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We study the effects of buoyancy, surface-tension gradients and phase boundary on the
stability of a layer of water that is confined between air at the top and a layer of ice at
the bottom. The temperature of the overlying air and flux condition at the free surface of
the water layer are such that the layer is susceptible to both thermal and thermocapillary
instabilities. We perform a linear stability analysis to identify these modes of instability
and investigate the effects of the phase boundary on them. We find that with increasing
thickness of the ice layer, the critical Rayleigh and Marangoni numbers for the instabilities
are found to first decrease and then asymptote to constant values for ice thicknesses much
larger than the thickness of the water layer. In the case of thermocapillary instability, we
find that the thickness of the ice layer has negligible influence on the stability threshold
for dimensionless wavenumber k � 1, and that the presence of an unstably stratified liquid
layer significantly alters the stability threshold for k = O(1). Furthermore, the inclusion
of Marangoni stresses reduces the stability threshold of the thermal instability.

Key words: Marangoni convection, Bénard convection, solidification/melting

1. Introduction

Interactions between fluid flows and phase boundaries are key to understanding a wide
range of phenomena in both the natural (Meakin & Jamtveit 2010) and engineered
environments (Kurz & Fisher 1984). Such interactions occur at scales ranging from the
microscopic (Wettlaufer & Worster 2006) to the macroscopic (Maslowski et al. 2012;
Hewitt 2020), and have a controlling effect on the evolution of many systems, including
the Earth’s interior (Deguen, Alboussiere & Cardin 2013) and its polar regions (McPhee
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2008; Ramudu et al. 2016), and the icy moons (Walker & Schmidt 2015; Soderlund et al.
2020), to name a few.

Fluid flows over phase boundaries are due principally to buoyancy forces generated
because of thermal and/or compositional gradients during phase change (Davis, Müller &
Dietsche 1984; Dietsche & Müller 1985; Huppert 1990; Wettlaufer, Worster & Huppert
1997; Worster 1997; Wykes et al. 2018) and/or mean shear flows (Delves 1968, 1971;
Gilpin, Hirata & Cheng 1980; Coriell et al. 1984; Forth & Wheeler 1989; Feltham &
Worster 1999; Neufeld & Wettlaufer 2008a,b; Bushuk et al. 2019), which in some cases
were introduced to control morphological instabilities. However, in certain instances, when
there is a free surface associated with the liquid layer, its dynamics can also play an
important role in the evolution of the solid phase (Meakin & Jamtveit 2010). Here, we
focus on the effects of a phase boundary on the thermal and thermocapillary instabilities
associated with such a liquid layer. Specifically, we study the interplay between these two
modes of instability in a film of water, which has a temperature of maximum density,
overlying a layer of pure ice. Thermal instability in this case leads to penetrative convection
(Veronis 1963; Toppaladoddi & Wettlaufer 2018).

Thermal instability in the presence of a phase boundary was first studied systematically
by Davis et al. (1984) and Dietsche & Müller (1985) using weakly nonlinear stability
analysis and experiments. The working fluid used in their experiments was cyclohexane,
which has a linear equation of state and hence does not exhibit anomalous behaviour. A key
finding of their study is that the critical Rayleigh number and wavenumber for the onset
of instability first decrease monotonically with the thickness of the solid phase (scaled by
the thickness of the liquid phase) and then asymptote to constant values for large values of
the solid-phase thickness (Davis et al. 1984). Furthermore, the convection patterns (rolls,
hexagons, or a combination of both), as observed on the underside of the solid phase, were
also found to depend on the initial dimensionless thickness of the solid layer. More recent
studies have explored these interactions in the laminar (Favier, Purseed & Duchemin 2019;
Purseed et al. 2020; Toppaladoddi 2021) and turbulent (Esfahani et al. 2018; Ravichandran
& Wettlaufer 2021) regimes.

The effects of a free liquid surface on phase change have been studied to understand
the formation of icicles (Makkonen 1988; Szilder & Lozowski 1994; Short, Baygents &
Goldstein 2006) and stalactites (Short et al. 2005a; Short, Baygents & Goldstein 2005b),
and the rippled patterns on them (Ogawa & Furukawa 2002; Ueno 2007; Camporeale,
Vesipa & Ridolfi 2017). Liquid film over an icicle aids in the transport of latent heat
generated during phase change to the ambient air, whereas over a stalactite it transports
CO2 produced by the chemical reaction between water and CaCO3. In both these cases,
the shear flow is driven by gravity, and the transport across the liquid film is due only
to diffusion. Similar rippled patterns have been observed on a layer of ice subjected to a
shear- and buoyancy-driven turbulent flow over it in the presence of a free surface (Gilpin
et al. 1980; Toppaladoddi & Wettlaufer 2019). Furthermore, in the presence of a free
surface, gradients in surface tension make the liquid layer susceptible to stationary and
oscillatory thermocapillary instabilities (Takashima 1981a,b).

Previous studies have also explored the effects of shear flows on phase-boundary
evolution, with the experiments of Gilpin et al. (1980) being one of the first systematic
studies. In their set-up, a turbulent shear flow of water was maintained over a layer of ice
in a closed-loop water tunnel with a free surface. The temperature boundary conditions
were such that the temperature far from the ice–water interface was above the melting
point. A perturbation was initially introduced at the ice–water interface by melting a
semi-cylindrical groove in the ice layer. Gilpin et al. (1980) observed that under certain
conditions, this initial perturbation grew, leading to a ‘rippled’ surface, which impacted
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Fluid film over a phase boundary

considerably the heat flux to the ice–water interface. Although these effects were attributed
solely to the mean shear flow (Gilpin et al. 1980), Toppaladoddi & Wettlaufer (2019),
using Monin–Obukhov theory, showed that there were substantial buoyancy effects due
to the anomalous behaviour of water. However, the potential effects of a free surface on
the system’s dynamics remain unclear. Camporeale & Ridolfi (2012) studied a free-surface
induced morphological instability of an inclined ice–water interface using a linear stability
analysis, ignoring buoyancy effects in the liquid. For thin films, buoyancy effects are
indeed negligible (Kalliadasis et al. 2011), and thermal effects influence only via interfacial
effects, as was done in the linear stability analysis of Jiang, Cheng & Peng (2020) for a
vertical falling film on an ice sheet. When the assumption of thin films is relaxed, buoyancy
effects will have non-negligible effects. Bushuk et al. (2019) studied experimentally the
formation of ice scallops on an inclined open-channel flow down an ice slab. In their
experiments, the air temperature was maintained at 0 ◦C to ensure that melting happens
predominantly due to heat transfer between water and ice. Suppose that the air temperature
is marginally higher than the melting temperature. In that case, buoyancy effects in
ice–water melting problems where a water layer overrides the ice can be significant due
to the nonlinear equation of state. A 10 cm water layer overlying an ice layer with a
0.2 K temperature difference across the depth would have a Rayleigh number of O(106),
indicating the behaviour to be well into the regime of turbulent convection (Taylor &
Feltham 2004).

The combined effects of the anomalous behaviour of water, the free surface and a
melting bottom boundary are also potentially important in the evolution of melt ponds over
sea ice, especially during the early stages of growth. Melt ponds form due to the melting
of the snow layer overlying sea ice during the transition from winter to summer. This
transition impacts considerably the effective albedo and thus the radiation budget in the
Arctic. Surface melting of the sea ice in the Arctic region accounts for approximately 50 %
of the total melted volume, with lateral and bottom melting accounting for the rest (Maykut
& Perovich 1987). Hence there have been recent efforts to take the convective flow inside
melt ponds into account, with Taylor & Feltham (2004) providing a heat transfer model
for pond–ice systems. Subsequently, Skyllingstad & Paulson (2007) performed large-eddy
simulations to study turbulent convection in various melt pond geometries. Recently, Kim
et al. (2018) made in situ measurements of vertical temperature profiles inside a freshwater
pond and a saline pond to understand the role of salinity on net heat fluxes. They also
performed direct numerical simulations of the freshwater and saline water layers exposed
to air on the top and bottom boundary maintained at the melting point, highlighting the
asymmetric mode of convection due to the nonlinear equation of state. However, in these
simulations, the bottom boundary was assumed to be rigid, ignoring phase change.

These studies on the flow dynamics in melt ponds are in the turbulent regime. However,
to our knowledge, the problem of onset of convection in a liquid layer confined between
a free surface and a phase boundary has not been explored. Hirata, Goyeau & Gobin
(2012) studied the linear stability of under-ice melt ponds, focusing on the onset of
convective instabilities owing to both salt and temperature stratifications. They studied
a three-layer system comprising a melt pond, an ice matrix and an under-ice melt pond,
and found that increasing ice layer thickness enhanced the system’s instability. However,
they considered both the air–water and water–ice boundaries to be rigid. In the absence
of strong temperature gradients within ice, thermal convection modifies dramatically the
geometry of the phase boundary (Ravichandran & Wettlaufer 2021), and the solid phase
in turn has considerable effect on the stability of the liquid layer (Davis et al. 1984;
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Toppaladoddi & Wettlaufer 2019; Toppaladoddi 2021). Hence it is necessary to include
the Stefan condition in the study of fluid flows over phase boundaries.

Some of the key questions that emerge from the studies of Gilpin et al. (1980) and
Hirata et al. (2012) are the following. (i) What are the effects of a free surface on the
evolution of an ice–water system? (ii) How does the system evolve in the presence of
both stably and unstably stratified layers of liquid? (iii) How does the onset of penetrative
convection depend on the thickness of the ice phase? The last question would be an
extension to the studies of Davis et al. (1984) and Dietsche & Müller (1985) for a nonlinear
equation of state. In the current study, we seek to understand these effects systematically
by considering the linear stability of a layer of water confined between a layer of ice at
the bottom and air at the top. The temperature boundary conditions are such that only
convective motions can develop above the critical values of Rayleigh and Marangoni
numbers. The problem set-up considered here is an idealised version of the melt pond
geometry. We do not include an internal heat source and salinity effects, with the latter
being more relevant to melt ponds over first-year ice (Kim et al. 2018), and focus solely on
buoyancy effects due to variations in the temperature field.

The paper is organised as follows. The problem formulation and the equations of motion,
along with the boundary conditions, are discussed in § 2. The details of the linear stability
analysis and the results obtained are discussed in § 3. We then present the conclusions
from our study in § 4.

2. Problem formulation

We consider a layer of water confined between a layer of ice at the bottom and a layer
of air at the top, as shown in figure 1, in two dimensions. The initial thicknesses of the
water and ice layers are h and d, respectively. There are two moving boundaries in the
system: the air–water and ice–water interfaces. In the base state, these interfaces are flat.
When small perturbations are introduced, the instantaneous locations of the ice–water and
air–water interfaces are given by η1(x, t) and h + η2(x, t), respectively. The layer of air,
the ice–water interface and the bottom plate are maintained at temperatures Th, Tc and Ti,
respectively, and are such that Th > Tc > Ti. For simplicity, water and ice are assumed to
have the same density (ρ0) and thermal diffusivity (κ). The equation of state for water is
nonlinear, and is well approximated by (Veronis 1963)

ρ(Tl) = ρ0[1 − α(Tl − Tm)2], (2.1)

where ρ0 is the reference density, Tl is the temperature of water, Tm is the temperature of
maximum density, and α is the coefficient of thermal expansion. This density profile has
a maximum (= ρ0) at Tl = Tm. If Th > Tm, then there is a layer of stably stratified fluid
overlying a layer of unstably stratified fluid (see figure 2). It is also evident from figure 2
that the depths of the stable and unstable layers are dependent on the values of Th and Tm.
With increasing values of Th, the depth of the stably stratified layer increases. Table 1 lists
the values of the relevant physical parameters for an ice–water system. In the following,
we discuss the equations of motion for the different parts of the domain.

2.1. Water
The dynamics in the water layer is described by the continuity, momentum balance and
heat balance equations, which are obtained after making the Boussinesq approximation
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Fluid film over a phase boundary

Water

y

h

η1(x, t)

η2(x, t)

d

x

T = Th

T = Tc

T = Ti

Ice

Figure 1. Schematic of a film of water over an ice sheet. The deformations in the ice–water and air–water
interfaces are exaggerated for better illustration.
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Figure 2. Base state (a) temperature and (b) density profiles of the liquid layer drawn with Th = 8 ◦C,
Tc = 0 ◦C and Tm = 4 ◦C, and the corresponding density profile obtained using (2.1). Plot (b) also shows
the regions of stable and unstable density stratification.

Parameter Value

Density, ρ (kg m−3) 103

Surface tension, σ0 (kg s−2) 7.49 × 10−2

Surface tension gradient, γ (kg s−2 K−1) 0.14 × 10−3

Kinematic viscosity, ν (m2 s−1) 1.5705 × 10−6

Latent heat, Ls (J kg−1) 3.334 × 105

Specific heat, cp (J kg−1 K−1) 4200
Thermal diffusivity, κ (m2 s−1) 1.35 × 10−7

Thermal conductivity, K (J m−1 s−1 K−1) 0.561
Coefficient of thermal expansion, α (◦C−2) 7.68 × 10−6

Heat transfer coefficient, χ (W m−2 K−1) 1000
Acceleration due to gravity, g (m2 s−1) 9.81
Temperature of maximum density, Tm (◦C) 4
Temperature of ice–water interface, Tc (◦C) 0
Temperature of air–water interface, Th (◦C) 8
Temperature of bottom plate, Ti (◦C) −1

Table 1. Estimates of physical parameters for an ice–water–air system at 277 K.
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and are given by (Chandrasekhar 2013)

∇ · u = 0, (2.2)

∂u
∂t

+ u · ∇u = − 1
ρ0

∇P + ν ∇2u + [1 − α(Tl − Tm)2]g (2.3)

and
∂Tl

∂t
+ u · ∇Tl = κ ∇2Tl. (2.4)

Here, u = (u, v) is the velocity filed, ν is the kinematic viscosity, P is the pressure field,
and g is the acceleration due to gravity.

2.2. Ice
In the ice layer, the temperature field Ts is governed by the diffusion equation:

∂Ts

∂t
= κ ∇2Ts. (2.5)

2.3. Ice–water interface
The dynamics of the ice–water interface is governed by the Stefan condition, which – for
small amplitudes of interfacial deformation – is given by

ρ0Ls
∂η1

∂t
= n · [ql − qs]y=η1 . (2.6)

Here, Ls is the latent heat of fusion, qs and ql are the conductive heat fluxes into the ice
from the interface and from the water layer towards the interface, respectively, and n is the
outward unit normal at the interface, given by

n = 1√
1 + (∂η1/∂x)2

(
−∂η1

∂x
, 1
)

. (2.7)

2.4. Boundary conditions
We impose the following boundary conditions at the different interfaces.

(i) The temperature boundary condition at the bottom plate (y = −d) is given by

Ts = Ti. (2.8)

(ii) The velocity and temperature boundary conditions at the ice–water interface (y =
η1(x, t)) are

u · n = u · t = 0, (2.9)

Ts = Tl = Tc. (2.10)

Here, t is the unit tangent at the interface.
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Fluid film over a phase boundary

(iii) The balances of normal and tangential stresses at the air–water interface (y = h +
η2(x, t)) are

P = 2μ[
1 +

(
∂η2

∂x

)2
] [∂u

∂x

(
∂η2

∂x

)2

−
(

∂v

∂x
+ ∂u

∂y

)
∂η2

∂x
+ ∂v

∂y

]

−
σ

∂2η2

∂x2[
1 +

(
∂η2

∂x

)2
]3/2 , (2.11)

μ

[
4

∂u
∂x

∂η2

∂x
−
(

1 −
(

∂η2

∂x

)2
)(

∂u
∂y

+ ∂v

∂x

)]

= γ

(
∂η2

∂x
∂Tl

∂y
+ ∂Tl

∂x

)√
1 +

(
∂η2

∂x

)2

. (2.12)

Here, σ = σ0 − γ (Tl − Th) is the surface tension, and γ = −(dσ/dT)|Ta .
(iv) At the air–water interface (y = h0 + η2(x, t)), we consider Newton’s law of cooling:

Kn · ∇Tl = −χ(Tl − Th). (2.13)

Here, K is the thermal conductivity of water, and χ is the heat transfer coefficient.
A discussion of the above imperfect heat transfer between the overlying air and the
underlying phase can be found in Hitchen & Wells (2016). Although Hitchen &
Wells (2016) derived the boundary condition in the context of sea ice growth, it
remains valid as a model for the interface of a melt pond (Kim et al. 2018).

(v) The kinematic boundary condition at the air–water interface (y = h0 + η2(x, t)) is

∂η2

∂t
+ u

∂η2

∂x
= v. (2.14)

The above system of equations is made dimensionless using the height h as the length
scale, u0 = κ/h as the velocity scale, P0 = ρνκ/h2 as the pressure scale, and ΔT =
Th − Tc as the temperature scale. With the Rayleigh number as Ra = gh3α ΔT2/(νκ), the
capillary number as Ca = ρνκ/(σ0h), the Marangoni number as Ma = γ ΔT h/(ρνκ),
the Prandtl number as Pr = ν/κ , the Stefan number as S = Ls/(cp ΔT), the Biot number
as Bi = χh/K, λ = ΔT/(Tm − Tc) and ζ = α(λ(Tm − Tc))

2, the dimensionless equations
are given by

∇ · u = 0, (2.15)

∂u
∂t

+ u · ∇u = Pr [−∇P + ∇2u − Ra (ζ−1 − θ2
l )y], (2.16)

∂θl

∂t
+ u · ∇θl = ∇2θl, (2.17)

∂θs

∂t
= ∇2θs, (2.18)
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and the dimensionless boundary conditions are:

(i) at y = −d/h,
θs = θi; (2.19)

(ii) at y = η1,

u = v = 0, (2.20)

θs = θl = θc, (2.21)

∂η1

∂t
= − 1

S
√

1 +
(

∂η2

∂x

)2

{
∂

∂y
(θl − θs) − ∂η1

∂x
∂

∂x
(θl − θs)

}
; (2.22)

(iii) at y = 1 + η2,

P = 2[
1 +

(
∂η2

∂x

)2
] [∂u

∂x

(
∂η2

∂x

)2

−
(

∂v

∂x
+ ∂u

∂y

)
∂η2

∂x
+ ∂v

∂y

]

−
[
Ca−1 + Ma (θl − θh)

] ∂2η2

∂x2[
1 +

(
∂η2

∂x

)2
]3/2 , (2.23)

4
∂u
∂x

∂η2

∂x
−
(

1 −
(

∂η2

∂x

)2
)(

∂u
∂y

+ ∂v

∂x

)

= −Ma
(

∂η2

∂x
∂θl

∂y
+ ∂θl

∂x

)√
1 +

(
∂η2

∂x

)2

, (2.24)

1√
1 +

(
∂η2

∂x

)2

{
∂θl

∂y
− ∂η2

∂x
∂θl

∂x

}
= −Bi (θl − θh), (2.25)

∂η2

∂t
+ u

∂η2

∂x
= v. (2.26)

Here, θl = (Tl − Tm)/ΔT , θc = (Tc − Tm)/ΔT , θs = (Ts − Tm)/ΔT and θi = (Ti −
Tm)/ΔT .

The parameter λ, as defined by Veronis (1963), is the ratio between the total depth
of the liquid layer and the depth of the unstably stratified layer of the liquid, and is
equivalent to the definition used here in the Bi → ∞ limit. For water, Tc = 0 ◦C and
Tm = 4 ◦C, thus Th = 4λ ◦C. Additionally, we also have the Galilei number, defined as
Ga = Ra/ζ = gh3/(νκ) (Velarde, Nepomnyashchy & Hennenberg 2001; Lyubimov et al.
2018). However, since Ga cannot be varied independently, we choose not to include it
explicitly in our equations. Figure 3 shows the values of the mentioned non-dimensional
numbers as functions of the film height.
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10–3 10–2

h (m)

10–1 100
10–10

100

1010

Ra = 
gh3α�T2

νκ

Ma = 
γh�T
ρνκ

Bi = 
χh
K Ca = 

ρνκ

σ0h
Ga = 

gh3

νκ

Figure 3. Non-dimensional numbers plotted for a range of film height h with ΔT = 8 ◦C using the physical
parameters listed in table 1.

3. Linear stability analysis

In the base state, there are no fluid motions, and the air–water and ice–water interfaces are
planar. The base-state temperature fields in the ice and water layers are obtained by solving
the steady-state diffusion equation, and the solutions are given by

θb
s = θc + θc − θi

d/h
y, (3.1)

θb
l = θc + Bi

1 + Bi
y, (3.2)

where the superscript b denotes base state. In order for the ice–water interface to remain
planar and fixed in the base state, we require that the heat fluxes at the interface balance.
This leads to

θc − θi

d/h
= Bi

1 + Bi
. (3.3)

We now introduce normal-mode perturbations in the system with wavenumber k and wave
speed c. As a result of this, each physical parameter in the system (say X) is given by
X(x, y, t) = Xb(x) + X̂( y) exp(ik(x − ct)), with Xb denoting the base-state value, and X̂
denoting the infinitesimally small amplitude of the disturbance (|X̂| � |Xb|). Linearising
(2.15)–(2.18) about the base state, we get{

Pr
(D2 − k2)2 + ikc

(D2 − k2)}v̂ − {
2k2 Ra Pr θb

l
}
θ̂l = 0, (3.4)
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{D2 − k2 + ikc
}
θ̂l −

{
dθb

l
dy

}
v̂ = 0, (3.5)

{D2 − k2}θ̂s = −ikcθ̂s, (3.6)

with boundary conditions at y = −d/h

θ̂s = 0, (3.7)

at y = 0

Dv̂ = 0, (3.8)

v̂ = 0, (3.9)

dθb
s

dy
η̂1 + θ̂s = 0, (3.10)

dθb
l

dy
η̂1 + θ̂l = 0, (3.11)

Dθ̂l − Dθ̂s = ikcSη̂1, (3.12)

and at y = 1

(D2 + k2)v̂ = k2 Ma

(
dθb

l
dy

η2 + θ̂l

)
, (3.13)

{
ikcD + Pr

(D2 − 3k2)D}v̂
−Pr k2{Ra

(
ζ−1 − (θb

l )2)+ k2[Ca−1 + Ma (θb
l − θh)

]}
η̂2 = 0, (3.14)

ikcη̂2 + v̂ = 0, (3.15)

(D + Bi) θ̂l + Bi
dθb

l
dy

η̂2 = 0. (3.16)

Here, D denotes the derivative of the perturbation amplitudes with respect to y. The
above system of linear equations is similar to the corresponding system obtained for a
flow between two parallel plates with a stress-free surface, first derived by Veronis (1963)
without the ice layer. The full system of linear equations (3.4)–(3.16) does not admit
an analytical solution. However, as the perturbation temperature field in the ice layer is
decoupled from the momentum and temperature perturbation fields in the fluid layer, the
analytical solution to (3.6), subject to boundary conditions (3.7) and (3.10), is found to be

θ̂s = a1 exp
(√

k(k − ic) y
)+ a2 exp

(−
√

k(k − ic) y
)
, (3.17)

a1 = − Bi
1 + Bi

η̂1
exp

(
2
√

k(k − ic)d/h
)

exp
(
2
√

k(k − ic) d/h
)− 1

, (3.18)

a2 = Bi
1 + Bi

η̂1
1

exp
(
2
√

k(k − ic)d/h
)− 1

. (3.19)
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Fluid film over a phase boundary

3.1. Results
We now study the coupling between thermocapillary and thermal instabilities, and the
impact of the phase boundary on them, by solving the linearised equations (3.4)–(3.6),
along with the boundary conditions (3.7)–(3.16).

3.1.1. Thermocapillary instability
We first wish to understand the effects of convective motions on the thermocapillary
instability. To this end, we follow Takashima (1981a) and study the thermocapillary
instability in the limit of small wavenumbers (k � 1). By expanding the perturbative
quantities in (3.4)–(3.16) in powers of k, and solving the equations to O(k), we obtain
the complex wave speed as

c = c0 + kc1 + O(k2)

≈ 1
η20

∫ 1

0
û0 dy + ik

1
η20

∫ 1

0

(
û1 − η21

η20
û0

)
dy

≈ ik

{(
Bi

1 + Bi

)2 Ra (60 + Bi (34 + 27d/h))

180(1 + Bi + Bi d/h)
+ Bi

1 + Bi
Ra θc(40 + Bi (29 + 25d/h))

60(1 + Bi + Bi d/h)

+ Ra θ2
c

3
− Ga

3
+ Bi

(1 + Bi + Bi d/h)(1 + Bi)
Ma
2

}
. (3.20)

We should note that solutions to the linearised system (3.4)–(3.16) appear only at even
powers of k. This becomes apparent if we replace kc with ω, which results in k appearing
solely at even powers (implying c = kc1 + k3c3 + O(k5)) and is due to the absence of a
background flow. However, in the presence of a background flow, c0 /= 0, as in the case
of falling films (Yih 1963; Dhas & Roy 2022). For brevity, we have not included the
expression for the O(k3) correction to the wave speed here (see figure 5 for comparisons
against the wave speed obtained numerically). The critical Marangoni number Mac is
obtained subsequently by setting c = 0 in the above equation, giving

Mac ≈ (1 + Bi + Bi d/h)(1 + Bi)
Bi

(
2 Ga

3
− 2 Ra θ2

c

3

)
− Bi Ra (60 + Bi (34 + 27d/h))

90(1 + Bi)
− Ra θc(40 + Bi (29 + 25d/h))

30
. (3.21)

If we ignore buoyancy and the phase boundary (by setting d/h = 0), impose an adiabatic
boundary condition at the air–water surface in the base state, and set θc = −1 (which
corresponds to the case where Tm = Th), then the critical Marangoni number becomes

Mac = 2
3 Ga (1 + Bi). (3.22)

The above expression is consistent with the result obtained by Takashima (1981a),
thereby demonstrating that our general expression for Mac reduces to this special case.
An important implication of result (3.21) is that for k � 1, Mac is independent of the
equation of state of the fluid, and is the same for both linear and nonlinear equations of
state. This is also evident from (3.4), where the buoyancy term is O(k2). We will use
this result to discern the effects of penetrative convection on Mac. We note that we are
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Figure 4. Neutral stability curves drawn in the Mac–k plane for d/h = 0 (solid lines), d/h = 1 (dashed lines)
and d/h = 10 (dotted lines) with a linear equation of state (red lines) and a nonlinear equation of state (blue
lines). The insets depict neutral curves in the Mac–d/h plane for wavenumbers k = 10−4, 2 and 10, and
Ra = 6000. The region above the curves is the zone of instability.

interested in the marginal states of the stationary thermocapillary instability, wherein both
the real and imaginary parts of the wave speed c would be zero. This implies that the small
deformations of both the phase boundary and the free surface do not affect the condition
for marginal stability as a consequence of the linearisation (see (3.12) and (3.15)).

The equations corresponding to the nonlinear equation of state (3.4)–(3.6), do not admit
analytical solutions, but the corresponding equations with a linear equation of state do.
Therefore, we first study the system corresponding to the linear equation of state. Note
that since we are looking at a system that is hot on top and cold at the bottom, onset
of thermal instability is not possible when using a linear equation of state. (Details on the
calculations corresponding to the linear equation of state can be found in Appendix A.) We
assign the values of the parameters as Pr = 11.6, λ = 2, S = 10, Ca = 10−6 and Bi = 10
for all of our subsequent calculations, unless specified otherwise. We also choose the value
of Ra as 6000 to study the thermocapillary instability such that it lies below the critical
threshold corresponding to the thermal instability mode for Ma = 0 (see § 3.1.2).

In figure 4, we show the neutral stability curves for d/h = 0 (implying the absence of an
ice layer), d/h = 1 and d/h = 10 calculated using the linear equation of state (red curves).
It is seen that for a fixed value of d/h, the critical Marangoni number decreases with
increasing k. The criticality threshold decreases until we reach k = O(1). This is again
consistent with the results of Takashima (1981a). The insets in figure 4 show Mac as a
function of d/h for different fixed values of k. For k � 1, Mac increases monotonically
with increasing d/h. However, for k = O(1) and k � 1, Mac is independent of d/h. Hence
the effects of phase boundary on the thermocapillary instability for k = O(1) and k � 1
are qualitatively similar to its effects on Rayleigh–Bénard convection (Davis et al. 1984).

Having explored the thermocapillary instability in the absence of penetrative
convection, we now study the effects of a nonlinear equation of state by solving (3.4)–(3.5)
numerically using the Chebyshev spectral collocation method (Trefethen 2000). (Further
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Fluid film over a phase boundary

Numerical results – Veronis (1963) Numerical results – present work

λ = ΔT/(Tm − Tc) Rac kc Rac kc

2 1.868 × 104 4 18 663 4
2.5 4.629 × 104 5.06 46 286 5.1
3 9.558 × 104 6.1 95 571 6.1

3.5 1.771 × 105 7.1 177 043 7.1

Table 2. Comparisons for validation of the stability code with the results by Veronis (1963) for the rigid
boundary case.

10–5 10–4

k
10–3

101

Im
(c

)

103

Figure 5. The imaginary part of the wave speed (Im(c)) associated with the thermocapillary instability mode
obtained numerically (blue line), from the O(k3) long-wave calculation (red solid line) and from the O(k)
long-wave expression in (3.20) (red dashed line). Here, Ra = 6000, Ma = 2 × 108, λ = 2, S = 10 and Bi = 10.

details of the numerical method used are provided in Appendix B.) To validate our
numerical code, we reproduce the results of Veronis (1963) for penetrative convection
with the top and bottom boundaries being rigid. The results from this validation are shown
in table 2, and are in good agreement. Further, we also compare the wave speed obtained
numerically with the long-wave analytical calculation. We obtain excellent agreement in
the long-wave limit (k � 1) between the analytical and numerical calculations, as shown
in figure 5.

The marginal stability curves for the case of the nonlinear equation of state (in blue) are
shown in figure 4. Comparing the Mac values for the linear and the nonlinear equations
of state, we see that there is negligible difference between them for k < O(1) (compare
the blue and red lines in figure 4, and the inset for k = 10−4). The same can be said for
k � 1 (see the inset for k = 10 in figure 4). However, for k = O(1), the values of Mac in
the presence of penetrative convection are significantly lower than those in the absence of
convective motions (see the inset for k = 2 in figure 4).

The reason for this difference in behaviour can be seen by studying the eigenfunctions
of the temperature disturbance, which are shown in figure 6. We see from these images
that for k = 10−4 and k = 10, there is no discernible difference between the temperature
fields in the presence and absence of penetrative convection. In both cases, the temperature
perturbations are mostly confined near the air–water interface. However, for k = O(1),
here represented with k = 2, we see that the Bénard cells penetrate significantly deeper
in the presence of penetrative convection. These findings corroborate what we observed

977 A34-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

95
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.959


D.J. Dhas, A. Roy and S. Toppaladoddi

1.0
(a) (b)

(c) (d)

(e) ( f )

0.5y

0
–π π0 –π π0

–π π0 –π π0

–π π0

x/k x/k
–π π0

1.0

0.5

0

1.0

0.5y

0

1.0

0.5

0

1.0

0.5y

0

1.0

0.5

0

1

0

–1

1

0

–1

1

0

–1

Figure 6. Perturbed temperature field with the streamfunction plotted for d/h = 0.1 and Ra = 6000. The
values chosen for Ma are greater than the corresponding Mac. (a) Linear equation of state, k = 10−4,
Ma = 109. (b) Nonlinear equation of state, k = 10−4, Ma = 109. (c) Linear equation of state, k = 2, Ma =
2000. (d) Nonlinear equation of state, k = 2, Ma = 2000. (e) Linear equation of state, k = 10, Ma = 2000.
( f ) Nonlinear equation of state, k = 10, Ma = 2000.

previously with the neutral stability curves in figure 4. It is clear from these results that the
coupling between penetrative convection and the thermocapillary instability is established
through the disturbance wavenumber. For k � 1, the effects of buoyancy are not felt;
and for k � 1, the disturbances are confined to a region close to the air–water interface.
However, only for k = O(1) do the disturbances penetrate into the unstably stratified
region. When ΔT = 8, the upper half of the fluid layer is stably stratified and the lower half
is unstably stratified. Hence disturbances with k = O(1) are of wavelengths comparable
to the thickness of the liquid layer and therefore get stretched when they encounter the
unstably stratified region.

The results shown in figure 4 were obtained for Ra < Rac in a corresponding system
devoid of thermal effects (see § 3.1.2 for details on the thermal instability mode). We next
probe the thermocapillary instability for Ra = 20 000, such that both the thermocapillary
and thermal instabilities can coexist. The results for such a case are shown in the black
curves of figure 7. We find that this higher value of Ra is stabilising for k � 1, whereas
it is destabilising for k = O(1). This destabilisation is due to the emergence of the
thermal mode of instability. Yet another aspect is the influence of the depth of penetrative
convection dictated by the parameter λ = 2. Decreasing the value of λ increases the depth
of the unstable layer, thereby potentially lowering the critical Rayleigh number for the
thermal mode of instability. Therefore, as expected, we observe similar trends for the
cases λ = 1.5 and 0.5 as with the case Ra = 20 000 – stabilising for small values of the
wavenumber, and destabilising for O(1) values of the wavenumber. For λ = 0.5 (Th = 2),
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Fluid film over a phase boundary
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Figure 7. Neutral stability curves drawn in the Mac–k plane for d/h = 1, λ = 2 (dashed lines), λ = 1.5 (solid
lines) and λ = 0.5 (dotted lines), with Ra = 6000 (blue) and Ra = 20 000 (black), with a nonlinear equation
of state. The insets depict neutral curves in the Mac–d/h plane for wavenumbers k = 10−4 and 10. The region
above the curves is the zone of instability.

no penetrative convection exists since the water layer is unstably stratified along its entire
depth. The lack of any critical Marangoni number in the region of O(1) wavenumbers in
figure 7 is due to the thermal mode of instability taking over to destabilise the system. We
note that for λ = 1.5 and 0.5, the critical Rayleigh number corresponding to the thermal
instability mode is lower than 6000. Further details on the thermal instability mode are
provided in § 3.1.2.

In addition to the effects of the nonlinear equation of state, we also explore the impact
of the Stefan number (S) on the thermocapillary instability. Figure 8 shows the neutral
stability curves plotted for S = 1 and 10. From (3.12), it is clear that variations in S will not
have any impact on the stability threshold associated with the stationary thermocapillary
instability mode being studied here. This is because S drops out of (3.12), since the wave
speed is zero at the marginal states of the stationary instability mode. However, Re(c) /= 0
for the oscillatory instability mode. Therefore, we probe the influence of Stefan number by
computing the neutral curves for the oscillatory instability (see the inset in figure 8). We
find that the region of instability expands with an increase in Stefan number from S = 1
to S = 10. We also find the instability region expands significantly with an increase in
thickness of the ice layer. Despite this, it is important to note that the oscillatory instability
is not particularly relevant to ice–water systems since we find that it is triggered only
at Marangoni numbers of O(108) or higher. Such Marangoni numbers are associated
with water layers that are a few metres in thickness (see figure 3). Regnier, Dauby &
Lebon (2000), in their analysis, also note that the oscillatory thermocapillary instability
is not possible under realistic conditions on Earth under the Boussinesq approximation.
Therefore, we restrict the study of the oscillatory thermocapillary instability only to
highlight the influence of the Stefan number. As expected, we find no perceivable
change in the critical Marangoni numbers corresponding to the stationary thermocapillary
instability.
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Figure 8. Neutral stability curves drawn in the Mac–k plane for d/h = 1 (dashed lines) and d/h = 10 (dotted
lines), with S = 10 (blue) and S = 1 (red), with a nonlinear equation of state. The bottom left inset shows the
oscillatory thermocapillary instability, for which the region enclosed by the curves is unstable. The other insets
depict neutral curves in the Mac–d/h plane for wavenumbers k = 2 and 10, and Ra = 6000.

3.1.2. Thermal instability
The Marangoni stresses are not the only source of instability in this system. As noted
previously, due to the anomalous behaviour of water, we have a base state in which a part of
the liquid layer is unstably stratified. We now study this thermal mode of instability in the
absence of Marangoni stresses (Ma = 0). In figures 9(a) and 9(b), the dependence of the
critical Rayleigh number Rac and critical wavenumber kc on d/h is shown for Bi = 10 and
100. For a fixed value of Bi, we find that both Rac and kc first decrease with increasing d/h,
and then asymptote to constant values (Rac ≈ 10 248, kc ≈ 2.85 for Bi = 10, and Rac ≈
13 840, kc ≈ 3.3 for Bi = 100). Thus we find that the presence of the phase boundary
has a destabilising effect. This is again qualitatively consistent with the results of Davis
et al. (1984) for Rayleigh–Bénard convection over a phase boundary. The reason for this
destabilising effect is that in the limit d/h → 0, the ice layer becomes a perfect conductor,
and the classical case is recovered. However, in the opposite limit, d/h → ∞, the ice layer
becomes a poor conductor and more susceptible to deformations, and hence less stable
(Davis et al. 1984).

Between the two values of Bi studied, we find that the higher value yields more
stability (see figure 9a). The reason for this is the following. When the free surface is
insulated (Bi = 0), temperature perturbations are easier to set up. However, when the free
surface can convect heat, as would be the case for large Bi, any temperature perturbations
introduced would decay (Nield 1964). This is evident from the thermal boundary condition
prescribed at the free surface (see (3.16)). Thus larger values of the temperature gradient
are required to destabilise the system for increasing values of Bi (Nield 1964).

We next study the influence of the depth of penetrative convection on the system’s
stability. Figures 10(a) and 10(b) show the critical Rayleigh number and wavenumber,
respectively, for three values of λ, namely 0.5, 1.5 and 2. We find that in the cases
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Figure 9. Neutral stability curves for Biot numbers Bi = 10 (solid lines) and Bi = 100 (dashed lines), with
Ma = 0. The region above the curves is the zone of instability.
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Figure 10. Neutral stability curves for λ = 0.5 (red), λ = 1.5 (black) and λ = 2 (blue), with Bi = 10 and
Ma = 0. The region above the curves is the zone of instability.

λ = 0.5 and 1.5, the stability thresholds drop significantly in comparison to the case
λ = 2, throughout the range of d/h explored. As discussed previously, lowering the value
of λ would increase the depth of the unstable layer, thereby producing this destabilising
effect. These observations are also consistent with the results obtained by Veronis (1963).
Furthermore, we also studied the influence of the Stefan number on the thermal instability
mode, and found that this does not affect the critical Rayleigh number. This is qualitatively
consistent with the results of Toppaladoddi & Wettlaufer (2019).

To understand the influence of Marangoni stresses on the thermal instability, we now
solve the equations with Ma > 0. In figures 11(a) and 11(b), the dependence of Rac
on Ma and k is shown, respectively. We see that an increase in Ma decreases the
stability threshold. Hence, as noted by Nield (1964), the Marangoni stresses and the
destabilising buoyancy forces act together to destabilise the system. Beyond a critical
Marangoni number, Rac drops to zero. This is attributed to the thermocapillary instability
becoming dominant. This is evident from the neutral curves shown figure 11(a). The switch
from thermal to thermocapillary instability is seen to occur at Ma ≈ 550, 450 and 430
for d/h = 0, 1 and 10, respectively. The value Ma = 500 was chosen to highlight that
Rac = 0 for d/h = 1 and 10, but Rac is non-zero for d/h = 0. Therefore, the neutral
curves corresponding to the thermocapillary and thermal modes (marked as ‘TC’ and
‘T’, respectively, in figure 11b) can be seen to be well separated for d/h = 0, but merged
together for d/h = 1 and 10. We also find that the stability threshold decreases further in
the presence of an ice layer.
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Figure 11. Neutral stability curve in (a) the Ra–Ma plane and (b) the Ra–k plane, for d/h = 0 (solid lines),
d/h = 1 (dashed lines), d/h = 10 (dotted lines), Ma = 0 (blue lines) and Ma = 500 (red lines). In (b), ‘TC’
and ‘T’ denote the thermocapillary and thermal modes, respectively. The region outside the curves in (a) and
inside the curves in (b) is the zone of instability.
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Figure 12. Perturbed temperature field with the streamfunction plotted for (a) Ma = 0 and (b) Ma = 104.
The values of other parameters are k = 3, Ra = 2 × 104 and d/h = 0.1.

The effects of the Marangoni stresses can also be seen in the temperature fields, which
are shown in figure 12. In the absence of Marangoni stresses, we obtain the convection
rolls set-up by the unstable stratification in the lower part of the fluid layer. However, for
Ma = 104, we see additional rolls appearing near the free surface, indicating the onset of
thermocapillary instability.

4. Conclusions

In this study, we explored the coupling between thermal and thermocapillary instabilities
in a thin layer of liquid, and the impacts of an adjoining free liquid surface and a phase
boundary on these instabilities. This was done by performing linear stability analysis on
the Boussinesq equations with linear (Chandrasekhar 2013) and quadratic (Veronis 1963)
equations of state for water.

We first explored the role of Marangoni stress, generated by surface-tension gradients,
on the stability of the liquid layer. Since the inception of this instability is independent
of thermal convection and is tractable analytically, we first studied the corresponding
system using a linear equation of state. There are two possible types of thermocapillary
instability – a stationary instability characterised by ‘steady convection rolls’, and an
oscillatory instability (Takashima 1981b; Kalliadasis et al. 2011). Here, we focused
solely on stationary thermocapillary instability except for a specific case to highlight the
influence of the Stefan number. Consistent with the observations of Takashima (1981a),
we found that Mac decreases with increasing wavenumber, and that it is independent of
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the thickness of the ice layer for k = O(1) and k � 1 (see figure 4). However, for k � 1,
we find that Mac increases monotonically with d/h.

Next, in order to understand the effects of the unstably stratified layer on the
thermocapillary instability, we included the nonlinear equation of state in the Boussinesq
equations. Due to the analytical intractability of the resulting equations, we solved them
numerically. The results obtained with the nonlinear equation of state were found to be
qualitatively consistent with those obtained using the linear equation of state. However,
for k = O(1), the inclusion of the unstably stratified layer lowered the stability threshold
significantly. We should note here that triggering the thermocapillary instability for k � 1
for an ice–water system is difficult (Rednikov et al. 2000). Hence this instability can appear
only for k � 1 in an ice–water system.

After exploring the thermocapillary instability, we sought to understand the thermal
instability in this system. This instability, as noted earlier, is due to the anomalous
behaviour of water. We first studied the thermal instability by switching off the Marangoni
stresses. Davis et al. (1984) had studied a similar system previously, albeit the working
material being cyclohexane, with the solid layer overlying the liquid layer with no free
surface. They observed that both Rac and kc first decrease and then asymptote to constant
values with increasing thickness of the solid layer. Our calculations revealed similar trends,
thus highlighting the destabilising effect of the ice layer (see figure 9). We also found that
an increase in Bi leads to an increase in Rac. This implies that the surface cooling has a
stabilising effect on the system.

Finally, we calculated the stability thresholds over a range of Ma to ascertain the role
of Marangoni stresses on the thermal instability. It is known that Marangoni stresses
complement the buoyancy forces in driving the thermal instability (Nield 1964). We
found that increasing Ma leads to a decrease in Rac (see figure 11), and that beyond a
critical value of Ma, the thermocapillary instability takes over and destabilises the system
independent of the value of Ra.

In the linear stability analysis of systems with moving boundaries, the deformations at
these boundaries are assumed small and the relevant boundary conditions are linearised.
This raises the question of what potential role these small deformations might play in
determining the stability of the system. Takashima (1981a) studied the effect of the
free-surface deformations on the stationary thermocapillary instability, and found that they
were relevant only when Ga < 120. Such low Ga values correspond typically to the water
layers of thickness less than 0.12 mm (Takashima 1981a; Velarde et al. 2001). Similar
results were obtained by Regnier et al. (2000), who noted that the influence of surface
deformations is bound to be minimal as long as liquid layers are of the order of 1 cm
or higher in thickness, irrespective of the fluid’s viscosity. The same conclusion can be
drawn from the work by Lyubimov et al. (2018), who used a non-Boussinesq formulation
to perform a linear stability analysis and showed that the capillary number should be
� 8 × 10−4 (corresponding to ≈3.5 μm thick water layer) for surface deformations to
influence the stability characteristics. Similarly, previous linear stability studies in the
literature have shown the lack of influence of the deformations of phase boundary on the
marginal stability characteristics (Char & Chiang 1994).

In this idealised study, we have investigated the stability characteristics of the system by
exploring the parameter space characterised by a set of relevant dimensionless numbers.
However, in real systems, the control parameters are usually the free-surface temperature
Th, the thickness of the water layer h, and the thickness of the ice layer d. To relate our
study to real systems, we perform a stability analysis by fixing the values of the constant
physical parameters as listed in table 1. Figure 13 shows the contour map of the critical
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Figure 13. Contour plots (a) without surface-tension gradients, and (b) with surface-tension gradients, of the
critical wavenumber in the Th–h plane for an air–water–ice system with d/h = 1, where ‘S’ denotes the stable
region. The inclusion of surface-tension gradients extends the region of instability and lowers the critical
wavenumbers by triggering the thermocapillary mode of instability.

wavenumbers plotted in the Th–h plane. When the surface-tension gradients are absent,
the system can be destabilised solely by the thermal mode. In this case, we find that
the water layer thickness must be �5.6 mm to trigger the thermal mode of instability.
However, when the surface-tension gradient is included in the calculations, we find that
the thermocapillary mode of instability destabilises the system in the entire explored range
of parameters Th = 2–6 ◦C and h = 1–20 mm at wavenumbers lower than the critical
wavenumber associated with the thermal instability mode.

In § 1, we discussed the relevance of our study to the evolution of melt ponds. However,
as noted earlier, the flow in a typical melt pond is confined in a non-uniform space, with
large Ra, and is often saline, which can alter the melting temperature of ice (Eicken
1994; Lüthje et al. 2006; Gourdal et al. 2018; Kim et al. 2018). Previous studies in the
literature have probed the effects of temperature and salt stratification (Carr 2003; Kim
et al. 2018), and ice porosity (Hirata et al. 2012), sans a combination of a phase boundary
and a free deformable interface. Nevertheless, this study provides a starting point for
further investigation on the influence of these components, together with the wind forcing
(Fetterer & Untersteiner 1998), on melt ponds and other fluid flows over phase boundaries
in general.

In seeking to understand the effects of thermal and thermocapillary instabilities over
a phase boundary, we have not included a mean flow. However, the presence of a mean
flow has profound effects on both the stability and the morphology of the phase boundary
(Gilpin et al. 1980; Meakin & Jamtveit 2010; Claudin, Durán & Andreotti 2017). The effect
of a mean flow on the stability of such systems in bounded domains has been studied in
different settings (Gilpin et al. 1980; Hindmarsh 2004; Shapiro & Timoshin 2006, 2007;
Toppaladoddi & Wettlaufer 2019; Jiang et al. 2020; Satbhai & Roy 2020; Couston et al.
2021; Wang et al. 2021), but the effects of penetrative convection on free-surface flows
in the presence of mean shear remains unexplored. Such a system could be susceptible
to four different modes of instability – surface (long-wave interfacial instability), shear
(short-wave, high-inertia instability), thermal (stemming from penetrative convection) and
thermocapillary mode. The study of such a system will be a part of our future work.
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Appendix A. Thermocapillary instability – linear equation of state

With a linear equation of state, (3.4) and (3.14) become{
Pr
(D2 − k2)2 + ikc

(D2 − k2)}v̂ − {
k2 Ra Pr

}
θ̂l = 0, (A1){

ikcD + Pr
(D2 − 3k2)D}v̂

− Pr k2{Ra
(
ζ−1 − θb

l
)+ k2[Ca−1 + Ma

(
θb

l − θh
)]}

η̂2 = 0, (A2)

respectively, while the remaining set of equations remains the same. Since the density
increases linearly with increasing temperature, Th = Tm. After some algebra, (A1) and
(3.5) are combined and written as{

Pr
(D2 − k2)3 + (

1 + Pr
)
ikc
(D2 − k2)2 − k2c2(D2 − k2)− k2 Ra Pr

dθb
l

dy

}
v̂ = 0.

(A3)
Similarly, the boundary conditions become at y = 0

Dv̂ = 0, (A4)

v̂ = 0, (A5){
Pr
(D2 − k2)2D + ikc

(D2 − k2)D}v̂ − k2 Ra Pr
(Dθs + ikcSη̂1

) = 0, (A6)

η1 = − 1 + Bi
k2 Ra Pr Bi

{
Pr
(D4 − 2k2D2 + k4)+ ikc

(D2 − k2)}v̂, (A7)

and at y = 1{
Pr
(D2 − k2)2 + ikc

(D2 − k2)− Ra Pr
Ma

(D2 + k2)}v̂ − k2 Ra Pr
Bi

1 + Bi
η̂2 = 0, (A8){

ikcD + Pr
(D2 − 3k2)D}v̂

−Pr k2{Ra
(
ζ−1 − θb

l
)+ k2[Ca−1 + Ma

(
θb

l − θh
)]}

η̂2 = 0, (A9){
Pr
((D2 − k2)2D + Bi

(D2 − k2)2)+ ikc
(D2 − k2)(D + Bi

)}
v̂

+k2 Ra Pr
Bi2

1 + Bi
η̂2 = 0, (A10)

ikcη̂2 + v̂ = 0. (A11)

The solution to the above system of equations sought in the form ∼ Ci exp(λiy) is

v̂(s, y) =
6∑

i=1

exp (λiy) Ci(s), (A12)

where s = ikc, Ci are constants, and λi are the eigenvalues. Substituting (A12) in boundary
conditions (A4)–(A11), we obtain a dispersion matrix. Since we are interested in the
marginal states of the stationary thermocapillary mode, we set c = 0 and subsequently
calculate the critical value of the Marangoni number.
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Appendix B. Numerical method for solving the linear stability equations

Equations (3.4)–(3.16) are solved numerically for the eigenvalue c using a spectral
collocation method. For this, we first use Lagrange polynomials to approximate the
solution for v̂, θ̂l and θ̂s, and discretise the physical domain using Chebyshev grid points
(Trefethen 2000):

v̂ =
N−1∑
j=0

Lijv̂j, θ̂l =
N−1∑
j=0

Lijθ̂lj, θ̂s =
N−1∑
j=0

Lijθ̂sj, c =
N−1∑
j=0

Lijcj. (B1a–d)

Here, v̂j, θ̂lj, θ̂sj and cj are v̂, θ̂l, θ̂s and c at Chebyshev grid points zj = cos( jπ/N), and
N is the number of collocation points used to discretise the domain. The Chebyshev grid
points lie in the interval [−1, 1], whereas in the physical domain of the problem, the fluid
phase lies in the interval [0, 1] and the solid phase lies in the interval [−d/h, 0]. Therefore,
we map the Chebyshev grid points to the domains [0, 1] and [−d/h, 0] using the relation
yj = 0.5(1 − zj) and yj = −0.5d/h(1 + zj). The resulting system can be written in the
form of a generalised eigenvalue problem as

A · q = cB · q, (B2)

where q = {v̂j, θ̂lj, θ̂sj, η̂1, η̂2}, and A and B are matrices of order 3N + 5. We then proceed
to solve the above eigenvalue problem using the MATLAB subroutine eig. To obtain
converged solutions, we begin with N = 30, and increase N until the eigenspectrum
converges. We find that the converged eigenspectrum is obtained typically at N ≈ 40.
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