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Summary

Genotype-assisted selection (GAS), i.e. selection for an identified quantitative trait locus (QTL) and
polygenic background genes, has been shown to increase short-term genetic gain but may reduce
long-term genetic gains. In order to avoid this reduction of long-term gain, multi-generation
optimization of truncation selection schemes is needed. This paper presents a multi-generation
optimization of optimum contribution (OC) selection with selection on an identified QTL. This
genotype-assisted optimum contribution (GAOC) selection method assumes that the optimum
selection differential at the QTL is constant over the time horizon, and achieves this by controlling
the increase of the frequency of the positive QTL allele. Implementation was straightforward by an
additional linear restriction in the OC algorithm. GAOC achieved 35.2%, 2.3% and 1.1%,
respectively, more cumulative genetic gain than OC selection (ignoring the QTL) using time horizons
of 5, 10 and 15 generations. When one-generation optimization of GAS was used instead of
multi-generation optimization, these figures were 2.8%, 3.1% and 3.2%, respectively. Simulated
annealing was used to optimize the increases of the frequency of the positive QTL allele in order to
test the optimality of GAOC. This latter resulted in genetic gains that were always within 0.4%
of those of GAOC. In practice, short-term genetic gains are also important, which makes
one-generation optimization of genetic gain closer to optimal.

1. Introduction

Genotype-assisted selection (GAS) is possible when
(part of) the genetic variation is due to a detected
gene, such as is the case for the K232A substitution in
the DGAT1 gene (Grisart et al., 2002). In the future,
more of the causal mutations underlying quantitative
trait loci (QTLs) will be detected, and GAS will
become an increasingly common tool for the genetic
improvement of livestock. It is, however, not expected
that all the mutations underlying genetic variation in
quantitative traits will be detected, so that selection
for ‘background’ genes (often termed polygenes)
remains important.

GAS and, similarly, marker-assisted selection
(MAS) have been found to increase short-term
selection response, but, in the longer term (5–10

generations), the highest selection response was
achieved by conventional selection, i.e. by ignoring
the QTL (Gibson, 1994; Pong-Wong & Woolliams,
1998; Villanueva et al., 1999, 2002a, b). This paradox,
that ignorance about the existence of the QTL gives
the highest selection response, has become known as
the Gibson effect. In the long term, both GAS and
conventional selection will fix the positive QTL allele,
and thus both achieve maximum gain at the QTL.
GAS will fix the positive QTL allele faster, and thus
will achieve more early (short-term) selection re-
sponse. The high emphasis on the QTL with GAS,
however, results in a reduced early response at poly-
genes, which is not fully recovered during the later
generations of selection due to the non-linear relation-
ship between selection pressure and selection response
(Pong-Wong & Woolliams, 1998).

Dekkers & Van Arendonk (1998) and Manfredi
et al. (1998) solved the Gibson effect by optimizing the
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weights of the QTL and polygenic estimated breeding
values in the selection criterion over the planning
horizon. Manfredi et al. (1998) also optimized
matings between animals. In one-generation-GAS
schemes, i.e. GAS schemes where equal weights
are given to estimates of polygenic effects and of
QTL genotype effects, the genetic gain in the next
generation is maximized (the time horizon is one
generation), but genetic gain is suboptimal if this
one-generation scheme is repeatedly used over a
period of e.g. 10 generations. Using optimal control
theory and dynamic programming, the weights for the
QTL genotype effects were optimized for every gen-
eration over a period of e.g. 10 generations. The latter
requires the prediction of the selection response over
the time horizon given any set of weights. This opti-
mization of the weights of the QTL breeding value
is possible for phenotypic and BLUP selection.
Chakraborty et al. (2002) extended this approach to
multiple QTLs.

Optimum contribution (OC) selection maximizes
genetic gain while constraining the rate of inbreeding
in the population by optimizing the contributions of
the parents to the next generation (Meuwissen, 1997;
Grundy et al., 1998; Meuwissen & Sonesson, 1998).
These authors also showed that OC selection achieves
substantially more genetic gain at the same rate of
inbreeding than truncation selection for BLUP
breeding value estimates when breeding values are
purely polygenic. When OC selection that ignored the
QTL was applied to populations with segregating
QTLs, it yielded more genetic gain than truncation
selection schemes that account for the QTL in the
short and the long term (Villanueva et al., 1999,
2002a). But these authors also showed that the
Gibson effect occurred for OC selection when used as
a one-generation scheme (i.e. estimates of polygenic
and QTL effect have equal weights). Villanueva et al.
(2002b) therefore tried to combine optimal weighting
of the QTL across generations, using the Dekkers &
Van Arendonk (1998) approach, which assumes
truncation selection, and OC selection. The main
limitation of this approach is that the weights are de-
rived under the assumption of truncation selection
while they are used in an OC selection scheme, and are
thus suboptimal. The derivation of optimal weights
requires the deterministic prediction of genetic gains
of OC selection, which is not yet possible.

The aim here is to develop a genotype-assisted opti-
mum contribution (GAOC) selection method that
maximizes the genetic gain over a specified period of
timewhile controlling the inbreeding, and that resolves
the Gibson effect (i.e. knowledge about the QTL im-
proves genetic gain over the specified time period).
The problem of determining optimal weights for the
QTL across generations is avoided. Instead we con-
trol the increase in the frequency of the positive QTL

allele using OC selection. The dynamic nature of OC
selection, i.e. it adapts to the selection candidates at
hand, will be maintained in GAOC selection. GAOC
and OC (ignoring the QTL) will be compared for their
genetic gains over different time horizons by Monte
Carlo simulations.

2. Methods

(i) GAOC selection

OC selection is designed to maximize genetic gain
in generation t with a constraint on the rate of
inbreeding, i.e. the genetic level of generation t+1
is (Meuwissen, 1997) :

Gt+1=ctk EBVt, (1)

where EBVt is a vector of genotype-assisted estimates
of breeding values of the selection candidates in gen-
eration t (with equal weights for the polygenic breed-
ing value estimate and QTL effect), and ct is a vector
of optimal contributions of the selection candidates to
the next generation, which is proportional to the
fraction of the offspring that each candidate should
have. In EBVt, the weights for the polygenic breeding
value estimate and QTL effects are equal and not
optimized as was done by Dekkers & Van Arendonk
(1998) and Manfredi et al. (1998). In GAOC, the
genetic response at the QTL will be limited directly by
constraining the response at the QTL, as shown in
the next section, instead of by reducing the weight of
the QTL genotype in the total EBV. This approach
circumvents the optimization of these weights.

The contributions are optimized subject to a quad-
ratic constraint (2) and a set of linear constraints (3) :

Kt+1=ctk Atct (2)

s=Qtct (3)

where constraint (2) ensures that the average re-
lationships of the selected parents, ctkAtct, and thus
the inbreeding coefficients of their offspring, follow a
predefined path, which is defined by the value of the
restriction at each point in time, Kt. In OC selection,
the Kt values are chosen such that the rate of in-
breeding, DF, is constant (Grundy et al., 1998), i.e.

Kt+1=Kt+(2xKt)DF:

The linear constraints (3) were originally used to
ensure that the contributions of the males and of
the females sum to 1

2, i.e. s=[12
1
2]k, and Qt is a (2rn)

design matrix indicating the sex of each of n candi-
dates (Meuwissen, 1997). However, additional linear
constraints are easily added and will not change
the general form of the optimal solution to the
maximization of (1) under the constraints (2) and
(3) (Grundy et al., 1998). Here, we are particularly
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interested in constraining the selection response at
the QTL, since this is initially too high and results in
too low a response at the polygenes (Gibson, 1994).
The allele frequency of the positive QTL allele in
generation t+1 equals the frequency of the QTL in
the parents of generation, t+1, weighted by the
contribution of the parents, i.e.

qt+1=qtkct,

where qt is a vector of QTL allele frequencies of every
candidate, i.e. elements of qt are 0,

1
2 or 1 if the candi-

date carries 0, 1, or 2 of the positive QTL alleles, re-
spectively. Thus, if we do not want too much selection
pressure at the QTL and want, for example, qt+1fx,
we can use the following GAOC algorithm to
implement the constraint that qtkctfx :

Step 1 : Optimize the contributions, ct, while ignoring
the constraint qtkctfx, e.g. using the algorithm of
Meuwissen (1997).
Step 2 : If qtkctfx and qtkct>0, accept the solution
of Step 1 and finish. Otherwise, include the constraint
qtkct=x in the set of constraints (2), i.e. set : s=[ 1

2
1
2 x]k

and add an extra row to Qt containing the elements
of qtk (qtkct>0 ensures that the positive QTL allele
is not lost.)
Step 3 : Optimize the contributions, ct, with the
additional constraint qtkct=x included. Again the
algorithm of Meuwissen (1997) can be used.

Step 1 is needed to implement the constraint qtkctfx,
while ignoring Step 1 would have implemented the
constraint qtkct=x, which might put more emphasis
on the QTL than the one-generation OC scheme of
Step 1 (which might not reach a QTL frequency as
high as x). In the following section, we determine the
optimum path of the QTL allele, i.e. the optimum
frequency that the QTL allele should have in each
generation t.

(ii) The optimum path of the QTL allele

When optimizing genetic gain for a specified time
horizon and when ignoring linkage disequilibrium
(LD) between the QTL and the polygenes, Dekkers
& Van Arendonk (1998) noticed that, although the
weights given to the QTL genotypes vary widely over
generations, the intensity of selection at the QTL
(and at the polygenes) is constant. For simplicity, we
will ignore any linkage disequilibrium between the
polygenes and the QTL, and develop an OC selection
method that maintains constant selection intensity at
the QTL, i.e.

Dqt=sq(t)=C (4)

where Dqt is the selection differential at the QTL
in generation t, which equals the change in allele

frequency; sq(t) is the standard deviation of the allele
frequencies of the individuals ; and C is the constant
selection intensity at the QTL. Note that sq(t)

2 is
the variance due to an additive QTL in generation t
with an effect of a=1

2, where a is the additive gene
effect as defined by Falconer & Mackay (1996), i.e.
sq(t)

2=1
2qt(1xqt).

The optimal solution of Dekkers & Van Arendonk
(1998) demonstrated that the positive QTL allele
should be close to fixation at the end of the time
horizon. This is probably because the heritability of
the QTL polymorphism is 1, and this high heritability
should be exploited as much as possible by depleting
the variance at the QTL, but not too fast, since this
would lead to reduced selection differentials for the
polygenes during the generations where there is strong
selection for the QTL. There will be increased selection
differentials for the polygenes after the QTL allele has
been fixed, but, because of the non-linear relationship
between the selected fraction and selection intensity,
this does not fully compensate for the loss in polygenic
response during the earlier generations. Thus, the
variance at the QTL should reach 0 at the end of the
time horizon, such that the polygenic selection differ-
ential is constant. The above argument assumes that
there is no relationship between the polygenes and the
QTL genotype (no LD), otherwise it matters whether
the polygenic response is achieved in the best QTL
genotype class or in the worst. However, also when
accounting for LD, Dekkers & Van Arendonk (1998)
found that the optimum solution brought the QTL
close to fixation at the end of the time horizon.

When the initial QTL allele frequency, q0, and C
from equation (4) are known, the following recursive
equations define the increase in allele frequency per
generation (Dqt) :

Dqt=C*sq(t)=C*
p
[12qt(1xqt)] (5)

qt+1=qt+Dqt:

The initial QTL allele frequency, q0, is assumed
known here. By trial and error, C is found such that
qT=0.99, i.e. the QTL is close to fixation at the end
of the time horizon, T. The above qt values define an
optimal path for the QTL allele to fixation (optimal in
the sense that it achieves a constant high intensity of
selection at the QTL and brings the QTL allele close
to fixation). These qt values are used in Step 3 of the
GAOC algorithm (see Section 2(i)).

(iii) The ANNEAL scheme

In order to test whether the path of the QTL allele
used by GAOC is close to optimal, simulated anneal-
ing (e.g. Press et al., 1989) was also used to optimize
the increases in frequencies of the QTL allele in each
generation while maximizing genetic response over
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the time horizon and constraining inbreeding. This
scheme is denoted ANNEAL.

In the ANNEAL scheme, the simulated annealing
algorithm was used to optimize the path of the QTL,
i.e. the frequencies q1, q2, … , qT, such that GT is max-
imized, where GT is evaluated by 10 replicated Monte
Carlo simulations of the scheme. Given a (trial) set of
frequencies q1, q2, … , qT, the ANNEAL scheme used
the GAOC algorithm to (1) achieve the indicated fre-
quencies q1, q2, … , qT ; (2) to optimize the contribu-
tions, ct ; and (3) to constrain the rate of inbreeding.

Simulated annealing is a computationally intensive
Monte-Carlo-based optimization algorithm, which
implies here that for many ‘random/trial sets of qt
values ’ the genetic gain, GT, needed to be calculated.
In the absence of a deterministic method, Monte
Carlo simulation of the suggested breeding scheme
was used to evaluate GT. Because these Monte Carlo
simulations needed to be conducted for very many
sets of qt values, the number of replicated simulations
for each was limited to 10. Note that the simulated
annealing optimization of the path of the QTL allele
of these ANNEAL schemes accounts for the LD
between the QTL and polygenes, because the Monte
Carlo simulations of breeding schemes automatically
account for this LD.

Due to their very high computational demands, the
ANNEAL schemes are not considered a viable option
in practical applications. Ideally, they should be re-
optimized every generation, since the realized selec-
tion response may differ from the planned response
due to sampling, but this was not possible with the
available computer capacity.

(iv) The GAS+OC scheme

One further selection strategy was tested, denoted
GAS+OC, in which genotype-assisted EBV were

estimated, assuming equal weights for the QTL and
polygenic breeding value, and these EBV were used
for OC selection (Villanueva et al., 1999, 2002a ;
called ‘GAS with optimized selection’ by these
authors). Hence, GAS+OC is a one-generation opti-
mization algorithm, equivalent to using only Step 1
of the GAOC algorithm.

(v) Simulated breeding schemes

The breeding schemes described in Table 1 were si-
mulated in order to compare them for total genetic
gain and its distribution over the QTL and polygenes.
There were 100 male and 100 female selection candi-
dates per generation. The inbreeding at unlinked
neutral loci was constrained to 1% per generation by
using OC selection. The initial heritability due to the
polygenes and the bi-allelic QTL was quite low, i.e.
0.0917, as it is expected that extra genetic gains due
to MAS/GAS are highest for lowly heritable traits
(e.g. Meuwissen & Goddard, 1996). (These bi-allelic
QTL simulations may also approximate the situation
of a multiallelic QTL, where the best alleles are
simulated by the positive allele, and the average effect
of the remaining alleles is simulated by the negative
allele.) In the first generation, approximately half the
genetic variance is due to the QTL and half is due to
the polygenes. The genetic variance due to the QTL
was chosen to be rather large, which increases the
effect of knowledge versus ignorance about the QTL
allele, and thus the Gibson effect will be exaggerated
relative to situations with smaller effects. Polygenes
and QTL alleles were in linkage equilibrium in the
first generation, where polygenic effects for animal i,
gi(0), were sampled from N(0,0.25) and the number of
positive QTL alleles was sampled from Bin(n=2;
p=0.15). The effects of the QTL alleles were additive,
and each positive QTL allele increased the phenotype

Table 1. Parameters of the simulated breeding schemes

No. of animals per generation (50% males; 50% females) 200
Constraint on rate of inbreeding 1% per generation
Bi-allelic QTL

Initial frequency of positive allele 0.15
Additive effect (Falconer & Mackays (1996) definition) 1
Dominance effect 0

Polygenic variance 0.25
Environmental variance 5
Trait recording Before selection
Time horizon (T) 5, 10 or 15 generations
Objective of breeding scheme Maximum genetic level in generation T
No. of replicated simulations

For scheme comparisons 50
Within the simulated annealing optimization 10a

a In order to save computer time, the simulated annealing optimization algorithm used only 10 replicated simulations to
estimate genetic gain of alternative breeding schemes. The optimal scheme that was found by simulated annealing was,
however, simulated 50 times in order to obtain results as accurate as those for the other schemes.

T. H. E. Meuwissen and A. K. Sonesson 112

https://doi.org/10.1017/S0016672304007050 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672304007050


by a=1. In later generations, gi(t) was sampled from
N[12(gs(tx1)+gd(tx1)) ;

1
2 *0

.25 * (1x1
2Fsx1

2Fd)], where Fs

(Fd) is the inbreeding coefficient of the sire (dam). A
paternally (maternally) inherited QTL allele was
sampled at random from the QTL alleles of the sire
(dam). The effects of the QTL were assumed additive,
and phenotypic records were obtained as pi(t)=
gi(t)+1* (number of positive QTL alleles)+ei(t),
where ei(t) represents the environmental effect and was
sampled from N(0,5).

For the GAS schemes, BLUP-EBVs where calcu-
lated using QTL genotype as a fixed effect, and EBVt

was the sum of the QTL genotype and the individual
animal effect. For the non-GAS schemes, BLUP-EBV
were calculated ignoring the information of the QTL
with the genetic variance including that due to the
QTL (assuming the initial frequency of 0.15). These
BLUP-EBV were used in OC selection, which implies
using only Step 1 of the GAOC algorithm.

3. Results

Figure 1 shows total genetic gain, genetic gain at the
QTL and the polygenes, for schemes that maximized
the genetic level in generation T=5, i.e. quite short
term breeding schemes (although 5 generations may
equal 20 years for some species). The positive QTL
allele was not lost in any of the replicated Monte
Carlo simulations underlying Figs 1, 2 and 3. In Fig. 1,
a QTL allele frequency of only 0.64 was reached with
non-GAS OC selection, and thus maximum response
at the QTL was not achieved. The GAS schemes,
i.e. GAOC, ANNEAL and GAS+OC, thus had the
opportunity to achieve substantially more selection
response at the QTL: they reached QTL allele
frequencies of 0.99, 0.98 and 1.0, respectively, and
yielded substantially more total selection response,
35.2%, 35.6% and 31.6%, respectively, than the non-
GAS scheme. GAS+OC fixed the positive QTL allele
in generation 3, and selected thereafter only for the
polygenes. Although GAS+OC’s superiority over
non-GAS became smaller during generations 4 and 5,
non-GAS did not overtake GAS+OC, and thus
the Gibson effect did not occur over this short time
period. The multi-generation optimization scheme
GAOC did, however, achieve 2.8% more genetic gain
than GAS+OC.

ANNEAL and GAOC gave very similar total
selection responses (ANNEAL had 0.3% more re-
sponse than GAOC) and quite similar paths to these,
with some irregular differences that may well be due
to sampling (Fig. 1). Sampling errors on the estimates
of GT make it hard for ANNEAL to find the truly
optimal path, especially when GT is robust against
deviations from the optimal path, for the differences
in path between ANNEAL and GAOC lead to a very
small difference in G5.

When the time horizon was 10 generations (Fig. 2),
all breeding schemes either fixed the positive
QTL allele or came close to fixation of this allele (the
allele frequency was the lowest for non-GAS with a
frequency of 0.978). GAS+OC achieved the lowest
total genetic gain, followed by non-GAS, GAOC
and ANNEAL, which yielded 0.9%, 3.1% and
3.6% more, respectively. Here, the Gibson effect
was evident and non-GAS yielded more total gen-
etic gain than GAS+OC, i.e. one-generation opti-
mization.

ANNEAL achieved 0.4% more genetic gain
than GAOC, but the paths towards these selection
responses were quite different : ANNEAL achieved
substantially more selection response at the QTL
during early generations and maintained some of
that advantage until the end of the time horizon.
The difference in paths is larger than in Fig. 1, and
may be because more parameters are simultaneously
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Fig. 1. Total (a), QTL (b) and polygenic (c) genetic gain
when the time horizon is 5 generations for non-GAS
(—), GAOC ($), GAS+OC (m) and ANNEAL ( )
schemes (averaged over 50 replicated Monte Carlo
simulations).
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optimized and the more long term objective leaves
room for larger deviations between paths with
similar G10.

When the time horizon was 15 generations (Fig. 3),
we could not perform the simulated annealing opti-
mization due to the large number of parameters to
optimize (15 Dqt values) and the long computer time
needed per simulated scheme. Only the GAS+OC
and non-GAS schemes achieved fixation of the QTL
around generations 3 and 10, respectively, and selec-
ted thereafter for the polygenes, whereas GAOC came
close to fixation only at generation 15. The selection
pressure on the polygenes is therefore more uneven in
the GAS+OC and non-GAS schemes (relatively low
at the beginning when the QTL is still segregating and
relatively high after generations 3 and 10, respectively,
when the QTL is fixed) than in the GAOC scheme,
which gave a more even selection pressure at the
QTL and a more linear selection response for both
the QTL and the total response. The result is that

GAS+OC yielded the lowest response, followed by
non-GAS and GAOC, which yielded 2.1% and 3.2%
more, respectively. These extra responses are small,
but show that if the time horizon is sufficiently long,
although the non-GAS schemes ignore the QTL they
also can implicitly put too much emphasis on it, and
can be improved by having more even selection
pressure at the QTL and at the polygenes over the
entire selection period.

4. Discussion

In the long term, both GAS and conventional selec-
tion achieve maximum genetic gain at the QTL, pro-
vided the positive QTL is not lost (which was not the
case for the large QTL considered here). Thus differ-
ences in total genetic gain are due to differences in
polygenic response, which are usually small, i.e. differ-
ences of up to 5% more long-term response for
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Fig. 3. Total (a), QTL (b) and polygenic (c) genetic gain
when the time horizon is 15 generations for non-GAS (—),
GAOC ($), GAS+OC (m) and ANNEAL ( ) schemes
(averaged over 50 replicated Monte Carlo simulations).
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conventional selection were found in the literature
(e.g. Pong-Wong & Woolliams, 1998). It is, however,
rather unsatisfactory that conventional selection yields
the highest genetic gain in the (medium to) long term,
because most MAS and GAS schemes only optimize
the selection response in the next generation x hence,
the development of multi-generation optimization
schemes such as those of Dekkers & Van Arendonk
(1998), Manfredi et al. (1998), Villanueva et al.
(2002b) and GAOC. Similar to GAOC, the method of
Villanueva et al. (2002b) also combines OC selection
with multi-generation optimization of GAS, but
the approach was different, using Dekkers & Van
Arendonks method to obtain weights for the QTL
breeding value assuming truncation selection while
using these weights in OC selection. As these weights
from truncation selection will be suboptimal when
OC selection is applied, the method could be im-
proved if they could be derived assuming OC selec-
tion. The latter requires deterministic prediction of
genetic gain under OC selection, which is not yet
possible, and maximization of these genetic gains.

In the GAOC approach, prediction of genetic gain
was avoided by assuming that the selection differen-
tial at the QTL is constant over generations, as was
found by Dekkers & Van Arendonk (1998) when
ignoring linkage disequilibria between the QTL and
the polygenes. Since these linkage disequilibria will
occur, GAOC must be seen as an approximation
to the true simultaneous optimization of OC selection
and multi-generation GAS. The ANNEAL algor-
ithm, however, does not assume linkage equilibrium,
but gives very similar genetic gains to GAOC at the
end of the time horizon. The medium-term gains
were, though, often different from those of GAOC,
especially for 10 generations (Fig. 2). Thus it may be
concluded that the optimum for the Dqt values is
rather flat (quite different Dqt can lead to very similar
genetic gain), and that GAOC leads to close to opti-
mal selection responses (simulated annealing did not
give significant improvement; Figs 1, 2). An advan-
tage of GAOC is that it is rather easy to implement:
it requires determining the optimum path of the
positive QTL allele using equation (5), and the
implementation of the OC algorithm is very similar
to conventional OC selection.

When compared at generation 10, GAOC achieved
3.1%more genetic gain thanGAS+OC, and a similar
comparison in the schemes of Villaneuva et al.
(2002b) resulted in 2.3% more genetic gain for their
GASOPT scheme than GASSTA. The main difference
between these two comparisons is that Villaneuva
et al. maximized S=G1+ … +G10 instead of G10,
where S also puts emphasis on medium-term re-
sponses. The maximization of G10 resulted in GAOC
schemes that were superior in generation 10, but not
earlier (Fig. 2), whilst the use of S prevents this. The

ANNEAL scheme of Fig. 2 was more superior in
earlier generations. This may be due to the following
possibilities : (i) a combination of chance (ANNEAL
may not have found the optimal path for the QTL
frequencies) and robustness of G10 to this path (which
makes the truly optimal path hard to find); and/or
(ii) accounting for LD between QTL and polygenes
may result inmore early generation selection response.
Focus was here on GT because it shows the Gibson
effect most clearly, whereas earlier-generation re-
sponses are less likely to show it. For example, Fig. 1
did not show the Gibson effect (non-GAS yielded
less G5 than GAS+OC), and S did not show it in
Villaneuva et al.’s results (PHE yielded less S than
GASSTA).

Although GAOC uses EBV that give equal weight
to QTL and polygenic breeding values, we believe
it is a truly multi-generation optimization scheme,
because :

1. GAOC looks ahead, in that it does not fix the
positive QTL allele long before the time horizon is
reached, using two results from Dekkers & Van
Arendonk (1998), namely that the optimum selec-
tion intensity at the QTL is approximately con-
stant, and that the QTL reaches near-fixation at the
end of the time horizon. However, this ignores
the fact that the intensity of selection should
increase as the scheme approaches the end of the
time horizon, when the scheme can maximize one-
generation genetic gain.

2. GAOC controls the increase in frequency of the
positive QTL allele, within which it optimizes
the fraction selected from each QTL genotype. The
latter is equivalent to optimizing the weight given
to the QTL and polygenic breeding values
(Dekkers & Van Arendonk, 1998).

3. In view of point 2, it may also be noted that the
relative weights given to polygenic and QTL
breeding values in the EBVt vector do not affect
the optimum contributions, ct, in the GAOC
algorithm. This is because the genetic gain at the
QTL is constrained and thus can not be altered by
GAOC (all feasible solutions give the same genetic
gain at the QTL; GAOC attempts to find the
feasible solution that gives maximum gain for
the polygenes). This point only holds if Step 3 of the
GAOC algorithm is effective ; but if the algorithm
stops after Step 1, one-generation maximization
of genetic gain does not yield over-large increases
in the QTL allele frequency, and the weights for
the QTL and polygenes should be equal. Hence,
Step 1 of GAOC is important when one-generation
optimization is not giving too early a fixation of the
QTL, i.e. when the time horizon is short, and
safeguards against putting too much selection
pressure at the QTL. Points 1, 2 and 3 hold also for
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the ANNEAL schemes, since they differ from
GAOC only in the method for determining the
optimum path of the QTL allele frequency.

In order to make the Gibson effect as large as
possible here, the schemes were optimized and com-
pared for maximum genetic level at the end of the time
horizon. In practice, medium-term genetic gains are
also of economic importance. Although suboptimal
in all situations for the genetic gain at the end of the
time horizon, GAS+OC gives substantially higher
genetic levels before the time horizon is reached (Figs
1, 2, 3). The multi-generation optimization schemes
can also be used to optimize an objective that values
medium-term selection responses such as net present
value (NPV) (Dekkers & Chakraborty, 2001), which
values short-term gains higher than long-term gains:

NPV=
XT

t=1

Gt*
1

(1+r)t

where Gt is the genetic level at generation t ; and r is
the discount rate per generation, i.e. the depreciation
of economic returns over time (Weller, 1994). NPV
may be seen as the weighted sum of T time horizons,
i.e. T maximizations of GT. Hence, NPV in GAOC
schemes can be maximized by determining Dqt values
for every time horizon, and using the weighted mean
of these Dqt values in the GAOC scheme, where the
weights are 1/(1+r)t. This assumes an approximately
linear relationship between Dqt and Gt values, which
may be justified because Gt was found to be rather
robust against changes in Dqt (Figs 1, 2). However,
maximization of NPV will yield more short-term
genetic gain, and thus the optimal schemes become
closer to GAS+OC. Thus, its inferiority at the end of
the time horizon of up to 3.6% should be seen as a
maximum, and in practice the inferiority of GAS+
OC is expected to be substantially less.

The genetic model used here was oversimplified in
that there was one large QTL and all the other genes
had small effects. The model is not realistic, especially,
when considering long time horizons of 10 or 15
generations, which represent up to 50 years in cattle,
and we hope to detect many more QTL in such a long
period. This also argues for the use of GAS+OC,
since it increases the chance that one QTL is near
fixation before the next QTL is detected, and becomes
the subject of GAS.

Helpful comments and suggestions from the reviewers and
the Editor are gratefully acknowledged.
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