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POLYHEDRICITY OF CONVEX SETS

IN SOBOLEV SPACE i/0

2 (β)

MURALI RAO AND JAN SOKOZOWSKI

1. Introduction

We provide results on differential stability of metric projection in Sobolev

space Ho (Ω) onto convex set

(1.1) K= { / e i / 0

2 ( β ) | / W >ψ(x),x^Ω}

where Ω a R is open, bounded domain.

We derive the form of tangent cone Tκ(f) for any element / G if—see

Theorem 1. The same argument can be used for convex set

where ψ e Hm(Ω), φ < 0 on dΩ.

In section 3 we provide necessary and sufficient conditions under which set

K is polyhedric [5], [8] at a given point / ^ K. The question of polyhedricity is

addressed here since it implies directional differentiability of metric projection

onto K with the explicit form of the differential [5], [8]. We refer the reader to [5],

[8] for related results in the Sobolev space H0(Ω). Some applications of the dif-

ferential stability of metric projection onto convex sets in Sobolev spaces are pre-

sented in [6], [9]-[18].

We recall some properties of the Sobolev spaces and the notion of capacity

[19]. The Sobolev spaces H0(Ω) and H0(Ω) are the closures of Cζ(Ω) with

norms

dxI Ψ tiiiΩ) = JΩ I Vφ \
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respectively. If φ €Ξ H0(Ω), from the definition Daφ ^ H0(Ω) for each a with

I a I = 1. Functions in Ho (Ω) are defined quasi everywhere and are quasi con-

tinuous. These notions are made precise below.

The C^-capacity of a compact set F is defined as

Cλ(F) = inf { f I Vφ \2dx : φ > 1 on F, 0 < φ e C0°°(i?'))

similarly C2-capacity

C2(F) =mί[f\Δφ\2dx:φ>lonF,0<φtΞ C0"(i?*)).

The capacity of a Borel set is then defined as the supremum of capacities of its

compact subsets. A statement holds Q-q.e., i = 1,2, if it holds except for a set of

(^-capacity zero. With this definition we have the following results:

1. Let φ e H^iΩ), and {φn} c C0°°(β) converge to φ in / ^ ( β ) . Then a sub-

sequence of {φn} converge C^q.e. and this is a representative of φ.

2. Let φ ^ H0(Ω). Then ςp has a quasicontinuous representative: There is a

representative φ such that given ε > 0, there is an open set U(ε) of

^-capacity less than ε such that the restriction of φ to the complement of

J7(ε) is continuous.

3. Any two quasi continuous representatives of φ ^ Ho (Ω) agree Q-q.e.

4. Every set of positive Lebesque measure has positive (^-capacity.

We use standard notation throughout the paper [1], [19].

2. Tangent cone

We shall consider the metric projection onto the following convex set

(2.1) K= {/€= H2

0{Ω) I fix) > ψ(x), x<ΞΩ)

with respect to the scalar product

(2.2) (y, z) = f Δy(x)Δz(x)dx.

We assume that φ ^ H (Ω), ψ(x) < 0 on dΩ, therefore set (2.1) is nonemp-

ty. The metric projection z — Pκy, y G HQ (Ω)y is given by the unique solution of

the following variational inequality
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(2.3) z<ΞK: f Δz(x)Δ(φ- z)(x)dx> f Δy(x)Δ(φ - z)(x)dx

Vφ <Ξ K.

We denote

(2.4) Cκ(z) = {φ e H*(Ω) | 31 > 0 such that z + tφ <Ξ K}.

We derive the form of tangent cone Tκ(z) = clC^Cε) for any element z in convex

set (2.1).

THEOREM 1. For αwy element z ^ K, tangent cone Tκ(z) takes the form

(2.5) Tκ{z) = {φ e # 0

2(β) I <pCr) > 0, C2-0.e. on 31

Ξ= ( j e β | 2f(r) = 0(x)} c Ω.

Proof of Theorem 1. Note that C^Cz) and hence also Tκ(z) is a convex cone

containing all non-negative elements of H0(Ω). Let an element V^ H0(Ω) be

given and suppose that V ^ 0 C2-q.e. on £ There exists the unique element φ0 €=

T^U) such that

(2.6) || V - φ0 fHlω) = inf{|| V - φ0 tlun I φ e C^U)}.

It is easy to see that for any Ho (Ω) 3 0 > O , t > 0, φ0 + t φ ^ Tκ{z). Using

(2.6) and standard arguments it follows

(2.7) (V - φ0, φ)Hiω) < 0, 0 < φ e //0

2(i2)

hence there exists a non-negative Radon measure μ on Ω such that

(2.8) ( 7 - 0o, 0 ) ^ ) <- fφdμ, φ G C0°°(β).

This implies in particular that for 0 > 0

J φdμ= ~ (V- φ0, φ)H2iΩ) < || V - 0O | | ^ ω ) || 0 ||^2( f l ).

So by definition of C2-capacity we see μ cannot charge sets of zero C2-capacity.

Since the measure may be large near the boundary it is not clear that (2.8) holds

for all 0 G Ho (Ω). We can circumvent this difficulty by repeated use of a result

of L. I. Hedberg: Theorem 3.1 in [7]. First we show that (2.8) holds for any bound-

ed 0 e Ho (Ω) which is non-negative and has compact support. Indeed for suit-
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able mollifiers pnf φ * pn Ξ C^(Ω), have compact support, and tend boundedly

pointwise C2-q.e. and in Ho (Ω) to φ. Since μ is Randon measure we may appeal to

Lebesque dominated convergence to finish the claim. In the general case if

0 < φ ^ H0(Ω) by the above theorem of Hedberg, we can select 0 < wk < 1,

k — 1,2,. . . such that wkφ has compact support and is in L°° approximating φ in

HQ (Ω). In particular wkφ converges to φ C2-q.e. By (2.8) we have

wkφdμ = ~ (V- 0O, wkφ)H2
iΩ)

is bounded, so by Fatou Lemma φ €= L (μ). On the other hand wkφ ^ φ so domin

ated convergence applies

(2.9) -fφdμ=(V- φ0, φ)Hlm, 0 < 0 e ifo

2(β).

Now let 0 e C0°°(β), 0 < ^ < 1, then φ(z - 0) e // 0

2(β). We show that

0o + tφ(z - φ) e ΓjrU), — 1 < ί < 1.

It is sufficient to show that for any ^ e Cκ(z), it follows ^ + tφ(z — φ) e

C^-U). Now εφ + z — φ > in β for some ε > 0, hence for s > 0, -τ~z— < ε we

have

s[φ + tφ(z - φ)] + z ~ ψ > 0, in Ω

since (1 + stφ) (z — ψ) > (1 — s) (z — ψ). Using this in (2.6) with φ replaced by

φ0 + tφ(z — φ) we obtain

which, because φ(z — φ) has compact support and belongs to Ho (Ω) means

f φ{z- φ)dμ= 0

hence

μ(x : z > φ) = 0

i.e. μ is concentrated on Ξ. Our next step is to show that φ0 = 0 μ-a.e. To this end

using the fact that Tκ(z) is a cone and taking tφ0 for 0 in (2.6) we get

(2.10) (V-φo,φo)H*im = 0 .
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Now we use Hedberg's result once more. Choose wk, 0 < wk < 1 such that wkφ0

has compact support and converges to φ0 in Ho (Ω). Since φ0 > 0 on Ξ and μ is

concentrated on Ξy wkφ0 < 0O μ-a.e. So using the same argument as above we get

0 = (V- 0O, φo)H2(Ω) = - j φodμ

i.e. that φ0 = 0 μ-a.e.

Finally since φQ — 0 μ-a.e and V > 0 C2-q.e. on 2 we can repeat the above

argument to get

( V - φ0, V- φ,)Hiun= - f (V-φo)dμ = - f Vdμ.

But the right hand side is < 0 because V > 0, thus V — φ0.

Remark 1. For d = 1, 2, 3 proof of Theorem 1 simplifies since by Sobolev

embedding theorem Ho (Ω) cz C(Ω). It is clear that

7i(«) c {<p e H*(Ω) I ̂ )(x) > 0, on Ξ)

therefore it is sufficient to show that any element V(-) > 0 on Ξ actually belongs

to Tκ(u). Ξ is compact, hence there exists 0 < rj €Ξ C^(Ω), ϊ] = 1 on 2. Since by

Sobolev embedding theorem w, 0, K^ C(β) therefore for any ε > 0 there exists

t > 0 such that

t(V+ εη) + a - 0 > 0, infl.

Thus

K+εr? e Q(w), Vε > 0

and

V -\~ εη —• V in i/0 (fl) strongly with ε I 0

hence V^ Cκ(u) = Tκ(u).

3. Differentiability of metric projection

We derive a result on the differentiability of metric projection Pκ in the Hu-

bert space H = Ho (Ω) onto convex closed set K cz H of the form (2.1). Here we

assume for the sake of simplicity that d — 1,2,3, hence by the Sobolev embedding
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theorem it follows that H2(Ω) c C(Ω), the latter embedding is compact [1] for

bounded domain Ω with smooth boundary dΩ. We use the following notation. For

any given element u ^ K we denote

(3.1) Cκ(u) = {φ e H\ 3 t > 0 such that u + tφ <Ξ K).

The tangent cone Tκ(ύ) to K at u is the closure of set (3.1)

(3.2) Tκ(u) =cl(Cκ(u)).

Let us consider set K defined in section 1. We shall address the question of

polyhedricity of K, see Definition 1 below. Let Tκ(f) be the tangent cone to K a t /

^ K. It is clear that Tκ(f) is the closure in the space Ho (Ω) of the convex cone

(3.3) Cκ(f) = {v e # 0

2(β) I 3/ > 0 such that/Or) + to Or) > φ{x) in β}.

For a given element g ^H0(Ω), such t h a t / = Pκ(g) let us define the following

convex cone in the space HQ (Ω)

(3.4) 5 = τκ{f) nig- Pxig)]1 = τκ(f) n [f-g]\

DEFINITION 1. The set K c H*(Ω) is polyhedric at / e iί, if for any ^ e

//0

2(β) such that/ = Pκg it follows

(3.5) Γ^(/) Π [/- g]x = c\(Cκ(f) Π [/- ^l1)

here cl stands for the closure.

Remark 2. Let us recall [5], [8] that if condition (3.5) is satisfied for given

elements (/, g) e i/0

2(β) x H*(Ω), f = Pκ(g) then for all h e= #0

2(β) and for

/ > 0 small enough

(3.6) Pκ(g + th) = Pκg + tPsh + o(t).

In such a case the metric projection Pκ is conically differentiable, in the notation

of [8], at g ^ HQ (Ω). It turns out that condition (3.5) is satisfied if and only if the

support of non-negative Radon measure defined below by (3.9) is admissible in

the following way.

DEFINITION 2. Compact F is admissible if for any element φ ^ Hl(Ω)f φ = 0

on F implies φ ^ Ho (Ω \ F).
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We denote by B(xy r), x e Rd, r > 0 the ball of radius r and center

x, I A I denotes the Lebesque measure of any set A c R .

PROPOSITION 1. L#f F ci Ω be compact and assume that the following holds:

for C\- quasi every x ^ F,

I F Π B(x, r) I > 0.

T t o F is admissible.

Proof of Proposition 1. By Theorem 1.1 in [7] it is sufficient to show the fol-

lowing: let φ ^ HQ(Ω) and φ = 0 C2-q.e. on F. Then f7 )̂ = 0 Q-q.e. on F. Now

φ ^ Ho (Ω) so by a standard result, Fφ = 0 a.e. on F. Since φ ^ Ho (Ω), each

component of Fςp belongs to HQ (Ω) and hence has a finely continuous version

[19]. If for x ^ F , I F<p | (x) > 0 then in a fine neighborhood of x the same ine-

quality will obtain. Since finely open sets have positive measure, and since

Vφ = 0 a.e. on F, this violates our condition on F. Thus Vφ = 0 Q-q.e. on F.

Denote by v > 0 the Radon measure defined as follows

(3.9) fφdv= f Δ(g-f)Δφdx, V <p <E C0°°(J2).

THEOREM 2. We have

(3.10) ci(Ctf(/) n [f-g]1)

= {φ e H*(Ω\F) \φ>0 on Ξ\sptv}

where spt y C Ξ is compact, spt y denotes the support of Radon measure v.

Proof of Theorem 2. It is clear that

(3.11) d(cκ(f) n [f-g]1) c s= τκ(f) n t / - ^ ] 1

and in view of Theorem 1

(3.12) S = {φ e i/0

2(β) | φ = 0 on spt v, φ > 0 on Ξ\ spt y}.

Let us observe that

(3.13) H2(Ω) B / - ψ > 0, a n d / - 0 = 0 on compact set S1

therefore it can be shown [20]
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(3.14) V(f-ψ) =0 Ci-q.e. on Ξ.

Let φ e Cκ(f) Π [/- g]1 then for some t > 0

(3.15) tφ + / — φ > 0 on Ω, and <p = 0 q.e. on spt y.

It follows that V [tφ + f— ψ] = 0 Q-q.e. on spt v i.e. that Fφ = 0 Cx-q.e. on

spt v. Clearly the same conclusion obtains for any element in c\(Cκ(f) Π

[/ — g]^ therefore

(3.16) cl(Cκ(f) Π [/- g]1) c i/ 0

2 (β\spt v).

Now we can use the same argument as in the proof of Theorem 1 to show that if V

is an arbitrary element in set

(3.17) {φ e # 0

2 ( β \ s p t v) \ φ > 0 on Ξ)

and φ0 denotes the projection of Vonto c\(Cκ(f) Π [f — g] ) then V = φ0. Thus

(3.18) c\(Cκ(f) Π [/- ̂ j1) = {φ e ^ 0

2 ( β \ s p t p) | φ > 0 on spt v).

THEOREM 3. Set K is polyhedric at f e K if and only if CX{Ξ) = 0,

Proo/. We show that in (3.9) we can have any nonnegative Radon measure

v e H~2(Ω) with spt i; c S. Let such v > 0 be given. Let £ e HQ(Ω) satisfy

(3.19) {ΔgΔφdx= f ΔfΔφdx - f φdv, Vφe# 0

2 (β) .

We have / = Pκg. To see it let us observe that

(3.20) f φdv>0, V φ E TK(f)

since η - f e Γ^ί/), V >j e X it follows

(3.21) f (rj-f)dv>0, VηtΞK

hence

(3.22) f (rj-f)dv = f Δ(f-g)Δ(η-f)dx>0, Vη *Ξ K

which shows that / = Pκg. Therefore condition (3.5) can be satisfied if and only if
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QCS) = 0 .

COROLLARY 1. Assume that F = spt v is admissible then (3.5) and (3.6) hold,

where cone S is defined by (3.12).
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