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Abstract

Hydroxytyrosol (HT) is a major polyphenolic compound found in olive oil with reported anti-cancer and anti-inflammatory activities.

However, the neuroprotective effect of HT on type 2 diabetes remains unknown. In the present study, db/db mice and SH-SY-5Y

neuroblastoma cells were used to evaluate the neuroprotective effects of HT. After 8 weeks of HT administration at doses of 10 and

50 mg/kg, expression levels of the mitochondrial respiratory chain complexes I/II/IV and the activity of complex I were significantly elev-

ated in the brain of db/db mice. Likewise, targets of the antioxidative transcription factor nuclear factor erythroid 2 related factor 2 including

p62 (sequestosome-1), haeme oxygenase 1 (HO-1), and superoxide dismutases 1 and 2 increased, and protein oxidation significantly

decreased. HT treatment was also found to activate AMP-activated protein kinase (AMPK), sirtuin 1 and PPARg coactivator-1a, which con-

stitute an energy-sensing protein network known to regulate mitochondrial function and oxidative stress responses. Meanwhile, neuronal

survival indicated by neuron marker expression levels including activity-regulated cytoskeleton-associated protein, N-methyl-D-aspartate

receptor and nerve growth factor was significantly improved by HT administration. Additionally, in a high glucose-induced neuronal

cell damage model, HT effectively increased mitochondrial complex IV and HO-1 expression through activating AMPK pathway, followed

by the prevention of high glucose-induced production of reactive oxygen species and declines of cell viability and VO2 capacity. Our obser-

vations suggest that HT improves mitochondrial function and reduces oxidative stress potentially through activation of the AMPK pathway

in the brain of db/db mice.
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Reactive oxygen species

The escalating epidemic of the metabolic syndromes, includ-

ing obesity and diabetes, represents one of the most pressing

and costly medical challenges in public health of the twenty-

first century. A recent study has reported that 336 million

people had diabetes in 2011, and this number is expected to

rise to 552 million by 2030(1). Diabetes is recognised by hyper-

glycaemia and glucose intolerance due to insulin deficiency,

impaired insulin sensitivity or both. Type 2 diabetes mellitus

(T2DM) is predominant and accounts for 90 % of patients

with diabetes(2). It is well established that diabetes has been

associated with slowly progressing brain damage that impa-

ired cognitive function(3–5). Although there is some evidence

for a relationship between T2DM and brain damage, the

mechanisms driving it remain unknown.

Clinical studies have indicated that cognitive dysfunction is

correlated with brain atrophy in patients with diabetes(3,6,7).

Kumar et al.(8) reported smaller total brain grey matter

volumes in patients with diabetes, and the decrease is more

pronounced in the cortical grey matter of the temporal

lobe(9). Despite the limited knowledge on the underlying

mechanisms for cognitive dysfunction during the progression

of T2DM, mitochondrial dysfunction and oxidative stress

have been suggested as major contributors(10–12). A pre-

vious study has indicated that high glucose concentration, a

major pathological characteristic of diabetes, could induce
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overproduction of superoxide from mitochondrial electron

transport chain, which is considered the first and key event

involved in the pathogenesis of diabetic and subsequent

complications(13). Overexpression of Mn superoxide dismu-

tase (SOD)2 protects neurons against hyperglycaemic injury

in db/db diabetic mice(14). It has also been reported that

high glucose concentrations could enhance the formation of

advanced glycation end products, which can induce reactive

oxygen species (ROS) production from the mitochondria

and promote oxidative damage to the heart and brain(15,16).

Given the importance of the mitochondria as a source of

both ATP and ROS, mitochondrial dysfunction has been

considered a link between diabetes and neurodegenerative

diseases such as Alzheimer’s disease(17). While numerous

mechanisms regulating mitochondrial function have been

delineated, including mitochondrial biogenesis, dynamics,

modification and mitophagy, the clear mechanisms account-

ing for mitochondrial dysfunction during T2DM-associated

brain damage remain to be elucidated.

Hydroxytyrosol (HT), a natural polyphenol from virgin olive

oil, is considered to be one of the most effective antioxidants.

Consumption of HT has certain health benefits, and the

responsible mechanisms for these effects have been mainly

attributed to its ability to scavenge ROS and enhance endogen-

ous antioxidant systems(18,19). In our previous studies, we have

found that HT could protect retinal epithelial pigment cells and

adipocytes against oxidative damage through activating the

nuclear transcription factor erythroid 2p45-related factor-2

(Nrf2)/Kelch-like ECH-associated protein 1 pathway(20–22)

and stimulate mitochondrial biogenesis through PPARg

coactivator-1 (PGC-1)a activation(20,23). These studies have

suggested that HT possesses the ability to reduce oxidative

stress and improve mitochondrial function. However, the

beneficial effects of HT on diabetic brain damage remain

unknown. Thus, because HT was reported to efficiently cross

the blood–brain barrier(24), db/db mice, a widely used human

T2DM animal model, were used to explore the in vivo neuro-

protective effects of HT and its underlying mechanisms.

Experimental methods

Chemicals

An antibody against b-actin was obtained from Sigma.

Antibodies against complexes I (NADH dehydrogenase

(ubiquinone) Fe-S protein 3; NDUFS3), II (subunit 30 kDa), III

(subunit core 2), IV (subunit I) and V (subunit a) were obtained

from Invitrogen. Antibodies against AMP-activated protein

kinase (AMPK), phospho-AMPK (p-AMPK) and PGC-1 were

obtained from Cell Signaling Technology. Antibodies against

sirtuin 1 (Sirt1), p62 (sequestosome-1), haeme oxygenase 1

(HO-1), SOD1 and SOD2 were obtained from Santa Cruz

Biotech. TheBCAProteinAssay kit (Pierce 23225) andenhanced

chemiluminescence (ECL) Western blotting detection kit

were purchased from Pierce. Nitrocellulose membranes were

obtained from PerkinElmer Life Sciences. The TRIzol reagent,

oligomycin, carbonyl cyanide 4-(trifluoromethoxy) phenylhy-

drazone (FCCP), rotenone and compound C were obtained

from Invitrogen, and the immunoprecipitation lysis buffer

was from Beyotime. HT was purchased from Xi’an APP-Chem

Bio(Tech) Company Limited.

Animals and treatments

Male db/db mice aged 4-week-old from a C57BL/6J genetic

background were purchased from SLAC Laboratory Animals

Company Limited. After 1 week of acclimatisation, mice were

randomly divided into the following three groups: db/db mice;

db/db mice with a daily oral administration of low-dose HT

(10 mg/kg per d); db/db mice with a daily oral administration

of high-dose HT (50 mg/kg per d). After 8 weeks of feeding,

mice were fasted overnight and killed. All animals were

housed in a temperature-controlled (25–278C) and humidity-

controlled (60 %) animal room and maintained on a 12 h

light–12 h dark cycle (light from 08.00 to 20.00 hours) with

food and water provided during the experiments. All the

procedures were performed in accordance with the United

States Public Health Services Guide for the Care and Use of

Laboratory Animals, and all efforts were made to minimise the

suffering and the number of animals used in the present study.

Western blotting

Cortical brain tissue was lysed with Western and immunopre-

cipitation lysis buffer. Lysates were centrifuged at 13 000 g for

10 min at 48C. Supernatant protein concentrations were deter-

mined with a BCA protein assay kit (Pierce). Equal amounts of

protein per sample (20mg) were subjected to 10 % (w/v) SDS–

PAGE; proteins were then transferred to nitrocellulose mem-

branes and blocked with a 5 % (w/v) non-fat milk/TBST

(Tris-buffered saline Tween 20) for 1 h at room temperature.

Membranes were incubated with primary antibodies against

b-actin (1:5000), mitochondrial complex I–V (1:3000), AMPK

(1:1000), phospho-AMPK (1:1000), PGC-1 (1:1000), Sirt1

(1:1000), p62 (1:1000), HO-1 (1:1000), SOD1 (1:1000) and

SOD2 (1:1000) in 5 % (w/v) milk/TBST at 48C overnight. Mem-

branes were washed with TBST three times and were then

incubated with anti-rabbit or anti-mouse antibodies at room

temperature for 1 h. Chemiluminescent detection was per-

formed by an ECL Western blotting detection kit (Pierce)

and quantified by scanning densitometry.

Real-time PCR

Total RNAwas extracted from cells using TRIzol reagent accord-

ing to the manufacturer’s instructions. Reverse transcription

from RNA to complementary DNA was performed using the

PrimeScript RT-PCR Kit (Takara) followed by semiquantitative

real-time PCR using gene-specific primers. The following

primers were used for the RT-PCR analysis: activity-regulated

cytoskeleton-associated protein (Arc), GGTAAGTGCCGAGCTG-

AGATG (forward) and CGACCTGTGCAACCCTTTC (reverse);

N-methyl-D-aspartate receptor 1 (NMDAR1), GCCCAACGCCAT-

ACAGATG (forward) and GGCGGGTGACTAACTAGGATAGC

(reverse); nerve growth factor (NGF), TTGCCAAGGAC-

GCAGCTTT (forward) and TGCCTGTACGCCGATCAAA
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(reverse); b-actin, CCACACCTTCTACAATGAGC (forward)

and GGTCTCAAACATGATCTGGG (reverse).

Assays for mitochondrial complex activities

Mitochondria were isolated from mouse cortical brain tissue,

and mitochondrial protein concentrations were determined

using the BCA protein assay kit (Pierce). NADH–ubiquinone

reductase (complex I) activities were measured spectrometri-

cally using conventional assays, as described previously(25).

Cell viability assay

SH-SY-5Y cells were seeded in ninety-six-well plates at a den-

sity of 4 £ 104 cells per well for 24 h. These cells were then

treated with different concentrations of glucose or HT for

the indicated time periods. Then, the number of viable cells

was determined by addition of 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide. Optical densities were read

at 550 nm using a microplate spectrophotometer (Multiskan

Ascent; Thermo Fisher Scientific, Inc.).

Oxidative status assessment

20,70-Dichlorodihydrofluorescein diacetate (20,70-dichlorofluo-

rescin diacetate) is a freely permeable fluorogenic tracer used

for the assessment of oxidative status. After treatment, cells

were incubated with 10 mM-20,70-dichlorofluorescin diacetate

for 30 min and then washed with PBS three times. Cell lysis

was prepared with a lysis solution (10 mM-Tris, 150 mM-NaCl,

0·1 mM-EDTA and 0·5 % Triton X-100, pH 7·5). The supernatant

(200ml) was analysed using a spectrofluorometer with excita-

tion 485 nm and emission 538 nm (Fluoroskan Ascent; Thermo

Fisher Scientific, Inc.). An aliquot of supernatant was used in a

BCA protein assay to determine the concentration of total

protein. ROS levels were expressed as the relative 2,7-dichloro-

fluorescien (DCF) fluorescence per mg of protein.

VO2

Cell VO2 by intact cells, which is a marker for mitochondrial

respiration activity, was measured. Basal, oligomycin and

FCCP-treated VO2 rates were investigated after high glucose or

HT treatment using Seahorse Extracellular Flux Analyzer (Sea-

horse Bioscience) according to the manufacturer’s instructions.

Statistical analysis

Data are presented as means with their standard errors.

The statistical significance of differences among groups were

analysed using a one-way ANOVA followed by Dunnett’s

multiple comparison test. A P value ,0·05 was considered

to be statistically significant.
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Fig. 1. Effects of hydroxytyrosol (HT) on the expression and activities of mitochondrial complexes in the db/db mouse brain cortex. After 8 weeks of treatment

with HT, mice were killed for brain protein and mitochondrial isolation. Protein expression levels of brain mitochondrial complex subunits were determined by the

following Western blotting analysis: Western blot image (a), statistical analysis of complex I subunit (b), complex II subunit (c) and complex IV subunit (d) levels.

Mitochondrial respiratory chain complex I activity was analysed spectrometrically (e). Expression of each protein was normalised to the b-actin loading control. Values

are means, with their standard errors represented by vertical bars (n 8). Mean value was significantly different from that of control group: * P,0·05, ** P,0·01.
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Results

Effects of hydroxytyrosol on the expression and activities
of mitochondrial complexes in the db/db mouse brain
cortex

The db/db mice exhibited over obesity and hyperglycaemia

relative to normal. Comparing with normal C57BL6 mice,

no significant changes were observed on the expression of

mitochondrial complexes in the db/db mice brain cortex

(see online Supplementary Fig. S1). After a 2-month HT

supplement in db/db mice, the expression of mitochondrial com-

plexes I, II and IV was significantly improved (Fig. 1(a)–(d)),

while the expression of complexes III and V was not affected.

We also measured the activities of these complexes and found

that the activity of complex I was significantly increased

after HT treatment compared with the db/db control group

(Fig. 1(e)), while the activities of other complexes were not

changed (data not shown).

Hydroxytyrosol induced phase II antioxidant systems
in the brain of db/db mice

The induction of phase II enzymes is another effect of HT in

our previous in vitro studies. In the present study, we found

that the phase II antioxidant enzymes, including HO-1

(Fig. 2(a) and (c)), SOD1 (Fig. 2(a) and (d)) and SOD2

(Fig. 2(a) and (e)), were significantly increased by HT treat-

ment. Since SOD2 was found markedly decreased in db/db

mice compared with C57BL6 control mice (see online

Supplementary Fig. S2), the major effect of HT on SOD con-

tent in the db/db mice was assumed to sufficiently prevent

the decrease in SOD2. A previous study has indicated

that p62 can activate Nrf2, a key regulator of phase II

enzymes, and induce antioxidant proteins and detoxification

enzymes(26). Thus, we measured p62 protein expression and

found a significant increase in p62 expression induced after

HT treatment (Fig. 2(a) and (b)).

Hydroxytyrosol inhibited protein oxidation in the brain
of db/db mice

Protein carbonyl content is an indicator of protein peroxi-

dation. As shown in Fig. 3, protein oxidation was effectively

decreased by both low and high doses of HT supplements,

suggesting that HT may contribute to reduce oxidative stress

in the brain of db/db mice.

Hydroxytyrosol activated AMP-activated protein kinase
pathway in the brain of db/db mice

The AMPK/Sirt1/PGC-1 pathway has been suggested as

a mechanism for controlling mitochondrial function(27,28)

and Nrf2-regulated antioxidative enzymes(29). Hence, we

detected the AMPK/Sirt1/PGC-1 pathway in the brain of db/

db mice. As expected, the expression of p-AMPK/AMPK

(Fig. 4(a) and (b)), PGC-1 (Fig. 4(c) and (d)) and Sirt1
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Fig. 2. Effects of hydroxytyrosol (HT) on the phase II antioxidant system in the brain of db/db mice. After 8 weeks of treatment with HT, mice were killed, and the

brain tissues were collected. The activation of the phase II antioxidant system was detected by the following Western blotting analysis: Western blot image (a),

statistical analysis of p62 (b), haeme oxygenase 1 (HO-1) (c), superoxide dismutase (SOD)1 (d) and SOD2 (e). Expression of each protein was normalised to

b-actin loading controls. Values are means, with their standard errors represented by vertical bars (n 8). Mean value was significantly different from that of control

group:* P,0·05, ** P,0·01.
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(Fig. 4(e) and (f)) levels were all significantly increased by

both low and high doses of HT supplements, suggesting that

HT activated the AMPK/Sirt1/PGC-1 pathway in the brain of

db/db mice.

Hydroxytyrosol improved neuronal survival of db/db mice

Previous study has reported that neuron loss was observed in

the dorsal root ganglia of db/db mice(30). In the present study,

neuron loss was observed in the brain cortex of db/db mice

compared with normal C57BL6 control mice evidenced by

decreased neuron factors including Arc, NMDAR1 and NGF

(see online Supplementary Fig. S3). HT supplements,

especially the high dose, significantly increased the mRNA

levels of Arc, NMDAR1 and NGF compared with the db/db

control mice, suggesting that HT improved neuronal cell sur-

vival in the brain of db/db mice (Fig. 5(a)–(c)).

Hydroxytyrosol protected against high glucose-induced
SH-SY-5Y neuronal cell damage

Hyperglycaemia is a major factor for the complications

derived from diabetes. Therefore, a toxicity model induced

by high glucose in SH-SY-5Y cells was used to confirm the

possible underlying mechanism of HT’s neuroprotective

effects in vitro. Similar to a previous report(31), high levels

of glucose (45 and 175 mM) inhibited cell viability in a

time-dependent manner within 24 h (Fig. 6(a)). Consistent

with previous studies(32–35), increased DCF fluorescence

were observed 3 h after treatment with 45 mM-glucose and

plateaued after 6–24 h (Fig. 6(b)). Meanwhile, pre-treatments

with 2, 5 and 10mM-HT sufficiently increased cell viability

after a 45 mM-glucose challenge (Fig. 6(c)). Although we

have previously reported that HT could be efficiently uptake

in mice and reached 16mmol/l (2·5mg/ml) at 5 min in serum

after 50 mg/kg administration(25), we also measured HT in cul-

ture medium with or without SH-SY-5Y cells, data suggested

that HT could efficiently uptake in the cells (see online

Supplementary Fig. S4). In addition, we analysed basal and

uncoupled mitochondrial VO2 capacity with Seahorse analyzer

(Seahorse Bioscience) (see online Supplementary Fig. S5).

Normalised data indicated that the basal VO2 capacity, ATP

production potential and maximal respiration were all signifi-

cantly decreased by a 45 mM-glucose treatment, while basal

and maximal respiration were efficiently protected by a

10mM-HT pre-treatment (Fig. 6(d)).
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Hydroxytyrosol prevented high glucose-induced SH-SY-5Y

cellular damage through AMP-activated protein kinase

activation

Time-dependent treatment of SH-SY-5Y cells with 10mM-HT

increased p-AMPK levels at 10 and 30 min, which then gradu-

ally decreased, suggesting that HT could rapidly activate the

AMPK pathway (Fig. 7(a) and (b)). Meanwhile, HT treatment

significantly increased the protein expression of mitochondrial

complex IV and HO-1, and the induction effect was abolished

by AMPK-specific inhibitor compound C (Fig. 7(c) and (d)).

Although HT showed no significant induction on SOD2 pro-

tein expression, the inhibition of AMPK sufficiently reduced

its content (Fig. 7(c) and (d)), suggesting the major regulatory

effect of AMPK pathway on mitochondrial and antioxidative

protein expression. In addition, 45 mM-glucose treatment sig-

nificantly decreased the levels of p-AMPK, while 10mM-HT

pre-treatment effectively restored the levels of p-AMPK
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(Fig. 8(a) and (b)), and the protective effects of HT against

high glucose-induced cell toxicity were abolished when

activation of AMPK was inhibited by compound C (Fig. 8(c)),

indicating that AMPK pathway activation contributed to HT’s

protective effect.

Discussion

The Mediterranean diet is rich in olive oil and has been associ-

ated with a slower decline in cognition(36,37). Limited studies

have suggested that polyphenols with anti-oxidative proper-

ties may account for the benefits of the Mediterranean diet;

however, the primary active components and mechanisms

are still unclear. HT is a major polyphenol found in virgin

olive oil and has been observed to have anti-inflammatory,

anti-cancer and anti-obesity effects. In the present study, we

are the first to link the beneficial effects of HT to the diabetic

brain with its ability to improve mitochondrial function and

activation of phase II antioxidant enzymes by activation of

AMPK signalling.

The db/db mice have been widely used as a model of T2DM

and other metabolic conditions, such as obesity and

dyslipidaemia. A previous study has also observed impaired

long-term potentiation and spatial memory in db/db mice(38).

Furthermore, a recent study has reported central nervous

system and peripheral molecular changes in diabetic db/db

mice with significant reduction in mitochondria-related

molecules including complexes subunit, TCA cycle and the

antioxidant SOD2, and concluded that these changes might

contribute to the cognitive dysfunction in db/db mice(39).

In the present study, HT treatment could significantly improve

the expression levels of mitochondrial complexes I/II/IV sig-

nificantly in the brain and increase the activity of complex I,

the major complex in the electron transport chain and oxi-

dative phosphorylation in the db/db mice. In addition, HT

treatment increased antioxidative enzymes, such as HO-1,

SOD1 and SOD2, and decreased the protein carbonyl content

in the brain of db/db mice. Collected data suggested that HT

could improve mitochondrial function and reduce oxidative

stress in the brain of db/db mice. Therefore, the mitochondrial

protective effects and reduction in oxidative stress might be

contributing to the increases in neuronal survival.

Previous study has shown 33 % neuron loss in the brain of

db/db mice at 8-month age compared with the control(30),

which suggested that significant neuron loss may actually

happen in the brain of db/db mice. In the present study, we

measured the expression of neuron markers including Arc,

NMDAR1 and NGF. Arc has been associated with synaptic

potentiation and the long-term consolidation of memory(40).

Arc levels are decreased in high-fat diet-fed animals and

Alzheimer’s diseased brains(41). NMDAR, a neurotransmitter

receptor, is a key molecule to mediate synaptic plasticity,

and the activation of NMDAR is required for Arc function(42).

NGF plays a key role in the development and maintenance

of sympathetic and sensory neurons as well as regulation

of axonal growth and guidance. Previous studies have

reported that NGF could reverse diabetes-related biochemical

alterations(43,44). In the present study, all the three factors were

significantly higher after HT treatment compared with db/db

control mice, suggesting that HT has neuroprotective effects
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and may potentially improve neuron survival. Whether this

protection is attributed to decreased oxidative stress and the

improvement of mitochondrial function or other independent

mechanisms warrants further investigation.

AMPK is a key player that regulates energy metabolism and

is crucial during the development and treatment of obesity,

diabetes and other metabolic disorders(45). In addition, brain

development and function are closely connected to AMPK

signalling, which is also involved in neurodegenerative

disorders(45,46). Impaired AMPK signalling is linked to mitocho-

ndrial dysfunction in brain cells and peripheral neuropathy in

diabetes(47). Resveratrol is known to enhance neurite out-

growth and reduce kidney oxidative stress in diabetic rats

via activating AMPK signalling(48). It has also been reported

that HT could activate AMPK to reduce intracellular ROS

levels in vascular endothelial cells(49). In this study, p-AMPK

and two other regulators of AMPK signalling, Sirt1 and PGC-1,

were all significantly increased in the brain of HT-treated

db/db mice. To further confirm that the AMPK pathway

drives the effects of HT, we chose a high glucose-induced

toxicity model in SH-HY-5Y neuroblastoma cells. Similar to

previous observations in primary neurons, high glucose sig-

nificantly induced oxidative stress, mitochondrial dysfunction

and decreased cell viability(35). HT pretreatment efficiently

protected mitochondrial function and cell viability, and the

addition of compound C, an AMPK inhibitor, abolished

these HT effects. Meanwhile, HT induced overexpression of

complex IV, one of the mitochondrial electron transport

chain and HO-1, one of the antioxidative enzymes was also

diminished by compound C. Thus, we suggest that AMPK

activation may play major roles in HT-induced mitochondrial

biogenesis and phase II enzyme activation, which then pro-

tects against high glucose toxicity.

Animal studies have shown that HT can be dose

dependently absorbed and excreted in urine(50), and HT con-

centrations in rat plasma can reach 1·22mg/ml in 5 min and

1·91mg/ml in 10 min after 20 mg/kg HT oral administration(51),

suggesting that the doses of HT used in the present study

should be efficiently absorbed and accumulated in vivo.

However, the HT content of olive oil varies from 1·55 to

14·42 mg/kg(52), thus humans with an intake of 50 g olive

oil/d would receive 0·7 mg of HT at most. The dose of

10 mg/kg used in the present study could only be achieved

in humans through the use of very high dose supplements,

typically supplementation studies only achieve a total intake

of approximately 50 mg/d(53). The present study showed that

very high doses of HT improved mitochondrial function and

induced phase II antioxidative enzymes, which decreased

oxidative stress in brain of db/db mice. Furthermore, the

activation of AMPK signalling by HT may contribute to its

protective effects. However, caution should be exercised in

extrapolating these findings to lower doses of HT more

typically found in humans. There remains the potential

for synergistic effects of HT with other polyphenols in olive

oil, which could lead to benefits in a realistic dose range

suggesting that HT might be an effective agent for the pre-

vention and treatment of diabetic complications such as

brain damage.
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