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Bounds on Multiple Self-avoiding Polygons

Kyungpyo Hong and Seungsang Oh

Abstract. A self-avoiding polygon is a lattice polygon consisting of a closed self-avoiding walk on a
square lattice. Surprisingly little is known rigorously about the enumeration of self-avoiding poly-
gons, although there are numerous conjectures that are believed to be true and strongly supported
by numerical simulations. As an analogous problem to this study,we considermultiple self-avoiding
polygons in a conûned region as a model for multiple ring polymers in physics. We ûnd rigorous
lower and upper bounds for the number pm×n of distinct multiple self-avoiding polygons in the
m × n rectangular grid on the square lattice. For m = 2, p2×n = 2n−1 − 1. And for integers m, n ≥ 3,

2m+n−3( 17
10 )
(m−2)(n−2) ≤ pm×n ≤ 2m+n−3( 31

16 )
(m−2)(n−2) .

1 Introduction

_e enumeration of self-avoiding walks and polygons is one of the most important
and classic combinatorial problems [3,10]. _esewere ûrst introduced by the chemist
Paul Flory [2] as models of polymers in dilute solution. _e exact number of self-
avoidingwalks and polygons is still undetermined, although there aremathematically
proven methods for approximating them.
A particularly interesting polygon model of a ring polymer with excluded volume

is a lattice polygon that sits in a regular lattice, usually the two dimensional square
lattice or the three dimensional cubic lattice. Here we consider the problem of self-
avoiding polygons (SAP) on the square lattice Z2. Let pn denote the number of dis-
tinct SAPs of length n, counted up to translational invariance on the square latticeZ2.
Hammersley [4] proved that the number pn grows exponentially: more precisely, the
limit µ = limn→∞ p1/2n

2n is known to exist. Furthermore, it is generally believed [10]
that p2n ∼ µ2nnα−3 as n → ∞. Here µ is called the connective constant of the lattice,
and α is the critical exponent. _e reader can ûndmore details in [7].

In this paper, we are interested in another point of view of scaling arguments of
multiple polygons on the square lattice, related to the size of a rectangle containing
them instead of their length; see Figure 1. Let Zm×n denote the m × n rectangular
grid on Z2, and let pm×n be the number of distinct multiple self-avoiding polygons
(MSAP) inZm×n . Here twoMSAPs are considered to be diòerent even though one can
be translated upon the other. Note that in physics they serve as amodel for multiple
ring polymers in a conûned region.
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Figure 1: Two diòerent viewpoints of an MSAP model in the conûned square lattice Zm×n and
in themosaic system (explained in Section 2).

It is relatively easy to calculate that p2×n = 2n−1 − 1 for m = 2. But, for larger m, n
of pm×n , the problem becomes increasingly diõcult due to its non-Markovian nature.
_e main purpose of this paper is to establish rigorous lower and upper bounds for
pm×n .

_eorem 1.1 For integers m, n ≥ 3,

2m+n−3( 17
10

)
(m−2)(n−2)

≤ pm×n ≤ 2m+n−3( 31
16

)
(m−2)(n−2)

.

Note that various types of single self-avoiding walks in a conûned square lattice
were investigated in [1], particularly a class of self-avoiding walks that start at the
origin (0, 0), end at (n, n), and are entirely contained in the square [0, n] × [0, n]
on Z2. _e number of distinct walks is known to grow as λn2+o(n2). _ey estimate
λ = 1.744550 ± 0.000005 as well as obtain strict upper and lower bounds, 1.628 < λ <
1.782. In our model,

1.7 ≤ lim
n→∞(pn×n)1/n2

≤ 1.9375,

provided the limit exists.

2 Adjusting to the Mosaic System

A mosaic system was introduced by Lomonaco and Kauòman [9] to give a precise
and workable deûnition of quantum knots. _is deûnition is intended to represent
an actual physical quantum system. _e deûnition of quantumknotwas based on the
planar projections of knots and the Reidemeister moves. _ey model the topological
information in a knot by a state vector in a Hilbert space that is directly constructed
from knot mosaics. Recently Hong, Lee, Lee and Oh announced several results on
the enumeration of various types of knot mosaics in the conûned mosaic system in
the series of papers [5,6, 8, 11].
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We begin by explaining the basicnotion ofmosaicsmodiûed for polygons inZm×n .
_e following seven symbols are called mosaic tiles (for polygons). In the original
deûnition in mosaic theory, there are eleven types ofmosaic tiles, allowing four more
mosaic tiles with two arcs.

T1 2 3 4 5 6 7TTTTTT

Figure 2: Seven mosaic tiles modiûed for polygons and connection points in amosaic tile.

For positive integers m and n, an (m, n)-mosaic is an m × n matrix M = (M i j) of
mosaic tiles. _e trivial mosaic is amosaicwhose entries are all T1. A connection point
of amosaic tile is deûned as themidpoint of a tile edge that is also the endpoint of a
portion of graph drawn on the tile, as shown in the rightmost tile in Figure 2. Note
that T1 has no connection point and each of the six mosaic tiles T2 through T7 have
two. Amosaic is called suitably connected if any pair ofmosaic tiles lying immediately
next to each other in either the same row or the same column have or do not have
connection points simultaneously on their common edge. A polygon (m, n)-mosaic
is a suitably connected (m, n)-mosaic that has no connection point on the boundary
edges. Examples in Figure 3 are a non-polygon (4, 4)-mosaic and a polygon (4, 4)-
mosaic.

Figure 3: Examples of a non-polygon (4, 4)-mosaic and a polygon (4, 4)-mosaic

As drawn by solid line segments in Figure 1, we can consider aMSAP as a polygon
(m, n)-mosaic by shi�ing the rectangular grid Z(m+1)×(n+1) horizontally and verti-
cally by − 1

2 . In themosaic system, polygons transpass unit length edges of themosaic
system and run through the centers of unit squares. _e following one-to-one con-
version arises naturally.

One-to-one conversion _ere is a one-to-one correspondence between MSAPs in
Zm×n and polygon (m, n)-mosaics, except for the trivial mosaic.

Note that the trivial mosaic contains no graph, and so is not counted in pm×n .
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3 Quasimosaics and Growth Ratios

In this section, we deûne amodiûed version of quasimosaics, which were introduced
in [6], and their growth ratios. We arrange all mosaic tiles as a sequence such that
their pair-indices of tiles are ordered as (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), etc.,
and ûnished at (m, n). More precisely, the pair-index (i , j) follows (i− 1, j+ 1) if i > 1
and j < n, or otherwise, either (i + j − 2, 1) for i + j − 2 ≤ m or (m, i + j − m − 1)
for i + j − 2 > m. Let a(i , j) denote the predecessor of the pair-index (i , j) in the
sequence.
An (i , j)-quasimosaic is a portion of a polygon (m, n)-mosaic obtained by taking

all mosaic tiles M1,1 through M i , j in the sequence as drawn in Figure 4. Note that a
quasimosaic is also suitably connected. Its (i , j)-entryM i , j is called the leadingmosaic
tile of the (i , j)-quasimosaic. Furthermorewe deûne two kinds of clingmosaics of the
(i , j)-quasimosaic. An l -cling mosaic for M i , j is a submosaic consisting of three or
fewer mosaic tiles M i , j−2, M i , j−1 and M i+1, j−2 (they may not exist when j = 1 or 2).
And a t-cling mosaic is a submosaic consisting of ûve or fewer mosaic tiles M i−2, j ,
M i−2, j+1, M i−2, j+2, M i−1, j and M i−1, j+1. _e letters l- and t- mean the le� and the
top, respectively. _e le�most and the top boundary edges of cling mosaics that are
not contained in the boundary edges of themosaic system are called contact edges.

Mi,j

(i,j)aM

t-cling mosaic

l-cling mosaic

leading mosaic tile
Mi,j

contact edges

(i,j)-quasimosaic

Figure 4: A (4, 5)-quasimosaic and two cling mosaics.
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Let Q i , j denote the set of all possible (i , j)-quasimosaics. By deûnition, Qm ,n is
the set of all polygon (m, n)-mosaics. It is an exercise for the reader to show that
∣Q1,1∣ = 2, ∣Q1,2∣ = 4, ∣Q2,1∣ = 8, ∣Q1,3∣ = 16, ∣Q2,2∣ = 28 and ∣Q3,1∣ = 56, provided that
m, n ≥ 4. Wewill constructQm ,n fromQ1,1 by adding leadingmosaic tiles inductively.
Focus on the ratios of growth of the number of sets at each step. Deûne a growth ratio
r i , j of the set Q i , j over Qa(i , j) as

r i , j =
∣Q i , j ∣

∣Qa(i , j)∣
,

with the assumption that ∣Qa(1,1)∣ = 1. _us, r1,1 = 2, r1,2 = 2, r2,1 = 2, r1,3 = 2, r2,2 = 7
4 ,

and r3,1 = 2. By deûnition,

(3.1) pm×n = ∣Qm ,n ∣ − 1 =∏
i , j

r i , j − 1.

For simplicity of exposition, amosaic tile is called l -cp if it has a connection point
on its le� edge, and, similarly, t, r, or b-cp when on its top, right, or bottom edge,
respectively. Sometimeswe use two letters, for example, l t-cp in the case of both l-cp
and t-cp. Also, we use the sign ̃ for negation, so that, for example, t̃-cp means not
t-cp, l̃ t̃-cpmeans both l̃-cp and t̃-cp, and l̃ t-cp (which is diòerent from l̃ t̃-cp) means
not l t-cp, i.e., l̃ t, l t̃, or l̃ t̃-cp.

Lemma 3.1 For positive integers i , j, M i j is either T1 or T3 if it is l̃ t̃-cp, either T2 or
T6 if l t̃-cp, either T4 or T7 if l̃ t-cp, and T5 if l t-cp. _erefore, each M i j has two choices
ofmosaic tiles if it is l̃ t-cp, and the unique choice if it is l t-cp.

Remark that we easily ûnd rough bounds of r i , j . Each a(i , j)-quasimosaic in
Qa(i , j) can be extended to either one or two (i , j)-quasimosaics in Q i , j by choos-
ing the leading mosaic tile M i , j being suitably connected according to Lemma 3.1.
_us, ∣Qa(i , j)∣ ≤ ∣Q i , j ∣ ≤ 2∣Qa(i , j)∣, and so we have rough bounds of the growth ratio:

1 ≤ r i , j ≤ 2.

4 Investment of Cling Mosaics and cp-ratios

We can mark a mosaic tile edge on a cling mosaic with an ‘x’ if it does not have a
connection point and with an ‘o’ if it has. Sometimes we use a sequence of x’s and o’s
to mark several edges together, like e1e2 = xo, which means that the edge e1 does not
have a connection point but the edge e2 does.

Now we classify all l-cling mosaics into ûve types U1 ∼ U5, and all t-cling mosaics
into eight types V1 ∼ V8 as drawn in Figure 5. In each type, the bold edges e l and
et indicate the le� and the top edges of the leading mosaic tile, respectively; the e i ’s
indicate the contact edges, and the edgesmarked by x lie in the boundary of themosaic
system (so these have no connection point). Note that themosaic types other thanU1
and V1 arise when the leading mosaic tile is near the boundary of themosaic system.

Now we deûne cp-ratios for each type of cling mosaic as follows. We say that the
associated contact edges e i ’s are given if the presence of connection points of them are
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Figure 5: Five types of l-cling mosaics and eight types of t-cling mosaics

given. For a type Uk and given e i ’s, we deûne

cp-ratio of Uk =
∣{type Uk cling mosaics with the given e i ’s and e l = o}∣
∣{type Uk cling mosaics with the given e i ’s and any e l}∣

.

And uk denotes the pair of theminimum and themaximum among all cp-ratios for
the type Uk that occur in any given e i ’s. Similarly, deûne the pair vk′ for the type Vk′ .

Lemma 4.1 _e pairs of cp-ratios for the thirteen types of cling mosaics are as follows:
u1 = { 1

4 ,
1
2}, u2 = u3 = u4 = v5 = v6 = { 1

3 ,
1
2}, v1 = { 1

4 ,
3
5}, v2 = { 1

4 ,
4
7}, v3 = v4 =

{ 4
11 ,

1
2}, and u5 = v7 = v8 = { 1

2 ,
1
2}.

Proof First, consider a submosaicW consisting of three mosaic tiles M1, M2, and
M3 as drawn in the center of Figure 6. Each of e1e2 and e3e4 has four choices of
the presence of connection points among xx, xo, ox and oo. Deûne 4 × 4 matrices
Nc1 c2 = (n i j), where n i j is the number of all possible suitably connected submosaics
W with the given c1c2, the i-th e1e2 and the j-th e3e4 in the order of xx, xo, ox, and
oo. _en

Nxx =
⎡⎢⎢⎢⎢⎢⎢⎣

2 2 2 2
2 2 1 1
2 2 2 2
2 2 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
, Nxo =

⎡⎢⎢⎢⎢⎢⎢⎣

2 1 2 1
2 1 1 1
2 1 2 1
2 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

Nox =
⎡⎢⎢⎢⎢⎢⎢⎣

2 2 2 2
2 2 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
and Noo =

⎡⎢⎢⎢⎢⎢⎢⎣

2 1 2 1
2 1 1 1
1 1 1 0
1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
.
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_ese four matrices can be obtained from the following two rules. _e ûrst is that
if e2e3 is oo, then M3 is l t-cp, so it is uniquely determined by Lemma 3.1 andmust be
r̃b̃-cp. And if e2e3 is not oo, then M3 is l̃ t-cp, so it has two choices ofmosaic tiles for
given e2e3, one of which is r̃-cp and the other is r-cp (similarly for b-cp). _e second
rule is that, a�er M3 is determined, ifM3 is r̃-cp, then M1 is uniquely determined for
given c1e1. And ifM3 is r-cp, then M1 is uniquely determinedwhen c1e1 is not oo, but
there is no choice for M1 when c1e1 is oo. _e second rule can be applied to M2 with
c2e4 in the samemanner.

e1

e2

et

e3 e4 e5e1e2

ele3

e4

V1U1

e1e2

c1e3

e4

W

e6

e7

c2

WW `

M1

M2

M3

M1`

M2` c2

c1

Figure 6: SubmosaicW andmodifying W to U1 and V1

For same sizedmatrices A and B, { AB } denotes the pair consisting of theminimum
and the maximum among all entries of the matrix obtained from dividing A by B
entry-wise. From now on, the mark ∗ is used when we consider both x and o. For
example, No∗ = Nox + Noo.
For the typesU1 throughU4,we useW a�er identifying c1 = e l . Each entry of No∗

indicates the number of all possible type U1 cling mosaics with given e i ’s and e l = o,
and N∗∗ the number of type U1 cling mosaics with given e i ’s and any e l . Note that
there is no restriction on c2. _us, each entry of the matrix obtained from dividing
No∗ byN∗∗ entry-wise is the cp-ratio for given e i ’s. Nowu1 is thepairof theminimum
and themaximum among all entries of thismatrix. _us, u1 = { No∗

N∗∗
} = { 1

4 ,
1
2}. u2 can

be obtained bymerely changing No∗ and N∗∗ by Nox and N∗x, respectively, because
c2 = x. _us, u2 = { Nox

N∗x } = { 1
3 ,

1
2}.

_e restriction e3e4 = xx for the typesU3 andU4 is related to only the ûrst columns
of the associatedmatrices. _e rest of the proof is similar to the previous case. _us,

u3 = { 1st column of No∗
1st column of N∗∗

} = { 1
3
, 1
2
} and u4 = { 1st column of Nox

1st column of N∗x
} = { 1

3
, 1
2
} .

For the types V1 through V4, we useW again a�er identifying e1, e2, e3, and e4 of
W with e6, e7, e4, and e5 of the Vi ’s, respectively, combined with another submosaic
W ′ as shown in Figure 6. Deûne two 4×8matrices N(1)e t = (n i j), for et = x or o,where
n i j is the number of all possible submosaics V1 with the given et , the i-th e1e2 and the
j-th e3e4e5 in the reverse dictionary order as before. In the following matrices, “x-th
row” and “x+ y-th rows” mean the x-th row of the previously obtained matrix N∗∗
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and the sum of the x-th row and the y-th row of N∗∗, respectively. _en

N(1)x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1+4th rows 2+3rd rows
2+3rd rows 1st row
2+3rd rows 1+4th rows
1+4th rows 3rd row

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

14 10 12 10 14 11 10 8
14 11 10 8 8 6 8 6
14 11 10 8 14 10 12 10
14 10 12 10 6 5 6 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

N(1)o =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 + 3rd rows 1 + 4th rows
1 + 4th rows 3rd row

1st row 2nd row
2nd row 1st row

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

14 11 10 8 14 10 12 10
14 10 12 10 6 5 6 4
8 6 8 6 8 6 4 4
8 6 4 4 8 6 8 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

For example, we will compute the second row of N(1)x , and the reader can ûnd the
remaining rows in the same manner. For this case, et = x, e1e2 = xo, the le� four
entries of this row are related to e3 = x, and the right four entries are related to e3 =
o. If e3 = x, then the pair M′

1 and M′
2 of W ′ has two choices, such as M′

1 = T1 and
M′

2 = T6, or M′
1 = T4 and M′

2 = T2. _erefore e6e7 must be xo or ox, respectively.
_ese two cases are related to the second and the third rows of N∗∗, respectively. _us
the numbers of all possible such W for each e4e5 are represented by the sum of these
two rows. If e3 = o, then this pair has the unique choiceM′

1 = T1 andM′
2 = T5, and so

e6e7 must be xx. It is related to the ûrst row of N∗∗, which represents the numbers of
all suchW for each e4e5. Each entry of N(1)o indicates the number of all possible type
V1 t-cling mosaics with given e i ’s and et = o, and N(1)∗ the number of type V1 t-cling
mosaics with given e i ’s and any et . Now we get the cp-ratio for given e i ’s in the same
way as previously. _us,

v1 = { N(1)o

N(1)∗
} = { 1

4
, 3
5
} .

For V2, deûne other two 4 × 8 matrices N(2)e t , for et = x or o. N(2)x and N(2)o are
obtained in the samemanner as computing N(1)x andN(1)o a�er replacing N∗∗ byN∗x,
since c2 = x. _en

N(2)x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7 7 6 6 7 7 5 5
7 7 5 5 4 4 4 4
7 7 5 5 7 7 6 6
7 7 6 6 3 3 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, N(2)o =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7 7 5 5 7 7 6 6
7 7 6 6 3 3 3 3
4 4 4 4 4 4 2 2
4 4 2 2 4 4 4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

_en v2 can be obtained from merely changing N(1)o and N(1)∗ by N(2)o and N(2)∗ ,
respectively. _us,

v2 = { N(2)o

N(2)∗
} = { 1

4
, 4
7
} .

_e restriction e3e4e5 = xxx for the types V3 and V4 is related to only the ûrst
columns of the associatedmatrices. _us

v3 = { 1st column of N(1)o

1st column of N(1)∗
} = { 4

11
, 1
2
} and v4 = { 1st column of N(2)o

1st column of N(2)∗
} = { 4

11
, 1
2
} .

Consider the types V5 and V6. Deûne two 4×4matrices N(3)e t = (n i j), for et = x or
o,where n i j is thenumber of all possible submosaicsV5 with the given et , the i-th e1e2,
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and the j-th e3e4. Using the samemanner of computing the associatedmatrices at the
beginning of the proof, the reader can ûnd thematrices N(3)x and N(3)o as follows:

N(3)x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 2
2 2 1 1
2 2 2 2
2 2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and N(3)o =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 2
2 2 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

From the same calculation as before,

v5 = { N(3)o

N(3)∗
} = { 1

3
, 1
2
} and v6 = { 1st column of N(3)o

1st column of N(3)∗
} = { 1

3
, 1
2
} .

For the remaining types, u5, v7, and v8 are obtained by counting directly for each
case of e1 = x or o, as u5 = v7 = v8 = { 1

2 ,
1
2}.

5 Proof of Theorem 1.1

We will compute lower and upper bounds of the growth ratio at each leading mosaic
tile by using the cp-ratios of the associated clingmosaics. Let M i , j be a leadingmosaic
tile with the associated l- and t-cling mosaics Uk and Vk′ . Let Skk′ and Lkk′ denote
themultiplication of the smallest (resp. largest) elements of uk and vk′ .

Lemma 5.1 For i /= 1,m and j /= 1, n, 2 − Lkk′ ≤ r i j ≤ 2 − Skk′ .

Proof Suppose that i /= 1,m and j /= 1, n. Recall that an (i , j)-quasimosaic in Q i , j is
obtained from a a(i , j)-quasimosaic in Qa(i , j) by attaching a proper leading mosaic
tile M i , j . _is mosaic tile should be suitably connected according to the presence of
connection points on its le� and top edges. In this stage, there are two possibilities, as
follows: if M i , j is l̃ t-cp, then it has two choices, and if it is l t-cp, then it has a unique
choice. _erefore, for given cling mosaics,M i , j has a unique choice only when e l et =
oo.
Consider a submosaic consisting of M i , j and l- and t-cling mosaics. Assume that

the presence of connection points on all contact edges e i ’s are given. _en

∣{(i , j)-quasimosaics with the given e i ’s}∣
∣{a(i , j)-quasimosaics with the given e i ’s}∣

=

∣{submosaics consisting of M i , j and the a.c.m.’s with the given e i ’s}∣
∣{submosaics consisting of only the a.c.m.’s with the given e i ’s}∣

,

where a.c.m. means associated cling mosaic.
Let ck and c′k′ denote the associated cp-ratios of the l- and t-cling mosaics for the

given contact edges e i ’s. _en the latter quotient of the equality is 2 × (1 − ckc′k′) +
1 × (ckc′k′) = 2−ckc′k′ . Furthermore, 2−ckc′k′ must lie between 2−Lkk′ and 2−Skk′ , and
hence, so does the former quotient. _erefore, r i j lies between 2−Lkk′ and 2−Skk′ .
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Lemma 5.2 Let m and n be integers with 3 ≤ m ≤ n.

For m = 3, 14( 7
2)

n−3 − 1 ≤ p3×n ≤ 14( 11
3 )

n−3 − 1.

For m = 4, 8( 49
8 ) n−2 − 1 ≤ p4×n ≤ 9520

27 ( 155
22 )

n−4 − 1.

For m ≥ 5, 8 ⋅ 6m−4( 49
8 ) n−2( 17

10)
(m−4)(n−4) − 1 ≤ pm×n ,

pm×n ≤ 337280
1863 ( 2645

192 )m−4( 2415
176 ) n−4( 31

16)
(m−5)(n−5) − 1.

Proof First we handle the general case that 5 ≤ m < n. Consider a leading mosaic
tile M i , j for 4 ≤ i ≤ m − 2 and 4 ≤ j ≤ n − 3. Associated l- and t-cling mosaics
are of types U1 and V1, respectively, because they are apart from the boundary of the
mosaic system. Since the smallest cp-ratios in u1 and v1 are both 1

4 and their largest
cp-ratios are 1

2 and
3
5 , respectively, r i j lies between 2 − L11 = 17

10 and 2 − S11 = 31
16 . For

the remaining leading mosaic tiles, one or both of their associated cling mosaics are
attached to the boundary of themosaic system.
A chart in Figure 7, called the cling mosaic chart, illustrates all possible combi-

nations of cling mosaics at each position of leading mosaic tile. For example, at the
position of the leading mosaic tile M3,2, the associated l- and t-cling mosaics are of
types U5 and V3, respectively.
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x
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x
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x

x

x

x
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1 2 3

m

n

1

2
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Figure 7: Cling mosaic chart for the general case.
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From Lemmas 4.1 and 5.1 combined with the cling mosaic chart, we get Table 1,
called the growth ratio table. Each row explains the placements of leading mosaic tiles
M i , j , the associatedmultiplications uk ⋅vk′ of cp-ratios, possible variance of the related
growth ratios r i , j , and the number of relatedmosaic tiles.

Note that for i = 1 ( j /= n), the leading mosaic tile M1, j must be t̃-cp. Assume that
M1, j−1 is already decided. _en M1, j has exactly two choices by Lemma 3.1, so r1 j = 2.
Similarly, we get r i1 = 2 for j = 1 (i /= m). And for i = m, Mm , j must be b̃-cp. Assume
that Mm , j−1 and Mm−1, j are already decided. But in any case, Mm , j is determined
uniquely, so rm j = 1. Similarly, we get r in = 1 for j = n. Indeed, the method in this
paragraph works for all the cases of 3 ≤ m ≤ n.

(i , j) of M i , j uk ⋅ vk′ r i , j number of tiles

i = 1 or j = 1 except (1, n), (m, 1) 2 m + n − 3
i = m or j = n 1 m + n − 1

4 ≤ i ≤ m − 2 and 4 ≤ j ≤ n − 3 u1 ⋅ v1
17
10 ∼

31
16 (m − 5)(n − 6)

(2, 2) u5 ⋅ v7
7
4 1

(2, 3) u3 ⋅ v7
7
4 ∼

11
6 1

i = 2 and 4 ≤ j ≤ n − 2 u1 ⋅ v7
7
4 ∼

15
8 n − 5

(2, n − 1) u1 ⋅ v8 7
4 ∼

15
8 1

(3, 2) u5 ⋅ v3
7
4 ∼

20
11 1

(3, 3) u3 ⋅ v3
7
4 ∼

62
33 1

i = 3 and 4 ≤ j ≤ n − 3 u1 ⋅ v3
7
4 ∼

21
11 n − 6

(3, n − 2) u1 ⋅ v4
7
4 ∼

21
11 1

(3, n − 1) u1 ⋅ v6
7
4 ∼

23
12 1

4 ≤ i ≤ m − 1 and j = 2 u5 ⋅ v1
17
10 ∼

15
8 m − 4

4 ≤ i ≤ m − 2 and j = 3 u3 ⋅ v1
17
10 ∼

23
12 m − 5

4 ≤ i ≤ m − 2 and j = n − 2 u1 ⋅ v2
12
7 ∼ 31

16 m − 5
4 ≤ i ≤ m − 2 and j = n − 1 u1 ⋅ v5 7

4 ∼
23
12 m − 5

(m − 1, 3) u4 ⋅ v1
17
10 ∼

23
12 1

i = m − 1 and 4 ≤ j ≤ n − 3 u2 ⋅ v1
17
10 ∼

23
12 n − 6

(m − 1, n − 2) u2 ⋅ v2
12
7 ∼ 23

12 1
(m − 1, n − 1) u2 ⋅ v5 7

4 ∼
17
9 1

Table 1: Growth ratio table for the general case.

_e chart in Figure 8 illustrates bounds of the growth ratios at each place of leading
mosaic tile according to the growth ratio table. _is is called the growth ratio chart.
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Figure 8: Growth ratio chart for the general case

From the growth ratio chart for 5 ≤ m < n,we get rigorous lower and upper bounds
for pm×n ,which are obtained bymerelymultiplying every growth ratio at each leading
mosaic tile and subtracting by 1 as in equation (3.1). _us, we have

8 ⋅ 6m−4( 49
8 ) n−2( 17

10)
(m−4)(n−4) − 1 ≤ pm×n ,

pm×n ≤
337280
1863

( 2645
192 )m−4( 2415

176 ) n−4( 31
16)
(m−5)(n−5) − 1.

For the remaining cases m = 3, m = 4, and m = n = 5, the reader may draw the
associated cling mosaic charts and compute the growth ratio tables. _en the related
growth ratio charts will be obtained as shown in Figure 9. Furthermore,

14( 7
2)

n−3 − 1 ≤ p3×n ≤ 14( 11
3 )

n−3 − 1 for m = 3, and

8( 49
8 ) n−2 − 1 ≤ p4×n ≤ 9520

27 ( 155
22 )

n−4 − 1 for m = 4.

Indeed for the case of m = n = 5, we eventually get the same result as in the general
case, by applying m = n = 5.

Proof of_eorem 1.1 _e result follows directly fromLemma 5.2 a�er loosening the
bounds slightly. Speaking precisely, for any case of 3 ≤ m ≤ n, if i /= 1,m and j /= 1, n,
then r i j always lies between 17

10 and
31
16 . Furthermore, if i = 1 or j = 1, except (1, n) and

(m, 1), then r i j = 2, and if i = m or j = n, then r i j = 1. _erefore,

2m+n−3( 17
10)
(m−2)(n−2) − 1 ≤ pm×n ≤ 2m+n−3( 31

16)
(m−2)(n−2) − 1.

Note that −1 can be ignored for the brief formula, since this inequality is obtained
from Lemma 5.2 a�er loosening the bounds slightly.
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Figure 9: _ree growth ratio charts for m = 3, m = 4, and m = n = 5 from the top le� to the
right
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