Bounds on Multiple Self-avoiding Polygons

Kyungpyo Hong and Seungsang Oh

Abstract

A self-avoiding polygon is a lattice polygon consisting of a closed self-avoiding walk on a square lattice. Surprisingly little is known rigorously about the enumeration of self-avoiding polygons, although there are numerous conjectures that are believed to be true and strongly supported by numerical simulations. As an analogous problem to this study, we consider multiple self-avoiding polygons in a confined region as a model for multiple ring polymers in physics. We find rigorous lower and upper bounds for the number $p_{m \times n}$ of distinct multiple self-avoiding polygons in the $m \times n$ rectangular grid on the square lattice. For $m=2, p_{2 \times n}=2^{n-1}-1$. And for integers $m, n \geq 3$, $$
2^{m+n-3}\left(\frac{17}{10}\right)^{(m-2)(n-2)} \leq p_{m \times n} \leq 2^{m+n-3}\left(\frac{31}{16}\right)^{(m-2)(n-2)} .
$$

1 Introduction

The enumeration of self-avoiding walks and polygons is one of the most important and classic combinatorial problems $[3,10]$. These were first introduced by the chemist Paul Flory [2] as models of polymers in dilute solution. The exact number of selfavoiding walks and polygons is still undetermined, although there are mathematically proven methods for approximating them.

A particularly interesting polygon model of a ring polymer with excluded volume is a lattice polygon that sits in a regular lattice, usually the two dimensional square lattice or the three dimensional cubic lattice. Here we consider the problem of selfavoiding polygons (SAP) on the square lattice \mathbb{Z}^{2}. Let p_{n} denote the number of distinct SAPs of length n, counted up to translational invariance on the square lattice \mathbb{Z}^{2}. Hammersley [4] proved that the number p_{n} grows exponentially: more precisely, the limit $\mu=\lim _{n \rightarrow \infty} p_{2 n}^{1 / 2 n}$ is known to exist. Furthermore, it is generally believed [10] that $p_{2 n} \sim \mu^{2 n} n^{\alpha-3}$ as $n \rightarrow \infty$. Here μ is called the connective constant of the lattice, and α is the critical exponent. The reader can find more details in [7].

In this paper, we are interested in another point of view of scaling arguments of multiple polygons on the square lattice, related to the size of a rectangle containing them instead of their length; see Figure 1 . Let $\mathbb{Z}_{m \times n}$ denote the $m \times n$ rectangular grid on \mathbb{Z}^{2}, and let $p_{m \times n}$ be the number of distinct multiple self-avoiding polygons (MSAP) in $\mathbb{Z}_{m \times n}$. Here two MSAPs are considered to be different even though one can be translated upon the other. Note that in physics they serve as a model for multiple ring polymers in a confined region.

[^0]

Figure 1: Two different viewpoints of an MSAP model in the confined square lattice $\mathbb{Z}_{m \times n}$ and in the mosaic system (explained in Section 2).

It is relatively easy to calculate that $p_{2 \times n}=2^{n-1}-1$ for $m=2$. But, for larger m, n of $p_{m \times n}$, the problem becomes increasingly difficult due to its non-Markovian nature. The main purpose of this paper is to establish rigorous lower and upper bounds for $p_{m \times n}$.

Theorem 1.1 For integers $m, n \geq 3$,

$$
2^{m+n-3}\left(\frac{17}{10}\right)^{(m-2)(n-2)} \leq p_{m \times n} \leq 2^{m+n-3}\left(\frac{31}{16}\right)^{(m-2)(n-2)}
$$

Note that various types of single self-avoiding walks in a confined square lattice were investigated in [1], particularly a class of self-avoiding walks that start at the origin $(0,0)$, end at (n, n), and are entirely contained in the square $[0, n] \times[0, n]$ on \mathbb{Z}^{2}. The number of distinct walks is known to grow as $\lambda^{n^{2}+o\left(n^{2}\right)}$. They estimate $\lambda=1.744550 \pm 0.000005$ as well as obtain strict upper and lower bounds, $1.628<\lambda<$ 1.782. In our model,

$$
1.7 \leq \lim _{n \rightarrow \infty}\left(p_{n \times n}\right)^{1 / n^{2}} \leq 1.9375,
$$

provided the limit exists.

2 Adjusting to the Mosaic System

A mosaic system was introduced by Lomonaco and Kauffman [9] to give a precise and workable definition of quantum knots. This definition is intended to represent an actual physical quantum system. The definition of quantum knot was based on the planar projections of knots and the Reidemeister moves. They model the topological information in a knot by a state vector in a Hilbert space that is directly constructed from knot mosaics. Recently Hong, Lee, Lee and Oh announced several results on the enumeration of various types of knot mosaics in the confined mosaic system in the series of papers [5, $6,8,11$].

We begin by explaining the basic notion of mosaics modified for polygons in $\mathbb{Z}_{m \times n}$. The following seven symbols are called mosaic tiles (for polygons). In the original definition in mosaic theory, there are eleven types of mosaic tiles, allowing four more mosaic tiles with two arcs.

Figure 2: Seven mosaic tiles modified for polygons and connection points in a mosaic tile.

For positive integers m and n, an (m, n)-mosaic is an $m \times n$ matrix $M=\left(M_{i j}\right)$ of mosaic tiles. The trivial mosaic is a mosaic whose entries are all T_{1}. A connection point of a mosaic tile is defined as the midpoint of a tile edge that is also the endpoint of a portion of graph drawn on the tile, as shown in the rightmost tile in Figure 2. Note that T_{1} has no connection point and each of the six mosaic tiles T_{2} through T_{7} have two. A mosaic is called suitably connected if any pair of mosaic tiles lying immediately next to each other in either the same row or the same column have or do not have connection points simultaneously on their common edge. A polygon (m, n)-mosaic is a suitably connected (m, n)-mosaic that has no connection point on the boundary edges. Examples in Figure 3 are a non-polygon (4,4)-mosaic and a polygon (4, 4)mosaic.

Figure 3: Examples of a non-polygon (4, 4)-mosaic and a polygon (4, 4)-mosaic

As drawn by solid line segments in Figure 1, we can consider a MSAP as a polygon (m, n)-mosaic by shifting the rectangular grid $\mathbb{Z}_{(m+1) \times(n+1)}$ horizontally and vertically by $-\frac{1}{2}$. In the mosaic system, polygons transpass unit length edges of the mosaic system and run through the centers of unit squares. The following one-to-one conversion arises naturally.

One-to-one conversion There is a one-to-one correspondence between MSAPs in $\mathbb{Z}_{m \times n}$ and polygon (m, n)-mosaics, except for the trivial mosaic.

Note that the trivial mosaic contains no graph, and so is not counted in $p_{m \times n}$.

3 Quasimosaics and Growth Ratios

In this section, we define a modified version of quasimosaics, which were introduced in [6], and their growth ratios. We arrange all mosaic tiles as a sequence such that their pair-indices of tiles are ordered as $(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)$, etc., and finished at (m, n). More precisely, the pair-index (i, j) follows $(i-1, j+1)$ if $i>1$ and $j<n$, or otherwise, either $(i+j-2,1)$ for $i+j-2 \leq m$ or $(m, i+j-m-1)$ for $i+j-2>m$. Let $a(i, j)$ denote the predecessor of the pair-index (i, j) in the sequence.

An (i, j)-quasimosaic is a portion of a polygon (m, n)-mosaic obtained by taking all mosaic tiles $M_{1,1}$ through $M_{i, j}$ in the sequence as drawn in Figure 4. Note that a quasimosaic is also suitably connected. Its (i, j)-entry $M_{i, j}$ is called the leading mosaic tile of the (i, j)-quasimosaic. Furthermore we define two kinds of cling mosaics of the (i, j)-quasimosaic. An l-cling mosaic for $M_{i, j}$ is a submosaic consisting of three or fewer mosaic tiles $M_{i, j-2}, M_{i, j-1}$ and $M_{i+1, j-2}$ (they may not exist when $j=1$ or 2). And a t-cling mosaic is a submosaic consisting of five or fewer mosaic tiles $M_{i-2, j}$, $M_{i-2, j+1}, M_{i-2, j+2}, M_{i-1, j}$ and $M_{i-1, j+1}$. The letters l - and t - mean the left and the top, respectively. The leftmost and the top boundary edges of cling mosaics that are not contained in the boundary edges of the mosaic system are called contact edges.

Figure 4: A $(4,5)$-quasimosaic and two cling mosaics.

Let $Q_{i, j}$ denote the set of all possible (i, j)-quasimosaics. By definition, $Q_{m, n}$ is the set of all polygon (m, n)-mosaics. It is an exercise for the reader to show that $\left|Q_{1,1}\right|=2,\left|Q_{1,2}\right|=4,\left|Q_{2,1}\right|=8,\left|Q_{1,3}\right|=16,\left|Q_{2,2}\right|=28$ and $\left|Q_{3,1}\right|=56$, provided that $m, n \geq 4$. We will construct $Q_{m, n}$ from $Q_{1,1}$ by adding leading mosaic tiles inductively. Focus on the ratios of growth of the number of sets at each step. Define a growth ratio $r_{i, j}$ of the set $Q_{i, j}$ over $Q_{a(i, j)}$ as

$$
r_{i, j}=\frac{\left|Q_{i, j}\right|}{\left|Q_{a(i, j)}\right|},
$$

with the assumption that $\left|Q_{a(1,1)}\right|=1$. Thus, $r_{1,1}=2, r_{1,2}=2, r_{2,1}=2, r_{1,3}=2, r_{2,2}=\frac{7}{4}$, and $r_{3,1}=2$. By definition,

$$
\begin{equation*}
p_{m \times n}=\left|Q_{m, n}\right|-1=\prod_{i, j} r_{i, j}-1 . \tag{3.1}
\end{equation*}
$$

For simplicity of exposition, a mosaic tile is called $l-c p$ if it has a connection point on its left edge, and, similarly, t, r, or $b-\mathrm{cp}$ when on its top, right, or bottom edge, respectively. Sometimes we use two letters, for example, $l t-\mathrm{cp}$ in the case of both $l-\mathrm{cp}$ and $t-\mathrm{cp}$. Also, we use the sign \sim for negation, so that, for example, $\tilde{t}-\mathrm{cp}$ means not $t-\mathrm{cp}, \tilde{l} \tilde{t}-\mathrm{cp}$ means both $\tilde{l}-\mathrm{cp}$ and $\tilde{t}-\mathrm{cp}$, and $\tilde{l} t-\mathrm{cp}$ (which is different from $\tilde{l} \tilde{t}-\mathrm{cp}$) means not $l t-\mathrm{cp}$, i.e., $\tilde{l} t, l \tilde{t}$, or $\tilde{l} \tilde{t}-\mathrm{cp}$.

Lemma 3.1 For positive integers $i, j, M_{i j}$ is either T_{1} or T_{3} if it is $\tilde{l} \tilde{t}-c p$, either T_{2} or T_{6} if $l \tilde{t}-c p$, either T_{4} or T_{7} if $\tilde{l} t-c p$, and T_{5} if $l t-c p$. Therefore, each $M_{i j}$ has two choices of mosaic tiles if it is $\widetilde{l t}-c p$, and the unique choice if it is $l t-c p$.

Remark that we easily find rough bounds of $r_{i, j}$. Each $a(i, j)$-quasimosaic in $Q_{a(i, j)}$ can be extended to either one or two (i, j)-quasimosaics in $Q_{i, j}$ by choosing the leading mosaic tile $M_{i, j}$ being suitably connected according to Lemma 3.1. Thus, $\left|Q_{a(i, j)}\right| \leq\left|Q_{i, j}\right| \leq 2\left|Q_{a(i, j)}\right|$, and so we have rough bounds of the growth ratio:

$$
1 \leq r_{i, j} \leq 2
$$

4 Investment of Cling Mosaics and cp-ratios

We can mark a mosaic tile edge on a cling mosaic with an ' x ' if it does not have a connection point and with an 'o' if it has. Sometimes we use a sequence of x's and o's to mark several edges together, like $e_{1} e_{2}=$ xo, which means that the edge e_{1} does not have a connection point but the edge e_{2} does.

Now we classify all l-cling mosaics into five types $U_{1} \sim U_{5}$, and all t-cling mosaics into eight types $V_{1} \sim V_{8}$ as drawn in Figure 5. In each type, the bold edges e_{l} and e_{t} indicate the left and the top edges of the leading mosaic tile, respectively; the e_{i} 's indicate the contact edges, and the edges marked by x lie in the boundary of the mosaic system (so these have no connection point). Note that the mosaic types other than U_{1} and V_{1} arise when the leading mosaic tile is near the boundary of the mosaic system.

Now we define cp-ratios for each type of cling mosaic as follows. We say that the associated contact edges e_{i} 's are given if the presence of connection points of them are

Figure 5: Five types of l-cling mosaics and eight types of t-cling mosaics
given. For a type U_{k} and given e_{i} 's, we define

$$
c p \text {-ratio of } U_{k}=\frac{\mid\left\{\text { type } U_{k} \text { cling mosaics with the given } e_{i}^{\prime} \text { 's and } e_{l}=\mathrm{o}\right\} \mid}{\mid\left\{\text { type } U_{k} \text { cling mosaics with the given } e_{i}^{\prime} \text { 's and any } e_{l}\right\} \mid} \text {. }
$$

And u_{k} denotes the pair of the minimum and the maximum among all cp-ratios for the type U_{k} that occur in any given e_{i} 's. Similarly, define the pair $v_{k^{\prime}}$ for the type $V_{k^{\prime}}$.

Lemma 4.1 The pairs of cp-ratios for the thirteen types of cling mosaics are as follows: $u_{1}=\left\{\frac{1}{4}, \frac{1}{2}\right\}, u_{2}=u_{3}=u_{4}=v_{5}=v_{6}=\left\{\frac{1}{3}, \frac{1}{2}\right\}, v_{1}=\left\{\frac{1}{4}, \frac{3}{5}\right\}, v_{2}=\left\{\frac{1}{4}, \frac{4}{7}\right\}, v_{3}=v_{4}=$ $\left\{\frac{4}{11}, \frac{1}{2}\right\}$, and $u_{5}=v_{7}=v_{8}=\left\{\frac{1}{2}, \frac{1}{2}\right\}$.

Proof First, consider a submosaic W consisting of three mosaic tiles M_{1}, M_{2}, and M_{3} as drawn in the center of Figure 6. Each of $e_{1} e_{2}$ and $e_{3} e_{4}$ has four choices of the presence of connection points among xx, xo, ox and oo. Define 4×4 matrices $N_{c_{1} c_{2}}=\left(n_{i j}\right)$, where $n_{i j}$ is the number of all possible suitably connected submosaics W with the given $c_{1} c_{2}$, the i-th $e_{1} e_{2}$ and the j-th $e_{3} e_{4}$ in the order of $\mathrm{xx}, \mathrm{xo}, \mathrm{ox}$, and oo. Then

$$
\begin{gathered}
N_{\mathrm{XX}}=\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 \\
2 & 2 & 1 & 1
\end{array}\right], N_{\mathrm{XO}}=\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 2 & 1 \\
2 & 1 & 1 & 1
\end{array}\right], \\
N_{\mathrm{OX}}=\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \text { and } N_{\mathrm{OO}}=\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

These four matrices can be obtained from the following two rules. The first is that if $e_{2} e_{3}$ is oo, then M_{3} is $l t-\mathrm{cp}$, so it is uniquely determined by Lemma 3.1 and must be $\tilde{r} \tilde{b}$-cp. And if $e_{2} e_{3}$ is not oo, then M_{3} is $\widetilde{l} t-\mathrm{cp}$, so it has two choices of mosaic tiles for given $e_{2} e_{3}$, one of which is \tilde{r}-cp and the other is r-cp (similarly for $b-\mathrm{cp}$). The second rule is that, after M_{3} is determined, if M_{3} is \tilde{r}-cp, then M_{1} is uniquely determined for given $c_{1} e_{1}$. And if M_{3} is r-cp, then M_{1} is uniquely determined when $c_{1} e_{1}$ is not oo, but there is no choice for M_{1} when $c_{1} e_{1}$ is oo. The second rule can be applied to M_{2} with $c_{2} e_{4}$ in the same manner.

Figure 6: Submosaic W and modifying W to U_{1} and V_{1}

For same sized matrices A and $B,\left\{\frac{A}{B}\right\}$ denotes the pair consisting of the minimum and the maximum among all entries of the matrix obtained from dividing A by B entry-wise. From now on, the mark $*$ is used when we consider both x and o. For example, $N_{\text {O } *}=N_{\text {OX }}+N_{\text {OO }}$.

For the types U_{1} through U_{4}, we use W after identifying $c_{1}=e_{l}$. Each entry of $N_{\mathrm{O} *}$ indicates the number of all possible type U_{1} cling mosaics with given e_{i} 's and $e_{l}=0$, and $N_{* *}$ the number of type U_{1} cling mosaics with given e_{i} 's and any e_{l}. Note that there is no restriction on c_{2}. Thus, each entry of the matrix obtained from dividing $N_{\mathrm{O} *}$ by $N_{* *}$ entry-wise is the cp-ratio for given e_{i} 's. Now u_{1} is the pair of the minimum and the maximum among all entries of this matrix. Thus, $u_{1}=\left\{\frac{N_{\mathrm{O} *}}{N_{* *}}\right\}=\left\{\frac{1}{4}, \frac{1}{2}\right\} . u_{2}$ can be obtained by merely changing $N_{\mathrm{O} *}$ and $N_{* *}$ by N_{OX} and $N_{* \mathrm{X}}$, respectively, because $c_{2}=\mathrm{x}$. Thus, $u_{2}=\left\{\frac{N_{\mathrm{ox}}}{N_{* \mathrm{x}}}\right\}=\left\{\frac{1}{3}, \frac{1}{2}\right\}$.

The restriction $e_{3} e_{4}=\mathrm{xx}$ for the types U_{3} and U_{4} is related to only the first columns of the associated matrices. The rest of the proof is similar to the previous case. Thus,

$$
u_{3}=\left\{\frac{1 \text { st column of } N_{\mathrm{o} *}}{1 \text { st column of } N_{* *}}\right\}=\left\{\frac{1}{3}, \frac{1}{2}\right\} \quad \text { and } \quad u_{4}=\left\{\frac{1 \text { st column of } N_{\mathrm{ox}}}{1 \text { st column of } N_{* \mathrm{x}}}\right\}=\left\{\frac{1}{3}, \frac{1}{2}\right\} .
$$

For the types V_{1} through V_{4}, we use W again after identifying e_{1}, e_{2}, e_{3}, and e_{4} of W with e_{6}, e_{7}, e_{4}, and e_{5} of the V_{i} 's, respectively, combined with another submosaic W^{\prime} as shown in Figure 6. Define two 4×8 matrices $N_{e_{t}}^{(1)}=\left(n_{i j}\right)$, for $e_{t}=\mathrm{x}$ or o, where $n_{i j}$ is the number of all possible submosaics V_{1} with the given e_{t}, the i-th $e_{1} e_{2}$ and the j-th $e_{3} e_{4} e_{5}$ in the reverse dictionary order as before. In the following matrices, " x-th row" and " $x+y$-th rows" mean the x-th row of the previously obtained matrix $N_{* *}$
and the sum of the x-th row and the y-th row of $N_{* *}$, respectively. Then

$$
\begin{aligned}
& N_{\mathrm{X}}^{(1)}=\left[\begin{array}{cc}
1+4 \text { th rows } & 2+3 \text { rd rows } \\
2+3 \text { rd rows } & \text { 1st row } \\
2+3 \text { rd rows } & 1+4 \text { th rows } \\
1+4 \text { th rows } & 3 \text { rd row }
\end{array}\right]=\left[\begin{array}{cccccccc}
14 & 10 & 12 & 10 & 14 & 11 & 10 & 8 \\
14 & 11 & 10 & 8 & 8 & 6 & 8 & 6 \\
14 & 11 & 10 & 8 & 14 & 10 & 12 & 10 \\
14 & 10 & 12 & 10 & 6 & 5 & 6 & 4
\end{array}\right], \\
& N_{\mathrm{O}}^{(1)}=\left[\begin{array}{cc}
2+3 \text { rd rows } & 1+4 \text { th rows } \\
1+4 \text { th rows } & \text { 3rd row } \\
\text { 1st row } & \text { 2nd row } \\
2 \text { nd row } & \text { 1st row }
\end{array}\right]=\left[\begin{array}{cccccccc}
14 & 11 & 10 & 8 & 14 & 10 & 12 & 10 \\
14 & 10 & 12 & 10 & 6 & 5 & 6 & 4 \\
8 & 6 & 8 & 6 & 8 & 6 & 4 & 4 \\
8 & 6 & 4 & 4 & 8 & 6 & 8 & 6
\end{array}\right] .
\end{aligned}
$$

For example, we will compute the second row of $N_{\mathrm{X}}^{(1)}$, and the reader can find the remaining rows in the same manner. For this case, $e_{t}=\mathrm{x}, e_{1} e_{2}=\mathrm{xo}$, the left four entries of this row are related to $e_{3}=x$, and the right four entries are related to $e_{3}=$ o. If $e_{3}=\mathrm{x}$, then the pair M_{1}^{\prime} and M_{2}^{\prime} of W^{\prime} has two choices, such as $M_{1}^{\prime}=T_{1}$ and $M_{2}^{\prime}=T_{6}$, or $M_{1}^{\prime}=T_{4}$ and $M_{2}^{\prime}=T_{2}$. Therefore $e_{6} e_{7}$ must be xo or ox, respectively. These two cases are related to the second and the third rows of $N_{* *}$, respectively. Thus the numbers of all possible such W for each $e_{4} e_{5}$ are represented by the sum of these two rows. If $e_{3}=0$, then this pair has the unique choice $M_{1}^{\prime}=T_{1}$ and $M_{2}^{\prime}=T_{5}$, and so $e_{6} e_{7}$ must be xx. It is related to the first row of $N_{* *}$, which represents the numbers of all such W for each $e_{4} e_{5}$. Each entry of $N_{\mathrm{O}}^{(1)}$ indicates the number of all possible type $V_{1} t$-cling mosaics with given e_{i} 's and $e_{t}=0$, and $N_{*}^{(1)}$ the number of type $V_{1} t$-cling mosaics with given e_{i} 's and any e_{t}. Now we get the cp-ratio for given e_{i} 's in the same way as previously. Thus,

$$
v_{1}=\left\{\frac{N_{\mathrm{o}}^{(1)}}{N_{*}^{(1)}}\right\}=\left\{\frac{1}{4}, \frac{3}{5}\right\} .
$$

For V_{2}, define other two 4×8 matrices $N_{e_{t}}^{(2)}$, for $e_{t}=\mathrm{x}$ or o. $N_{\mathrm{X}}^{(2)}$ and $N_{\mathrm{O}}^{(2)}$ are obtained in the same manner as computing $N_{\mathrm{X}}^{(1)}$ and $N_{\mathrm{O}}^{(1)}$ after replacing $N_{* *}$ by $N_{* \mathrm{X}}$, since $c_{2}=\mathrm{x}$. Then

$$
N_{\mathbf{X}}^{(2)}=\left[\begin{array}{llllllll}
7 & 7 & 6 & 6 & 7 & 7 & 5 & 5 \\
7 & 7 & 5 & 5 & 4 & 4 & 4 & 4 \\
7 & 7 & 5 & 5 & 7 & 7 & 6 & 6 \\
7 & 7 & 6 & 6 & 3 & 3 & 3 & 3
\end{array}\right], \quad N_{\mathbf{O}}^{(2)}=\left[\begin{array}{llllllll}
7 & 7 & 5 & 5 & 7 & 7 & 6 & 6 \\
7 & 7 & 6 & 6 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 2 & 2 \\
4 & 4 & 2 & 2 & 4 & 4 & 4 & 4
\end{array}\right] .
$$

Then v_{2} can be obtained from merely changing $N_{\mathrm{O}}^{(1)}$ and $N_{*}^{(1)}$ by $N_{\mathrm{O}}^{(2)}$ and $N_{*}^{(2)}$, respectively. Thus,

$$
v_{2}=\left\{\frac{N_{\mathrm{o}}^{(2)}}{N_{*}^{(2)}}\right\}=\left\{\frac{1}{4}, \frac{4}{7}\right\} .
$$

The restriction $e_{3} e_{4} e_{5}=\operatorname{xxx}$ for the types V_{3} and V_{4} is related to only the first columns of the associated matrices. Thus

$$
v_{3}=\left\{\frac{1 \text { st column of } N_{\mathrm{o}}^{(1)}}{1 \text { st column of } N_{*}^{(1)}}\right\}=\left\{\frac{4}{11}, \frac{1}{2}\right\} \quad \text { and } \quad v_{4}=\left\{\frac{1 \text { st column of } N_{\mathrm{o}}^{(2)}}{1 \text { st column of } N_{*}^{(2)}}\right\}=\left\{\frac{4}{11}, \frac{1}{2}\right\} .
$$

Consider the types V_{5} and V_{6}. Define two 4×4 matrices $N_{e_{t}}^{(3)}=\left(n_{i j}\right)$, for $e_{t}=\mathrm{x}$ or o , where $n_{i j}$ is the number of all possible submosaics V_{5} with the given e_{t}, the i-th $e_{1} e_{2}$,
and the j-th $e_{3} e_{4}$. Using the same manner of computing the associated matrices at the beginning of the proof, the reader can find the matrices $N_{\mathrm{X}}^{(3)}$ and $N_{\mathrm{O}}^{(3)}$ as follows:

$$
N_{\mathrm{X}}^{(3)}=\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 \\
2 & 2 & 1 & 1
\end{array}\right] \quad \text { and } \quad N_{\mathrm{O}}^{(3)}=\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

From the same calculation as before,

$$
v_{5}=\left\{\frac{N_{\mathrm{o}}^{(3)}}{N_{*}^{(3)}}\right\}=\left\{\frac{1}{3}, \frac{1}{2}\right\} \quad \text { and } \quad v_{6}=\left\{\frac{1 \text { st column of } N_{\mathrm{o}}^{(3)}}{1 \text { st column of } N_{*}^{(3)}}\right\}=\left\{\frac{1}{3}, \frac{1}{2}\right\} .
$$

For the remaining types, u_{5}, v_{7}, and v_{8} are obtained by counting directly for each case of $e_{1}=\mathrm{x}$ or o , as $u_{5}=v_{7}=v_{8}=\left\{\frac{1}{2}, \frac{1}{2}\right\}$.

5 Proof of Theorem 1.1

We will compute lower and upper bounds of the growth ratio at each leading mosaic tile by using the cp-ratios of the associated cling mosaics. Let $M_{i, j}$ be a leading mosaic tile with the associated l - and t-cling mosaics U_{k} and $V_{k^{\prime}}$. Let $S_{k k^{\prime}}$ and $L_{k k^{\prime}}$ denote the multiplication of the smallest (resp. largest) elements of u_{k} and $v_{k^{\prime}}$.

Lemma 5.1 For $i \neq 1, m$ and $j \neq 1, n, 2-L_{k k^{\prime}} \leq r_{i j} \leq 2-S_{k k^{\prime}}$.
Proof Suppose that $i \neq 1, m$ and $j \neq 1, n$. Recall that an (i, j)-quasimosaic in $Q_{i, j}$ is obtained from a $a(i, j)$-quasimosaic in $Q_{a(i, j)}$ by attaching a proper leading mosaic tile $M_{i, j}$. This mosaic tile should be suitably connected according to the presence of connection points on its left and top edges. In this stage, there are two possibilities, as follows: if $M_{i, j}$ is $\widetilde{l} t-\mathrm{cp}$, then it has two choices, and if it is $l t-\mathrm{cp}$, then it has a unique choice. Therefore, for given cling mosaics, $M_{i, j}$ has a unique choice only when $e_{l} e_{t}=$ oo.

Consider a submosaic consisting of $M_{i, j}$ and l - and t-cling mosaics. Assume that the presence of connection points on all contact edges e_{i} 's are given. Then

$$
\begin{aligned}
& \frac{\mid\left\{(i, j) \text {-quasimosaics with the given } e_{i} ’ s\right\} \mid}{\mid\left\{a(i, j) \text {-quasimosaics with the given } e_{i} ’ s\right\} \mid}= \\
& \frac{\mid\left\{\text { submosaics consisting of } M_{i, j} \text { and the a.c.m.'s with the given } e_{i} \text { 's }\right\} \mid}{\mid\left\{\text { submosaics consisting of only the a.c.m.s with the given } e_{i} ’ s\right\} \mid},
\end{aligned}
$$

where a.c.m. means associated cling mosaic.
Let c_{k} and $c_{k^{\prime}}^{\prime}$ denote the associated cp-ratios of the l - and t-cling mosaics for the given contact edges e_{i} 's. Then the latter quotient of the equality is $2 \times\left(1-c_{k} c_{k^{\prime}}^{\prime}\right)+$ $1 \times\left(c_{k} c_{k^{\prime}}^{\prime}\right)=2-c_{k} c_{k^{\prime}}^{\prime}$. Furthermore, $2-c_{k} c_{k^{\prime}}^{\prime}$ must lie between $2-L_{k k^{\prime}}$ and $2-S_{k k^{\prime}}$, and hence, so does the former quotient. Therefore, $r_{i j}$ lies between $2-L_{k k^{\prime}}$ and $2-S_{k k^{\prime}}$.

Lemma 5.2 Let m and n be integers with $3 \leq m \leq n$.

$$
\begin{array}{ll}
\text { For } m=3, & 14\left(\frac{7}{2}\right)^{n-3}-1 \leq p_{3 \times n} \leq 14\left(\frac{11}{3}\right)^{n-3}-1 . \\
\text { For } m=4, & 8\left(\frac{49}{8}\right)^{n-2}-1 \leq p_{4 \times n} \leq \frac{9520}{27}\left(\frac{155}{22}\right)^{n-4}-1 . \\
\text { For } m \geq 5, & 8 \cdot 6^{m-4}\left(\frac{49}{8}\right)^{n-2}\left(\frac{17}{10}\right)^{(m-4)(n-4)}-1 \leq p_{m \times n}, \\
& p_{m \times n} \leq \frac{337280}{1863}\left(\frac{2645}{192}\right)^{m-4}\left(\frac{2415}{176}\right)^{n-4}\left(\frac{31}{16}\right)^{(m-5)(n-5)}-1 .
\end{array}
$$

Proof First we handle the general case that $5 \leq m<n$. Consider a leading mosaic tile $M_{i, j}$ for $4 \leq i \leq m-2$ and $4 \leq j \leq n-3$. Associated l - and t-cling mosaics are of types U_{1} and V_{1}, respectively, because they are apart from the boundary of the mosaic system. Since the smallest cp-ratios in u_{1} and v_{1} are both $\frac{1}{4}$ and their largest cp-ratios are $\frac{1}{2}$ and $\frac{3}{5}$, respectively, $r_{i j}$ lies between $2-L_{11}=\frac{17}{10}$ and $2-S_{11}=\frac{31}{16}$. For the remaining leading mosaic tiles, one or both of their associated cling mosaics are attached to the boundary of the mosaic system.

A chart in Figure 7, called the cling mosaic chart, illustrates all possible combinations of cling mosaics at each position of leading mosaic tile. For example, at the position of the leading mosaic tile $M_{3,2}$, the associated l - and t-cling mosaics are of types U_{5} and V_{3}, respectively.

Figure 7: Cling mosaic chart for the general case.

From Lemmas 4.1 and 5.1 combined with the cling mosaic chart, we get Table 1, called the growth ratio table. Each row explains the placements of leading mosaic tiles $M_{i, j}$, the associated multiplications $u_{k} \cdot v_{k^{\prime}}$ of cp-ratios, possible variance of the related growth ratios $r_{i, j}$, and the number of related mosaic tiles.

Note that for $i=1(j \neq n)$, the leading mosaic tile $M_{1, j}$ must be \tilde{t}-cp. Assume that $M_{1, j-1}$ is already decided. Then $M_{1, j}$ has exactly two choices by Lemma 3.1, so $r_{1 j}=2$. Similarly, we get $r_{i 1}=2$ for $j=1(i \neq m)$. And for $i=m, M_{m, j}$ must be \tilde{b}-cp. Assume that $M_{m, j-1}$ and $M_{m-1, j}$ are already decided. But in any case, $M_{m, j}$ is determined uniquely, so $r_{m j}=1$. Similarly, we get $r_{i n}=1$ for $j=n$. Indeed, the method in this paragraph works for all the cases of $3 \leq m \leq n$.

(i, j) of $M_{i, j}$	$u_{k} \cdot v_{k^{\prime}}$	$r_{i, j}$	number of tiles
$i=1$ or $j=1$ except $(1, n),(m, 1)$		2	$m+n-3$
$i=m$ or $j=n$		1	$m+n-1$
$4 \leq i \leq m-2$ and $4 \leq j \leq n-3$	$u_{1} \cdot v_{1}$	$\frac{17}{10} \sim \frac{31}{16}$	$(m-5)(n-6)$
$(2,2)$	$u_{5} \cdot v_{7}$	$\frac{7}{4}$	1
$(2,3)$	$u_{3} \cdot v_{7}$	$\frac{7}{4} \sim \frac{11}{6}$	1
$i=2$ and $4 \leq j \leq n-2$	$u_{1} \cdot v_{7}$	$\frac{7}{4} \sim \frac{15}{8}$	$n-5$
$(2, n-1)$	$u_{1} \cdot v_{8}$	$\frac{7}{4} \sim \frac{15}{8}$	1
$(3,2)$	$u_{5} \cdot v_{3}$	$\frac{7}{4} \sim \frac{20}{11}$	1
$(3,3)$	$u_{3} \cdot v_{3}$	$\frac{7}{4} \sim \frac{62}{33}$	1
$i=3$ and $4 \leq j \leq n-3$	$u_{1} \cdot v_{3}$	$\frac{7}{4} \sim \frac{21}{11}$	$n-6$
$(3, n-2)$	$u_{1} \cdot v_{4}$	$\frac{7}{4} \sim \frac{21}{11}$	1
$(3, n-1)$	$u_{1} \cdot v_{6}$	$\frac{7}{4} \sim \frac{23}{12}$	1
$4 \leq i \leq m-1$ and $j=2$	$u_{5} \cdot v_{1}$	$\frac{17}{10} \sim \frac{15}{8}$	$m-4$
$4 \leq i \leq m-2$ and $j=3$	$u_{3} \cdot v_{1}$	$\frac{17}{10} \sim \frac{23}{12}$	$m-5$
$4 \leq i \leq m-2$ and $j=n-2$	$u_{1} \cdot v_{2}$	$\frac{12}{7} \sim \frac{31}{16}$	$m-5$
$4 \leq i \leq m-2$ and $j=n-1$	$u_{1} \cdot v_{5}$	$\frac{7}{4} \sim \frac{23}{12}$	$m-5$
$(m-1,3)$	$u_{4} \cdot v_{1}$	$\frac{17}{10} \sim \frac{23}{12}$	1
$i=m-1$ and $4 \leq j \leq n-3$	$u_{2} \cdot v_{1}$	$\frac{17}{10} \sim \frac{23}{12}$	$n-6$
$(m-1, n-2)$	$u_{2} \cdot v_{2}$	$\frac{12}{7} \sim \frac{23}{12}$	1
$(m-1, n-1)$	$u_{2} \cdot v_{5}$	$\frac{7}{4} \sim \frac{17}{9}$	1

Table 1: Growth ratio table for the general case.

The chart in Figure 8 illustrates bounds of the growth ratios at each place of leading mosaic tile according to the growth ratio table. This is called the growth ratio chart.

Figure 8: Growth ratio chart for the general case

From the growth ratio chart for $5 \leq m<n$, we get rigorous lower and upper bounds for $p_{m \times n}$, which are obtained by merely multiplying every growth ratio at each leading mosaic tile and subtracting by 1 as in equation (3.1). Thus, we have

$$
\begin{gathered}
8 \cdot 6^{m-4}\left(\frac{49}{8}\right)^{n-2}\left(\frac{17}{10}\right)^{(m-4)(n-4)}-1 \leq p_{m \times n}, \\
p_{m \times n} \leq \frac{337280}{1863}\left(\frac{2645}{192}\right)^{m-4}\left(\frac{2415}{176}\right)^{n-4}\left(\frac{31}{16}\right)^{(m-5)(n-5)}-1 .
\end{gathered}
$$

For the remaining cases $m=3, m=4$, and $m=n=5$, the reader may draw the associated cling mosaic charts and compute the growth ratio tables. Then the related growth ratio charts will be obtained as shown in Figure 9. Furthermore,

$$
\begin{array}{ll}
14\left(\frac{7}{2}\right)^{n-3}-1 \leq p_{3 \times n} \leq 14\left(\frac{11}{3}\right)^{n-3}-1 & \text { for } m=3, \text { and } \\
8\left(\frac{49}{8}\right)^{n-2}-1 \leq p_{4 \times n} \leq \frac{9520}{27}\left(\frac{155}{22}\right)^{n-4}-1 & \text { for } m=4
\end{array}
$$

Indeed for the case of $m=n=5$, we eventually get the same result as in the general case, by applying $m=n=5$.

Proof of Theorem 1.1 The result follows directly from Lemma 5.2 after loosening the bounds slightly. Speaking precisely, for any case of $3 \leq m \leq n$, if $i \neq 1, m$ and $j \neq 1, n$, then $r_{i j}$ always lies between $\frac{17}{10}$ and $\frac{31}{16}$. Furthermore, if $i=1$ or $j=1$, except $(1, n)$ and $(m, 1)$, then $r_{i j}=2$, and if $i=m$ or $j=n$, then $r_{i j}=1$. Therefore,

$$
2^{m+n-3}\left(\frac{17}{10}\right)^{(m-2)(n-2)}-1 \leq p_{m \times n} \leq 2^{m+n-3}\left(\frac{31}{16}\right)^{(m-2)(n-2)}-1 .
$$

Note that -1 can be ignored for the brief formula, since this inequality is obtained from Lemma 5.2 after loosening the bounds slightly.

Figure 9: Three growth ratio charts for $m=3, m=4$, and $m=n=5$ from the top left to the right

References

[1] M. Bousquet-Mélou, A. Guttmann, and I. Jensen, Self-avoiding walks crossing a square. J. Phys. A 38(2005), no. 42, 9159-9181. http://dx.doi.org/10.1088/0305-4470/38/42/001
[2] P. Flory, The configuration of real polymer chains. J. Chem. Phys. 17(1949), 303-310.
[3] A. Guttmann, ed., Polygons, polyominos, and polycubes. Lecture Notes in Physics, 775, Springer, Dordrecht, 2009. http://dx.doi.org/10.1007/978-1-4020-9927-4
[4] J. M. Hammersley, The number of polygons on a lattice. Proc. Cambridge Philos. Soc. 57(1961), 516-523.
[5] K. Hong, H. Lee, H. J. Lee, and S. Oh, Upper bound on the total number of knot n-mosaics. J. Knot Theory Ramifications 23(2014), no. 13, 1450065. http://dx.doi.org/10.1142/S0218216514500655
[6] ——, Small knot mosaics and partition matrices. J. Phys. A 47(2014), no. 43, 435201. http://dx.doi.org/10.1088/1751-8113/47/43/435201
[7] E. Janse van Rensburg, Thoughts on lattice knot statistics. J. Math. Chem. 45(2009), no. 1, 7-38. http://dx.doi.org/10.1007/s10910-008-9364-9
[8] H. J. Lee, K. Hong, H. Lee, and S. Oh, Mosaic number of knots. J. Knot Theory Ramifications 23(2014), no. 13, 1450069. http://dx.doi.org/10.1142/S0218216514500692
[9] S. Lomonaco and L. Kauffman, Quantum knots and mosaics. Quantum Inf. Process. 7(2008), no. 2-3, 85-115. http://dx.doi.org/10.1007/s11128-008-0076-7
[10] N. Madras and G. Slade, The Self-avoiding walk. Probability and its applications. Birkhäuser Boston, Boston, MA, 1993.
[11] S. Oh, K. Hong, H. Lee, and H. J. Lee, Quantum knots and the number of knot mosaics. Quantum Inf. Process. 14(2015), no. 3, 801-811. http://dx.doi.org/10.1007/s11128-014-0895-7

National Institute for Mathematical Sciences, Daejeon 34047, Korea
e-mail: kphong@nims.re.kr
Department of Mathematics, Korea University, Seoul 02841, Korea
e-mail: seungsang@korea.ac.kr

[^0]: Received by the editors May 11, 2017; revised October 19, 2017.
 Published electronically January 16, 2018.
 Author S. O. (corresponding author) was supported by the National Research Foundation of Korea(NRF) grant, funded by the Korea government(MSIP) (No. NRF-2017R1A2B2007216),

 AMS subject classification: 57M25, 82B20, 82B41, 82D60.
 Keywords: ring polymer, self-avoiding polygon.

