary 5.13). For an irreducible admissible representation π of G, the following conditions are equivalent.
(i) The representation π is supersingular with respect to the fixed (K, T, B).
(ii) The representation π is supersingular.
(iii) The representation π is supercuspidal.

These theorems are proved by Barthel-Livné [BL94, BL95] ($G=\mathrm{GL}_{2}$) and Herzig [Her11a] $\left(G=\mathrm{GL}_{n}\right)$. (In these cases, the equivalence of (i) and (ii) in Theorem 1.2 is almost clear since there is only one hyperspecial maximal compact subgroup of G up to conjugate. See Herzig's argument [Her11a, §4].)

We also give a criterion of the irreducibility of a principal series representation.
Theorem 1.3. Let $\nu: T \rightarrow \bar{\kappa}^{\times}$be a character. Then $\operatorname{Ind}_{B}^{G} \nu$ is irreducible if and only if $\nu \circ \check{\alpha} \neq$ $\mathbf{1}_{\mathrm{GL}_{1}(F)}$ for all $\alpha \in \Pi$.

This is proved by Barthel-Livné when $G=\mathrm{GL}_{2}$ [BL94, BL95] and Ollivier [Oll06] when $G=\mathrm{GL}_{n}$. In fact, we can describe the composition factors of $\operatorname{Ind}_{P}^{G}(\sigma)$ where σ is an irreducible admissible supersingular representation of the Levi subgroup of a parabolic subgroup P (Lemma 5.8 and Remark 5.9). When $G=\mathrm{GL}_{n}$, such description is given by Herzig [Her11a, Theorem 8.7].

Now we give an outline of the proof. Using a z-extension, we may assume that the derived group of G is simply connected. Let $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V)$ be the compact induction from an irreducible K-representation V and $\mathcal{H}_{G}(V)$ the endomorphism ring of $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V)$. Let X_{*} be the group of cocharacters of T and $X_{*,+}=\left\{\lambda \in X_{*} \mid\langle\lambda, \check{\Pi}\rangle \subset \mathbb{Z}_{\geqslant 0}\right\}$. Then by the Satake transform, we have $\mathcal{H}_{G}(V) \simeq \bar{\kappa}\left[X_{*,+}\right]$ [Her11b, Corollary 1.3]. In particular, $\mathcal{H}_{G}(V)$ is commutative. Therefore, for each irreducible admissible representation π of G, there exist an irreducible representation V of K and a character χ of $\mathcal{H}_{G}(V)$ such that π is a quotient of $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$. To prove the main theorem, we reveal the relation between c- $\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ and a parabolic induction.

The first comparison is given by Herzig [Her11a, Theorem 3.1]. He proved the following. Let $P=M N$ be a standard parabolic subgroup and its Levi decomposition and Π_{M} the set of simple roots of M. By the partial Satake transform, we have an injective homomorphism $\mathcal{H}_{G}(V) \hookrightarrow \mathcal{H}_{M}\left(V^{\bar{N}(\mathcal{O})}\right)$. Fix a character χ of $\mathcal{H}_{G}(V)$. Let $P=M N$ be a standard parabolic subgroup such that χ factors through $\mathcal{H}_{G}(V) \rightarrow \mathcal{H}_{M}\left(V^{\bar{N}(\mathcal{O})}\right)$. Let ν be a lowest weight of V and put $\Pi_{V}=\{\alpha \in \Pi \mid\langle\nu, \check{\alpha}\rangle=0\}$. Herzig proved that if $\Pi_{V} \subset \Pi_{M}$ then we have
(He proved this theorem for any split G.)
Unfortunately, in the above theorem, the condition $\Pi_{V} \subset \Pi_{M}$ is needed. For example, if V is the trivial representation, the above theorem does not hold. However, we can prove the following 'changing the weight theorem'. Let V^{\prime} be another irreducible K-representation and ν^{\prime} its lowest weight. Assume that there exists a simple root α such that $\alpha \notin \Pi_{M}, \alpha \in \Pi_{V}$ and $\nu^{\prime}=\nu-(q-1) \omega_{\alpha}$ where ω_{α} is a fundamental weight corresponding to α. Moreover, assume that $\left\langle\check{\alpha}, \Pi_{M}\right\rangle \neq 0$ or $\chi(\check{\alpha}) \neq 1$. Then we have

$$
\operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \simeq \mathrm{c}-\operatorname{Ind}_{K}^{G}\left(V^{\prime}\right) \otimes_{\mathcal{H}_{G}(V)} \chi
$$

(Theorem 4.1). In this theorem, $\Pi_{V^{\prime}}=\Pi_{V} \backslash\{\alpha\} \varsubsetneqq \Pi_{V}$. Therefore, at least if χ is generic, then (1.1) holds. Herzig proved this theorem under some assumptions (which are enough for $G=\mathrm{GL}_{n}$). We prove it for any split G in this paper.

Finally, we must treat the case when neither theorem can be applied. An argument using a tensor product deduces us to the case of $P=B$. To use such arguments, we need to express the Satake parameters of σ_{Λ} by those of σ_{1} and $\sigma_{\Lambda, 2}$. Such calculation is given in $\S 3$. If $G=\mathrm{GL}_{n}$, this calculation is almost obvious since any Levi subgroup of GL_{n} is a product of smaller groups GL ${ }_{m}$.

Assume that $P=B$. In this case, Herzig studied the structure of the left-hand side of (1.1) by a (mysterious) calculation of the affine Hecke algebra when $G=\mathrm{GL}_{n}$. Our method is different from his, and ours gives more information on the structure of the left-hand side. In fact, we prove that both sides of (1.1) have a finite length and the same composition factors (Proposition 4.7). To prove it, we prove that $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \mathcal{H}_{T}\left(V^{\bar{U}(\mathcal{O})}\right)$ is free as a $\mathcal{H}_{T}\left(V^{\bar{U}}(\mathcal{O})\right.$-module (Proposition 4.22). By the theorem of changing the weight, for a generic $\chi, \operatorname{c-Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ only depends on $V^{\bar{U}(\mathcal{O})}$ and χ. Using the freeness, it follows that the composition factors of c- $\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ only depend on $V^{\bar{U}(\mathcal{O})}$ and χ. Such an argument can
be found in the paper of Barthel-Livné [BL95] when $G=\mathrm{GL}_{2}$. They proved the freeness (see Remark 4.23) by the detailed study of a compact induction. We prove the freeness by embedding $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \mathcal{H}_{T}\left(V^{\bar{U}(\mathcal{O})}\right)$ to a principal series and considering the filtration coming from the Bruhat decomposition (Lemma 4.21).

Such comparisons are given in §4. Using these comparisons, the main theorem is proved in $\S 5$.

2. Preliminaries

2.1 Notation

In this paper, we use the following notation. Let p be a prime number, F a finite extension of $\mathbb{Q}_{p}, \mathcal{O}$ its ring of integers, $\varpi \in \mathcal{O}$ a uniformizer, $\kappa=\mathcal{O} /(\varpi)$ the residue field and $q=\# \kappa$. Let G be a connected split reductive group over \mathcal{O}. Fix a Borel subgroup $B \subset G$ and a split maximal torus $T \subset B$. Let U be the unipotent radical of B. Then $B=T U$ is a Levi decomposition of B. Let $\bar{B}=T \bar{U}$ be a Levi decomposition of the opposite group of B. We also denote the group of F-valued points of G by the same letter G. The only confusion coming from using the same letter is the notation ' $[G, G]$ '. In this paper, $[G, G]$ means the derived group of G as an algebraic group. In general, $[G(F), G(F)] \subset[G, G](F)$ and it is not equal. If $[G, G]$ is simply connected, then $[G, G](F)=[G(F), G(F)]$.

We use similar notation for other groups (for example, $B=B(F)$). Set $K=G(\mathcal{O})$. For any algebraic group H, let Z° be the connected component of H containing the unit element and Z_{H} the center of H. We also use the notation Z_{H} for the center of any group H. For closed subgroups $H_{1}, H_{2} \subset H$, we define a closed subgroup $Z_{H_{1}}\left(H_{2}\right)$ of H_{1} by $Z_{H_{1}}\left(H_{2}\right)=\left\{h_{1} \in\right.$ $H_{1} \mid h_{1} h_{2}=h_{2} h_{1}$ for all $\left.h_{2} \in H_{2}\right\}$. For a group $\Gamma, \mathbf{1}_{\Gamma}$ is the trivial representation of Γ. For a representation V of Γ, V^{Γ} is the space of invariants and V_{Γ} is the space of coinvariants.

Let $\left(X^{*}, \Delta, X_{*}, \check{\Delta}\right)$ be the root datum of (G, T). Then B determines the set of positive roots $\Delta^{+} \subset \Delta$ and the set of simple roots $\Pi \subset \Delta^{+}$. Let W be its Weyl group. Let red: $K=G(\mathcal{O}) \rightarrow$ $G(\kappa)$ be the canonical morphism. The set of dominant (respectively anti-dominant) elements in X^{*} is denoted by X_{+}^{*} (respectively X_{-}^{*}). We also use notation $X_{*,+}$ and $X_{*,-}$. For $\lambda, \mu \in X_{*}$, we denote $\mu \leqslant \lambda$ if $\lambda-\mu \in \mathbb{Z}_{\geqslant 0} \check{ }$ I.

Let P be a standard parabolic subgroup. It has a Levi decomposition $P=M N$. In this paper, we only consider the decomposition such that $T \subset M$. The opposite parabolic subgroup of P is denoted by $\bar{P}=M \bar{N}$. We denote the Levi decomposition of the standard parabolic subgroup corresponding to $\Theta \subset \Pi$ by $P_{\Theta}=M_{\Theta} N_{\Theta}$. The subset of Π corresponding to P is denoted by Π_{P} or Π_{M}. Put $\Delta_{M}=\Delta \cap \mathbb{Z}_{M}$ and $\Delta_{M}^{+}=\Delta^{+} \cap \Delta_{M}$. Let W_{M} be the Weyl group of Δ_{M}. For dominant $\nu \in X^{*}$, let $P_{\nu}=M_{\nu} N_{\nu}$ be the standard parabolic subgroup corresponding to $\Pi_{\nu}=\{\alpha \in \Pi \mid\langle\nu, \check{\alpha}\rangle=0\}$. Put $W_{\nu}=\operatorname{Stab}_{W}(\nu), \Delta_{\nu}=\{\alpha \in \Delta \mid\langle\nu, \check{\alpha}\rangle=0\}$ and $\Delta_{\nu}^{+}=\Delta^{+} \cap \Delta_{\nu}$. We use similar notation for dominant $\lambda \in X_{*}$.

For a subset $A \subset X^{*}$ and $A^{\prime} \subset X_{*},\left\langle A, A^{\prime}\right\rangle=0$ means $\langle\nu, \lambda\rangle=0$ for all $\nu \in A$ and $\lambda \in A^{\prime}$. Notice that this condition is automatically satisfied if A or A^{\prime} is empty. We write $\langle A, \lambda\rangle=0$ (respectively $\left\langle\nu, A^{\prime}\right\rangle=0$) instead of $\langle A,\{\lambda\}\rangle=0$ (respectively $\left\langle\{\nu\}, A^{\prime}\right\rangle=0$).

A z-extension of G (over F) is a surjective homomorphism (as algebraic groups) $\widetilde{G} \rightarrow G \times{ }_{\mathcal{O}} F$ over F such that the derived group of \widetilde{G} is simply connected and the kernel is a split torus which is central in $G \times_{\mathcal{O}} F$. Since the Galois cohomology of a split torus is trivial, the homomorphism $\widetilde{G}=\widetilde{G}(F) \rightarrow G(F)=G$ is also surjective. It is known that a z-extension exists.

Lemma 2.1. Let $\widetilde{G} \rightarrow G$ be a z-extension. Then there exists a hyperspecial maximal compact subgroup \widetilde{K} of \widetilde{G} such that the following conditions hold.
(i) The homomorphism $\widetilde{G} \rightarrow G$ induces a surjective homomorphism $\widetilde{K} \rightarrow K$.
(ii) The induced homomorphism $\widetilde{K} \rightarrow K$ induces a surjective homomorphism $\widetilde{G}(\kappa) \rightarrow G(\kappa)$. (Here, we denote the \mathcal{O}-form of \widetilde{G} corresponding to \widetilde{K} by the same letter \widetilde{G}.)
(iii) The derived group of $\widetilde{G} \times_{\mathcal{O}} \kappa$ is simply connected.

Proof. Let $G_{\mathrm{ad}}=\widetilde{G}_{\mathrm{ad}}$ be the adjoint group of G, \mathcal{B} its building and $x \in \mathcal{B}$ the hyperspecial point corresponding to K. The point x defines the hyperspecial maximal compact subgroup \widetilde{K} of \widetilde{G}. Then (i) follows from [HR08, Proof of Proposition 3]. Since $\operatorname{Ker}(K \rightarrow G(\kappa))$ is the maximal normal pro-p subgroup of $K, \widetilde{K} \rightarrow K$ induces $\widetilde{G}(\kappa) \rightarrow G(\kappa)$. By (i), this homomorphism is surjective. Since $\widetilde{G} \times_{\mathcal{O}} F$ and $\widetilde{G} \times_{\mathcal{O}} \kappa$ have the same root data, (iii) follows.
Lemma 2.2. The subgroup $[G(F), G(F)]$ is closed in $G(F)$ (with respect to the p-adic topology). Proof. Let $1 \rightarrow Z \rightarrow \widetilde{G} \xrightarrow{r} G \rightarrow 1$ be a z-extension. By the surjectivity of $\widetilde{G}(F) \rightarrow G(F)$, we have $[G(F), G(F)]=r([\widetilde{G}(F), \widetilde{G}(F)])$. Since $[\widetilde{G}, \widetilde{G}]$ is simply connected, we have $[\widetilde{G}(F), \widetilde{G}(F)]=$ $[\widetilde{G}, \widetilde{G}](F)$. The map $[\widetilde{G}, \widetilde{G}](F) \rightarrow[G, G](F)$ is an open map [BZ76, A.3. Lemma]. Therefore $[G(F), G(F)]$ is open in $[G, G](F)$. Hence $[G(F), G(F)]$ is closed in $[G, G](F)$. Since $[G, G](F)$ is a closed subgroup of $G(F),[G(F), G(F)]$ is closed in $G(F)$.

2.2 Satake transform and irreducible representations of K

Let $\bar{\kappa}$ be an algebraic closure of κ. Recall that all representations in this paper are smooth representations over $\bar{\kappa}$. For a finite-dimensional representation V of K, let c- $\operatorname{Ind}_{K}^{G} V$ be a representation defined by

$$
{\mathrm{c}-\operatorname{Ind}_{K}^{G}}=\left\{f: G \rightarrow V \mid f(x k)=k^{-1} f(x)(x \in G, k \in K), \operatorname{supp} f \text { is compact }\right\} .
$$

The action of $g \in G$ is given by $(g f)(x)=f\left(g^{-1} x\right)$. For $x \in G$ and $v \in V$, let $[x, v] \in \mathrm{c}-\operatorname{Ind}_{K}^{G}(V)$ be the element defined by $\operatorname{supp}([x, v])=x K$ and $[x, v](x)=v$. Then $g[x, v]=[g x, v]$ and $[x k, v]=[x, k v]$ for $g \in G$ and $k \in K$. For finite-dimensional representations V_{1}, V_{2} of K, $\operatorname{Hom}_{G}\left(\operatorname{c-Ind}_{K}^{G} V_{1}, \mathrm{c}-\operatorname{Ind}_{K}^{G} V_{2}\right)$ is identified with

$$
\mathcal{H}_{G}\left(V_{1}, V_{2}\right)=\left\{\begin{array}{l|l}
\varphi: G \rightarrow \operatorname{Hom}_{\bar{\kappa}}\left(V_{1}, V_{2}\right) & \begin{array}{l}
\varphi\left(k_{2} x k_{1}\right)=k_{2} \varphi(x) k_{1}\left(k_{1}, k_{2} \in K, x \in G\right) \\
\operatorname{supp} \varphi \text { is compact }
\end{array}
\end{array}\right\} .
$$

The operator corresponding to $\varphi \in \mathcal{H}_{G}\left(V_{1}, V_{2}\right)$ is given by $f \mapsto \varphi * f$ where

$$
(\varphi * f)(x)=\sum_{y \in G / K} \varphi(y) f(x y)
$$

We denote $\mathcal{H}_{G}(V, V)$ by $\mathcal{H}_{G}(V)$. Let π be a representation of G. Then by the Frobenius reciprocity law, we have $\operatorname{Hom}_{K}(V, \pi) \simeq \operatorname{Hom}_{G}\left(\mathrm{c}-\operatorname{Ind}_{K}^{G}(V), \pi\right)$. Hence $\operatorname{Hom}_{K}(V, \pi)$ is a right $\mathcal{H}_{G}(V)$-module. We denote the action of $\varphi \in \mathcal{H}_{G}(V)$ on $\psi \in \operatorname{Hom}_{K}(V, \pi)$ by $\psi * \varphi$.

When V is irreducible, the structure of $\mathcal{H}_{G}(V)$ is given by the Satake transform [Her11b]. Namely, the Satake transform $S_{G}: \mathcal{H}_{G}(V) \rightarrow \mathcal{H}_{T}\left(V^{\bar{U}(\kappa)}\right)$ defined by

$$
S_{G}(\varphi)(t)=\left.\sum_{u \in \bar{U} / \bar{U}(\mathcal{O})} \varphi(u t)\right|_{V^{\bar{U}}(\kappa)}
$$

is injective and its image is $\left\{\varphi \in \mathcal{H}_{T}\left(V^{\bar{U}(\kappa)}\right) \mid \operatorname{supp} \varphi \subset T_{+}\right\}$where $T_{+}=\{t \in T \mid \alpha(t) \in \mathcal{O}$ $\left.\left(\alpha \in \Delta^{+}\right)\right\}$.

Remark 2.3. The convention about positive and negative are interchanged comparing to Herzig's papers [Her11a, Her11b].

Herzig [Her11a] defined another homomorphism 'S $S_{G}: \mathcal{H}_{G}(V) \rightarrow \mathcal{H}_{T}\left(V_{U(\kappa)}\right)$ and, under the identification $V^{\bar{U}(\kappa)} \xrightarrow{\sim} V_{U(\kappa)}$, he proved $S_{G}=S_{G}$ if the derived group of G is simply connected [Her11a, Corollary 2.19].

Lemma 2.4. For any $G, S_{G}={ }^{\prime} S_{G}$.
Proof. Let $\widetilde{G} \rightarrow G$ be a z-extension and Z the kernel of $\widetilde{G} \rightarrow G$. Take a hyperspecial maximal compact subgroup $\widetilde{K} \subset \widetilde{G}$ as in Lemma 2.1. Using the surjective homomorphism $\widetilde{K} \rightarrow K$, we regard V as an irreducible representation of \widetilde{K}. Define $\mathcal{H}_{\widetilde{G}}(V) \rightarrow \mathcal{H}_{G}(V)$ by $\varphi \mapsto(g \mapsto$ $\left.\sum_{z \in Z /(Z \cap \widetilde{K})} \varphi(\widetilde{g} z)\right)$; here $\widetilde{g} \in \widetilde{G}$ is a lift of $g \in G$. (Notice that $Z \cap \widetilde{K}$ acts on V trivially.) The same formula defines a homomorphism $\mathcal{H}_{\widetilde{T}}\left(V^{\bar{U}(\kappa)}\right) \rightarrow \mathcal{H}_{T}\left(V^{\bar{U}(\kappa)}\right)$, here \widetilde{T} is the inverse image of T. Then we have the following commutative diagram.

We have a similar diagram for ${ }^{\prime} S_{\widetilde{G}}$ and ${ }^{\prime} S_{G}$. Since $\mathcal{H}_{\widetilde{G}}(V) \rightarrow \mathcal{H}_{G}(V)$ is surjective, $S_{\widetilde{G}}={ }^{\prime} S_{\widetilde{G}}$ implies $S_{G}=S_{G}$.

Using this lemma, we identify S_{G} with 'S S_{G} and we always denote it by S_{G}.
A homomorphism $X_{*} \times T(\mathcal{O}) \rightarrow T$ defined by $\left(\lambda, t_{0}\right) \mapsto \lambda(\varpi) t_{0}$ is an isomorphism and it induces $X_{*,+} \times T(\mathcal{O}) \simeq T_{+}$. Hence S_{G} gives an isomorphism $\mathcal{H}_{G}(V) \simeq \bar{\kappa}\left[X_{*,+}\right]$. For $\lambda \in X_{*,+}$, there exists $T_{\lambda} \in \mathcal{H}_{G}(V)$ such that $\operatorname{supp} T_{\lambda}=K \lambda(\varpi) K$ and $T_{\lambda}(\lambda(\varpi))$ is given by $V \rightarrow V_{N_{\lambda}(\kappa)} \simeq$ $V^{\overline{N_{\lambda}}(\kappa)} \hookrightarrow V$. Then $\left\{T_{\lambda} \mid \lambda \in X_{*,+}\right\}$ gives a basis of $\mathcal{H}_{G}(V)$. When we want to emphasize the group G, we write T_{λ}^{G} instead of T_{λ}. For $\lambda \in X_{*}$, let $\tau_{\lambda} \in \bar{\kappa}\left[X_{*}\right]$ be an element corresponding to λ. (As an element of $\mathcal{H}_{T}\left(V^{\bar{U}(\kappa)}\right)$, the support of τ_{λ} is $T(\mathcal{O}) \lambda(\varpi)$ and $\tau_{\lambda}(\lambda(\varpi))=$ id.) Then $\left\{\tau_{\lambda} \mid \lambda \in X_{*,+}\right\}$ gives a basis of $\bar{\kappa}\left[X_{*,+}\right]$. The relation between $S_{G}\left(T_{\lambda}\right)$ and τ_{λ} is given by Herzig [Her11a, Proposition 5.1]. An algebra homomorphism $\bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ is parameterized by (M, χ_{M}) where M is the Levi subgroup of a standard parabolic subgroup and χ_{M} is a group homomorphism $X_{M, *, 0} \rightarrow \bar{\kappa}^{\times}$where $X_{M, *, 0}=\left\{\lambda \in X_{*} \mid\left\langle\lambda, \Pi_{M}\right\rangle=0\right\}$ [Her11a, Proposition 4.1]. Therefore, an algebra homomorphism $\mathcal{H}_{G}(V) \rightarrow \bar{\kappa}$ is parameterized by the same pair.

Remark 2.5. Since the isomorphism $\mathcal{H}_{T}\left(V^{\bar{U}(\kappa)}\right) \simeq \bar{\kappa}\left[X_{*}\right]$ depends on a choice of a uniformizer ϖ, the above parameterization is not natural. A more natural way is given by Herzig [Her11b, Corollary 1.5]. In this paper, we fix a uniformizer and identify $\mathcal{H}_{G}(V)$ with $\bar{\kappa}\left[X_{*,+}\right]$. (It is only for a simplification of notation.)

Let $P=M N$ be the Levi decomposition of a standard parabolic subgroup. Then the partial Satake transform $S_{G}^{M}: \mathcal{H}_{G}(V) \rightarrow \mathcal{H}_{M}\left(V^{\bar{N}(\kappa)}\right)$ is injective and it satisfies $S_{M} \circ S_{G}^{M}=S_{G}$ [Her11a, §2.3]. We also have ' S_{G}^{M}. By Lemma 2.4, we have $S_{G}^{M}=S_{G}^{M}$ under the identification $V^{\bar{N}(\kappa)} \simeq$ $V_{N(\kappa)}$. Assume that $\chi: \mathcal{H}_{G}(V) \rightarrow \bar{\kappa}$ is parameterized by $\left(M, \chi_{M}\right)$. Then M is characterized by the following property: χ factors through $S_{G}^{M^{\prime}}$ if and only if $M^{\prime} \supset M$. We also have the following: $\chi_{M}(\lambda)=\chi\left(\tau_{\lambda}\right)^{-1}$ for all $\lambda \in X_{M, *, 0} \cap X_{*,+}$.

Let V_{1}, V_{2} be irreducible representations of K. For each $\lambda \in X_{*,+}$, there exists $\varphi \in$ $\mathcal{H}\left(V_{1}, V_{2}\right) \backslash\{0\}$ whose support is $K \lambda(\varpi) K$ if and only if $\left(V_{1}\right)_{N_{\lambda}(\kappa)} \simeq\left(V_{2}\right)_{N_{\lambda}(\kappa)}$ as $M_{\lambda}(\kappa)-$ representations. Moreover, such φ is unique up to a constant multiple. The homomorphism $\varphi(\lambda(\varpi))$ is given by $V_{1} \rightarrow\left(V_{1}\right)_{N_{\lambda}(\kappa)} \simeq V_{2}^{\overline{N_{\lambda}}(\kappa)} \hookrightarrow V_{2}$. (See the proof of [Her11a, Proposition 6.3].)

All irreducible representations of K factor through $K \rightarrow G(\kappa)$. If the derived group of G is simply connected, such representation is parameterized by its lowest weight. If $\nu \in X^{*}$ satisfies $-q<\langle\nu, \check{\alpha}\rangle \leqslant 0$ for all $\alpha \in \Pi$ then the restriction of the irreducible representation of $G(\bar{\kappa})$ with lowest weight ν to $G(\kappa)$ is irreducible and they give all irreducible representations of $G(\kappa)$. When V is the restriction of an irreducible representation with lowest weight ν, we call ν a lowest weight of V. (For $\nu_{0} \in X^{*}$ such that $\left\langle\nu_{0}, \check{\Pi}\right\rangle=0$, the restriction of the irreducible representations with lowest weight ν and $\nu+(q-1) \nu_{0}$ are isomorphic to each other. Hence ν is not determined by V uniquely.)

3. Satake parameters

3.1 Definition and some lemmas

We start with the following definition.
Definition 3.1. Let π be a representation of G. An algebra homomorphism $\chi: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ is called a Satake parameter of π if there exist an irreducible K-representation V and $\psi \in$ $\operatorname{Hom}_{K}(V, \pi) \backslash\{0\}$ such that for all $\varphi \in \mathcal{H}_{G}(V), \psi * \varphi=\chi\left(S_{G}(\varphi)\right) \psi$.

Let $\mathcal{S}(\pi, V)$ be the set of Satake parameters appearing in $\operatorname{Hom}_{K}(V, \pi)$. We denote the set of Satake parameters of π by $\mathcal{S}(\pi)$. Then we have $\mathcal{S}(\pi)=\bigcup_{V} \mathcal{S}(\pi, V)$. If π is admissible, then $\mathcal{S}(\pi) \neq \emptyset$. We give some propositions about Satake parameters. Before proving some properties of Satake parameters, we give some fundamental facts about a structure of G.

Lemma 3.2. Let $\Pi=\Pi_{1} \cup \Pi_{2}$ be a partition of Π such that $\left\langle\Pi_{1}, \Pi_{2}\right\rangle=0$ and $P_{i}=M_{i} N_{i}$ the standard parabolic subgroup corresponding to Π_{i}. Let L_{2} be the subgroup of $T \subset M_{1}$ generated by $\left\{\check{\alpha}\left(F^{\times}\right) \mid \alpha \in \Pi_{2}\right\}$. Then we have $G /\left[M_{2}(F), M_{2}(F)\right] \simeq M_{1} / L_{2}$.

Notice that L_{2} is not the group of F-valued points of an algebraic group in general.
Proof. First we assume that the derived group of G is simply connected. Let \bar{F} be a separable closure of F. In this proof, we write $\mathbf{G}=G(\bar{F})$. (The same notation is used for other groups.) Let \mathbf{L}_{2} be the subgroup of \mathbf{T} generated by $\left\{\check{\alpha}\left(\bar{F}^{\times}\right) \mid \alpha \in \Pi_{2}\right\}$. Namely, \mathbf{L}_{2} is the image of $\left(\bar{F}^{\times}\right)^{\Pi_{2}} \rightarrow \mathbf{T}$. Since the derived group of G is simply connected, this map is injective. Therefore, $L_{2}=\mathbf{L}_{2}^{\operatorname{Gal}(\bar{F} / F)}$.

Set $\check{\Pi}_{2}^{\perp}=\left\{\nu \in X^{*} \mid\left\langle\nu, \check{\Pi}_{2}\right\rangle=0\right\}$. Since $\mathbf{G} /\left[\mathbf{M}_{2}, \mathbf{M}_{2}\right]$ and $\mathbf{M}_{1} / \mathbf{L}_{2}$ have the same root data $\left(\check{\Pi}_{2}^{\perp}, \Delta_{M_{1}}, X_{*} / \mathbb{Z} \check{\Pi}_{2}, \check{\Delta}_{M_{1}}\right)$, these are isomorphic. Since the derived group of \mathbf{G} is simply connected, so is $\left[\mathbf{M}_{2}, \mathbf{M}_{2}\right]$. Hence the Galois cohomology $H^{1}\left(F,\left[\mathbf{M}_{2}, \mathbf{M}_{2}\right]\right)$ is trivial. Therefore $\left(\mathbf{G} /\left[\mathbf{M}_{2}, \mathbf{M}_{2}\right]\right)^{\operatorname{Gal}(\bar{F} / F)}=G /\left(\left[M_{2}, M_{2}\right](F)\right)$. Using the fact that $\left[\mathbf{M}_{2}, \mathbf{M}_{2}\right]$ is simply connected again, $\left[M_{2}, M_{2}\right](F)=\left[M_{2}(F), M_{2}(F)\right]$. Since \mathbf{L}_{2} is a split torus, $H^{1}\left(F, \mathbf{L}_{2}\right)$ is trivial. Hence $\left(\mathbf{M}_{1} / \mathbf{L}_{2}\right)^{\operatorname{Gal}(\bar{F} / F)}=M_{1} / \mathbf{L}_{2}^{\operatorname{Gal}(\bar{F} / F)}=M_{1} / L_{2}$. The lemma follows in this case.

In general, let $r: \widetilde{G} \rightarrow G$ be a z-extension of G. Define \widetilde{M}_{1} (respectively $\widetilde{M}_{2}, \widetilde{L}_{2}$) in the same way as M_{1} (respectively M_{2}, L_{2}). Then \widetilde{M}_{1} and \widetilde{M}_{2} are the inverse images of M_{1} and M_{2}, respectively. In particular, $r\left(\left[\widetilde{M}_{2}(F), \widetilde{M}_{2}(F)\right]\right)=\left[M_{2}(F), M_{2}(F)\right]$. By the definition, $r\left(\widetilde{L}_{2}\right)=L_{2}$. By the above argument, we have $\widetilde{G} /\left[\widetilde{M}_{2}(F), \widetilde{M}_{2}(F)\right] \simeq \widetilde{M}_{1} / \widetilde{L}_{2}$. Consider $f: M_{1} \hookrightarrow G \rightarrow G /\left[M_{2}(F)\right.$, $\left.M_{2}(F)\right]$. We prove f is surjective and $\operatorname{Ker}(f)=L_{2}$.

Let $g \in G$ and take $\widetilde{g} \in \widetilde{G}$ such that $r(\widetilde{g})=g$. Then there exist $\widetilde{m}_{1} \in \widetilde{M}_{1}$ and $\widetilde{m}_{2} \in\left[\widetilde{M}_{2}(F)\right.$, $\left.\widetilde{M}_{2}(F)\right]$ such that $\widetilde{g}=\widetilde{m}_{1} \widetilde{m}_{2}$. Hence $g=r(\widetilde{g})=r\left(\widetilde{m}_{1}\right) r\left(\widetilde{m}_{2}\right) \in M_{1}\left[M_{2}(F), M_{2}(F)\right]$. Therefore, f is surjective.

Take $m \in M_{1} \cap\left[M_{2}(F), M_{2}(F)\right]$. Take $\widetilde{m}_{1} \in \widetilde{M}_{1}$ and $\widetilde{m}_{2} \in\left[\widetilde{M}_{2}(F), \widetilde{M}_{2}(F)\right]$ such that $m=$ $r\left(\widetilde{m}_{1}\right)=r\left(\widetilde{m}_{2}\right)$. Then $\widetilde{m}_{2} \in \widetilde{m}_{1} \operatorname{Ker}(r) \subset \widetilde{M}_{1} \operatorname{Ker}(r)=\widetilde{M}_{1}$. Hence $\widetilde{m}_{2} \in \widetilde{M}_{1} \cap\left[\widetilde{M}_{2}(\underset{\sim}{F}), \widetilde{M}_{2}(F)\right] \subset$ \widetilde{L}_{2}. Therefore, $m=r\left(\widetilde{m}_{2}\right) \in L_{2}$. Hence $\operatorname{Ker}(f) \subset L_{2}$. Let $m \in L_{2}$ and take $\widetilde{m} \in \widetilde{L}_{2}$ such that $r(\widetilde{m})=m$. Then $\widetilde{m} \in\left[\widetilde{M}_{2}(F), \widetilde{M}_{2}(F)\right]$. Hence $m \in r\left(\left[\widetilde{M}_{2}(F), \widetilde{M}_{2}(F)\right]\right)=\left[M_{2}(F), M_{2}(F)\right]$. Hence $L_{2} \subset \operatorname{Ker}(f)$.
Proposition 3.3. There is a one-to-one correspondence between characters ν_{G} of G and characters ν_{T} of T such that $\nu_{T} \circ \check{\alpha}$ is trivial for all $\alpha \in \Pi$. It is characterized by $\nu_{T}=\left.\nu_{G}\right|_{T}$.
Proof. Apply the previous lemma for $\Pi_{1}=\emptyset$ and $\Pi_{2}=\Pi$.
Corollary 3.4. Let ν_{K} be a character of K. Then there exists a character ν_{G} of G such that $\nu_{K}=\left.\nu_{G}\right|_{K}$. Moreover, there is a unique character ν_{G} of G such that $\nu_{K}=\left.\nu_{G}\right|_{K}$ and $\nu_{G}(\lambda(\varpi))=1$ for all $\lambda \in X_{*}$.

Proof. If the derived group of G is simply connected, it is known that ν_{K} has a lowest weight ν which satisfies $(\nu \circ \check{\alpha})\left(\mathcal{O}^{\times}\right)=1$ for all $\alpha \in \Pi$. Therefore, the corollary follows from the above proposition. In general, let $\underset{\widetilde{G}}{ } \rightarrow Z \rightarrow \widetilde{G} \rightarrow G \rightarrow 1$ be a z-extension of G, \widetilde{K} as in Lemma 2.1 and \widetilde{T} the inverse image of T in \widetilde{G}. Then there exists a character $\nu_{\widetilde{G}}$ such that $\nu_{\widetilde{G}} \mid \widetilde{K}$ is a pull-back of ν_{K} and $\nu_{\widetilde{G}}(\lambda(\varpi))=1$ for all $\lambda \in X_{*}(\widetilde{T})$. Hence $\nu_{\widetilde{G}} \mid Z$ is trivial. Therefore, it gives a character ν_{G} of G and $\left.\nu_{G}\right|_{K}=\nu_{K}$.

For a character ν of $G, \varphi \mapsto\left(g \mapsto \varphi_{\nu}(g)=\varphi(g) \nu(g)\right)$ gives an isomorphism $\mathcal{H}_{G}(V) \simeq \mathcal{H}_{G}(V \otimes$ $\left.\left.\nu\right|_{K}\right)$. The following lemma and propositions are essentially proved in [Her11a].
Lemma 3.5 [Her11a, Lemma 4.6]. For a standard parabolic subgroup $P=M N$, the homomorphism $\varphi \mapsto \varphi_{\nu}$ is compatible with the partial Satake transform S_{G}^{M}.

Proof. We have

$$
\left(S_{G}^{M} \varphi_{\nu}\right)(m)=\sum_{\bar{n} \in \bar{N} /(\bar{N} \cap K)} \nu(m \bar{n}) \varphi(m \bar{n})
$$

Since $\bar{N} \subset[G, G]$, we have $\nu(\bar{n})=1$. Therefore,

$$
\sum_{\bar{n} \in \bar{N} /(\bar{N} \cap K)} \nu(m \bar{n}) \varphi(m \bar{n})=\nu(m) \sum_{\bar{n} \in \bar{N} /(\bar{N} \cap K)} \varphi(m \bar{n})=\nu(m)\left(S_{G}^{M} \varphi\right)(m) .
$$

Now we give some properties on Satake parameters. The following proposition is obvious.
Proposition 3.6. If $\pi^{\prime} \subset \pi$, then $\mathcal{S}\left(\pi^{\prime}, V\right) \subset \mathcal{S}(\pi, V)$.
The following proposition follows from [Her11a, Lemma 2.14].
Proposition 3.7. Let $P=M N$ be a parabolic subgroup, σ a representation of M and V an irreducible representation of K. Then we have $\mathcal{S}\left(\operatorname{Ind}_{P}^{G}(\sigma), V\right)=\left.\mathcal{S}\left(\sigma, V^{\bar{N}(\kappa)}\right)\right|_{\bar{\kappa}\left[X_{*,+}\right]}$. In particular, we have $\mathcal{S}\left(\operatorname{Ind}_{P}^{G}(\sigma)\right)=\left.\mathcal{S}(\sigma)\right|_{\bar{\kappa}\left[X_{*,+}\right]}$.

Let $\chi_{1}, \chi_{2}: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ be algebra homomorphisms. Define $\chi_{1} \otimes \chi_{2}: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ by $\left(\chi_{1} \otimes\right.$ $\left.\chi_{2}\right)\left(\tau_{\lambda}\right)=\chi_{1}\left(\tau_{\lambda}\right) \chi_{2}\left(\tau_{\lambda}\right)$.

Proposition 3.8. Assume χ_{i} is parameterized by $\left(M_{i}, \chi_{M_{i}}\right)$. Then $\chi_{1} \otimes \chi_{2}$ is parameterized by $\left(M, \chi_{M}\right)$ where $\Pi_{M}=\Pi_{M_{1}} \cup \Pi_{M_{2}}$ and $\chi_{M}=\left.\left.\chi_{M_{1}}\right|_{X_{M, *, 0}} \chi_{M_{2}}\right|_{X_{M, *, 0}}$.
Proof. If $\chi: \bar{\kappa}\left[X_{*}\right] \rightarrow \bar{\kappa}$ corresponds to $\left(M, \chi_{M}\right)$, for $\lambda \in X_{*,+}, \lambda(\varpi) \in Z_{M}$ if and only if $\chi\left(\tau_{\lambda}\right) \neq$ 0 [Her11a, Corollary 4.2]. Hence $\Pi_{M}=\Pi_{M_{1}} \cup \Pi_{M_{2}}$. The formula $\chi_{M}=\left.\left.\chi_{M_{1}}\right|_{X_{M, *, 0}} \chi_{M_{2}}\right|_{X_{M, *, 0}}$ follows from [Her11a, Corollary 4.2].

Proposition 3.9 [Her11a, Lemma 4.6]. Let ν be a character of G and π a representation of G. Then $\mathcal{S}(\pi \otimes \nu)=\mathcal{S}(\pi) \otimes \chi_{\nu}$ where $\chi_{\nu}: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ is given by $\chi_{\nu}\left(\tau_{\lambda}\right)=\nu(\lambda(\varpi))^{-1}$.

Proof. This follows from Lemma 3.5.
Proposition 3.10. Let ν be a character of G. Then $\mathcal{S}(\nu)=\left\{\chi_{\nu}\right\}$.
Proof. We have an injective homomorphism $\nu \hookrightarrow \operatorname{Ind}_{B}^{G}\left(\left.\nu\right|_{T}\right)$. Hence we have $\emptyset \neq \mathcal{S}(\nu) \subset$ $\mathcal{S}\left(\operatorname{Ind}_{B}^{G}\left(\left.\nu\right|_{T}\right)\right)=\left.\mathcal{S}\left(\left.\nu\right|_{T}\right)\right|_{\bar{\kappa}\left[X_{*,+}\right]}=\left\{\chi_{\nu}\right\}$.

3.2 Restriction and Satake parameter

Let G_{1} be a connected subgroup of G which contains the derived group of G. Put $K_{1}=$ $G_{1} \cap K$. This is a hyperspecial maximal compact subgroup of G_{1}. We also denote the \mathcal{O}-form corresponding to K_{1} by the same letter G_{1}.

Lemma 3.11. The restriction of an irreducible K-representation to K_{1} is also irreducible.
Proof. We may replace K (respectively K_{1}) with $G(\kappa)$ (respectively $G_{1}(\kappa)$). Let V be an irreducible representation of $G(\kappa), V_{1} \subset V$ a non-zero $G_{1}(\kappa)$-subrepresentation of V. Since $U(\kappa) \subset$ $G_{1}(\kappa)$, we have $V_{1}^{U(\kappa)} \subset V^{U(\kappa)}$. The group $U(\kappa)$ is a p-group, hence $V_{1}^{U(\kappa)} \neq 0$. Since $\operatorname{dim} V^{U(\kappa)}=$ 1, we have $V_{1}^{U(\kappa)}=V^{U(\kappa)}$. Let $\tau: G \rightarrow G$ be an anti-involution such that $\left.\tau\right|_{T}=\operatorname{id}_{T}$. Since G_{1} is generated by U, \bar{U} and $T \cap G_{1}$, and we have $\tau\left(T \cap G_{1}\right)=T \cap G_{1}, \tau(U)=\bar{U}$ and $\tau(\bar{U})=U$, τ preserves G_{1}. We have a perfect paring $\langle\cdot, \cdot\rangle: V \times V \rightarrow \bar{\kappa}$ such that $\left\langle g v, v^{\prime}\right\rangle=\left\langle v, \tau(g) v^{\prime}\right\rangle$ for $g \in G, v, v^{\prime} \in V$ and $\left\langle V^{U(\kappa)}, V^{U(\kappa)}\right\rangle \neq 0$. (See an argument in [Hum06, p. 18].) Put $V_{1}^{\prime}=\{v \in$ $\left.V \mid\left\langle v, V_{1}\right\rangle=0\right\}$. Then this is a $G_{1}(\kappa)$-subrepresentation. If it is not zero, then, by the above argument, we have $\left(V_{1}^{\prime}\right)^{U(\kappa)}=V^{U(\kappa)}$. This contradicts $\left\langle V^{U(\kappa)}, V^{U(\kappa)}\right\rangle \neq 0$. Therefore, $V_{1}^{\prime}=0$. Hence $V=V_{1}$.

Let $X_{G_{1}, *}$ be the group of cocharacters of $G_{1} \cap T$. Put $X_{G_{1}, *,+}=X_{*,+} \cap X_{G_{1}, *}$. Then we have $\mathcal{H}_{G_{1}}(V) \simeq \bar{\kappa}\left[X_{G_{1}, *,+}\right]$. Since $X_{G_{1}, *,+} \subset X_{*,+}$, we have an injective homomorphism $\bar{\kappa}\left[X_{G_{1}, *,+}\right] \hookrightarrow$ $\bar{\kappa}\left[X_{*,+}\right]$. This induces $\Phi: \mathcal{H}_{G_{1}}(V) \hookrightarrow \mathcal{H}_{G}(V)$.
Lemma 3.12. We have $\operatorname{Im} \Phi=\left\{\varphi \in \mathcal{H}_{G}(V) \mid \operatorname{supp} \varphi \subset G_{1} K\right\}$ and the isomorphism $\operatorname{Im} \Phi \simeq$ $\mathcal{H}_{G_{1}}(V)$ is given by $\left.\varphi \mapsto \varphi\right|_{G_{1}}$.
Proof. Put $\mathcal{H}_{1}=\left\{\varphi \in \mathcal{H}_{G}(V) \mid \operatorname{supp} \varphi \subset G_{1} K\right\}$. Then \mathcal{H}_{1} has a basis $\left\{T_{\lambda}^{G} \mid \lambda \in X_{G_{1}, *,+}\right\}$. To prove the first statement of the lemma, it is sufficient to prove that if $\lambda \in X_{G_{1}, *,+}$ then $S_{G}\left(T_{\lambda}^{G}\right) \in \bar{\kappa}\left[X_{G_{1}, *,+}\right]$ and $\left\{S_{G}\left(T_{\lambda}^{G}\right) \mid \lambda \in X_{G_{1}, *,+}\right\}$ is a basis of $\bar{\kappa}\left[X_{G_{1}, *,+}\right]$. We have $S_{G}\left(T_{\lambda}^{G}\right) \in$ $\tau_{\lambda}+\sum_{\mu<\lambda} \bar{\kappa} \tau_{\mu}$. Since $\check{\Pi} \subset X_{G_{1}, *}, \lambda \in X_{G_{1}, *}$ and $\mu \leqslant \lambda$ imply $\mu \in X_{G_{1}, *}$. Therefore we get the first statement.

Since U is the unipotent radical of the Borel subgroup $B \cap G_{1}$ of G_{1}, we have $S_{G}\left(T_{\lambda}^{G}\right)=$ $S_{G_{1}}\left(\left.T_{\lambda}^{G}\right|_{G_{1}}\right)$ for $\lambda \in X_{G_{1}, *++}$ by the definition of the Satake transform. We get the second statement.

Lemma 3.13. Let ω be a character of Z_{G}, V_{1} an irreducible representation of K_{1} such that $Z_{K_{1}}$ acts on it by $\omega \mid Z_{K_{1}}$. Then there exists an irreducible representation V of K such that $\left.V\right|_{K_{1}}=V_{1}$ and the center of K acts on it by ω.

Proof. Using a z-extension and the argument in the proof of Lemma 3.11, we may assume that the derived group of G is simply connected. Let $\nu_{1} \in X_{G_{1}}^{*}$ be a lowest weight of V_{1}. There exists $\omega_{1} \in X_{Z_{G}}^{*}$ such that $\left.\omega\right|_{Z_{G} \cap K}$ is given by $Z_{G} \cap K \xrightarrow{\omega_{1}} \mathcal{O}^{\times} \rightarrow \kappa^{\times}$. (The character ω_{1} gives a continuous character $Z_{G} \rightarrow F^{\times}$and the image of $Z_{G} \cap K$ is a compact subgroup, hence it is contained in \mathcal{O}^{\times}.) By the assumption, $\left.\nu_{1}\right|_{Z_{G_{1}}}$ and $\left.\omega_{1}\right|_{Z_{G_{1}}}$ give the same character of $Z_{G_{1}} \cap K$. Therefore $\nu_{1}\left|Z_{G_{1}}-\omega_{1}\right|_{Z_{G_{1}}}=(q-1) \omega_{2}$ for some $\omega_{2} \in X_{Z_{G_{1}}}^{*}$. Take $\omega_{3} \in X_{Z_{G}}^{*}$ such that $\left.\omega_{3}\right|_{Z_{G_{1}}}=\omega_{2}$. Set $\omega_{4}=\omega_{1}+(q-1) \omega_{3}$. Then ω_{4} gives the character $\left.\omega\right|_{Z_{G} \cap K}$ of $Z_{G} \cap K$ and $\nu_{1}\left|Z_{G_{1}}=\omega_{4}\right| Z_{G_{1}}$. We have an exact sequence $1 \rightarrow Z_{G_{1}} \rightarrow Z_{G} \times\left(G_{1} \cap T\right) \rightarrow T \rightarrow 1$ as algebraic groups. Hence we get an exact sequence $0 \rightarrow X_{G}^{*} \rightarrow X_{G_{1}}^{*} \oplus X_{Z_{G}}^{*} \rightarrow X_{Z_{G_{1}}}^{*} \rightarrow 0$. Therefore there exists $\nu \in X_{G}^{*}$ such that $\left.\nu\right|_{T \cap G_{1}}=\nu_{1}$ and $\left.\nu\right|_{Z_{G}}=\omega_{4}$. Then the irreducible representation V of K with a lowest weight ν satisfies the condition of the lemma.

Proposition 3.14. Let π be a representation of G and V an irreducible representation of K. Then we have $\left.\mathcal{S}(\pi, V)\right|_{\bar{\kappa}\left[X_{G_{1}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{G_{1}},\left.V\right|_{G_{1} \cap K}\right)$. Hence $\left.\mathcal{S}(\pi)\right|_{\bar{\kappa}\left[X_{G_{1}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{G_{1}}\right)$.

Moreover, if π has a central character, then for each irreducible ($G_{1} \cap K$)-representation V_{1}, we have $\mathcal{S}\left(\left.\pi\right|_{G_{1}}, V_{1}\right)=\left.\bigcup_{\left.V\right|_{G_{1} \cap K}=V_{1}} \mathcal{S}(\pi, V)\right|_{\bar{\kappa}_{\left[X_{G_{1}, *,+}\right.}}$. Hence $\mathcal{S}\left(\left.\pi\right|_{G_{1}}\right)=\left.\mathcal{S}(\pi)\right|_{\bar{\kappa}\left[X_{\left.G_{1}, *,+\right]}\right]}$.

Proof. Let V be an irreducible representation of K. We prove $\left.\mathcal{S}(\pi, V)\right|_{\bar{\kappa}\left[X_{G_{1}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{G_{1}},\left.V\right|_{K_{1}}\right)$. It is sufficient to prove that

$$
\operatorname{Hom}_{K}(V, \pi) \hookrightarrow \operatorname{Hom}_{K_{1}}(V, \pi)
$$

is an $\mathcal{H}_{G_{1}}(V)$-module homomorphism. Let $\varphi \in \mathcal{H}_{G_{1}}(V)$ and $\psi \in \operatorname{Hom}_{K}(V, \pi)$. Then for each $v \in V$,

$$
(\psi * \Phi(\varphi))(v)=\sum_{g \in G / K} g \psi\left(\Phi(\varphi)\left(g^{-1}\right) v\right)=\sum_{g \in G_{1} K / K} g \psi\left(\Phi(\varphi)\left(g^{-1}\right) v\right) .
$$

The claim follows from $G_{1} / K_{1} \simeq G_{1} K / K$.
Assume that π has a central character. Let V_{1} be an irreducible representation of K_{1}. By the above lemma, there exists an irreducible representation V of K such that $\left.V\right|_{K_{1}}=V_{1}$ and a central character of V is the same as that of π. Set $K^{\prime}=K_{1} Z_{K}$. Since K_{1} is open in G_{1} and Z_{K} is open in Z_{G}, K^{\prime} is open in $G_{1}(F) Z_{G}(F)$. Applying [BZ76, A.3. Lemma] to $G_{1} \times Z_{G} \rightarrow G$, $G_{1}(F) Z_{G}(F)$ is open in $G=G(F)$. Hence K^{\prime} is open in G. Therefore, K^{\prime} has a finite index in K. We have

$$
\operatorname{Hom}_{K_{1}}(V, \pi)=\operatorname{Hom}_{K^{\prime}}(V, \pi) \simeq \operatorname{Hom}_{K}\left(\operatorname{Ind}_{K^{\prime}}^{K}(V), \pi\right) .
$$

Since V has a structure of a representation of K, we have $\operatorname{Ind}_{K^{\prime}}^{K}(V) \simeq \operatorname{Ind}_{K^{\prime}}^{K}\left(\mathbf{1}_{K^{\prime}}\right) \otimes V$. Therefore we have

$$
\Psi: \operatorname{Hom}_{K_{1}}(V, \pi) \simeq \operatorname{Hom}_{K}\left(\operatorname{Ind}_{K^{\prime}}^{K}\left(\mathbf{1}_{K^{\prime}}\right) \otimes V, \pi\right)
$$

Explicitly, this isomorphism is given by

$$
\Psi(\psi)(f \otimes v)=\sum_{x \in K / K^{\prime}} f(x) x \psi\left(x^{-1}(v)\right) .
$$

Therefore, for $\varphi \in \mathcal{H}_{G_{1}}(V)$, we have

$$
\begin{aligned}
\Psi(\psi * \varphi)(f \otimes v) & =\sum_{x \in K / K^{\prime}} f(x) x \sum_{g \in G_{1} / K_{1}} g \psi\left(\varphi\left(g^{-1}\right) x^{-1} v\right) \\
& =\sum_{x \in K / K^{\prime}} \sum_{g \in G_{1} / K_{1}} f(x)(x g) \psi\left(\Phi(\varphi)\left((x g)^{-1}\right) v\right) .
\end{aligned}
$$

Replacing g with $x^{-1} g x$, we have

$$
\Psi(\psi * \varphi)(f \otimes v)=\sum_{x \in K / K^{\prime}} \sum_{g \in G_{1} / K_{1}} f(x) g x \psi\left(x^{-1} \varphi\left(g^{-1}\right) v\right)=\sum_{g \in G_{1} / K_{1}} g \Psi(\psi)\left(f \otimes \varphi\left(g^{-1}\right) v\right) .
$$

Since K^{\prime} is a normal subgroup of K and K / K^{\prime} is commutative, the representation $\operatorname{Ind}_{K^{\prime}}^{K}\left(\mathbf{1}_{K^{\prime}}\right)$ has a filtration $\left\{X_{i}\right\}$ such that $X_{i} / X_{i-1} \simeq \nu_{i}$ for some character ν_{i} of K. Set $X=\operatorname{Ind}_{K^{\prime}}^{K}\left(\mathbf{1}_{K^{\prime}}\right)$, $Y=\operatorname{Hom}_{K}(X \otimes V, \pi)$ and $Y_{i}=\operatorname{Hom}_{K}\left(X / X_{i} \otimes V, \pi\right)$. Then we see that $\left\{Y_{i}\right\}$ is a filtration of Y and $Y_{i-1} / Y_{i} \hookrightarrow \operatorname{Hom}_{K}\left(\nu_{i} \otimes V, \pi\right)$. By the above formula, Y_{i} is stable under the action of $\varphi \in \mathcal{H}_{G_{1}}(V)$. Hence φ acts on Y_{i-1} / Y_{i}. Extend ν_{i} to a character of G such that ν_{i} is trivial on G_{1}. Then we have $\mathcal{H}_{G}(V) \simeq \mathcal{H}_{G}\left(\nu_{i} \otimes V\right)$ by $\varphi^{\prime} \mapsto \varphi_{\nu_{i}}^{\prime}$. We have an action of $\Phi(\varphi)_{\nu_{i}} \in \mathcal{H}_{G}\left(\nu_{i} \otimes V\right)$ on $\operatorname{Hom}_{K}\left(\nu_{i} \otimes V, \pi\right)$. We prove that these actions are compatible with $Y_{i-1} / Y_{i} \hookrightarrow \operatorname{Hom}_{K}\left(\nu_{i} \otimes V, \pi\right)$.

Since ν_{i} is trivial on G_{1}, we have $a \otimes \varphi\left(g^{-1}\right) v=\Phi(\varphi)_{\nu_{i}}\left(g^{-1}\right)(a \otimes v)$ for $g \in G_{1}$. The function $g \mapsto g \Psi(\psi)\left(\Phi(\varphi)_{\nu_{i}}\left(g^{-1}\right)(a \otimes v)\right)$ is right K-invariant. Therefore,

$$
\begin{aligned}
\sum_{g \in G_{1} / K_{1}} g \Psi(\psi)\left(a \otimes \varphi\left(g^{-1}\right) v\right) & =\sum_{g \in G_{1} K / K} g \Psi(\psi)\left(\Phi(\varphi)_{\nu_{i}}\left(g^{-1}\right)(a \otimes v)\right) \\
& =\sum_{g \in G / K} g \Psi(\psi)\left(\Phi(\varphi)_{\nu_{i}}\left(g^{-1}\right)(a \otimes v)\right)=\left(\Psi(\psi) * \Phi(\varphi)_{\nu_{i}}\right)(a \otimes v) .
\end{aligned}
$$

This means that the actions are compatible.
Hence each element of $\mathcal{S}\left(\left.\pi\right|_{G_{1}}, V\right)$ appears in $\left.\mathcal{S}\left(\pi, \nu_{i} \otimes V\right)\right|_{\bar{\kappa}\left[X_{G_{1}, *,+}\right]}$ for some i. Since ν_{i} is trivial on $K_{1},\left.\left.\left(\nu_{i} \otimes V\right)\right|_{K_{1}} \simeq V\right|_{K_{1}} \simeq V_{1}$. We get $\left.\mathcal{S}\left(\left.\pi\right|_{G_{1}}, V\right) \subset \bigcup_{\left.V^{\prime}\right|_{K_{1}}=\left.V\right|_{K_{1}}} \mathcal{S}\left(\pi, V^{\prime}\right)\right|_{\bar{\kappa}\left[X_{G_{1}, *,+}\right]}$.

3.3 Satake parameter of tensor product

Consider the setting in Lemma 3.2. Namely, let $\Pi=\Pi_{1} \cup \Pi_{2}$ be a partition of Π such that $\left\langle\Pi_{1}, \check{\Pi}_{2}\right\rangle=0$. Let $P_{i}=M_{i} N_{i}$ be the standard parabolic subgroup corresponding to Π_{i}. Set $H_{2}=$ $Z_{M_{2}}\left(\left[M_{1}, M_{1}\right]\right)^{\circ}$. Put $\Pi_{1}^{\perp}=\left\{\lambda \in X_{*} \mid\left\langle\lambda, \Pi_{1}\right\rangle=0\right\}$. Then the group of cocharacters of $H_{2} \cap T$ is Π_{1}^{\perp}. We also have $\left[M_{2}, M_{2}\right] \subset H_{2} \subset M_{2}$ (as algebraic groups). Put $X_{H_{2}, *,+}=X_{*,+} \cap \Pi_{1}^{\perp}$. We have $N_{2} \subset\left[M_{1}, M_{1}\right]$.

Fix an irreducible representation V of K and put $V_{2}=V^{\bar{N}_{2}(\kappa)}$. Then V_{2} is irreducible as a representation of $M_{2} \cap K$. Since $\left[M_{2}, M_{2}\right] \subset H_{2} \subset M_{2}$ (as algebraic groups), V_{2} is also irreducible as a representation of $H_{2} \cap K$ (Lemma 3.11). We have $\bar{\kappa}\left[X_{H_{2}, *,+}\right] \hookrightarrow \bar{\kappa}\left[X_{*,+}\right]$. Hence we get $\Phi^{\prime}: \mathcal{H}_{H_{2}}\left(V_{2}\right) \hookrightarrow \mathcal{H}_{G}(V)$.

Lemma 3.15. For $m \in M_{2}$ and $\bar{n} \in \bar{N}_{2}$, if $m \bar{n} \in K H_{2} K$, then $\bar{n} \in K$.
Proof. By the Cartan decompositions, we can choose $\lambda \in X_{H_{2}, *,+}, \lambda_{2} \in X_{M_{2}, *,+}$ and $k_{1} \in M_{2} \cap K$ such that $m \bar{n} \in K \lambda(\varpi) K$ and $m \in\left(M_{2} \cap K\right) \lambda_{2}(\varpi) k_{1}$. Then we have $\lambda_{2}(\varpi)\left(k_{1} n k_{1}^{-1}\right) \in K \lambda(\varpi) K$. Put $\bar{n}_{1}=k_{1} \bar{n} k_{1}^{-1} \in \bar{N}_{2}$. We prove $\bar{n}_{1} \in K$.

By the assumption, we have $\bar{N}_{2} \subset M_{1}$. Therefore, $\lambda_{2}(\varpi) \bar{n}_{1}$ is in M_{1}. Take $\lambda_{1} \in X_{M_{1}, *,+}$ such that $\lambda_{2}(\varpi) \bar{n}_{1} \in\left(M_{1} \cap K\right) \lambda_{1}(\varpi)\left(M_{1} \cap K\right)$. Then $K \lambda_{1}(\varpi) K \cap K \lambda(\varpi) K \neq \emptyset$. Therefore, $\lambda_{1} \in W \lambda$. The Weyl group W preserves each connected component of the root system Δ. Hence W
preserves Π_{1}^{\perp}. Hence $\lambda_{1} \in \Pi_{1}^{\perp}$. Therefore, $\lambda_{1}(\varpi)$ commutes with any element of M_{1}. Hence $\lambda_{2}(\varpi) \bar{n}_{1} \in\left(M_{1} \cap K\right) \lambda_{1}(\varpi)\left(M_{1} \cap K\right)=\lambda_{1}(\varpi)\left(M_{1} \cap K\right)$. Therefore, $\lambda_{1}(\varpi)^{-1} \lambda_{2}(\varpi) \bar{n}_{1} \in K$. We get $\bar{n}_{1} \in K$.
Lemma 3.16. If $\varphi \in \mathcal{H}_{G}(V)$ satisfies $\operatorname{supp} \varphi \subset K H_{2} K$, then $S_{G}^{M_{2}}(\varphi)(m)=\left.\varphi(m)\right|_{V_{2}}$ for $m \in M_{2}$. Proof. By the definition, we have

$$
S_{G}^{M_{2}}(\varphi)(m)=\left.\sum_{\bar{n} \in \bar{N}_{2} / \bar{N}_{2} \cap K} \varphi(m \bar{n})\right|_{V_{2}} .
$$

Since $\operatorname{supp} \varphi \subset K H_{2} K$, this is equal to $\left.\varphi(m)\right|_{V_{2}}$ by the above lemma.
Lemma 3.17. If $\lambda, \mu \in X_{*,+}$ satisfies $\mu \leqslant \lambda$ and $\lambda \in X_{H_{2}, *,+}$, then $\lambda-\mu \in \mathbb{Z}_{\geqslant 0} \Pi_{2}$. In particular, $\mu \in X_{H_{2}, *,+}$.
Proof. For each $\alpha \in \Pi$, take $n_{\alpha} \in \mathbb{Z}_{\geqslant 0}$ such that $\lambda-\mu=\sum_{\alpha \in \Pi} n_{\alpha} \check{\alpha}$. Then for $\beta \in \Pi_{1}$, we have $\sum_{\alpha \in \Pi_{1}} n_{\alpha}\langle\beta, \check{\alpha}\rangle=-\langle\beta, \mu\rangle \leqslant 0$. Since $\left(d_{\beta}\langle\beta, \check{\alpha}\rangle\right)_{\alpha, \beta \in \Pi_{1}}$ is symmetric and positive definite for some $d_{\alpha}>0$, we have $n_{\alpha}=0$ for all $\alpha \in \Pi_{1}$.

By the above two lemmas and the argument in the proof of Lemma 3.12, we get the following lemma. (Notice that $\varphi(h)$ induces $V_{2} \rightarrow V_{2}$ for $h \in H_{2}$ since H_{2} and N_{2} commute with each other.)

Lemma 3.18. We have $\operatorname{Im} \Phi^{\prime}=\left\{\varphi \in \mathcal{H}_{G}(V) \mid \operatorname{supp} \varphi \subset K H_{2} K\right\}$ and the isomorphism $\operatorname{Im} \Phi^{\prime} \simeq$ $\mathcal{H}_{H_{2}}\left(V_{2}\right)$ is given by $\left.\varphi \mapsto \varphi\right|_{H_{2}}$.

By Lemma 3.16, we get $S_{G}(\varphi)=S_{M_{2}}\left(\left.\varphi\right|_{M_{2}}\right)$ if $\operatorname{supp}(\varphi) \subset K H_{2} K$. This means that the map is given by the restriction.

Let π be a representation of G. Consider the following homomorphism

$$
\operatorname{Hom}_{K}(V, \pi) \rightarrow \operatorname{Hom}_{M_{2} \cap K}\left(V_{2}, \pi\right) .
$$

Since V is generated by V_{2} as a K-representation, this is injective. The left-hand side is $\mathcal{H}_{G}(V) \simeq$ $\bar{\kappa}\left[X_{*,+}\right]$-module and the right-hand side is $\mathcal{H}_{M_{2}}\left(V_{2}\right) \simeq \bar{\kappa}\left[X_{M_{2}, *+}\right]$-module where $X_{M_{2}, *,+}=\{\lambda \in$ $\left.X_{*} \mid\langle\lambda, \alpha\rangle \geqslant 0\left(\alpha \in \Pi_{M_{2}}\right)\right\}$. Therefore, both sides are $\bar{\kappa}\left[X_{H_{2}, *,+}\right]$-modules. We prove that the above embedding is a $\bar{\kappa}\left[X_{H_{2}, *,+}\right]$-modules homomorphism.
Lemma 3.19. Let π be a representation of G. The homomorphism

$$
\operatorname{Hom}_{K}(V, \pi) \rightarrow \operatorname{Hom}_{M_{2} \cap K}\left(V_{2}, \pi\right)
$$

is a $\bar{\kappa}\left[X_{H_{2}, *,+}\right]$-module homomorphism.
Proof. Let $\varphi \in \mathcal{H}_{H_{2}}\left(V_{2}\right)$. Take $\psi \in \operatorname{Hom}_{K}(V, \pi)$ and $v \in V_{2}$. We have

$$
\begin{aligned}
\left(\psi * \Phi^{\prime}(\varphi)\right)(v) & =\sum_{g \in G / K} g \psi\left(\Phi^{\prime}(\varphi)\left(g^{-1}\right) v\right) \\
& =\sum_{m \in M_{2} /\left(M_{2} \cap K\right)} \sum_{\bar{n} \in \bar{N}_{2} /\left(\bar{N}_{2} \cap K\right)} m \bar{n} \psi\left(\Phi^{\prime}(\varphi)\left(\bar{n}^{-1} m^{-1}\right) v\right) .
\end{aligned}
$$

Since supp $\Phi^{\prime}(\varphi) \subset K H_{2} K, \Phi^{\prime}(\varphi)\left(\bar{n}^{-1} m^{-1}\right)=0$ if $\bar{n} \notin \bar{N}_{2} \cap K$ by the above lemma. Therefore, we have

$$
\left(\psi * \Phi^{\prime}(\varphi)\right)(v)=\sum_{m \in M_{2} /\left(M_{2} \cap K\right)} m \psi\left(\Phi^{\prime}(\varphi)\left(m^{-1}\right) v\right)
$$

Using Lemma 3.16, we obtain the lemma.

Let π_{1}, π_{2} be representations of G with the central characters such that $\left[M_{2}(F), M_{2}(F)\right]$ acts on π_{1} trivially and the center of M_{1} acts on π_{1} by a character. Put $\pi=\pi_{1} \otimes \pi_{2}$.

Remark 3.20. The group H_{2} is generated by $H_{2} \cap T$ and the one-dimensional unipotent subgroup corresponding to each $\alpha \in \Delta \cap \mathbb{Z} \Pi_{2}$. Since $H_{2} \cap T \subset Z_{M_{1}}^{\circ}$ and the one-dimensional unipotent subgroup corresponding to $\alpha \in \Delta \cap \mathbb{Z} \Pi_{2}$ is a subgroup of $\left[M_{2}(F), M_{2}(F)\right], H_{2}$ is generated by [$\left.M_{2}(F), M_{2}(F)\right]$ and $Z_{M_{1}}^{\circ}$. Therefore, H_{2} acts on π_{1} by a scalar.

Proposition 3.21. We have $\left.\mathcal{S}(\pi)\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi_{1}\right|_{H_{2}}\right) \otimes \mathcal{S}\left(\left.\pi_{2}\right|_{H_{2}}\right)$.
Proof. We have $\left.\left.\mathcal{S}(\pi)\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{M_{2}}\right)\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]}$ by the above lemma. By Proposition 3.14, we have $\left.\mathcal{S}\left(\left.\pi\right|_{M_{2}}\right)\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{H_{2}}\right)$. Since H_{2} acts on π_{1} by a scalar, $\mathcal{S}\left(\left.\pi\right|_{H_{2}}\right)=\mathcal{S}\left(\left.\pi_{1}\right|_{H_{2}}\right) \otimes \mathcal{S}\left(\left.\pi_{2}\right|_{H_{2}}\right)$ by Lemma 3.9 and Proposition 3.10.

We give some corollaries of Proposition 3.21 which we will use. We make the following additional assumptions.

- The derived group $\left[M_{1}(F), M_{1}(F)\right]$ acts on π_{2} trivially and the center of M_{2} acts on π_{2} by a character.
- We have $\# \mathcal{S}\left(\left.\pi_{1}\right|_{M_{1}}\right)=\# \mathcal{S}\left(\left.\pi_{2}\right|_{M_{2}}\right)=1$.

Since $\# \mathcal{S}\left(\left.\pi_{1}\right|_{M_{1}}\right)=\# \mathcal{S}\left(\left.\pi_{2}\right|_{M_{2}}\right)=1$, there exists a unique parabolic subgroup $P=M N$ such that $\mathcal{S}\left(\left.\pi_{1}\right|_{M_{1}}\right)=\left\{\chi_{1}=\left(M \cap M_{1}, \chi_{M \cap M_{1}}\right)\right\}$ and $\mathcal{S}\left(\left.\pi_{2}\right|_{M_{2}}\right)=\left\{\chi_{2}=\left(M \cap M_{2}, \chi_{M \cap M_{2}}\right)\right\}$ for some $\chi_{M \cap M_{1}}$ and $\chi_{M \cap M_{2}}$.

Corollary 3.22. Any $\chi \in \mathcal{S}(\pi)$ is parameterized by $\left(M, \chi_{M}\right)$ for some χ_{M}.
Proof. Take M^{\prime} and $\chi_{M^{\prime}}$ such that χ is parameterized by ($M^{\prime}, \chi_{M^{\prime}}$). For each $\alpha \in \Pi$, take $\lambda_{\alpha} \in X_{*,+}$ such that $\left\langle\Pi \backslash\{\alpha\}, \lambda_{\alpha}\right\rangle=0$ and $\left\langle\alpha, \lambda_{\alpha}\right\rangle \neq 0$. Then M^{\prime} corresponds to $\left\{\alpha \in \Pi \mid \chi\left(\tau_{\lambda_{\alpha}}\right)=\right.$ 0\} [Her11a, Proof of Proposition 2.12]. If $\alpha \in \Pi_{2}$, then $\lambda_{\alpha} \in X_{H_{2}, *,+}$. Therefore, there exist $\chi_{1}^{\prime} \in \mathcal{S}\left(\left.\pi_{1}\right|_{H_{2}}\right)$ and $\chi_{2}^{\prime} \in \mathcal{S}\left(\left.\pi_{2}\right|_{H_{2}}\right)$ such that $\chi\left(\tau_{\lambda_{\alpha}}\right)=\chi_{1}^{\prime}\left(\tau_{\lambda_{\alpha}}\right) \chi_{2}^{\prime}\left(\tau_{\lambda_{\alpha}}\right)$ by Proposition 3.21. Since $\left.\pi_{1}\right|_{H_{2}}$ is a direct sum of characters, $\chi_{1}^{\prime}\left(\tau_{\lambda_{\alpha}}\right) \neq 0$ by Proposition 3.10. Hence $\chi\left(\tau_{\lambda_{\alpha}}\right)=0$ if and only if $\chi_{2}^{\prime}\left(\tau_{\lambda_{\alpha}}\right)=0$. By Proposition 3.14, $\mathcal{S}\left(\left.\pi_{2}\right|_{H_{2}}\right)=\left.\mathcal{S}\left(\left.\pi_{2}\right|_{M_{2}}\right)\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]}=\left.\left\{\chi_{2}\right\}\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]}$. Therefore, we have $\chi_{2}^{\prime}\left(\tau_{\lambda_{\alpha}}\right)=\chi_{2}\left(\tau_{\lambda_{\alpha}}\right)$. It is zero if and only if $\alpha \in \Pi_{M} \cap \Pi_{2}$. By the same argument, for $\alpha \in \Pi_{1}$, $\chi\left(\tau_{\lambda_{\alpha}}\right)=0$ if and only if $\alpha \in \Pi_{M} \cap \Pi_{1}$. Hence $M^{\prime}=M$.

Moreover, we assume the following conditions.

- The representation π_{1} is an admissible G-representation.
- The representation π_{2} is an admissible $\left[M_{2}(F), M_{2}(F)\right]$-representation.

Lemma 3.23. Under the above conditions, π is admissible as a representation of G.
Proof. Let K^{\prime} be a compact open subgroup. Then we have $\pi^{K^{\prime}}=\left(\pi_{1} \otimes \pi_{2}^{\left[M_{2}(F), M_{2}(F)\right] \cap K^{\prime}}\right)^{K^{\prime}}$. Since $\pi_{2}^{\left[M_{2}(F), M_{2}(F)\right] \cap K^{\prime}}$ is finite dimensional, there exists a compact open subgroup $K^{\prime \prime} \subset K^{\prime}$ which acts on $\pi_{2}^{\left[M_{2}(F), M_{2}(F)\right] \cap K^{\prime}}$ trivially. Hence $\pi^{K^{\prime}} \subset\left(\pi_{1} \otimes \pi_{2}^{\left[M_{2}(F), M_{2}(F)\right] \cap K^{\prime}}\right)^{K^{\prime \prime}}=\pi_{1}^{K^{\prime \prime}} \otimes$ $\pi_{2}^{\left[M_{2}(F), M_{2}(F)\right] \cap K^{\prime}}$. The right-hand side is finite dimensional.
Corollary 3.24. If $M=M_{1}$, then $\mathcal{S}(\pi)=\mathcal{S}\left(\pi_{1}\right) \otimes \mathcal{S}\left(\pi_{2}\right)=\left\{\left(M_{1}, \chi_{M \cap M_{1}}\left(\left.\chi_{M \cap M_{2}}\right|_{X_{M_{1}, *}, 0}\right)\right)\right\}$.
Proof. Take $\chi \in \mathcal{S}(\pi)$ and let $\chi_{M}: X_{M, *, 0} \rightarrow \bar{\kappa}^{\times}$such that χ is parameterized by $\left(M, \chi_{M}\right)$. The character χ_{M}^{-1} is given by a restriction of χ on $X_{*,+} \cap \Pi_{M}^{\perp}=X_{*,+} \cap \Pi_{1}^{\perp}=X_{H_{2}, *,+}$. By Proposition 3.21, we have $\left.\chi\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]}=\left.\left(\chi_{1} \otimes \chi_{2}\right)\right|_{\bar{\kappa}\left[X_{H_{2}, *,+}\right]}$. Hence, by Proposition 3.8, we have $\left.\chi_{M}\right|_{X_{H_{2}, *}}=\left(\left.\chi_{M \cap M_{1}}\right|_{X_{M, *, 0} \cap X_{H_{2}, *}}\right)\left(\left.\chi_{M \cap M_{2}}\right|_{X_{M, *, 0} \cap X_{H_{2}, *}}\right)$. Since $M=M_{1}, X_{H_{2}, *}=X_{M, *, 0}$.

Therefore, $\chi_{M}=\chi_{M \cap M_{1}}\left(\left.\chi_{M \cap M_{2}}\right|_{X_{M_{1}, *}, 0}\right)$. Since π is admissible, $\mathcal{S}(\pi) \neq \emptyset$. So we get the corollary.

$3.4 z$-extension and Satake parameters

Let $\widetilde{G} \rightarrow G$ be a z-extension and take a hyperspecial maximal compact subgroup \widetilde{K} as in Lemma 2.1. A representation π of G can be regarded as a representation of \widetilde{G}. Let $\widetilde{\pi}$ be this representation. Denote the inverse image of T by \widetilde{T} and let $X_{\widetilde{G}, *}$ be the group of cocharacters of \widetilde{T}. We have a surjective map $X_{\widetilde{G}, *} \rightarrow X_{*}$ which induces $X_{\widetilde{G}, *,+} \rightarrow X_{*,+}$.

Lemma 3.25. Let $r: \bar{\kappa}\left[X_{\widetilde{G}, *,+}\right] \rightarrow \bar{\kappa}\left[X_{*,+}\right]$ be the induced homomorphism.
(i) We have $\mathcal{S}(\widetilde{\pi})=\{\chi \circ r \mid \chi \in \mathcal{S}(\pi)\}$.
(ii) If $\chi: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ is parameterized by $\left(M, \chi_{M}\right)$, then $\chi \circ r$ is parameterized by $\left(\widetilde{M}, \chi_{\widetilde{M}}\right)$; here \widetilde{M} is the inverse image of M in \widetilde{G} and $\chi_{\widetilde{M}}$ is the composition $X_{\widetilde{M}, *, 0} \rightarrow X_{M, *, 0} \xrightarrow{\chi} \bar{\kappa}^{\times}$.

Proof. Let Z be the kernel of $\widetilde{G} \rightarrow G$. If an irreducible \widetilde{K}-representation V^{\prime} is a subrepresentation of $\widetilde{\pi}$, then $Z \cap \widetilde{K}$ acts on V^{\prime} trivially. Therefore, V^{\prime} comes from an irreducible representation of K. Let \widetilde{V} be an irreducible representation of \widetilde{K} coming from an irreducible representation V of K. To prove (i), it is sufficient to prove that $\operatorname{Hom}_{\widetilde{K}}(\widetilde{V}, \widetilde{\pi}) \simeq \operatorname{Hom}_{K}(V, \pi)$ as $\bar{\kappa}\left[X_{\widetilde{G}, *,+}\right]$-modules. (Here, $\bar{\kappa}\left[X_{\widetilde{G}, *,+}\right]$ acts on $\operatorname{Hom}_{K}(V, \pi)$ through r. .)

As a vector space, $\operatorname{Hom}_{\widetilde{K}}(\widetilde{V}, \widetilde{\pi}) \simeq \operatorname{Hom}_{K}(V, \pi)$. So it is sufficient to prove that this isomorphism is $\bar{\kappa}\left[X_{\widetilde{G}, *,+}\right]$-equivariant. Define $r_{G}: \mathcal{H}_{\widetilde{G}}(\widetilde{V}) \rightarrow \mathcal{H}_{G}(V)$ as in the proof of Lemma 2.4. Then it is easy to see that the isomorphism $\operatorname{Hom}_{\widetilde{K}}(\widetilde{V}, \widetilde{\pi}) \simeq \operatorname{Hom}_{K}(V, \pi)$ is $\mathcal{H}_{\widetilde{G}}(\widetilde{V})$-equivariant; here $\mathcal{H}_{\widetilde{G}}(\widetilde{V})$ acts on $\operatorname{Hom}_{K}(V, \pi)$ through r_{G}. Hence by the commutative diagram in Lemma 2.4, it is sufficient to prove that $r=\left.r_{T}\right|_{\bar{\kappa}\left[X_{\widetilde{G}, *,+}\right]}$, where $r_{T}: \bar{\kappa}\left[X_{\widetilde{G}, *}\right] \simeq \mathcal{H}_{\widetilde{T}}\left(\widetilde{V}^{\bar{U}(\kappa)}\right) \rightarrow \mathcal{H}_{T}\left(V^{\bar{U}(\kappa)}\right) \simeq$ $\bar{\kappa}\left[X_{*}\right]$ is the homomorphism defined in the proof of Lemma 2.4. This follows from the definition of r and r_{T}.

Take $\left(\widetilde{M}_{1}, \chi_{\widetilde{M}_{1}}^{\prime}\right)$ which corresponds to $\chi \circ r$. For $\alpha \in \Pi$, take $\widetilde{\lambda}_{\alpha} \in X_{\widetilde{G}, *,+}$ such that $\left\langle\widetilde{\lambda}_{\alpha}, \Pi \backslash\{\alpha\}\right\rangle=0$ and $\left\langle\widetilde{\lambda}_{\alpha}, \alpha\right\rangle \neq 0$. Put $\lambda_{\alpha}=r\left(\widetilde{\lambda}_{\alpha}\right)$. Then $\Pi_{\widetilde{M}}=\Pi_{M}=\left\{\alpha \in \Pi \mid \chi\left(\tau_{\lambda_{\alpha}}\right)=0\right\}=$ $\left\{\alpha \in \Pi \mid \chi \circ r\left(\tau_{\widetilde{\lambda}_{\alpha}}\right)=0\right\}=\Pi_{\widetilde{M}_{1}}$. Hence $\widetilde{M}_{1}=\widetilde{M}$. The homomorphism $\chi_{\widetilde{M}_{1}}^{\prime}$ is characterized by $\left.\chi_{\widetilde{M}}^{\prime}\right|_{X_{\widetilde{M}, *, 0}} \cap X_{\widetilde{G}, *,+}=\left(\left.\chi \circ r\right|_{X_{\widetilde{M}, *, 0} \cap X_{\widetilde{G}, *,}}\right)^{-1}$. The homomorphism $\chi_{\widetilde{M}}$ satisfies the same characterization. Hence $\chi_{\widetilde{M}_{1}}^{\prime}=\chi_{\widetilde{M}}$.

4. A theorem of changing the weight

In this section, we assume that the derived group of G is simply connected. For $\alpha \in \Pi$, we denote a fundamental weight corresponding to α by ω_{α}.

4.1 Changing the weight

We prove the following theorem, which is a generalization of Herzig's theorem [Her11a, Corollary 6.11].
Theorem 4.1. Let V_{1}, V_{2} be irreducible representations of K with lowest weight ν_{1}, ν_{2}, respectively. Assume that $\left\langle\nu_{1}, \check{\alpha}\right\rangle=0$ and $\nu_{2}=\nu_{1}-(q-1) \omega_{\alpha}$ for some $\alpha \in \Pi$. Let $\chi: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ be an algebra homomorphism parameterized by $\left(M, \chi_{M}\right)$. Assume that $\alpha \notin \Pi_{M}$. If $\check{\alpha} \notin X_{M, *, 0}$
or $\chi_{M}(\check{\alpha}) \neq 1$, then

$$
\mathrm{c}-\operatorname{Ind}_{K}^{G} V_{1} \otimes_{\mathcal{H}_{G}\left(V_{1}\right)} \chi \simeq \mathrm{c}-\operatorname{Ind}_{K}^{G} V_{2} \otimes_{\mathcal{H}_{G}\left(V_{2}\right)} \chi .
$$

Let $V_{1}, V_{2}, \nu_{1}, \nu_{2}$ be as above. Fix $\lambda \in X_{*,+}$ such that $\langle\lambda, \Pi \backslash\{\alpha\}\rangle=0$ and $\langle\lambda, \alpha\rangle \neq 0$. Then there exist non-zero $\varphi_{21} \in \mathcal{H}_{G}\left(V_{1}, V_{2}\right)$ and $\varphi_{12} \in \mathcal{H}_{G}\left(V_{2}, V_{1}\right)$ whose support is $K \lambda(\varpi) K$. By the proof of [Her11a, Corollary 6.11], Theorem 4.1 follows from the following lemma.
Lemma 4.2. We have $S_{G}\left(\varphi_{12} * \varphi_{21}\right) \in \bar{\kappa}^{\times}\left(\tau_{2 \lambda}-\tau_{2 \lambda-\check{\alpha}}\right)$.
This lemma follows from the following two lemmas by [Her11a, Proposition 5.1]. These also answer Herzig's question [Her11a, Question 6.9].
Lemma 4.3. The composition $\varphi_{12} * \varphi_{21}$ is non-zero and its support is $K \lambda(\varpi)^{2} K$.
Lemma 4.4. For $\mu \in X_{*,+}$, if $\mu \leqslant 2 \lambda$ then $\mu=2 \lambda$ or $\mu \leqslant 2 \lambda-\check{\alpha}$.
First, we prove Lemma 4.3. For each $w \in W \simeq N_{K}(T(\mathcal{O})) / T(\mathcal{O})$, we fix a representative of w and denote it by the same letter w.

Lemma 4.5. Let $P=M N$ be a standard parabolic subgroup. Then we have

$$
G(\mathcal{O})=\coprod_{w \in W / W_{M}} w\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) P(\mathcal{O}) .
$$

Proof. Since $\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right)\left(w^{-1} \bar{I} w \cap P(\mathcal{O})\right)=w^{-1} \bar{I} w$, it is sufficient to prove $G(\mathcal{O})=$ $\coprod_{w \in W / W_{M}} \bar{I} w P(\mathcal{O})$. By the Bruhat decomposition $G(\kappa)=\coprod_{w \in W / W_{M}} \bar{B}(\kappa) w P(\kappa)$, for $g \in$ $G(\mathcal{O})$, there exists $w \in W$ and $p \in P(\mathcal{O})$ such that $(\operatorname{red}(w p))^{-1} \operatorname{red}(g) \in \bar{B}$. Hence $(w p)^{-1} g \in \bar{I}$. Therefore, $g \in \bar{I} w p$. Hence $G(\mathcal{O})=\bigcup_{w \in W} \bar{I} w P(\mathcal{O})$. Assume that $\bar{I} w_{1} P(\mathcal{O}) \cap \bar{I} w_{2} P(\mathcal{O}) \neq \emptyset$ for $w_{1}, w_{2} \in W$. Applying red, we have $\bar{B}(\kappa) w_{1} P(\kappa) \cap \bar{B}(\kappa) w_{2} P(\kappa) \neq \emptyset$. Therefore, by the Bruhat decomposition of $G(\kappa)$, we have $w_{1} \in w_{2} W_{M}$.

To prove Lemma 4.3, we use the following lemma. We use the argument in the proof of [Her11a, Proposition 6.7].
Lemma 4.6. Let V, V^{\prime} be irreducible representations of K with lowest weight ν, ν^{\prime}, and lowest weight vector $v \in V, v^{\prime} \in V^{\prime}$, respectively. Assume that for $\mu \in X_{*,+}, V^{N_{\mu}(\kappa)} \simeq\left(V^{\prime}\right)^{\overline{N_{\mu}}(\kappa)}$ as $M_{\mu}(\kappa)$-representations. Let $\varphi \in \mathcal{H}_{G}\left(V, V^{\prime}\right)$ be such that $\operatorname{supp} \varphi=K \mu(\varpi) K$ and $\varphi(\mu(\varpi)) v=v^{\prime}$. Put $\bar{I}=\operatorname{red}^{-1}(\bar{B}(\kappa))$ and $t=\mu(\varpi)$. Then we have

$$
\varphi *[1, v]=\sum_{w \in W_{-\nu} /\left(W_{-\nu} \cap W_{\mu}\right)} \sum_{a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) / t^{-1} \bar{N}(\mathcal{O}) t}\left[w a t^{-1}, v^{\prime}\right] .
$$

Proof. We have

$$
(\varphi *[1, v])(x)=\sum_{y \in G / K} \varphi(y)[1, v](x y)=\sum_{y \in K t K / K} \varphi(y)[1, v](x y) .
$$

If this is not zero, then $x y \in K$ for some $y \in K t K$. Hence $x \in K t^{-1} K$. Namely, $\operatorname{supp}(\varphi *[1, v]) \subset$ $K t^{-1} K$. The value at $x=k t^{-1}$ for $k \in K$ is

$$
(\varphi *[1, v])\left(k t^{-1}\right)=\sum_{y \in K t K / K} \varphi(y)[1, v]\left(k t^{-1} y\right)=\varphi(t)[1, v](k)=\varphi(t) k^{-1} v
$$

Therefore, we have

$$
\varphi *[1, v]=\sum_{k \in K /\left(K \cap t^{-1} K t\right)}\left[k t^{-1}, \varphi(t) k^{-1} v\right] .
$$

Put $P=P_{\mu}$. We have $K \cap t^{-1} K t \supset P(\mathcal{O})$ and $\operatorname{red}\left(K \cap t^{-1} K t\right)=P(\kappa)$. Therefore, we have a surjective map $G(\mathcal{O}) / P(\mathcal{O}) \rightarrow K /\left(K \cap t^{-1} K t\right)$. For each $w \in W \simeq N_{K}(T(\mathcal{O})) / T(\mathcal{O})$, we fix a representative of w and denote it by the same letter w. Then, by the above lemma, we have

$$
G(\mathcal{O})=\coprod_{w \in W / W_{\mu}} w\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) P(\mathcal{O})
$$

Hence $\varphi *[1, v]$ is a sum of a form $\left[w a t^{-1}, \varphi(t) a^{-1} w^{-1} v\right]$ for $a \in w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})$ and $w \in$ W / W_{μ}. We prove that $\varphi(t) a^{-1} w^{-1} v \neq 0$ implies $w \in W_{-\nu} W_{\mu}$. Since $\operatorname{red}(a) \in w^{-1} \bar{B}(\kappa) w \cap$ $\bar{N}(\kappa) \subset w^{-1} \bar{U}(\kappa) w$, we have $a^{-1} w^{-1} v=w^{-1} v$. The homomorphism $\varphi(t)$ is given by $V \rightarrow$ $(V)_{N_{\mu}(\kappa)} \simeq\left(V^{\prime}\right)^{\overline{N_{\mu}}(\kappa)} \hookrightarrow V^{\prime}$. Hence if $\varphi(t) w^{-1} v \neq 0$, then $w^{-1} v \in V^{\overline{N_{\mu}}(\kappa)}$. Since $\{g \in G(\kappa) \mid$ $g v \in \bar{\kappa} v\}=\overline{P_{-\nu}}(\kappa)$, we have $\overline{P_{-\nu}}(\kappa) \supset w \overline{N_{\mu}}(\kappa) w^{-1}$. Then $\Delta_{-\nu}^{-} \cup \Delta^{+} \supset w\left(\Delta^{+} \backslash \Delta_{\mu}^{+}\right)$. Hence, $\left(\Delta^{-} \backslash \Delta_{-\nu}^{-}\right) \cap w\left(\Delta^{+} \backslash \Delta_{\mu}^{+}\right)=\emptyset$. Take $w^{\prime} \in W_{-\nu} w W_{\mu}$ such that w^{\prime} is shortest in $W_{-\nu} w W_{\mu}$ [Bou02, ch. IV, Exercises, § 1 (3)]. Then $\left(\Delta^{-} \backslash \Delta_{-\nu}^{-}\right) \cap w^{\prime}\left(\Delta^{+} \backslash \Delta_{\mu}^{+}\right)=\emptyset$. By the condition of $w^{\prime}, \Delta^{-} \cap$ $w^{\prime}\left(\Delta^{+} \backslash \Delta_{\mu}^{+}\right)=\Delta^{-} \cap w^{\prime} \Delta^{+}$and $\left(\Delta^{-} \backslash \Delta_{-\nu}^{-}\right) \cap w^{\prime} \Delta^{+}=\Delta^{-} \cap w^{\prime} \Delta^{+}$. Therefore, we have $\Delta^{-} \cap$ $w^{\prime} \Delta^{+}=\emptyset$. Hence $w^{\prime}=1$. We have $w \in W_{-\nu} W_{\mu} / W_{\mu}=W_{-\nu} /\left(W_{-\nu} \cap W_{\mu}\right)$. Hence we may assume $w \in W_{-\nu}$. Therefore, $\varphi(t) w^{-1} v=\varphi(t) v=v^{\prime}$. Hence,

$$
\varphi *[1, v]=\sum_{w \in W_{-\nu} /\left(W_{-\nu} \cap W_{\mu}\right)} \sum_{a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) /\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O}) \cap t^{-1} K t\right)}\left[w a t^{-1}, v^{\prime}\right] .
$$

Since $\langle\alpha, \mu\rangle<0$ for all weights α of $\bar{N}, t=\mu(\pi)$ satisfies $t \bar{N}(\mathcal{O}) t^{-1} \supset \bar{N}(\mathcal{O})$. Hence $t \bar{N}(\mathcal{O}) t^{-1} \cap$ $K=\bar{N}(\mathcal{O})$. Equivalently, we have $\bar{N}(\mathcal{O}) \cap t^{-1} K t=t^{-1} \bar{N}(\mathcal{O}) t$. We also have that $\operatorname{red}\left(t^{-1} \bar{N}(\mathcal{O}) t\right)$ is trivial. Hence $t^{-1} \bar{N}(\mathcal{O}) t \subset w^{-1} \bar{I} w$. Therefore, $w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O}) \cap t^{-1} K t=t^{-1} \bar{N}(\mathcal{O}) t$. Hence we have

$$
\varphi *[1, v]=\sum_{w \in W_{-\nu} /\left(W_{-\nu} \cap W_{\mu}\right)} \sum_{a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) / t^{-1} \bar{N}(\mathcal{O}) t}\left[w a t^{-1}, v^{\prime}\right]
$$

Proof of Lemma 4.3. Put $t=\lambda(\varpi)$. Let $v_{1} \in V_{1}, v_{2} \in V_{2}$ be lowest weight vectors. We may assume $\varphi_{21}(t) v_{1}=v_{2}$ and $\varphi_{12}(t) v_{2}=v_{1}$. By Lemma 4.6, we have

$$
\varphi_{21} *\left[1, v_{1}\right]=\sum_{w \in W_{-\nu_{1}} /\left(W_{\left.-\nu_{1} \cap W_{\lambda}\right)}\right.} \sum_{a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) / t^{-1} \bar{N}(\mathcal{O}) t}\left[w a t^{-1}, v_{2}\right] .
$$

By the assumption, $W_{-\nu_{2}} \cap W_{\lambda}=W_{-\nu_{2}}$. Hence we have

$$
\varphi_{12} *\left[1, v_{2}\right]=\sum_{b \in \bar{N}(\mathcal{O}) / t^{-1} \bar{N}(\mathcal{O}) t}\left[b t^{-1}, v_{1}\right]
$$

by Lemma 4.6. Therefore, we have

$$
\begin{aligned}
\varphi_{12} * \varphi_{21} *\left[1, v_{1}\right] & =\varphi_{12} *\left(\sum_{w \in W_{-\nu_{1}} /\left(W_{\lambda} \cap W_{-\nu_{1}}\right)} \sum_{a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) / t^{-1} \bar{N}(\mathcal{O}) t}\left[w a t^{-1}, v_{2}\right]\right) \\
& =\sum_{w \in W_{-\nu_{1}} /\left(W_{\lambda} \cap W_{-\nu_{1}}\right)} w a t^{-1} \varphi_{12} *\left[1, v_{2}\right] \\
& =\sum_{w \in W_{-\nu_{1}} /\left(W_{\lambda} \cap W_{-\nu_{1}}\right)} \sum_{\left.a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) / t^{-1} \bar{N}(\mathcal{O}) t\right) / t^{-1} \bar{N}(\mathcal{O}) t} \sum_{b \in \bar{N}(\mathcal{O}) / t^{-1} \bar{N}(\mathcal{O}) t}\left[w a t^{-1} b t^{-1}, v_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{w \in W_{-\nu_{1}} /\left(W_{\lambda} \cap W_{-\nu_{1}}\right)} \sum_{a \in\left(w^{-1} \bar{I} w \cap \bar{N}(\mathcal{O})\right) / t^{-1} \bar{N}(\mathcal{O}) t} \sum_{w \in t^{-1} \bar{N}(\mathcal{O}) t / t^{-2} \bar{N}(\mathcal{O}) t^{2}}\left[w a b t^{-2}, v_{1}\right] \\
& =\sum_{w \in W_{-\nu_{1}} /\left(W_{\lambda} \cap W_{-\nu_{1}}\right)}\left[w c t^{-2}, v_{1}\right] .
\end{aligned}
$$

Let $\varphi \in \mathcal{H}_{G}\left(V_{1}\right)$, whose support is $K \lambda(\varpi)^{2} K$, and $\varphi\left(\lambda(\varpi)^{2}\right) v_{1}=v_{1}$. By Lemma 4.6, the righthand side of the above equation is $\varphi *\left[1, v_{1}\right]$. (Notice that $W_{\lambda}=W_{2 \lambda}$.) Since $\left[1, v_{1}\right]$ generates $\mathrm{c}-\operatorname{Ind}_{K}^{G}\left(V_{1}\right)$, we obtain the lemma.

Finally, we prove Lemma 4.4.
Proof of Lemma 4.4. Assume that $\mu \leqslant 2 \lambda$ and $\mu \nless 2 \lambda-\check{\alpha}$. Since $\mu \leqslant 2 \lambda$, there exists $n_{\beta} \in$ $\mathbb{Z}_{\geqslant 0}$ such that $2 \lambda-\mu=\sum_{\beta \in \Pi} n_{\beta} \check{\beta}$. Then for $\gamma \in \Pi \backslash\{\alpha\}$, we have $\sum_{\beta} n_{\beta}\langle\gamma, \check{\beta}\rangle=\langle\gamma, 2 \lambda-\mu\rangle=$ $-\langle\gamma, \mu\rangle \leqslant 0$. By the assumption, $n_{\alpha}=0$. Then $\sum_{\beta \neq \alpha} n_{\beta}\langle\gamma, \check{\beta}\rangle \leqslant 0$. Since $\left(d_{\gamma}\langle\gamma, \check{\beta}\rangle\right)_{\beta, \gamma \in \Pi \backslash\{\alpha\}}$ is symmetric and positive definite for some $d_{\gamma}>0$, we have $n_{\beta}=0$ for all $\beta \in \Pi \backslash\{\alpha\}$. Hence $\mu=2 \lambda$.

4.2 Comparison of composition factors

We prove the following proposition in this section.
Proposition 4.7. Let $\chi: \bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ be an algebra homomorphism and V an irreducible representation of K. Assume that χ can be extended to $\bar{\kappa}\left[X_{*}\right] \rightarrow \bar{\kappa}$. Then $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ has a finite length and its composition factors depend only on χ and the $T(\kappa)$-representation $V^{\bar{U}(\kappa)}$.

When $G=\mathrm{GL}_{2}$, this proposition is proved by Barthel-Livné [BL95, Theorem 20].
Before proving this proposition, we give an application. For a parabolic subgroup $P \subset G$, let Sp_{P} be the special representation [Gro]. If we want to emphasize G, we write $\mathrm{Sp}_{P, G}$. We have the following corollary.
Corollary 4.8. Let V be an irreducible K-representation such that $V^{\bar{U}(\kappa)}$ is the trivial representation and $\chi: \bar{\kappa}\left[X_{*}\right] \rightarrow \bar{\kappa}$ an algebra homomorphism parameterized by $\left(T, \mathbf{1}_{X_{T, *, 0}}=\mathbf{1}_{X_{*}}\right)$. Then the composition factors of $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ are $\left\{\mathrm{Sp}_{P} \mid P \subset G\right\}$.
Proof. Let V_{1} be the irreducible K-representation with lowest weight $-\sum_{\alpha \in \Pi}(q-1) \omega_{\alpha}$. Then we have $V^{\bar{U}(\kappa)} \simeq V_{1}^{\bar{U}(\kappa)} \simeq \mathbf{1}_{T(\kappa)}$. By Proposition 4.7, we have that $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ and $\mathrm{c}-\operatorname{Ind}_{K}^{G}\left(V_{1}\right) \otimes_{\mathcal{H}_{G}\left(V_{1}\right)} \chi$ have the same composition factors. By Herzig's theorem [Her11a, Theorem 3.1], we have

Hence the corollary follows from [Her11a, Corollary 7.3].
This corollary implies the following proposition. This proposition is proved by Herzig when $G=\mathrm{GL}_{n}$ [Her11a, Proposition 9.1] in a different way. Let $\operatorname{Ord}_{\bar{P}}(\pi)$ be the ordinary part of π defined by Emerton [Eme10].

Proposition 4.9. Let π be an admissible representation of G which contains the trivial representation of K. Assume that there exists $\chi \in \mathcal{S}\left(\pi, \mathbf{1}_{K}\right)$ which is parameterized by $\left(T, \mathbf{1}_{X_{T, *, 0}}=\mathbf{1}_{X_{*}}\right)$. Then π contains the trivial representation, or $\operatorname{Ord}_{\bar{P}}(\pi) \neq 0$ for some proper parabolic subgroup P.

Proof. From the assumption, we have a non-zero homomorphism c- $\operatorname{Ind}_{K}^{G}\left(\mathbf{1}_{K}\right) \otimes_{\mathcal{H}_{G}\left(\mathbf{1}_{K}\right)} \chi \rightarrow \pi$. Hence π contains an irreducible subquotient of $c-\operatorname{Ind}_{K}^{G}\left(\mathbf{1}_{K}\right) \otimes_{\mathcal{H}_{G}\left(\mathbf{1}_{K}\right)} \chi$ as a subrepresentation. By Corollary 4.8, such subquotient is Sp_{P} for a parabolic subgroup P. If $P=G$, then $\mathbf{1}_{G}=\operatorname{Sp}_{G} \subset \pi$. If $P \neq G$, then $0 \neq \operatorname{Ord}_{\bar{P}}\left(\operatorname{Sp}_{P}\right) \hookrightarrow \operatorname{Ord}_{\bar{P}}(\pi)$.

Remark 4.10. If π is irreducible, then $\pi \simeq \operatorname{Sp}_{P}$. Since π contains the trivial K-representation, π is trivial by [Her11a, Proposition 7.4].

In the rest of this section, we prove Proposition 4.7. We use the following theorem due to Herzig [Her11a, Theorem 3.1].

Theorem 4.11. Let V be an irreducible representation of K with lowest weight $\nu, P=M N$ a standard parabolic subgroup. Assume that $\operatorname{Stab}_{W}(\nu) \subset W_{M}$. Then we have
as G-representations and $\mathcal{H}_{M}\left(V^{\bar{N}(\kappa)}\right)$-modules.
Remark 4.12. In fact, the theorem of Herzig is weaker than this theorem. However, his proof can be applicable for this theorem. See a paper of Henniart and Vigneras [HV12], in which this theorem is proved for a more general G.

For a parabolic subgroup $P=M N$, let V_{P} be the irreducible representation of K with lowest weight $-\sum_{\alpha \in \Pi \backslash \Pi_{M}}(q-1) \omega_{\alpha}$. Put $\pi_{P}=\operatorname{Ind}_{K}^{G}\left(V_{P}\right) \otimes_{\mathcal{H}_{G}\left(V_{P}\right)} \bar{\kappa}\left[X_{*}\right]$. Then we have $\pi_{P} \simeq$
 representation.) In particular, we have $\pi_{B} \simeq \operatorname{Ind}_{B}^{G}\left(\bar{\kappa}\left[X_{*}\right]\right)$. Here, T acts on $\bar{\kappa}\left[X_{*}\right]$ by $T \rightarrow$ $T / T(\mathcal{O}) \simeq X_{*} \rightarrow \operatorname{End}\left(\bar{\kappa}\left[X_{*}\right]\right)$. (The last map is given by the multiplication.)

Lemma 4.13. For parabolic subgroups $P \subset P^{\prime}$, there exist $\Phi_{P, P^{\prime}}: \pi_{P^{\prime}} \rightarrow \pi_{P}$ and $\Phi_{P^{\prime}, P}: \pi_{P} \rightarrow$ $\pi_{P^{\prime}}$ which have the following properties:
(i) $\Phi_{P, P^{\prime}}$ and $\Phi_{P^{\prime}, P}$ are G - and $\bar{\kappa}\left[X_{*}\right]$-equivariant;
(ii) $\Phi_{P, P}=\mathrm{id}$;
(iii) for $P_{1} \subset P_{2} \subset P_{3}, \Phi_{P_{1}, P_{2}} \circ \Phi_{P_{2}, P_{3}}=\Phi_{P_{1}, P_{3}}$ and $\Phi_{P_{3}, P_{2}} \circ \Phi_{P_{2}, P_{1}}=\Phi_{P_{3}, P_{1}}$;
(iv) for $P \subset P^{\prime}$, compositions $\Phi_{P, P^{\prime}} \circ \Phi_{P^{\prime}, P}$ and $\Phi_{P^{\prime}, P} \circ \Phi_{P, P^{\prime}}$ are given by $\prod_{\alpha \in \Pi_{P^{\prime}} \backslash \Pi_{P}}$ $\left(\tau_{\check{\alpha}}-1\right)$.

Proof. For each $\alpha \in \Pi$, fix $\lambda_{\alpha} \in X_{*,+}$ such that $\left\langle\lambda_{\alpha}, \Pi \backslash\{\alpha\}\right\rangle=0$ and $\left\langle\lambda_{\alpha}, \alpha\right\rangle \neq 0$. We also fix a lowest weight vector v_{P} of V_{P}.

Let $P_{1} \subset P_{2}$ be parabolic subgroups such that $\# \Pi_{P_{2}}=\# \Pi_{P_{1}}+1$ and $\Pi_{P_{2}}=\Pi_{P_{1}} \cup\{\alpha\}$. Take $\varphi_{P_{2}, P_{1}} \in \mathcal{H}_{G}\left(V_{P_{1}}, V_{P_{2}}\right)$ and $\varphi_{P_{1}, P_{2}} \in \mathcal{H}_{G}\left(V_{P_{2}}, V_{P_{1}}\right)$ such that their support is $K \lambda_{\alpha}(\varpi) K$ and their values at $\lambda_{\alpha}(\varpi)$ send the lowest weight vector to the lowest weight vector (as in \S 4.1). The elements $\varphi_{P_{2}, P_{1}}$ and $\varphi_{P_{1}, P_{2}}$ give homomorphisms $\pi_{P_{1}} \rightarrow \pi_{P_{2}}$ and $\pi_{P_{2}} \rightarrow \pi_{P_{1}}$. Let $\Phi_{P_{1}, P_{2}}$ (respectively $\Phi_{P_{2}, P_{1}}$) be a homomorphism given by $\varphi_{P_{1}, P_{2}}$ (respectively $-\tau_{\tilde{\alpha}-2 \lambda_{\alpha}} \varphi_{P_{2}, P_{1}}$). By Lemma 4.2, these homomorphisms satisfy condition (iv). For general $P^{\prime} \subset P$, take a chain of parabolic subgroups $P^{\prime}=P_{1} \subset \cdots \subset P_{r}=P$ such that $\# \Pi_{P_{i+1}}=\# \Pi_{P_{i}}+1$. Define $\Phi_{P^{\prime}, P}=$ $\Phi_{P_{1}, P_{2}} \circ \cdots \circ \Phi_{P_{r-1}, P_{r}}$ and $\Phi_{P, P^{\prime}}=\Phi_{P_{r}, P_{r-1}} \circ \cdots \circ \Phi_{P_{2}, P_{1}}$. Then by [Her11a, Proposition 6.3], condition (iv) is satisfied.

It is sufficient to prove that $\Phi_{P^{\prime}, P}$ and $\Phi_{P, P^{\prime}}$ are independent of the choice of a chain. To prove this, we may assume that the length of the chain is 2 . So let $P, P^{\prime}, P_{1}, P_{2}$ be parabolic
subgroups and $\alpha, \beta \in \Pi$ such that $\alpha \neq \beta, \alpha, \beta \notin \Pi_{P}, \Pi_{P_{1}}=\Pi_{P} \cup\{\alpha\}, \Pi_{P_{2}}=\Pi_{P} \cup\{\beta\}$ and $\Pi_{P^{\prime}}=\Pi_{P} \cup\{\alpha, \beta\}$. Put $t_{\alpha}=\lambda_{\alpha}(\varpi)$ and $t_{\beta}=\lambda_{\beta}(\varpi)$. Then by Lemma 4.6, we have

$$
\begin{aligned}
\left(\Phi_{P^{\prime}, P_{1}} \circ \Phi_{P_{1}, P}\right)\left(\left[1, v_{P}\right]\right) & =\sum_{a \in \bar{N}(\mathcal{O}) / t_{\alpha}^{-1} \bar{N}(\mathcal{O}) t_{\alpha}} \Phi_{P^{\prime}, P_{1}}\left(\left[a t_{\alpha}^{-1}, v_{P_{1}}\right]\right) \\
& =\sum_{a \in \bar{N}(\mathcal{O}) / t_{\alpha}^{-1} \bar{N}(\mathcal{O}) t_{\alpha} b \in \bar{N}(\mathcal{O}) / t_{\beta}^{-1} \bar{N}(\mathcal{O}) t_{\beta}}\left[a t_{\alpha}^{-1} b t_{\beta}^{-1}, v_{P^{\prime}}\right] \\
& =\sum_{c \in \bar{N}(\mathcal{O}) /\left(t_{\alpha} t_{\beta}\right)^{-1} \bar{N}(\mathcal{O})\left(t_{\alpha} t_{\beta}\right)}\left[c\left(t_{\alpha} t_{\beta}\right)^{-1}, v_{P^{\prime}}\right] .
\end{aligned}
$$

Hence we have $\left(\Phi_{P^{\prime}, P_{1}} \circ \Phi_{P_{1}, P}\right)\left(\left[1, v_{P}\right]\right)=\left(\Phi_{P^{\prime}, P_{2}} \circ \Phi_{P_{2}, P}\right)\left(\left[1, v_{P}\right]\right)$. Therefore, we have $\Phi_{P^{\prime}, P_{1}} \circ$ $\Phi_{P_{1}, P}=\Phi_{P^{\prime}, P_{2}} \circ \Phi_{P_{2}, P}$.

Since $\Phi_{P^{\prime}, P_{1}} \circ \Phi_{P_{1}, P}$ satisfies condition (iv),

$$
\left(\tau_{\check{\alpha}}-1\right)\left(\tau_{\check{\beta}}-1\right)\left(\Phi_{P, P_{2}} \circ \Phi_{P_{2}, P^{\prime}}\right)=\left(\Phi_{P, P_{2}} \circ \Phi_{P_{2}, P^{\prime}}\right) \circ\left(\Phi_{P^{\prime}, P_{1}} \circ \Phi_{P_{1}, P^{\prime}} \circ \Phi_{P, P_{1}} \circ \Phi_{P_{1}, P^{\prime}}\right) .
$$

By $\Phi_{P^{\prime}, P_{1}} \circ \Phi_{P_{1}, P}=\Phi_{P^{\prime}, P_{2}} \circ \Phi_{P_{2}, P}$, the right-hand side is equal to

$$
\left(\Phi_{P, P_{2}} \circ \Phi_{P_{2}, P^{\prime}} \circ \Phi_{P^{\prime}, P_{2}} \circ \Phi_{P_{2}, P}\right) \circ\left(\Phi_{P, P_{1}} \circ \Phi_{P_{1}, P^{\prime}}\right) .
$$

Using condition (iv) for $\Phi_{P, P_{2}} \circ \Phi_{P_{2}, P^{\prime}}$, this is equal to

$$
\left(\tau_{\check{\alpha}}-1\right)\left(\tau_{\tilde{\beta}}-1\right)\left(\Phi_{P, P_{1}} \circ \Phi_{P_{1}, P^{\prime}}\right) .
$$

Since π_{P} is a torsion-free $\bar{\kappa}\left[X_{*}\right]$-module [Her11a, Corollary 6.5], we have $\Phi_{P, P_{2}} \circ \Phi_{P_{2}, P^{\prime}}=$ $\Phi_{P, P_{1}} \circ \Phi_{P_{1}, P^{\prime}}$. We get the lemma.

We fix such homomorphisms. Since π_{P} is a torsion-free $\bar{\kappa}\left[X_{*}\right]$-module [Her11a, Corollary 6.5], condition (iv) implies $\Phi_{P, P^{\prime}}$ and $\Phi_{P^{\prime}, P}$ are injective.

Lemma 4.14. We have $\pi_{P}^{K} \simeq \bar{\kappa}\left[X_{*}\right]$.
Proof. We have $\pi_{P} \simeq \operatorname{Ind}_{P \cap K}^{K}\left(\mathrm{c}-\operatorname{Ind}_{M \cap K}^{M}\left(\mathbf{1}_{M \cap K}\right) \otimes_{\mathcal{H}_{M}\left(\mathbf{1}_{M \cap K}\right)} \bar{\kappa}\left[X_{*}\right]\right)$ by the Iwasawa decomposition $G=K P$. Therefore, we have

$$
\begin{aligned}
\pi_{P}^{K} & =\operatorname{Hom}_{K}\left(\mathbf{1}_{K}, \operatorname{Ind}_{P \cap K}^{K}\left(\mathrm{c}-\operatorname{Ind}_{M \cap K}^{M}\left(\mathbf{1}_{M \cap K}\right) \otimes_{\mathcal{H}_{M}\left(\mathbf{1}_{M \cap K}\right)} \bar{\kappa}\left[X_{*}\right]\right)\right) \\
& \simeq \operatorname{Hom}_{M \cap K}\left(\mathbf{1}_{M \cap K}, \mathrm{c}-\operatorname{Ind}_{M \cap K}^{M}\left(\mathbf{1}_{M \cap K}\right) \otimes_{\mathcal{H}_{M}\left(\mathbf{1}_{M \cap K}\right)} \bar{\kappa}\left[X_{*}\right]\right) \\
& \simeq \operatorname{End}_{M}\left(\mathrm{c}-\operatorname{Ind}_{M \cap K}^{M}\left(\mathbf{1}_{M \cap K}\right)\right) \otimes_{\mathcal{H}_{M}\left(\mathbf{1}_{M \cap K}\right)} \bar{\kappa}\left[X_{*}\right] \simeq \bar{\kappa}\left[X_{*}\right] .
\end{aligned}
$$

Remark 4.15. The homomorphism $\operatorname{Ind}_{B}^{G}\left(\bar{\kappa}\left[X_{*}\right]\right) \ni f \mapsto f(1) \in \bar{\kappa}\left[X_{*}\right]$ gives an isomorphism $\pi_{B}^{K} \simeq$ $\bar{\kappa}\left[X_{*}\right]$.

Set $f_{0}=[1,1] \otimes 1 \in \operatorname{c-\operatorname {Ind}_{K}^{G}}\left(\mathbf{1}_{K}\right) \otimes_{\mathcal{H}_{G}\left(\mathbf{1}_{K}\right)} \bar{\kappa}\left[X_{*}\right]=\pi_{G}$. Then π_{G}^{K} is generated by f_{0} as a $\bar{\kappa}\left[X_{*}\right]-$ module. We also have that π_{G} is generated by $\pi_{G}^{K}=\bar{\kappa}\left[X_{*}\right] f_{0}$ as a G-module. We can prove the following lemma using an argument of Vigneras [Vig08]. This lemma also follows from [Eme10, Proposition 4.3.4, Theorem 4.4.6].

Lemma 4.16. Let $P=M N$ be a parabolic subgroup and σ_{1}, σ_{2} representations of M. Then we have $\operatorname{Hom}_{M}\left(\sigma_{1}, \sigma_{2}\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{Ind}_{P}^{G}\left(\sigma_{1}\right), \operatorname{Ind}_{P}^{G}\left(\sigma_{2}\right)\right)$.

Proof. Set $W(M)=\left\{w \in W \mid w\left(\Pi_{M}\right) \subset \Delta^{+}\right\}$. Then this is a set of complete representatives of W / W_{M} [Bou02, ch. IV, Exercises, $\S 1$ (3)]. Hence we have the Bruhat decomposition
$G / P=\coprod_{w \in W(M)} U w P / P$. For $w \in W(M)$, set

$$
\pi_{w}^{\prime}=\left\{\begin{array}{l|l}
f: U w P \rightarrow \sigma_{1} & \begin{array}{l}
f \text { is a locally constant function, supp } f \text { is compact modulo } P, \\
f(g p)=p^{-1} f(g) \text { for } g \in U w P, p \in P
\end{array}
\end{array}\right\}
$$

This is a representation of U and it is sufficient to prove that $\left(\pi_{w}^{\prime}\right)_{N}=0$ if $w \neq 1$. We have $U w P / P \simeq U \cap w \bar{N} w^{-1}$. Since $w \in W(M), U \cap w \bar{N} w^{-1}=U \cap w \bar{U} w^{-1}$. Therefore, as a representation of $U \cap w \bar{U} w^{-1}, \pi_{w}^{\prime} \simeq \pi_{w^{-1}} \otimes \sigma_{1}$ where $\pi_{w^{-1}}$ is the representation defined in [Vig08, Definition 1]. If $w \neq 1$, then $w^{-1} \notin W_{M}$. Hence there exists $\alpha \in \Delta^{+} \backslash \Delta_{M}^{+}$such that $w^{-1}(\alpha)<0$. Let $U_{\alpha} \subset G$ be the one-dimensional subgroup corresponding to α. Then $U_{\alpha} \subset N$ and as a representation of U_{α}, we have $\pi_{w}^{\prime} \simeq \pi_{w^{-1}} \otimes \sigma_{1}$. Hence $\left(\pi_{w}^{\prime}\right)_{U_{\alpha}}=\left(\pi_{w^{-1}}\right)_{U_{\alpha}} \otimes \sigma_{1}$. By [Vig08, Proposition 2], $\left(\pi_{w^{-1}}\right)_{U_{\alpha}}=0$. Hence $\left(\pi_{w}^{\prime}\right)_{U_{\alpha}}=0$. Since $U_{\alpha} \subset N$, we have $\left(\pi_{w}^{\prime}\right)_{N}=0$. Now the lemma follows from the argument in the proof of [Vig08, Théorème 8].
Lemma 4.17. The element $\tau_{\check{\alpha}}-1 \in \bar{\kappa}\left[X_{*}\right]$ is irreducible.
Proof. Take $d \in \mathbb{Z}_{>0}$ and $\lambda \in X_{*}$ such that $\left\langle\alpha, X_{*}\right\rangle=d \mathbb{Z}$ and $\langle\alpha, \lambda\rangle=d$. Then we have $X_{*}=\mathbb{Z} \lambda \oplus$ Ker α. Let $a, b \in \bar{\kappa}\left[X_{*}\right]$ such that $\tau_{\check{\alpha}}-1=a b$. Put $t=\tau_{\lambda}$. Then we have $a=\sum_{n} a_{n} t^{n}$ and $b_{n}=$ $\sum_{n} b_{n} t^{n}$ where $a_{n}, b_{n} \in \bar{\kappa}[\operatorname{Ker} \alpha]$. Put $k_{a}=\max \left\{n \mid a_{n} \neq 0\right\}, l_{a}=\min \left\{n \mid a_{n} \neq 0\right\}, k_{b}=\max \{n \mid$ $\left.b_{n} \neq 0\right\}, l_{b}=\min \left\{n \mid b_{n} \neq 0\right\}$. We may assume $k_{a}-l_{a} \leqslant k_{b}-l_{b}$. Take $c \in \mathbb{Z}$ and $\lambda_{0} \in \operatorname{Ker} \alpha$ such that $\check{\alpha}=c \lambda+\lambda_{0}$. Then $c=1$ or 2 and we have $a b=\tau_{\check{\alpha}}-1=t^{c} \tau_{\lambda_{0}}-1$. Therefore, $k_{a}+k_{b}=c$ and $a_{k_{a}} b_{k_{b}}=\tau_{\lambda_{0}} \in \bar{\kappa}[\operatorname{Ker} \alpha]^{\times}$. Replacing (a, b) with ($a u^{-1}, b u$) for $u=t^{k_{a}-1} a_{k_{a}} \in \bar{\kappa}\left[X_{*}\right]^{\times}$, we may assume $k_{a}=1$ and $a_{k_{a}}=1$. Hence $k_{b}=c-1$. We prove $a \in \bar{\kappa}\left[X_{*}\right]^{\times}$. If $k_{a}=l_{a}$, then $a=t \in \bar{\kappa}\left[X_{*}\right]^{\times}$. Hence we may assume $k_{a} \neq l_{a}$. By $a b=\tau_{\tilde{\alpha}}-1=t^{c} \tau_{\lambda_{0}}-1$, we have $l_{a}+l_{b}=0$. Therefore, $\left(c, k_{a}, l_{a}, k_{b}, l_{b}\right)$ satisfies the following conditions:

$$
c=1 \text { or } 2, \quad k_{a}=1, \quad k_{b}=c-1, \quad l_{a}<k_{a}, \quad k_{a}-l_{a} \leqslant k_{b}-l_{b}, \quad l_{a}+l_{b}=0 .
$$

From $k_{a}=1, k_{b}=c-1$ and $k_{a}-l_{a} \leqslant k_{b}-l_{b}$, we have $1-l_{a} \leqslant c-1-l_{b}$. Since $l_{a}+l_{b}=0$, we have $1-l_{a} \leqslant c-1+l_{a}$. Therefore, $l_{a} \geqslant 1-c / 2$. We also have $1=k_{a}>l_{a}$. Hence $l_{a} \leqslant 0$. From this, $0 \geqslant 1-c / 2$. Hence $c=2$. Therefore $0 \leqslant l_{a} \leqslant 1-c / 2=0$. Hence $l_{a}=0$ and $l_{b}=-l_{a}=0$. We get $\left(c, k_{a}, l_{a}, k_{b}, l_{b}\right)=(2,1,0,1,0)$.

Now we have $a=t+a_{0}$ and $b=b_{1} t+b_{0}$. Since $a b=\tau_{\lambda_{0}} t^{2}-1$, we have

$$
b_{1}=\tau_{\lambda_{0}}, \quad a_{0} b_{1}+b_{0}=0 \quad \text { and } \quad a_{0} b_{0}=-1
$$

By the last equation, $b_{0} \in \bar{\kappa}\left[X_{*}\right]^{\times}$. Hence $b_{0} \in \bar{\kappa}^{\times} \tau_{\mu}$ for some $\mu \in X_{*}$. We have $\tau_{\lambda_{0}}=b_{1}=$ $-b_{0} a_{0}^{-1}=b_{0}^{2}$. Therefore, $\lambda_{0}=2 \mu$. Hence $\check{\alpha}=2(\lambda+\mu) \in 2 X_{*}$. This is a contradiction since we assume that the derived group of G is simply connected.
Lemma 4.18. The image of f_{0} under $\Phi_{B, G}$ is a basis of π_{B}^{K}.
Proof. It is sufficient to prove that $\Phi_{B, G}\left(\pi_{G}^{K}\right)=\pi_{B}^{K}$. We prove $\Phi_{B, G}\left(\pi_{G}^{K}\right) \supset \prod_{\beta \in \Pi \backslash\{\alpha\}}\left(\tau_{\dot{\mathcal{B}}}-1\right) \pi_{B}^{K}$ for all $\alpha \in \Pi$. Then for each $\alpha \in \Pi$, there exists $a_{\alpha} \in \bar{\kappa}\left[X_{*}\right]$ such that $a_{\alpha} \Phi_{B, G}\left(f_{0}\right)=\prod_{\beta \in \Pi \backslash\{\alpha\}}$ $\left(\tau_{\check{\beta}}-1\right) f_{0}^{\prime}$ where f_{0}^{\prime} is a basis of π_{B}^{K}. Since $\left(\tau_{\check{\alpha}}-1\right)$ are distinct irreducible elements and $\bar{\kappa}\left[X_{*}\right]$ is a unique factorization domain, we have $\Phi_{B, G}\left(f_{0}\right) \in \bar{\kappa}\left[X_{*}\right]^{\times} f_{0}^{\prime}$. Hence the lemma is proved.

So it is sufficient to prove $\Phi_{B, G}\left(\pi_{G}^{K}\right) \supset \prod_{\beta \in \Pi \backslash\{\alpha\}}\left(\tau_{\check{\beta}}-1\right) \pi_{B}^{K}$ for all $\alpha \in \Pi$. Fix $\alpha \in \Pi$ and let P be the parabolic subgroup corresponding to $\{\alpha\}$. Since $\Phi_{P, G}\left(\pi_{G}^{K}\right) \supset \Phi_{P, G}\left(\Phi_{G, P}\left(\pi_{P}^{K}\right)\right)=$ $\prod_{\beta \in \Pi \backslash\{\alpha\}}\left(\tau_{\tilde{\beta}}-1\right) \pi_{P}^{K}$, it is sufficient to prove $\Phi_{B, P}\left(\pi_{P}^{K}\right)=\pi_{B}^{K}$. By Lemma 4.16, $\Phi_{B, P}$ is given by a
 that $\Phi_{P, B}$ is induced by some $\Phi^{\prime}: \operatorname{Ind}_{M \cap B}^{M}\left(\mathbf{1}_{M \cap B}\right) \rightarrow \mathrm{c}-\operatorname{Ind}_{M \cap K}^{M}\left(\mathbf{1}_{M \cap K}\right) \otimes_{\mathcal{H}_{M}\left(\mathbf{1}_{M \cap K}\right)} \bar{\kappa}\left[X_{*}\right]$. It is
sufficient to prove that Φ induces surjective homomorphism between the spaces of K-invariants. Since $\Phi_{P, G} \circ \Phi_{G, P}=\left(\tau_{\check{\alpha}}-1\right)$ (respectively $\Phi_{G, P} \circ \Phi_{P, G}=\left(\tau_{\check{\alpha}}-1\right)$), $\Phi^{\prime} \circ \Phi$ (respectively $\Phi \circ \Phi^{\prime}$) is induced by $\left(\tau_{\check{\alpha}}-1\right)$. Hence $\Phi^{\prime} \circ \Phi=\left(\tau_{\check{\alpha}}-1\right)$ and $\Phi \circ \Phi^{\prime}=\left(\tau_{\check{\alpha}}-1\right)$ by Lemma 4.16. Namely, Φ^{\prime} and Φ satisfy the conditions of Lemma 4.13 for M. Therefore, it is sufficient to prove the lemma for $G=M$. We assume that the semisimple rank of G is one.

Now we assume that the semisimple rank of G is one. Let $\Pi=\{\alpha\}$. Take $a, b \in \bar{\kappa}\left[X_{*}\right]$ such that $\Phi_{B, G}\left(\pi_{G}^{K}\right)=a \pi_{B}^{K}, \Phi_{G, B}\left(\pi_{B}^{K}\right)=b \pi_{G}^{K}$ and $a b=\tau_{\check{\alpha}}-1$. Assume $\Phi_{B, G}\left(\pi_{G}^{K}\right) \neq \pi_{B}^{K}$. It is equivalent to $a \notin \bar{\kappa}\left[X_{*}\right]^{\times}$. By the above lemma, $b \in \bar{\kappa}^{[}\left[X_{*}\right]^{\times}$. Hence $\Phi_{G, B}\left(\pi_{B}^{K}\right)=\pi_{G}^{K}$. Since π_{G} is generated by $\pi_{G}^{K}, \Phi_{G, B}$ is surjective. Therefore, $\Phi_{G, B}$ is isomorphic. Let $\chi: \bar{\kappa}\left[X_{*}\right] \rightarrow \bar{\kappa}$ be a homomorphism defined by $\chi\left(\tau_{\lambda}\right)=1$ for all $\lambda \in X_{*}$. Then we have $\pi_{B} \otimes_{\bar{\kappa}\left[X_{*}\right]} \chi=\operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right)$. Hence we have $\operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right) \simeq \pi_{G} \otimes_{\bar{K}\left[X_{*}\right]} \chi$. Consider a homomorphism c- $\operatorname{Ind}_{K}^{G}\left(\mathbf{1}_{K}\right) \rightarrow \mathbf{1}_{G}$ defined by $f \mapsto$ $\sum_{g \in G / K} f(g)$. This gives a homomorphism $\pi_{G} \otimes_{\bar{K}\left[X_{*}\right]} \chi \rightarrow \mathbf{1}_{G}$ and the induced homomorphism $\left(\pi_{G} \otimes_{\bar{K}\left[X_{*}\right]} \chi\right)^{K} \rightarrow\left(\mathbf{1}_{G}\right)^{K}=\mathbf{1}_{G}$ is surjective since an image of $[1,1] \in\left(\mathrm{c}-\operatorname{Ind}_{K}^{G}\left(\mathbf{1}_{K}\right)\right)^{K}$ is nonzero. Consider the following maps: $\mathbf{1}_{G} \hookrightarrow \operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right) \simeq \pi_{G} \otimes_{\bar{\kappa}\left[X_{*}\right]} \chi \rightarrow \mathbf{1}_{G}$. Take K-invariants. Then we have that $\mathbf{1}_{G}=\left(\mathbf{1}_{G}\right)^{K} \hookrightarrow\left(\operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right)\right)^{K}$ is isomorphic (by the Iwasawa decomposition) and $\left(\pi_{G} \otimes_{\bar{K}\left[X_{*}\right]}\right)^{K} \chi \rightarrow\left(\mathbf{1}_{G}\right)^{K}=\mathbf{1}_{G}$ is surjective. Hence the composition $\mathbf{1}_{G} \rightarrow \mathbf{1}_{G}$ is surjective. Since both sides are one-dimensional, it is isomorphic. Hence $\mathbf{1}_{G}$ is a direct summand of $\operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right)$. Therefore, $\operatorname{End}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right)\right)$ has a non-trivial idempotent. However, by Lemma 3.19, $\operatorname{End}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\mathbf{1}_{T}\right)\right) \simeq \operatorname{End}_{T}\left(\mathbf{1}_{T}\right) \simeq \bar{\kappa}$. This is a contradiction.

By this lemma, $\operatorname{Im} \Phi_{B, G}$ is a subrepresentation of π_{B} generated by π_{B}^{K}. For each $w \in$ $W \simeq N_{K}(T(\mathcal{O})) / T(\mathcal{O})$, we fix a representative of w and denote it by the same letter w. For a subset $A \subset W$ of W, let $X_{G, A} \subset \pi_{B}=\operatorname{Ind}_{B}^{G} \bar{\kappa}\left[X_{*}\right]$ be a B-stable subspace defined by $X_{G, A}=\left\{f \in \pi_{B} \mid \operatorname{supp} f \subset \bigcup_{w^{\prime} \in A} B w^{\prime} B / B\right\}$. For $w \in W$, put $X_{G,>w}=X_{G,\left\{w^{\prime} \in W \mid w^{\prime}>w\right\}}$ and $X_{G, \geqslant w}=X_{G,\left\{w^{\prime} \in W \mid w^{\prime} \geqslant w\right\}}$. Set $X_{A}=X_{G, A}, X_{\geqslant w}=X_{G, \geqslant w}$ and $X_{>w}=X_{G,>w}$ for $A \subset W, w \in W$. Set $Y=\Phi_{B, G}\left(\pi_{G}\right), Y_{A}=Y \cap X_{A}$. For a parabolic subgroup $P=M N$, put $W(M)=\{w \in W \mid$ $\left.w\left(\Pi_{M}\right) \subset \Delta^{+}\right\}$. Then $W(M) \times W_{M} \rightarrow W$ is bijective [Bou02, ch. IV, Exercises, § 1 (3)].

Let $A \subset W$ be a subset such that $\bigcup_{w \in A} B w B$ is open. (In other words, if $w \in A$ and $w^{\prime}>w$ then $w^{\prime} \in A$.) Let $w \in A$ be a minimal element and set $A^{\prime}=A \backslash\{w\}$.
Lemma 4.19. Let $I \subset \bar{\kappa}\left[X_{*}\right]$ be a principal ideal. For $f \in \pi_{B}, f \in X_{A}+I \pi_{B}$ if and only if $f(x) \in I$ for all $x \in B v B$ and $v \in W \backslash A$. In particular, if $I_{1}, I_{2} \subset \bar{\kappa}\left[X_{*}\right]$ are principal ideals then $\left(X_{A}+I_{1} \pi_{B}\right) \cap\left(X_{A}+I_{2} \pi_{B}\right)=X_{A}+\left(I_{1} \cap I_{2}\right) \pi_{B}$.
Proof. It is obvious that if $f \in X_{A}+I \pi_{B}$ then $f(x) \in I$ for all $x \in B v B$ and $v \in W \backslash A$. Assume that $f(x) \in I$ for all $x \in B v B$ and $v \in W \backslash A$. Let $a \in I$ be a generator of I. Since $\bar{\kappa}\left[X_{*}\right]$ is an integral domain, there exists a locally constant function $f_{0}: \bigcup_{v \in W \backslash A} B v B \rightarrow \bar{\kappa}\left[X_{*}\right]$ such that $f(x)=a f_{0}(x)$. Since $\bigcup_{v \in W \backslash A} B v B$ is closed, there exists $f_{1} \in \pi_{B}$ such that $\left.f_{1}\right|_{v \in W \backslash A} B v B=f_{0}$. Then $f=\left(f-a f_{1}\right)+a f_{1}$ and $f-a f_{1} \in X_{A}, a f_{1} \in I \pi_{B}$.

Since $\bar{\kappa}\left[X_{*}\right]$ is a unique factorization domain, if I_{1}, I_{2} are principal ideals, then $I_{1} \cap I_{2}$ is also a principal ideal. Hence the second statement follows from the first statement.

Lemma 4.20. Let $P=M N$ be a parabolic subgroup, $w, v_{0} \in W(M)$ and $v_{1} \in W_{M}$. Then $v_{0} v_{1} \geqslant$ w if and only if $v_{0} \geqslant w$.
Proof. Put $v=v_{0} v_{1}$. Let ℓ be the length function of W. Then $\ell(v)=\ell\left(v_{0}\right)+\ell\left(v_{1}\right)$ [Bou02, ch. IV, Exercises, $\S 1$ (3)]. Hence $v \geqslant v_{0}$. Therefore, $v_{0} \geqslant w$ implies $v \geqslant w$.

We prove $v \geqslant w$ implies $v_{0} \geqslant w$ by induction on $\ell\left(v_{1}\right)$. If $\ell\left(v_{1}\right)=0$, then $v_{1}=1$. Hence there is nothing to prove. Assume that $\ell\left(v_{1}\right)>0$ and take $\alpha \in \Pi_{M}$ such that $v_{1} s_{\alpha}<v_{1}$ where $s_{\alpha} \in W_{M}$
is the reflection corresponding to α. Put $s=s_{\alpha}$. Then $\ell\left(v_{0} v_{1} s\right)=\ell\left(v_{0}\right)+\ell\left(v_{1} s\right)=\ell\left(v_{0}\right)+\ell\left(v_{1}\right)-$ $1=\ell\left(v_{0} v_{1}\right)-1$. Hence $v s<v$. By the definition of $W(M)$, we have $w s>w$. Hence we get $v s \geqslant w\left[\right.$ Deo77, Theorem 1.1 (II, ii)]. Therefore, $v_{0}\left(v_{1} s\right) \geqslant w$. Since $\ell\left(v_{1} s\right)<\ell\left(v_{1}\right)$, we have $v_{0} \geqslant w$ by inductive hypothesis.

Lemma 4.21. We have $Y_{A} / Y_{A^{\prime}}=\prod_{\alpha \in \Pi, w s_{\alpha}<w}\left(\tau_{\check{\alpha}}-1\right)\left(X_{A} / X_{A^{\prime}}\right)$.
Proof. Set $\Theta=\left\{\alpha \in \Pi \mid w s_{\alpha}<w\right\}$ and put $I=\prod_{\alpha \in \Theta}\left(\tau_{\check{\alpha}}-1\right) \bar{\kappa}\left[X_{*}\right]$. First we prove $Y_{A} / Y_{A^{\prime}} \subset$ $I\left(X_{A} / X_{A^{\prime}}\right)$; namely, we prove $Y_{A} \subset I \pi_{B}+X_{A^{\prime}}$. Let $I_{\alpha}=\left(\tau_{\check{\alpha}}-1\right) \bar{\kappa}\left[X_{*}\right]$. By Lemma 4.19, it is sufficient to prove $Y_{A} \subset I_{\alpha} \pi_{B}+X_{A^{\prime}}$ for all $\alpha \in \Theta$. Let $P_{\alpha}=M_{\alpha} N_{\alpha}$ be the parabolic subgroup corresponding to $\{\alpha\}$. Recall that T acts on $\bar{\kappa}\left[X_{*}\right]$ and $\pi_{B}=\operatorname{Ind}_{B}^{G}\left(\bar{\kappa}\left[X_{*}\right]\right)$. This action induces the action of T on $\bar{\kappa}\left[X_{*}\right] / I_{\alpha}$. The image of $\check{\alpha}$ acts on $\bar{\kappa}\left[X_{*}\right] / I_{\alpha}$ trivially. Therefore, the action of T on $\bar{\kappa}\left[X_{*}\right] / I_{\alpha}$ is extended to the action of M_{α} such that $\left[M_{\alpha}(F), M_{\alpha}(F)\right]$ acts on it trivially by Lemma 3.2. We have $\operatorname{Ind}_{P_{\alpha}}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right) \subset \operatorname{Ind}_{B}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)=\pi_{B} / I_{\alpha} \pi_{B}$.

Let $f \in\left(\pi_{B} / I_{\alpha} \pi_{B}\right)^{K}=\left(\operatorname{Ind}_{B}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)\right)^{K}$. We prove $f \in \operatorname{Ind}_{P_{\alpha}}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)$; namely, $f(g p)=$ $p^{-1} f(g)$ for $g \in G$ and $p \in P_{\alpha}$. Let $g_{0} \in G$ and $p_{0} \in P_{\alpha}$. By the Iwasawa decomposition $G=K P_{\alpha}$, there exist $k_{0} \in K$ and $p_{0}^{\prime} \in P_{\alpha}$ such that $g_{0}=k_{0} p_{0}^{\prime}$. Since $P_{\alpha}=M_{\alpha} N_{\alpha}=\left[M_{\alpha}(F), M_{\alpha}(F)\right] T N_{\alpha}=$ $\left(\left[M_{\alpha}(F), M_{\alpha}(F)\right] \cap K\right)\left(\left[M_{\alpha}(F), M_{\alpha}(F)\right] \cap B\right) T N_{\alpha}=\left(\left[M_{\alpha}(F), M_{\alpha}(F)\right] \cap K\right) B$, there exist $k_{0}^{\prime} \in$ $\left[M_{\alpha}(F), M_{\alpha}(F)\right] \cap K$ and $b_{0} \in B$ such that $p_{0}^{\prime} p_{0}=k_{0}^{\prime} b_{0}$. Hence $f\left(g_{0} p_{0}\right)=f\left(k_{0} p_{0}^{\prime} p_{0}\right)=$ $f\left(k_{0} k_{0}^{\prime} b_{0}\right)=b_{0}^{-1} f(1)$. Since $k_{0}^{\prime} \in\left[M_{\alpha}(F), M_{\alpha}(F)\right]$, we have $\left(k_{0}^{\prime}\right)^{-1} f(1)=f(1)$. Hence $f\left(g_{0} p_{0}\right)=$ $\left(k_{0}^{\prime} b_{0}\right)^{-1} f(1)=\left(p_{0}^{\prime} p_{0}\right)^{-1} f(1)$. Let $g \in G$ and $p \in P_{\alpha}$. Take $k \in K$ and $p^{\prime} \in P_{\alpha}$ such that $g=k p^{\prime}$. Then applying the above formula for $g_{0}=g, k_{0}=k, p_{0}^{\prime}=p^{\prime}$ and $p_{0}=p$, we have $f(g p)=$ $\left(p^{\prime} p\right)^{-1} f(1)$. Applying the above formula for $g_{0}=1, k_{0}=1, p_{0}^{\prime}=1$ and $p_{0}=p^{\prime}$, we get $f\left(p^{\prime}\right)=$ $\left(p^{\prime}\right)^{-1} f(1)$. Hence $f(g p)=p^{-1} f\left(p^{\prime}\right)=p^{-1} f\left(k p^{\prime}\right)=p^{-1} f(g)$. So $f \in \operatorname{Ind}_{P_{\alpha}}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)$. Hence the image of $\Phi_{G, B}\left(f_{0}\right)$ under $\pi_{B} \rightarrow \pi_{B} / I_{\alpha} \pi_{B}$ is in $\operatorname{Ind}_{P_{\alpha}}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)$. (Recall that $\left.f_{0}=[1,1] \otimes 1 \in \pi_{G}^{K}.\right)$ Since π_{G} is generated by f_{0}, the image of Y is contained in $\operatorname{Ind}_{P_{\alpha}}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)$.

For $f \in \pi_{B}$, let \bar{f} be the image of f under the canonical projection $\pi_{B} \rightarrow \pi_{B} / I_{\alpha} \pi_{B}=$ $\operatorname{Ind}_{B}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)$. Let $f \in Y_{A}$. Then supp $\bar{f} \subset \bigcup_{w^{\prime} \in A} B w^{\prime} B / B$. Since $\bar{f} \in \operatorname{Ind}_{P_{\alpha}}^{G}\left(\bar{\kappa}\left[X_{*}\right] / I_{\alpha}\right)$, its support is right P_{α}-invariant. Hence if $\operatorname{supp} \bar{f} \cap B w B / B \neq \emptyset, \operatorname{supp} \bar{f} \cap B w s_{\alpha} B / B \neq \emptyset$. By the definition of $\Theta, w s_{\alpha}<w$. This contradicts supp $\bar{f} \subset \bigcup_{w^{\prime} \in A} B w^{\prime} B / B$ and the minimality of w. So we have supp $\bar{f} \subset \bigcup_{w^{\prime} \in A^{\prime}} B w^{\prime} B / B$. Hence $f \in X_{A^{\prime}}+I_{\alpha} \pi_{B}$.

We prove $Y_{A} / Y_{A^{\prime}} \supset I\left(X_{A} / X_{A^{\prime}}\right)$. Let $P=M N$ be a parabolic subgroup corresponding to $\Pi \backslash \Theta$. First we prove that $\Phi_{B, P}\left(\pi_{P}\right) \cap X_{A} \rightarrow X_{A} / X_{A^{\prime}}$ is surjective. Since $X_{A} / X_{A^{\prime}} \simeq X_{\geqslant w} / X_{>w}$ and $X_{A} \supset X_{\geqslant w}$, we may assume $A=\left\{w^{\prime} \in W \mid w^{\prime} \geqslant w\right\}$. For each parabolic subgroup $P_{1}=M_{1} N_{1} \subset$ P, put $\pi_{M, P_{1}}=\operatorname{Ind}_{M \cap P_{1}}^{M}\left(\mathrm{c}-\operatorname{Ind}_{M_{1} \cap K}^{M_{1}} \mathbf{1}_{M_{1} \cap K} \otimes_{\mathcal{H}_{M_{1}}\left(\mathbf{1}_{M_{1} \cap K}\right)} \bar{\kappa}\left[X_{*}\right]\right)$. Then $\pi_{P_{1}}=\operatorname{Ind}_{P}^{G}\left(\pi_{M, P_{1}}\right)$. By Lemma 4.16, for each $P_{1} \subset P_{2} \subset P, \Phi_{P_{1}, P_{2}}$ and $\Phi_{P_{2}, P_{1}}$ are induced by some $\Phi_{P_{1}, P_{2}}^{M}: \pi_{M, P_{2}} \rightarrow$ $\pi_{M, P_{1}}$ and $\Phi_{P_{2}, P_{1}}^{M}: \pi_{M, P_{1}} \rightarrow \pi_{M, P_{2}}$. Such homomorphisms satisfy the conditions of Lemma 4.13. Therefore, $\Phi_{P_{1}, P_{2}}^{M}$ induces a bijection $\pi_{M, P_{2}}^{M \cap K} \simeq \pi_{M, P_{1}}^{M \cap K}$ by Lemma 4.18. Put $\Phi=\Phi_{B, P}^{M}$. Then $\Phi_{B, P}\left(\pi_{P}\right)=\operatorname{Ind}_{P}^{G}\left(\Phi\left(\pi_{M, P}\right)\right)$.

Let $f \in \Phi_{B, P}\left(\pi_{P}\right)$. By the definition of $X_{\geqslant w}, f \in X_{\geqslant w}$ if and only if supp $f \subset \bigcup_{v \geqslant w} B v B$. For $v \in W$, take $v_{0} \in W(M)$ and $v_{1} \in W_{M}$ such that $v=v_{0} v_{1}$. Since $w \in W(M), v \geqslant w$ if and only if $v_{0} \geqslant w$ by the above lemma. Hence $\bigcup_{v \geqslant w} B v B=\bigcup_{v \geqslant w, v \in W(M)} B v W_{M} B=\bigcup_{v \geqslant w, v \in W(M)} B v P$. Therefore, $\Phi_{B, P}\left(\pi_{P}\right) \cap X_{\geqslant w}=\left\{f \in \operatorname{Ind}_{P}^{G}\left(\Phi\left(\pi_{M, P}\right)\right) \mid \operatorname{supp} f \subset \bigcup_{v \geqslant w, v \in W(M)} B v P / P\right\}$. Let $Z_{\geqslant w}$ be this space. Put $Z_{>w}=\left\{f \in \operatorname{Ind}_{P}^{G}\left(\Phi\left(\pi_{M, P}\right)\right) \mid \operatorname{supp} f \subset \bigcup_{v>w, v \in W(M)} B v P / P\right\}$. Then the homomorphism $\quad Z_{\geqslant w}=\Phi_{B, P}\left(\pi_{M, P}\right) \cap X_{\geqslant w} \rightarrow X_{\geqslant w} / X_{>w} \quad$ induces $\quad Z_{\geqslant w} / Z_{>w} \rightarrow X_{\geqslant w} / X_{>w}$. By the Bruhat decomposition $G / P=\bigcup_{v \in W(M)} B v P / P$, the space $Z_{\geqslant w} / Z_{>w}$ is isomorphic
to the space of locally constant compact support $\Phi\left(\pi_{M, P}\right)$-valued functions on $B w P / P \simeq$ $B w B / B$. The space $X_{\geqslant w} / X_{>w}$ is isomorphic to the space of locally constant compact support $\bar{\kappa}\left[X_{*}\right]$-valued functions on $B w B / B$. The homomorphism $Z_{\geqslant w} / Z_{>w} \rightarrow X_{\geqslant w} / X_{>w}$ is induced by $\Phi\left(\pi_{M, P}\right) \hookrightarrow \pi_{M, B} \rightarrow \pi_{M, B} / X_{M,>1} \simeq \bar{\kappa}\left[X_{*}\right]$. By Remark 4.15, $\pi_{M, B}^{M \cap K} \hookrightarrow \pi_{M, B} \rightarrow \pi_{M, B} / X_{M,>1} \simeq$ $\bar{\kappa}\left[X_{*}\right]$ is isomorphic. Since Φ induces $\pi_{M, P}^{M \cap K} \simeq \pi_{M, B}^{M \cap K}, \Phi\left(\pi_{M, P}\right) \hookrightarrow \pi_{M, B} \rightarrow \pi_{M, B} / X_{M,>1} \simeq \bar{\kappa}\left[X_{*}\right]$ is surjective. Therefore $\Phi_{B, P}\left(\pi_{P}\right) \cap X_{\geqslant w} \rightarrow X_{\geqslant w} / X_{>w}$ is surjective.

By the above argument, we get $\left(\Phi_{B, P}\left(\pi_{P}\right) \cap X_{A}\right)+X_{A^{\prime}}=X_{A}$. Hence we get $I \Phi_{B, P}\left(\pi_{P}\right)=$ $\Phi_{B, P}\left(I \pi_{P}\right)=\Phi_{B, P}\left(\Phi_{P, G}\left(\Phi_{G, P}\left(\pi_{P}\right)\right)\right)=\Phi_{B, G}\left(\Phi_{G, P}\left(\pi_{P}\right)\right) \subset \Phi_{B, G}\left(\pi_{G}\right)=Y, I X_{A} \subset Y \cap X_{A}+I X_{A^{\prime}}$ $\subset Y_{A}+X_{A^{\prime}}$. This gives us the lemma.

From this lemma, we obtain the following proposition.
Proposition 4.22. Let V be an irreducible representation of K. The module $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)}$ $\bar{\kappa}\left[X_{*}\right]$ is free as a $\bar{\kappa}\left[X_{*}\right]$-module.

Remark 4.23. Barthel-Livné proved that, as an $\operatorname{End}_{G}\left(\mathrm{c}-\operatorname{Ind}_{K Z_{G}}^{G}(V)\right)$-module, $\mathrm{c}-\operatorname{Ind}_{K Z_{G}}^{G}(V)$ is free if $G=\mathrm{GL}_{2}$ [BL94, Theorem 19].

Proof. Let ν be a lowest weight of V. By Theorem 4.11, we have $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \bar{\kappa}\left[X_{*}\right] \simeq$ $\operatorname{Ind}_{P_{-\nu}}^{G}\left(\mathrm{c}-\operatorname{Ind}_{M_{-\nu} \cap K}^{M_{-\nu}}\left(V^{\overline{N_{-\nu}}(\kappa)}\right) \otimes_{\mathcal{H}_{M_{-\nu}}\left(V^{\overline{N_{-\nu}}(\kappa)}\right)} \bar{\kappa}\left[X_{*}\right]\right)$. Therefore, it is sufficient to prove that $\mathrm{c}-\operatorname{Ind}_{M_{-\nu} \cap K}^{M_{-\nu}}\left(V^{\overline{N_{-\nu}}}(\kappa)\right) \otimes_{\mathcal{H}_{M_{-\nu}}\left(V^{\left.\overline{N_{-\nu}(k)}\right)}\right.} \bar{\kappa}\left[X_{*}\right]$ is free. Hence we may assume $P_{-\nu}=G$. Therefore, V is a character of K. By Corollary 3.4, there exists a character ν_{G} of G such that $\left.\nu_{G}\right|_{K} \simeq V$. Then $\varphi \mapsto \varphi_{\nu_{G}^{-1}}$ gives an isomorphism $\mathcal{H}_{G}(V) \simeq \mathcal{H}_{G}\left(\mathbf{1}_{K}\right)$ (see §3.1). By this isomorphism, we can identify $\mathcal{H}_{G}(V)$ and $\mathcal{H}_{G}\left(\mathbf{1}_{K}\right)$. Under this identification, we have $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes \nu_{G}^{-1} \simeq \mathrm{c}-\operatorname{Ind}_{K}^{G}\left(\mathbf{1}_{K}\right)$.
 free [Vig08, Lemma 3], $Y_{A} / Y_{A^{\prime}}$ is free by Lemma 4.21. Hence Y is free.

Proof of Proposition 4.7. We prove the proposition by induction on $\# \Pi_{-\nu}$. Namely, we prove the following by induction on n : if ν satisfies $\# \Pi_{-\nu} \leqslant n$ then the module $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ has a finite length and its composition factors depend only on χ and the $T(\kappa)$-representation $V^{\bar{U}(\kappa)}$.

If $\Pi_{-\nu}=\emptyset$, then $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi$ is isomorphic to a principal series representation [Her11a, Theorem 3.1]. Hence the proposition follows.

Assume $\Pi_{-\nu} \neq \emptyset$ and take $\alpha \in \Pi_{-\nu}$. Put $\nu^{\prime}=\nu-(q-1) \omega_{\alpha}$ and let V^{\prime} be the irreducible K-representation with lowest weight ν^{\prime}. By inductive hypothesis, c- $\operatorname{Ind}_{K}^{G}\left(V^{\prime}\right) \otimes_{\mathcal{H}_{G}\left(V^{\prime}\right)} \chi$ has a finite length. Define $\chi^{\prime}: \bar{\kappa}\left[X_{*}\right] \rightarrow \bar{\kappa}\left[t, t^{-1}\right]$ by $\chi^{\prime}\left(\tau_{\lambda}\right)=\chi\left(\tau_{\lambda}\right) t^{\left\langle\omega_{\alpha}, \lambda\right\rangle}$ for $\lambda \in X_{*}$. (Here, t is an indeterminant.) Then χ factors through χ^{\prime}. Put $\pi=c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi^{\prime}$ and $\pi^{\prime}=$ $\mathrm{c}-\operatorname{Ind}_{K}^{G}\left(V^{\prime}\right) \otimes_{\mathcal{H}_{G}\left(V^{\prime}\right)} \chi^{\prime}$. These are free $\bar{\kappa}\left[t, t^{-1}\right]$-modules by Proposition 4.22. Take $\lambda \in X_{*}$ such that $\langle\lambda, \Pi \backslash\{\alpha\}\rangle=0$ and $\langle\lambda, \alpha\rangle \neq 0$. Put $a=\chi\left(\tau_{\tilde{\alpha}}\right)$. As in $\S 4.1, \lambda$ gives $\Phi: \pi \rightarrow \pi^{\prime}$ and $\Phi^{\prime}: \pi^{\prime} \rightarrow$ π such that $\Phi \circ \Phi^{\prime}=(a t-1)$. Therefore, Φ^{\prime} is injective and $\operatorname{Im} \Phi^{\prime} \subset(a t-1) \pi$. By [CG97, Lemma 2.3.4], $\pi /(t-1) \pi$ has a finite length and $\pi /(t-1) \pi$ and $\pi^{\prime} /(t-1) \pi^{\prime}$ have the same composition factors.

5. Classification theorem

Using results in $\S \S 3$ and 4 , we prove the main theorem. Almost all the proof of the theorem is a copy of Herzig's proof.

5.1 Construction of representations

We recall the definition of supersingular representations. Recall that a character $\bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ is parameterized by a pair $\left(M, \chi_{M}\right)$ where M is the Levi subgroup of a standard parabolic subgroup of G and $\chi_{M}: X_{M, *, 0} \rightarrow \bar{\kappa}^{\times}$is a character of $X_{M, *, 0}$ where $X_{M, *, 0}=\left\{\lambda \in X_{*} \mid\left\langle\lambda, \Pi_{M}\right\rangle=0\right\}$. (See § 2.2.)

Definition 5.1 (Herzig [Her11a, Definition 4.7]). Let π be an irreducible admissible representation of G.
(i) The representation π is supersingular with respect to (K, T, B) if each $\chi \in \mathcal{S}(\pi)$ corresponds to (G, χ_{G}) for some $\chi_{G}: X_{G, *, 0} \rightarrow \bar{\kappa}^{\times}$.
(ii) The representation π is supersingular if it is supersingular with respect to all (K, T, B).

It will be proved that π is supersingular if and only if π is supersingular with respect to (K, T, B) for a fixed (K, T, B) (Corollary 5.13).

Now we introduce the set of parameters $\mathcal{P}=\mathcal{P}_{G}$. It will parameterize the isomorphism classes of irreducible admissible representations. Before giving \mathcal{P}, we give one notation. Let M be the Levi subgroup of a standard parabolic subgroup and σ its representation with the central character ω_{σ}. Then set $\Pi_{\sigma}=\left\{\alpha \in \Pi \mid\left\langle\Pi_{M}, \check{\alpha}\right\rangle=0, \omega_{\sigma} \circ \check{\alpha}=\mathbf{1}_{\mathrm{GL}_{1}(F)}\right\}$.

Let $\mathcal{P}=\mathcal{P}_{G}$ be the set of $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right)$ such that:

- Π_{1} and Π_{2} are subsets of Π;
- σ_{1} is an irreducible admissible representation of $M_{\Pi_{1}}$ with central character $\omega_{\sigma_{1}}$, which is supersingular with respect to ($M_{\Pi_{1}} \cap K, T, M_{\Pi_{1}} \cap B$);
$-\Pi_{2} \subset \Pi_{\sigma_{1}}$.
We consider $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right)$ and $\Lambda^{\prime}=\left(\Pi_{1}^{\prime}, \Pi_{2}^{\prime}, \sigma_{1}^{\prime}\right)$ to be equal to each other if $\Pi_{1}=\Pi_{1}^{\prime}, \Pi_{2}=\Pi_{2}^{\prime}$ and $\sigma_{1} \simeq \sigma_{1}^{\prime}$.

For $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right) \in \mathcal{P}$, we attach the representation $I(\Lambda)$ of G in the following way. Let $P_{\Lambda}=M_{\Lambda} N_{\Lambda}$ be the standard parabolic subgroup corresponding to $\Pi_{1} \cup \Pi_{\sigma_{1}}$. By Lemma 3.2, there exists the unique extension of σ_{1} to M_{Λ} such that $\left[M_{\Pi_{\sigma_{1}}}(F), M_{\Pi_{\sigma_{1}}}(F)\right]$ acts on it trivially. We denote this representation by the same letter σ_{1}. By the definition, $\Pi_{1} \cup \Pi_{2}$ is a subset of $\Pi_{1} \cup \Pi_{\sigma_{1}}$. Hence this set defines a standard parabolic subgroup of M_{Λ}. Let $\sigma_{\Lambda, 2}$ be the special representation of M_{Λ} corresponding to this parabolic subgroup. By the construction, $\left.\sigma_{\Lambda, 2}\right|_{M_{\Pi_{\sigma_{1}}}}$ is a special representation of $M_{\Pi_{\sigma_{1}}}$. By the following general lemma, the restriction of $\sigma_{\Lambda, 2}$ to $\left[M_{\Pi_{\sigma_{1}}}(F), M_{\Pi_{\sigma_{1}}}(F)\right]$ is irreducible and admissible [Her11a, Theorem 7.2].

Lemma 5.2. Let π be a special representation of G. Then the restriction of π to $[G(F), G(F)]$ is irreducible and admissible.

Proof. By the definition of a special representation, the restriction of π to $[G, G](F)$ is a special representation of $[G, G](F)$. Hence it is irreducible and admissible [Her11a, Theorem 7.2]. If the derived group of G is simply connected, $[G, G](F)=[G(F), G(F)]$. Hence the lemma follows. In general, let $\widetilde{G} \rightarrow G$ be a z-extension of G. Then the pull-back $\widetilde{\pi}$ of π to \widetilde{G} is a special representation of \widetilde{G} and by the above argument, the restriction of $\widetilde{\pi}$ to $[\widetilde{G}(F), \widetilde{G}(F)]$ is irreducible and admissible. Since the image of $[\widetilde{G}(F), \widetilde{G}(F)]$ in G is $[G(F), G(F)], \pi$ is irreducible and admissible as a representation of $[G(F), G(F)]$.

Put $\sigma_{\Lambda}=\sigma_{1} \otimes \sigma_{\Lambda, 2}$ and $I(\Lambda)=I_{G}(\Lambda)=\operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda}\right)$. It is easy to check that the tuple $\left(M_{1}, M_{2}, \sigma_{1}, \sigma_{2}\right)=\left(M_{\Pi_{1}}, M_{\Pi_{\sigma}}, \sigma_{1}, \sigma_{\Lambda, 2}\right)$ satisfies the conditions of $\S 3.3$. By Lemma 3.23, σ_{Λ} is
admissible. Hence $I(\Lambda)$ is admissible. By the following lemma, σ_{Λ} is irreducible. (Apply for $H=M_{\Lambda}$ and $\left.H^{\prime}=\left[M_{\Pi_{\sigma_{1}}}(F), M_{\Pi_{\sigma_{1}}}(F)\right].\right)$

Lemma 5.3. Let H be a group, H^{\prime} a normal subgroup of H and σ_{2} a representation of H which is irreducible as a representation of H^{\prime} and $\operatorname{End}_{H^{\prime}}\left(\sigma_{2}\right)=\bar{\kappa}$. For a representation σ of H, $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)$ has a structure of a representation of H / H^{\prime} defined by $(h \psi)(v)=h \psi\left(h^{-1} v\right)$ for $h \in H, \psi \in \operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)$ and $v \in \sigma_{2}$.
(i) The natural homomorphism $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right) \otimes \sigma_{2} \rightarrow \sigma$ is injective.
(ii) If σ is irreducible, then $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)$ is zero or irreducible.
(iii) For an irreducible representation σ_{1} of $H / H^{\prime}, \sigma_{1} \otimes \sigma_{2}$ is an irreducible H-representation.

Proof. (i) Assume that the kernel of the homomorphism is non-zero. Take a non-zero finitedimensional subspace $V \subset \operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)$ such that $V \otimes \sigma_{2} \rightarrow \sigma$ is not injective. This is an H^{\prime}-homomorphism. Therefore, there exists a non-zero subspace V_{1} of V such that the kernel is $V_{1} \otimes \sigma_{2}$. This means $V_{1}=0$ in $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)$. This is a contradiction.
(ii) Assume that σ is irreducible and $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right) \neq 0$. Then by (i), we have an injective homomorphism $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right) \otimes \sigma_{2} \hookrightarrow \sigma$. Since σ is irreducible, we have $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right) \otimes \sigma_{2} \simeq \sigma$. Therefore, $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)$ is irreducible.
(iii) Let $\sigma \subset \sigma_{1} \otimes \sigma_{2}$ be a non-zero subrepresentation. As a representation of $H^{\prime}, \sigma_{1} \otimes \sigma_{2}$ is a direct sum of σ_{2}. Hence $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right) \neq 0$. Since $\operatorname{End}_{H^{\prime}}\left(\sigma_{2}\right)=\bar{\kappa}$, we have $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma_{1} \otimes\right.$ $\left.\sigma_{2}\right) \simeq \sigma_{1}$. This is an isomorphism between H / H^{\prime}-representations. Therefore, we have $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right) \subset \sigma_{1}$. Since σ_{1} is irreducible, we have $\operatorname{Hom}_{H^{\prime}}\left(\sigma_{2}, \sigma\right)=\sigma_{1}$. Therefore, $\sigma=\sigma_{1} \otimes \sigma_{2}$. \square

We have the following calculations of Satake parameters.

- If π is a special representation, then $\mathcal{S}(\pi)=\left\{\left(T, \chi_{\text {triv }}\right)\right\}$ where $\chi_{\text {triv }}: X_{T, *, 0}=X_{*} \rightarrow \bar{\kappa}^{\times}$is given by $\lambda \mapsto 1$ [Her11a, Proposition 7.4].
- If π is supersingular with the central character ω_{π}, then $\mathcal{S}(\pi)=\left\{\left(G, \chi_{\omega_{\pi}}\right)\right\}$; here, the homomorphism $\chi_{\omega_{\pi}}: X_{G, *, 0} \rightarrow \bar{\kappa}^{\times}$is defined by $\chi_{\omega_{\pi}}(\lambda)=\omega_{\pi}(\lambda(\varpi))$ [Her11a, Definition 4.7].
Applying Proposition 3.7 and Corollary 3.24 for $\left(M_{1}, M_{2}, \pi_{1}, \pi_{2}\right)=\left(M_{\Pi_{1}}, M_{\Pi_{\sigma_{1}}}, \sigma_{1}, \sigma_{\Lambda, 2}\right)$, we have the following lemma.

Lemma 5.4. We have $\mathcal{S}(I(\Lambda))=\left\{\left(M_{\Pi_{1}}, \chi_{\omega_{\sigma_{1}}}\right)\right\}$; here, $\chi_{\omega_{\sigma_{1}}}: X_{M_{\Pi_{1}}, *, 0} \rightarrow \bar{\kappa}^{\times}$is defined by $\chi_{\omega_{\sigma_{1}}}(\lambda)=\omega_{\sigma_{1}}(\lambda(\varpi))$.

5.2 Irreducibility of the representation

In this subsection, we assume that the derived group of G is simply connected. We prove the irreducibility of $I(\Lambda)$. We need a lemma.

Lemma 5.5. Let $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right) \in \mathcal{P}, V$ an irreducible representation of K and ν its lowest weight. Assume that $\operatorname{Hom}_{K}(V, I(\Lambda)) \neq 0$ and $\alpha \in \Pi$ satisfies $\left\langle\Pi_{1}, \check{\alpha}\right\rangle=0$. Then we have $\omega_{\sigma_{1}} \circ$ $\left.\check{\alpha}\right|_{\mathcal{O} \times}=\nu \circ \check{\alpha}$.

Before the proof, we give a remark on a result of [Gro]. Let $\bar{I}_{1}=\operatorname{red}^{-1}(\bar{U}(\kappa))$ and $\overline{\mathrm{Sp}}_{P}$ the special representation for the finite group $G(\kappa)$. Then we have a K-homomorphism $\overline{\mathrm{Sp}}_{P} \hookrightarrow \mathrm{Sp}_{P}$ and under this embedding, we have $\overline{\operatorname{Sp}}_{P}^{\bar{B}(\kappa)}=\operatorname{Sp}_{P}^{\bar{T}}=\operatorname{Sp}_{P}^{\bar{I}_{1}}$ [Her11a, (7.5)]. (See also the proof of [Gro, Corollary 4.3].) Since $\overline{\operatorname{Sp}}_{P} \hookrightarrow \operatorname{Sp}_{P}$ is a K-homomorphism, we have $\overline{\operatorname{Sp}}_{P}^{\bar{U}(\kappa)}=\overline{\operatorname{Sp}}_{P}^{\bar{I}_{1}} \subset \operatorname{Sp}_{P}^{\bar{I}_{1}}$. Obviously, $\overline{\operatorname{Sp}}_{P}^{\bar{B}(\kappa)} \subset \overline{\operatorname{Sp}}_{P}^{\bar{U}(\kappa)}$. Hence $\overline{\operatorname{Sp}}_{P}^{\bar{U}(\kappa)}=\overline{\operatorname{Sp}}_{P}^{\bar{B}(\kappa)}$. In other words, $T(\kappa)$ acts trivially on $\overline{\operatorname{Sp}}_{P}^{\bar{U}(\kappa)}$.

Proof. Set $V_{1}=V^{\overline{N_{\Lambda}}(\kappa)}$. Then V_{1} is an irreducible representation of $M_{\Lambda} \cap K$ with a lowest weight ν. Moreover, we have $\operatorname{Hom}_{M_{\Lambda} \cap K}\left(V_{1}, \sigma_{\Lambda}\right) \neq 0$.

Let Q be the parabolic subgroup of M_{Λ} corresponding to $\Pi_{1} \cup \Pi_{2}$. Then we have $\sigma_{\Lambda, 2}=$ $\mathrm{Sp}_{Q, M_{\Lambda}}$. Put $L=\left[M_{\Pi_{\sigma_{1}}}, M_{\Pi_{\sigma_{1}}}\right]$. This is an algebraic group and, since we assumed that the derived group of G (hence, also of $M_{\Pi_{\sigma_{1}}}$) is simply connected, we have $L(F)=\left[M_{\Pi_{\sigma_{1}}}(F), M_{\Pi_{\sigma_{1}}}(F)\right]$. Then $\left.\sigma_{\Lambda, 2}\right|_{L}=\operatorname{Sp}_{Q \cap L, L}$. Put $\sigma_{2}=\sigma_{\Lambda, 2}$ and $M_{1}=M_{\Pi_{1}}$.

Fix $\psi \in \operatorname{Hom}_{M_{\Lambda} \cap K}\left(V_{1}, \sigma_{\Lambda}\right) \backslash\{0\}$ and consider V_{1} as a subspace of σ_{Λ}. Let $v \in V_{1}$ be a lowest weight vector. Then we have $v \in \sigma_{\Lambda}^{\bar{I}_{M_{\Lambda}, 1}}$ where $\bar{I}_{M_{\Lambda}, 1}$ is the inverse image of $\left(M_{\Lambda} \cap \bar{U}\right)(\kappa)$ in $M_{\Lambda} \cap K$. Since L acts on σ_{1} trivially, we have $v \in \sigma_{\Lambda}^{\bar{I}_{M_{\Lambda}, 1}} \subset \sigma_{\Lambda}^{\bar{I}_{M_{\Lambda}, 1} \cap L}=\sigma_{1} \otimes \sigma_{2}^{\bar{I}_{M_{\Lambda}, 1} \cap L}$. Let $\overline{\sigma_{2}}$ be the special representation of $M_{\Lambda}(\kappa)$ with respect to the parabolic subgroup $Q(\kappa)$. Then, by the remark before the proof, we have $\overline{\sigma_{2}} \hookrightarrow \sigma_{2}$ and we have $\overline{\sigma_{2}}(\bar{U} \cap L)(\kappa)=\sigma_{2}^{\bar{I}_{M_{A}, 1} \cap L}$. Since $\left\langle\Pi_{\sigma_{1}}, \check{\Pi}_{1}\right\rangle=0$, we have $\bar{U} \cap M_{\Lambda} \simeq(\bar{U} \cap L) \times\left(\bar{U} \cap\left[M_{1}, M_{1}\right]\right)$ as algebraic groups. By the construction, $\left[M_{1}, M_{1}\right](\kappa)$ acts on $\overline{\sigma_{2}}$ trivially. Hence we have $\overline{\sigma_{2}}(\bar{U} \cap L)(\kappa)=\overline{\sigma_{2}}{ }^{\left(\bar{U} \cap M_{\Lambda}\right)(\kappa)}$. By the remark before the proof, $T(\kappa)$ acts on $\overline{\sigma_{2}}\left(\bar{U} \cap M_{\Lambda}\right)(\kappa)$ trivially. Hence $T(\mathcal{O})$ acts on $\sigma_{2}^{\bar{I}_{M_{\Lambda}, 1} \cap L}$ trivially.

Take α as in the lemma. Then $\operatorname{Im} \check{\alpha} \subset Z_{M_{1}}$. Hence for $t \in \mathcal{O}^{\times}, \check{\alpha}(t)$ acts on σ_{1} by the scalar $\omega_{\sigma_{1}}(\check{\alpha}(t))$. By the above argument, $\check{\alpha}(t)$ acts on $\sigma_{2}^{\bar{I}_{M_{\Lambda}, 1} \cap L}$ trivially. Hence it acts on $\sigma_{\Lambda}^{\bar{I}_{M_{\Lambda}, 1}}$ by the scalar $\omega_{\sigma_{1}}(\check{\alpha}(t))$. On the other hand, $\check{\alpha}(t)$ acts on v by the scalar $t^{\langle\nu, \check{\alpha}\rangle}=\nu(\check{\alpha}(t))$. This gives the lemma.

Remark 5.6. If we treat the Satake transform in a natural way (see Remark 2.5), Lemma 5.4 should be $\mathcal{S}(I(\Lambda))=\left\{\left(M_{\Pi_{1}}, \omega_{\sigma_{1}}\right)\right\}$. (We use a notation of Herzig [Her11a, Proposition 4.1].) Hence the above lemma should be a consequence of Lemma 5.4.

Proposition 5.7. For $\Lambda \in \mathcal{P}, I(\Lambda)$ is irreducible.
Proof. Take $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right) \in \mathcal{P}$ and put $M_{1}=M_{\Pi_{1}}$ and $M_{2}=M_{\Pi_{2}}$. Let χ be the algebra homomorphism $\bar{\kappa}\left[X_{*,+}\right] \rightarrow \bar{\kappa}$ corresponding to $\left(M_{1}, \chi_{\omega_{\sigma_{1}}}\right)$. Then $\mathcal{S}(I(\Lambda))=\{\chi\}$. Let $\pi \subset I(\Lambda)$ be a subrepresentation of $I(\Lambda)$. Take an irreducible K-subrepresentation V of π. Then $\emptyset \neq \mathcal{S}(\pi, V) \subset$

Let ν be a lowest weight of V. We take V such that the set $\left\{\alpha \in \Pi \backslash \Pi_{M_{\Lambda}} \mid\langle\nu, \check{\alpha}\rangle=0\right\}$ is minimal. We claim that this set is empty. Assume that there exists $\alpha \in \Pi \backslash \Pi_{M_{\Lambda}}$ such that $\langle\check{\alpha}, \nu\rangle=0$. Put $\nu^{\prime}=\nu-(q-1) \omega_{\alpha}$ and let V^{\prime} be the irreducible K-representation with lowest weight ν^{\prime}. Since $\alpha \notin \Pi_{M_{\Lambda}}$, we have $\alpha \notin \Pi_{\sigma_{1}}$. By the definition of $\Pi_{\sigma_{1}}$, we have:

$$
\begin{aligned}
& -\left\langle\check{\alpha}, \Pi_{M_{1}}\right\rangle \neq 0 ; \text { or } \\
& -\omega_{\sigma_{1}}(\check{\alpha}(\varpi)) \neq 1 \text { or }\left.\omega_{\sigma_{1}} \circ \check{\alpha}\right|_{\mathcal{O}} \times \text { is not trivial. }
\end{aligned}
$$

The above lemma shows that if $\left\langle\check{\alpha}, \Pi_{M_{1}}\right\rangle=0$ then $\left.\omega_{\sigma_{1}} \circ \check{\alpha}\right|_{\mathcal{O} \times}$ is trivial. Therefore we have that $\left\langle\check{\alpha}, \Pi_{M_{1}}\right\rangle \neq 0$ or $\chi_{\omega_{\sigma_{1}}}(\check{\alpha}) \neq 1$. Hence we have $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \simeq c-\operatorname{Ind}_{K}^{G}\left(V^{\prime}\right) \otimes_{\mathcal{H}_{G}\left(V^{\prime}\right)} \chi$ by Theorem 4.1. Therefore, we get a non-zero homomorphism $\mathrm{c}-\operatorname{Ind}_{K}^{G}\left(V^{\prime}\right) \otimes_{\mathcal{H}_{G}\left(V^{\prime}\right)} \chi \rightarrow \pi$. Namely, V^{\prime} is an irreducible K-subrepresentation of π. This contradicts the minimality of $\left\{\alpha \in \Pi \backslash \Pi_{M_{\Lambda}} \mid\right.$ $\langle\check{\alpha}, \nu\rangle=0\}$.

Therefore, we have $\langle\nu, \check{\alpha}\rangle \neq 0$ for $\alpha \in \Pi \backslash \Pi_{M_{\Lambda}}$. Put $V_{1}=V^{\overline{N_{\Lambda}}(\kappa)}$. Since χ is parameterized by $\left(M_{1}, \chi_{\omega_{\sigma_{1}}}\right)$ and $M_{1} \subset M_{\Lambda}, \chi$ factors through $S_{G}^{M_{\Lambda}}$. By [Her11a, Theorem 3.1], c- $\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)}$ $\chi \simeq \operatorname{Ind}_{P_{\Lambda}}^{G}\left(c-\operatorname{Ind}_{M_{\Lambda} \cap K}^{M_{\Lambda}}\left(V_{1}\right) \otimes_{\mathcal{H}_{M_{\Lambda}}\left(V_{1}\right)} \chi\right)$. Therefore, we have $\operatorname{Ind}_{P_{\Lambda}}^{G}\left(c-\operatorname{Ind}_{M_{\Lambda} \cap K}^{M_{\Lambda}}\left(V_{1}\right) \otimes_{\mathcal{H}_{M_{\Lambda}}}\left(V_{1}\right) \chi\right) \rightarrow$ $\pi \hookrightarrow \operatorname{Ind}_{P_{\Lambda}}^{G} \sigma_{\Lambda}$. By Lemma 4.16, the composition is given by a certain homomorphism
$c-\operatorname{Ind}_{M_{\Lambda} \cap K}^{M_{\Lambda}}\left(V_{1}\right) \otimes_{\mathcal{H}_{M_{\Lambda}}\left(V_{1}\right)} \chi \rightarrow \sigma_{\Lambda}$. Since σ_{Λ} is irreducible, this homomorphism is surjective. Therefore, $c-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \rightarrow \operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda}\right)$ is surjective. In particular, $\pi \hookrightarrow \operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda}\right)$ is surjective. Hence $\pi=\operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda}\right)$.

5.3 Classification theorem

We will use the following lemma.
Lemma 5.8. Let $P=M N$ be a parabolic subgroup, σ an irreducible admissible representation of M which is supersingular with respect to $(M \cap K, T, M \cap B)$ and ω_{σ} the central character of σ. Then $\operatorname{Ind}_{P}^{G}(\sigma)$ has a filtration whose graded pieces are $\left\{I\left(\Pi_{M}, \Pi_{2}, \sigma\right) \mid \Pi_{2} \subset \Pi_{\sigma}\right\}$.
Proof. Let $P^{\prime}=M^{\prime} N^{\prime}$ be the standard parabolic subgroup corresponding to $\Pi_{M} \cup \Pi_{\sigma}$. Then by Lemma 3.2, we can extend σ to M^{\prime} such that $\left[M_{\Pi_{\sigma}}(F), M_{\Pi_{\sigma}}(F)\right]$ acts on it trivially. We have $\operatorname{Ind}_{P \cap M^{\prime}}^{M^{\prime}}(\sigma)=\left(\operatorname{Ind}_{P \cap M^{\prime}}^{M^{\prime}} \mathbf{1}_{M}\right) \otimes \sigma$. So we have $\operatorname{Ind}_{P}^{G}(\sigma)=\operatorname{Ind}_{P^{\prime}}^{G}\left(\left(\operatorname{Ind}_{P \cap M^{\prime}}^{M^{\prime}} \mathbf{1}_{M^{\prime}}\right) \otimes \sigma\right)$. The definition of the special representations implies that $\operatorname{Ind}_{P \cap M^{\prime}}^{M^{\prime}} \mathbf{1}_{M^{\prime}}$ has a filtration whose graded pieces are $\left\{\mathrm{Sp}_{Q_{2}, M^{\prime}}\right\}$ where Q_{2} is a parabolic subgroup of M^{\prime} which contains $P \cap M^{\prime}$. Hence $\operatorname{Ind}_{P}^{G}(\sigma)$ has a filtration whose graded pieces are $\left\{\operatorname{Ind}_{P^{\prime}}^{G}\left(\operatorname{Sp}_{Q_{2}, M^{\prime}} \otimes \sigma\right)\right\}$. Let $\Pi_{2}^{\prime} \subset \Pi_{M^{\prime}}$ be a subset corresponding to Q_{2}. Then we have $\operatorname{Ind}_{P^{\prime}}^{G}\left(\operatorname{Sp}_{Q_{2}, M^{\prime}} \otimes \sigma\right)=I\left(\Pi_{M}, \Pi_{2}^{\prime} \backslash \Pi_{M}, \sigma\right)$.
Remark 5.9. If the derived group of G is simply connected, then $I(\Lambda)$ is irreducible by Proposition 5.7. Hence the above lemma gives the composition factors of $\operatorname{Ind}_{P}^{G}(\sigma)$. In particular, it has a finite length. The irreducibility of $I(\Lambda)$ will be proved in $\S 5.4$. Hence the above lemma gives the composition factors of $\operatorname{Ind}_{P}^{G}(\sigma)$ for any G.

Proposition 5.10. Assume that the derived group of G is simply connected. The correspondence $\Lambda \mapsto I(\Lambda)$ gives a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations.

Proof. First, we prove that the map is surjective by induction on $\# \Pi$. Let π be an irreducible admissible representation. Let χ be an element of $\mathcal{S}(\pi)$ and assume that it is parameterized by $\left(M_{1}, \chi_{M_{1}}\right)$. We assume that M_{1} is minimal. If $M_{1}=G$, then π is supersingular. Therefore, we assume that $M_{1} \neq G$. Take an irreducible K-representation V such that $\chi \in \mathcal{S}(\pi, V)$. Let ν be a lowest weight of V. We assume that $\Pi_{-\nu}$ is minimal with respect to the condition $\chi \in \mathcal{S}(\pi, V)$.

Assume that there exists $\alpha \in \Pi_{-\nu} \backslash \Pi_{M_{1}}$ such that $\left\langle\Pi_{M_{1}}, \check{\alpha}\right\rangle \neq 0$ or $\chi_{M_{1}}(\check{\alpha}) \neq 1$. Set $\nu^{\prime}=$ $\nu-(q-1) \omega_{\alpha}$ and let V^{\prime} be the irreducible K-representation with lowest weight ν^{\prime}. Then $\Pi_{-\nu^{\prime}}=\Pi_{-\nu} \backslash\{\alpha\} \subsetneq \Pi_{-\nu}$. By Theorem 4.1, we have $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \simeq \mathrm{c}-\operatorname{Ind}_{K}^{G}\left(V^{\prime}\right) \otimes_{\mathcal{H}_{G}\left(V^{\prime}\right)} \chi$. Hence $\chi \in \mathcal{S}\left(\pi, V^{\prime}\right)$. This contradicts the minimality of $\Pi_{-\nu}$. Therefore, for all $\alpha \in \Pi_{-\nu} \backslash \Pi_{M_{1}}$, $\left\langle\Pi_{M_{1}}, \check{\alpha}\right\rangle=0$ and $\chi_{M_{1}}(\check{\alpha})=1$. From the first condition, $\left\langle\Pi_{-\nu} \backslash \Pi_{M_{1}}, \check{\Pi}_{M_{1}}\right\rangle=0$.

Let $P=M N$ be a parabolic subgroup corresponding to $\Pi_{-\nu} \cup \Pi_{M_{1}}$. First assume that $M \neq G$. Put $V_{1}=V^{\bar{N}(\kappa)}$. Then we have $\mathrm{c}-\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \simeq \operatorname{Ind}_{P}^{G}\left(\mathrm{c}-\operatorname{Ind}_{M \cap K}^{M}\left(V_{1}\right) \otimes_{\mathcal{H}_{M}\left(V_{1}\right)} \chi\right)$ [Her11a, Theorem 3.1]. Recall that we have a surjective homomorphism c- $\operatorname{Ind}_{K}^{G}(V) \otimes_{\mathcal{H}_{G}(V)} \chi \rightarrow \pi$. Hence there exist an irreducible admissible representation σ of M and a surjective homomorphism $\operatorname{Ind}_{P}^{G}(\sigma) \rightarrow \pi$ [Her11a, Lemma 9.9]. By inductive hypothesis, $\sigma=I_{M}\left(\Lambda^{\prime}\right)$ for some $\Lambda^{\prime} \in \mathcal{P}_{M}$. Hence there exists a parabolic subgroup $P_{0}=M_{0} N_{0} \subset P$ and an irreducible admissible representation σ_{0} of M_{0} which is supersingular with respect to ($M_{0} \cap K, T, M_{0} \cap B$) such that σ is a subquotient of $\operatorname{Ind}_{P_{0} \cap M}^{M} \sigma_{0}$ by Lemma 5.8. Hence π is a subquotient of $\operatorname{Ind}_{P_{0}}^{G}\left(\sigma_{0}\right)$. By Lemma 5.8, all composition factors of $\operatorname{Ind}_{P_{0}}^{G}\left(\sigma_{0}\right)$ are $I(\Lambda)$ for some $\Lambda \in \mathcal{P}$. Hence $\pi=I(\Lambda)$ for some $\Lambda \in \mathcal{P}$.

Therefore, we may assume that $\Pi_{-\nu} \cup \Pi_{M_{1}}=\Pi$. Let $P^{\prime}=M^{\prime} N^{\prime}$ be the standard parabolic subgroup corresponding to $\Pi \backslash \Pi_{M_{1}}$. Then for all $\alpha \in \Pi_{M^{\prime}},\langle\nu, \check{\alpha}\rangle=0,\left\langle\alpha, \check{\Pi}_{M_{1}}\right\rangle=0$ and
$\chi_{M_{1}}(\check{\alpha})=1$. Set $L^{\prime}=\left[M^{\prime}, M^{\prime}\right]$. Then the group of coweights $X_{L^{\prime}, *}$ of $L^{\prime} \cap T$ is $\mathbb{Z} \check{\Pi}_{M^{\prime}}$ which is a subgroup of $X_{*} \cap \Pi_{M_{1}}^{\perp}$. Put $X_{L^{\prime}, *,+}=X_{*,+} \cap \mathbb{Z} \check{\Pi}_{M^{\prime}}$. By Lemma 3.19 and Proposition 3.14, we have $\left.\left.\mathcal{S}(\pi, V)\right|_{\bar{\kappa}\left[X_{L^{\prime}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{M^{\prime}}, V^{\bar{N}^{\prime}(\kappa)}\right)\right|_{\bar{\kappa}\left[X_{L^{\prime}, *,+}\right]} \subset \mathcal{S}\left(\left.\pi\right|_{L^{\prime}},\left.V^{\bar{N}^{\prime}(\kappa)}\right|_{L^{\prime} \cap K}\right)$. Since $\left\langle\nu, \check{\Pi}_{M^{\prime}}\right\rangle=0$, $\left.V^{\bar{N}^{\prime}(\kappa)}\right|_{L^{\prime} \cap K}$ is trivial. Therefore, $\left.\chi\right|_{\bar{\kappa}\left[X_{L^{\prime}, *,+}\right]} \in \mathcal{S}\left(\left.\pi\right|_{L^{\prime}}, \mathbf{1}_{L^{\prime} \cap K}\right)$. Set $\chi^{\prime}=\left.\chi\right|_{\bar{\kappa}\left[X_{L^{\prime}, *,+}\right]}$. We have a non-zero homomorphism $\mathrm{c}-\operatorname{Ind}_{L^{\prime} \cap K}^{L^{\prime}} \mathbf{1}_{L^{\prime} \cap K} \otimes_{\mathcal{H}_{L^{\prime}}\left(\mathbf{1}_{L^{\prime} \cap K}\right)} \chi^{\prime} \rightarrow \pi$. Since χ is parameterized by $\left(M_{1}, \chi_{M_{1}}\right), \chi^{\prime}$ is parameterized by $\left(L^{\prime} \cap T, \chi_{M_{1}} \mid X_{L^{\prime}, *}\right)$. Since we have $\chi_{M_{1}}(\check{\alpha})=1$ for all $\alpha \in$ $\Pi_{M^{\prime}}$, we have $\chi_{M_{1}} \mid X_{L^{\prime}, *}=\mathbf{1}_{X_{L^{\prime}, *}}$. Hence χ^{\prime} is parameterized by $\left(L^{\prime} \cap T, \mathbf{1}_{X_{L^{\prime}, *}}\right)$. Therefore, by Proposition 4.7, the set of composition factors of $\mathrm{c}-\operatorname{Ind}_{L^{\prime} \cap K}^{L^{\prime}} \mathbf{1}_{L^{\prime} \cap K} \otimes_{\mathcal{H}_{L^{\prime}}\left(\mathbf{1}_{L^{\prime} \cap K}\right)} \chi^{\prime}$ is $\left\{\operatorname{Sp}_{Q^{\prime}, L^{\prime}} \mid\right.$ $Q^{\prime} \subset L^{\prime}$ is a parabolic subgroup $\}$. Hence there exists a unique parabolic subgroup $P_{2}=M_{2} N_{2}$ such that $\Pi_{M_{1}} \subset \Pi_{M_{2}}$ and $\mathrm{Sp}_{P_{2} \cap L^{\prime}, L^{\prime}} \hookrightarrow \pi$. Let σ_{2} be the special representation $\mathrm{Sp}_{P_{2}}$. Then the restriction of σ_{2} to L^{\prime} is $\operatorname{Sp}_{P_{2} \cap L^{\prime}, L^{\prime}}$. Put $\sigma_{1}=\operatorname{Hom}_{L^{\prime}}\left(\sigma_{2}, \pi\right)$. This is non-zero. By Lemma 5.3, σ_{1} is an irreducible representation of G and $\sigma_{1} \otimes \sigma_{2} \xrightarrow{\sim} \pi$.

We prove that σ_{1} is admissible. Let K^{\prime} be an open compact subgroup and take an open compact subgroup $K^{\prime \prime}$ such that $\sigma_{2}^{K^{\prime \prime}} \neq 0$. Let $K^{\prime \prime \prime}$ be an open compact subgroup which is contained in K^{\prime} and $K^{\prime \prime}$. Then we have $\sigma_{1}^{K^{\prime}} \otimes \sigma_{2}^{K^{\prime \prime}} \subset \sigma_{1}^{K^{\prime \prime \prime}} \otimes \sigma_{2}^{K^{\prime \prime}} \subset\left(\sigma_{1} \otimes \sigma_{2}\right)^{K^{\prime \prime \prime}}=\pi^{K^{\prime \prime \prime}}$. Since π is admissible, $\pi^{K^{\prime \prime \prime}}$ is finite dimensional. Hence the dimension of $\sigma_{1}^{K^{\prime}}$ is finite.

We prove σ_{1} is supersingular with respect to $\left(M_{1} \cap K, T, M_{1} \cap B\right)$ as a representation of M_{1}. Since L^{\prime} acts on σ_{1} trivially, σ_{1} is regarded as a representation of G / L^{\prime}. By Lemma 3.2, $M_{1} \rightarrow G / L^{\prime}$ is surjective. Therefore, $\left.\sigma_{1}\right|_{M_{1}}$ is irreducible and admissible. By inductive hypothesis, $\left.\sigma_{1}\right|_{M_{1}} \simeq I_{M_{1}}\left(\Lambda^{\prime}\right)$ for some $\Lambda^{\prime} \in \mathcal{P}_{M_{1}}$. In particular, $\# \mathcal{S}\left(\left.\sigma_{1}\right|_{M_{1}}\right)=1$. Since $\chi \in \mathcal{S}\left(\sigma_{1} \otimes \sigma_{2}\right)$ is parameterized by $\left(M_{1}, \chi_{M_{1}}\right)$, the element of $\mathcal{S}\left(\left.\sigma_{1}\right|_{M_{1}}\right)$ is parameterized by ($M_{1}, \chi_{M_{1}}^{\prime}$) for some $\chi_{M_{1}}^{\prime}$ by Corollary 3.22. Hence σ_{1} is supersingular.

We prove that the map is injective. Let $\Lambda^{\prime}=\left(\Pi_{1}^{\prime}, \Pi_{2}^{\prime}, \sigma_{1}^{\prime}\right)$ and assume that $I(\Lambda) \simeq I\left(\Lambda^{\prime}\right)$. Then we have $\mathcal{S}(I(\Lambda), V)=\mathcal{S}\left(I\left(\Lambda^{\prime}\right), V\right) \neq \emptyset$ for some irreducible representation V of K. By Lemma 5.4, $\left(M_{\Pi_{1}}, \chi_{\omega_{\sigma_{1}}}\right)=\left(M_{\Pi_{1}^{\prime}}, \chi_{\omega_{\sigma_{1}^{\prime}}}\right)$. Hence $\Pi_{1}=\Pi_{1}^{\prime}$. Let ν be a lowest weight of V. Then by Lemma 5.5, for $\alpha \in \Pi$ such that $\left\langle\Pi_{1}, \check{\alpha}\right\rangle=0,\left.\omega_{\sigma_{1}} \circ \check{\alpha}\right|_{\mathcal{O}^{\times}}=\nu \circ \check{\alpha}=\left.\omega_{\sigma_{1}^{\prime}} \circ \check{\alpha}\right|_{\mathcal{O} \times}$. On the other hand, we have $\omega_{\sigma_{1}} \circ \check{\alpha}(\varpi)=\chi_{\omega_{\sigma_{1}}}(\check{\alpha})=\omega_{\sigma_{1}^{\prime}} \circ \check{\alpha}(\varpi)$. Hence $\omega_{\sigma_{1}} \circ \check{\alpha}=\omega_{\sigma_{1}^{\prime}} \circ \check{\alpha}$. Therefore, we have $\Pi_{\sigma_{1}}=\Pi_{\sigma_{1}^{\prime}}$. Hence $P_{\Lambda}=P_{\Lambda^{\prime}}$.

Now we have $\operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda}\right) \simeq \operatorname{Ind}_{P_{\Lambda}}^{G}\left(\sigma_{\Lambda^{\prime}}\right)$. By Lemma 4.16, we have a non-zero homomorphism $\sigma_{\Lambda} \rightarrow \sigma_{\Lambda^{\prime}}$. Since σ_{Λ} and $\sigma_{\Lambda^{\prime}}$ are irreducible, $\sigma_{\Lambda} \simeq \sigma_{\Lambda^{\prime}}$. Set $L=\left[M_{\Pi_{\sigma_{1}}}(F), M_{\Pi_{\sigma_{1}}}(F)\right]$. As a representation of L, σ_{Λ} is a direct sum of special representations $\operatorname{Sp}_{Q_{2}, L}$ where Q_{2} is the parabolic subgroup of L corresponding to Π_{2}. Hence we have $\Pi_{2}=\Pi_{2}^{\prime}$. Therefore, $\sigma_{\Lambda, 2} \simeq \sigma_{\Lambda^{\prime}, 2}$. Hence we have $\sigma_{1} \simeq \operatorname{Hom}_{L}\left(\sigma_{2, \Lambda}, \sigma_{\Lambda}\right) \simeq \operatorname{Hom}_{L}\left(\sigma_{2, \Lambda^{\prime}}, \sigma_{\Lambda^{\prime}}\right) \simeq \sigma_{1}^{\prime}$. We get $\Lambda=\Lambda^{\prime}$.

5.4 General case and corollaries

Theorem 5.11. Let G be a connected split reductive algebraic group. Then $I(\Lambda)$ is irreducible for all $\Lambda \in \mathcal{P}$ and $\Lambda \mapsto I(\Lambda)$ gives a bijection between \mathcal{P} and the set of isomorphism classes of irreducible admissible representations.

Proof. Take a z-extension $1 \rightarrow Z \rightarrow \widetilde{G} \rightarrow G \rightarrow 1$ of G. For each parabolic subgroup $P=M N$, let \widetilde{M} be the Levi subgroup of the parabolic subgroup of \widetilde{G} corresponding to Π_{M}. Then $1 \rightarrow Z \rightarrow \widetilde{M} \rightarrow M \rightarrow 1$ is a z-extension of M. For each representation π of G, let $\widetilde{\pi}$ be the pullback of π to \widetilde{G}. Then we have $I_{G}\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right)^{\sim}=I_{\widetilde{G}}\left(\Pi_{1}, \Pi_{2}, \widetilde{\sigma_{1}}\right)$. In general, the representation π of G is supersingular with respect to ($\widetilde{K}, \widetilde{B}, \widetilde{T}$) if and only if its pull-back to \widetilde{G} is supersingular with respect to (K, B, T) by Lemma 3.25 ; here, \widetilde{K} is as in Lemma 2.1 and $\widetilde{B}, \widetilde{T}$ are the inverse
images of B, T, respectively. By Proposition 5.7, this is irreducible. Hence $I_{G}(\Lambda)$ is irreducible for $\Lambda \in \mathcal{P}$.

Obviously, we also have that $I_{G}\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right) \simeq I_{G}\left(\Pi_{1}^{\prime}, \Pi_{2}^{\prime}, \sigma_{1}^{\prime}\right)$ if and only if $I_{\widetilde{G}}\left(\Pi_{1}, \Pi_{2}, \widetilde{\sigma_{1}}\right) \simeq$ $I_{\widetilde{G}}\left(\Pi_{1}^{\prime}, \Pi_{2}^{\prime}, \widetilde{\sigma_{1}^{\prime}}\right)$. Hence we have $\Pi_{1}=\Pi_{1}^{\prime}, \Pi_{2}=\Pi_{2}^{\prime}$ and $\widetilde{\sigma_{1}} \simeq \widetilde{\sigma_{1}^{\prime}}$ by Proposition 5.10. Hence we have $\sigma_{1} \simeq \sigma_{1}^{\prime}$.

Let π be an irreducible admissible representation of G. Then there exists $\Lambda_{0}=\left(\Pi_{1}, \Pi_{2}, \sigma_{1,0}\right) \in$ $\mathcal{P}_{\widetilde{G}}$ such that $\widetilde{\pi}=I_{\widetilde{G}}\left(\Lambda_{0}\right)$. Since Z is contained in the center of $M_{\Pi_{1}}$, it acts on $\sigma_{1,0}$ by a character. By the construction of $I_{\widetilde{G}}\left(\Lambda_{0}\right), Z$ acts on $I_{\widetilde{G}}\left(\Lambda_{0}\right) \simeq \widetilde{\pi}$ by the same scalar. It is trivial since Z acts on $\widetilde{\pi}$ trivially. Hence Z acts on $\sigma_{1,0}$ trivially; namely, $\sigma_{1,0} \simeq \widetilde{\sigma_{1}}$ for some representation of G. Hence $\pi=I_{G}\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right)$. This gives us the theorem.

We give corollaries of this theorem.
Corollary 5.12. For any irreducible admissible representation π of $G, \# \mathcal{S}(\pi)=1$.
Proof. Obvious from Lemma 5.4 and Theorem 5.11.
Corollary 5.13. Let π be an irreducible admissible representation of G. Then the following conditions are equivalent.
(i) The representation π is supersingular.
(ii) The representation π is supersingular with respect to (K, T, B).
(iii) The representation π is supercuspidal.

Proof. Take $\Lambda=\left(\Pi_{1}, \Pi_{2}, \sigma_{1}\right) \in \mathcal{P}$ such that $\pi=I(\Lambda)$. Then by Lemma 5.4, π is supersingular with respect to (K, T, B) if and only if $\Pi_{1}=\Pi$. By Lemma 5.8, π is a subquotient of $\operatorname{Ind}_{P_{1}}^{G}\left(\sigma_{1}\right)$. Hence, if π is not supersingular with respect to (K, T, B), then π is not supercuspidal.

Assume that π is a subquotient of $\operatorname{Ind}_{P_{0}}^{G} \sigma_{0}$ for a proper parabolic subgroup $P_{0}=M_{0} N_{0}$ and an irreducible admissible representation σ_{0}. By Lemma 5.8, we may assume σ_{0} is supersingular with respect to (K, T, B). By Lemma 5.8, $P_{\Pi_{1}}=P_{0}$. Hence π is not supersingular with respect to (K, T, B).

Hence (ii) and (iii) are equivalent. Since the property (iii) is independent of a choice of (K, T, B), (i) and (ii) are equivalent.

Corollary 5.14. Let $P=M N$ be a parabolic subgroup and σ a finite length admissible representation of M. Then $\operatorname{Ind}_{P}^{G} \sigma$ has a finite length.

Proof. We may assume σ is irreducible. This follows from Lemma 5.8 and Remark 5.9.
Corollary 5.15. Let $\nu: T \rightarrow \bar{\kappa}^{\times}$be a character. Then $\operatorname{Ind}_{B}^{G}(\nu)$ has a length 2^{C} where $C=$ $\#\left\{\alpha \in \Pi \mid \nu \circ \check{\alpha}=\mathbf{1}_{\mathrm{GL}_{1}}\right\}$. In particular, $\operatorname{Ind}_{B}^{G}(\nu)$ is irreducible if and only if $\nu \circ \check{\alpha} \neq \mathbf{1}_{\mathrm{GL}_{1}}$ for all $\alpha \in \Pi$.

Proof. Notice that any character of T is supersingular. Hence this follows from Lemma 5.8 and Remark 5.9.

Acknowledgements

I thank Florian Herzig and the referee for reading the manuscript and giving helpful comments. I also thank Tetsushi Ito for introducing me to the theory of modulo p representations of p-adic groups and Yoichi Mieda for helpful discussions. This work was supported by JSPS KAKENHI Grant Number 21840016.

References

BL94 L. Barthel and R. Livné, Irreducible modular representations of GL_{2} of a local field, Duke Math. J. 75 (1994), 261-292.
BL95 L. Barthel and R. Livné, Modular representations of GL_{2} of a local field: the ordinary, unramified case, J. Number Theory 55 (1995), 1-27.
BZ76 I. N. Bernšteĭn and A. V. Zelevinskiŭ, Representations of the group GL (n, F), where F is a local non-Archimedean field, Uspekhi Mat. Nauk 31 (1976), 5-70.
Bou02 N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Springer, Berlin, 2002), translated from the 1968 French original by Andrew Pressley.
Bre03 C. Breuil, Sur quelques représentations modulaires et p-adiques de $\mathrm{GL}_{2}\left(\mathbf{Q}_{p}\right)$. I, Compositio Math. 138 (2003), 165-188.
BP12 C. Breuil and V. Paškūnas, Towards a modulo p Langlands correspondence for GL_{2}, Mem. Amer. Math. Soc. 216 (2012).
CG97 N. Chriss and V. Ginzburg, Representation theory and complex geometry (Birkhäuser, Boston, MA, 1997).
Deo77 V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187-198.
Eme10 M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Astérisque (2010), 355-402.
Gro E. Große-Klönne, On special representations of p-adic reductive groups, Preprint, available at http://www.math.hu-berlin.de/~zyska/Grosse-Kloenne/spec.pdf.
HR08 G. Haines and M. Rapoport, On parahoric subgroups, appendix to twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 188-198.
Her11a F. Herzig, The classification of irreducible admissible $\bmod p$ representations of a p-adic GL_{n}, Invent. Math. 186 (2011), 373-434.
Her11b F. Herzig, A Satake isomorphism in characteristic p, Compositio Math. 147 (2011), 263-283.
Hum06 J. E. Humphreys, Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, vol. 326 (Cambridge University Press, Cambridge, 2006).
HV12 G. Henniart and M.-F. Vigneras, Comparison of compact induction with parabolic induction, Pacific J. Math. 260 (2012), 457-495.
Oll06 R. Ollivier, Critère d'irréductibilité pour les séries principales de $\mathrm{GL}_{n}(F)$ en caractéristique p, J. Algebra 304 (2006), 39-72.

Vig08 M.-F. Vignéras, Série principale modulo p de groupes réductifs p-adiques, Geom. Funct. Anal. 17 (2008), 2090-2112.

Noriyuki Abe abenori@math.sci.hokudai.ac.jp
Creative Research Institution (CRIS), Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan

[^0]: Received 2 April 2012, accepted in final form 13 May 2013, published online 9 October 2013.
 2010 Mathematics Subject Classification 22E50 (primary).
 Keywords: p-adic group, modulo p representation, classification.
 This journal is © Foundation Compositio Mathematica 2013.

