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SOLUTION OF A PROBLEM OF L. FUCHS
CONCERNING FINITE INTERSECTIONS OF PURE
SUBGROUPS

R. GOBEL AND R. VERGOHSEN

1. Introduction. L. Fuchs states in his book “Infinite Abelian Groups”
[6, Vol. I, p. 134] the following

Problem 13. Find conditions on a subgroup of 4 to be the intersection of
a finite number of pure (p-pure) subgroups of 4.

The answer to this problem will be given as a special case of our
theorem below. In order to find a better setting of this problem recall that
a subgroup S C FE is p-pure if p"E N § = p"'S for all natural numbers.
Then S is pure in E if S is p-pure for all primes p. This generalizes to
p’-isotype, a definition due to L. J. Kulikov, cf. [6, Vol. II, p. 75] and
[11, pp. 61, 62]. If ¢ is an ordinal, then S is p°-isotype if

P’EN S =p'Sforallv = o.

Obviously p“-isotype is purity and p'-isotype is neatness. This concept
extends to valuated abelian groups. Recall that (E, v) is a valuated abelian
group if E'is an abelian group and v = {v,, p prime} a set of p-valuations
vy, 1.e., v,iE = O U {00} is a map from E into the ordinals O and {co}
such that the following holds:

(D, (x +y) = min{vp(x), vp(y)}

2) vp(px) > vp(x) (assume co < 00, a < 0 if a € Q),

(3) v,(nx) = vp(x) if n is not divisible by p, c.f. [10].

If h,:E — Q U {oo} is the p-height-function then

(E,h = {hp, p prime} )
is a valuated group. Let
E(p") = {e € E, v,(e) = »} and
E[p] = {e € E, pe = 0}
be the p-socle of E. Observe that
P'E = E(p") if v, = h,
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We will use the following notation throughout this paper. If S € E and
(E, v) is a valuated group and » € O, we denote

E[p)(p’/S) := (E(p")p] + S)/S
and
E(p"/S)p]l := ((E(p") + S)/S)p]

If 7 is a set of primes, we say that S is vo-isotype in (E, v) if
p ™

E[pl(p"/S) = E(p"/S)p]

forally < ocandallp € 7.

Ifm = {p}then Sis v;-isotype in E and if 7 is the set of all primes P,
then S is v’-isotype in E. This notation coincides with Kulikov’s definition
if v. = h, cf. [7, p. 527, Proposition 3.2]. The main result of [7, 526,
Theorem] is a characterization of arbitrary intersections of v°-isotype

groups. We recall from [7] the following

PROPOSITION. For a subgroup S < (E, v) of a valuated group and an
ordinal ¢ > 0 the following are equivalent:

(1) S is an intersection of V’-isotype subgroups of E.

(2) E(p"/S)[p] # O implies E[p)(p"/S) # 0 for all p € P and all
v < o.

If o = wand v, = h, we derive a characterization of intersections of
pure subgroups. Then (2) becomes

¥ Ifx € E— Sandp'x € S, p" 'x & S, then there exists y € E
such that p"y = O and p" "'y & .

This case is due to D. Boyer and K. M. Rangaswamy [3]. It answers a
question in [5]. Another special case of our proposition was derived
independently by J. Becvar [1]. Other corollaries from the proposition are
obtained in [4, 8] and papers mentioned in [7]. In the case of finite
intersections condition (2) must obviously be sharpened. In fact we will
prove the following

THEOREM. For a subgroup S of a valuated group (E, v) and ordinal ¢ > 0,
a set w #* B of primes the following are equivalent:

(1) S is a finite intersection of vy-isotype subgroups of E.

(2) Either

dim E(p"/S)[p] = dimz E[p)(p"/S) = ¥,
or else dim E(p"/S)[p] is finite and in this case
E(p’/S)pl # 0

if and only if E[p)(p®/S) # O for all primes p € w and ordinals v < o.
If in (2) dim E(p"/S)[p] is infinite or O for all p € 7 and v < o, then
S is an intersection of two vy-isotype subgroups of E.
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The caseo = wandv, = hp is the characterization of finite intersections
of pure ( p-pure) subgroups which solves L. Fuchs’ problem. If 6 = 1 and
v, = h, the theorem characterizes finite intersections of neat subgroups.
Moreover we have a stronger

CoRrROLLARY. For a subgroup S of a valuated group (E, v), a set m # @ of
primes and an integer n = 2 the following are equivalent:

(1) S is an intersection of n v\-isotype subgroups of (E, v).

) dim(E/S)[p] = n - dim(E[p] + S)/S.

In the case v, = h, the v,l,-isotype subgroups of E are called m-neat
subgroups. Therefore the corollary characterizes intersections of n
neat subgroups. This was recently shown by K. Benabdallah and S. Robert
[2].

The strategy of the proof consists of two parts. First, in Section 4 we
transform the major burden of the problem into linear algebra and will
solve a problem on double-filtered vector spaces (Section 3).

In Section 5 we put all pieces together and prove the theorem mentioned
above. Finally we will construct a subgroup § <€ FE which is an
intersection of pure subgroups but not of finitely many pure subgroups.

2. Definitions. Let O be the class of all ordinals with the natural
well-ordering. If o is an ordinal, we will identify o with the set of all
ordinals @ < o. In particular a« < ¢ if and only if « € 6. A cardinal « is
identified with the ordinal

inf{a € O, |a|] = «}.
If « is an ordinal then
cof a = inf{ |X|, X € a, sup X = a}.
For ordinals « = B we will consider the open and closed intervals
(0, By ={y € 0,a <y < B}
respectively
[. 8] = {ye O, a <y < B}
and the intervals
[a. 8] = {y € 0,a = y < B}
and
(@, Bl ={y € 0,a<vE=B).

If Vis a vector space over a field F, then the dimension dimp V' = dim V
of V'is a cardinal.
Thus (X) S V denotes the subspace of V' generated by X € V. The
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same notation will be used for groups. The letter p always denotes a prime
and Z(p) = Z/pZ the cyclic group (respectively the field) of p elements.
All other notations are also standard and can be found in [6].

3. Some results on linear algebra. Let ¥ be a vector space over the field
F and p < o two ordinals. A family

={Voa€po)}

of subspaces V, € V with V3 € ¥, for all « = Bis a [y, o)-filtration on V
and the pair (V ? 1) will be a flltered vector space on [y, o).

IfF? = = {V° a € [p, 0) } is another [y, o)-filtration on V, then# C F 2
if ¥, € V*for all a € [p, o).

A Vector space V with two comparable filtrations # C F* will be
called a double-filtered vector space on [, o). We denote this space by
V, A, F 2) and we will always use the notation ¥, € % and V* € %7 as
above. If p = 0 we replace [p, ) by 0. Motivated by abelian p-groups, we
will use the following

Definition 3.1. Let (V, #, F 2) be a double filtered vector space on [y, 0),
U a subspace of Vand p = a« = B = 6. Then U will be called dense on

[a, B) if
VEC W+ U

for all § € [a, B).

The subspace U will be called piece-wise dense on [a, B) if there is a
finite chain @ = @y = a; =... = @, = B such that U is dense on
(a, a; ) for alli € [0, n].

The main result of this section will be a theorem on double-filtered
vector spaces and piece-wise dense subspaces:

THEOREM 3.2. Let (V, #, F 2) be a double-filtered vector space on o such
that

(a) dim ¥V, = R, implies dim V* = dim V, for all « € [0, o)

(b) 0 # dim V* < 8 implies V, # 0.
Then we can find finitely many subspaces U/(j € [1, n]) such that

) U/ is piece-wise dense on [0, o]

(2 v =

e[l n]

If dim V, Z R, or = 0 for all « € o then we can choose n = 2.

This will follow from a sequence of Lemmata. We begin with a trivial
observation which is used several times.

Observation 3.3. Let (V, %, % 2) be a double-filtered vector space on o and
p € [0, o) such that
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dim V* < dim ¥V, = dim V* = R, for all a € [0, p).
Then
dim V*/V* = dim(V, + V¥)/V* for all a € [0, p).

Proof. If p = 0, then [0, p) = @ and (3.3) holds trivially. Therefore let
p > 0 and a € [0, p). Since dim V* < dim V¥, and dim ¥ is infinite, we
obtain from a simple cardinal argument that

dim(V, + V*)/V* = dim ¥, = dim V* = dim(V®/V*).

LEMMA 3.4. Let U be a subspace of the vector space V such that dim V =
n - dim U for some integer n = 2. Then we can find n complements U’ of U
inV for j € [1, n] such that

n U=
jelln)

Proof. Case n = 2. Let ¥ = U' @ U by any decomposition and B any
basis of U'. We may assume U' # 0 and hence B # #. Since dim V =
2 dim U, also

|B| = dim U' = dim U.

Therefore we can find a linearly independent subset {b*|b € B} of U.
Now we choose

2 _
U = bEEBB (b + b*).

Obviously
UVPOoU=U'0U=V and U n ? =0.

We now proceed by induction on # = 3 and assume that (3.4) holds for all
n’ < n.

If U € V such that dim V' = n - dim U, choose any decomposition
V = C ® U. Therefore

dim C = (n — 1) dim U.
If dim C = dim U we have
dim V = 2 -dim U.

Therefore (3.4) follows from the case n = 2 above. Thus we assume
dim U = dim C and decompose C = D ® E such that dim U = dim D.
We conclude

dim(U® E) = dim U + dim £ = dim D + dim E
=dmC =@ — 1)dim U.

Therefore
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dm(UOE)=(n — 1)dim U
and we can apply induction for U € U + E. There are decompositions
USE=V®U forje[l,n—1]

such that
J

I
e

N
jE[l,n—1]
Let
D = @ (b)

bEB
and from
|B| = dim D = dim U
we have a linearly independent subset {b*|b € B} of U. Choose
h *
U b@3<b+b)€9E and

U'=D®V/ forje(l,n— 1]
Therefore U@® U’ = V for all j € [1, n] and

- n U =D
Jj€lln—1]
implies
‘N UV=DnNnU"=0.
JE[Ln]

LEMMA 3.5. Let (V, #, F 2) be a double-filtered vector space on [, o) such
that
(a) 0 # dim V* < N,
(b) V* # 0 implies V,, # 0 for all « € [p, 0).
Then we can find finitely many subspaces U’ C V* which are dense on
(1, o) with
N U =0.
J
Proof. Let p = p = v = o such that:
1) V, = 0 for all « € [v, 0) and » minimal
(i) dim ¥, = dim Vj for all a, B € [p, »). '
If y € ¥, and dim V* = n, we apply (3.4) and find n subspaces U’ such
that

J— e J =
Oy e u V# and jeﬂ’n] U =0.

From a € [p, ») we have y € V, and therefore
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VE= (YO U =V, + U,
If @ € [7, 0) (# @) then ¥, = 0 by (i) and V* = 0 from (b). Therefore

vec v + U’ holds trivially in this case and U is dense on [g, o) for all
J € [1,n]

LEMMA 3.6. If 8y = p = « are cardinals then there is a decomposition
{xg. B € «} of k into k many subsets xg of cardinality p such that the
following holds:

(*) If E is a finite subset of k and

c
Ec BLeJE g

then E = 0.

Proof. Let fix — k be a bijection such that f has only infinite cycles.
Then x decomposes into k cycles Z,(i € ) such that f acts on Z; =
{z;,z € L} as

fz)=(z+1), forallz € Z
Since |k X p| = k, there is a bijection
vk X p—K
and the canonical projection
mik X p—> k((k,r) — k)

defines a trivial fibration on k X p with fibres isomorphic to p. This is
used to define an induced fibration on x with k many fibres kg (8 € k)
each of cardinality p. Let

y={B € lmy '8 = v} and
K, = Wf 'y X p) forally € k.
Then

kK= U y= U k
yexy ‘YEKY

and [y| = [k,| = »p.

Therefore we can decompose
K, = ,827 Kg

such that |kg| = p for all B € y and y € . Hence we have
K = ng Kg

such that
kg S v((f 'm7'B) X p) and
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|xB| =p forall B € &
In order to show (*) consider E C & such that

C
E C BLGJE KB'

By definition of kg we have

E C s w((f ' 'B) X p).

Application of v ' and a = » B leads to

“1r c -1_~1 _ -1
v E_BLEJE(f av B) X p U“Ef Ta X p.

aEy
If F=v 'Eand 7a = Y, then
Fe aLEJFf ma X p yGU-lrFf Y p-
Now suppose that E is a finite non-empty set. Then F # @ is finite and
also #F is a non-empty finite subset of k. Since

k= U Z

iek !

we find a largest integer z € Z such that z; € #F for some i € k. In
particular there is an r € p such that (z,, r) € F. We want to show that

-1
& U X
@ ¢ U fyXe

which contradicts

FC U flyxop

yeTF

and (*) is shown. If
(z;, r) € f'y X p for somey € 7F,

then y = w;, € Z, for some j € k and w = z by the maximality of z.
However

-1
z=f"v = w1
leads to the contradictionz = w — 1 < z.

The proof of the following lemma is similar to [9, Lemma 15, pp. 318,
319].

LEMMA 3.7. Let (V, %) be a o-filtered vector space and v < \ = o with A
a limit ordinal such that dim Vg = k = 8, forall B € [v, N) and

dim N g < k.
BE[rN)
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Then we can find a disjoint family {X,, a € «} of subsets of V with
(i) 1X,| = cfA) for all & € «
(ii) |X, N Vgl = cf(A) for all « € k and B € [v, N)
(iii) aL.E)K X, is linearly independent.

Proof. If

dim N VB<x and dimVB=K
BE¥N)

then cf(A) = x and we can find a sequence
X = {xJa € cf(M) }

with

(@) X N Vgl = cf(A) for all B € [v, N)

(b) X is linearly independent and |X| = cf(}).

Since cf(\) = k either k = cf(A) or cf(A\) < k. In the first case we can
choose « disjoint subsequences of X with (a) and (b). Hence (3.7) is shown
in the first case.

Now assume cf(A\) < k and consider the sets

M = {X C V, X satisfies (a) and (b) }
such that different X, X’ € M are disjoint and

U X
XeM

is linearly independent.

Let 0t be the collection of all these sets M. Then {X} € It as shown
above and I is obviously an inductive set. From the maximum principle
of set theory we obtain a maximal element M € . If |[M| = «k the lemma
is shown. Therefore we assume |M| < « for contradiction. Since

dim U <k for U = (XgM X),

we derive a A-filtered vector space
V/U{V, =V, + U)/U,a € \})
with
dim V, = k forall a € [v, A].
Therefore we can choose a sequence
X ={0+#x, + U accf))}

of V/U with the properties
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@)X n Vﬁl = cf(\) for all B € [», N)
(b’) X is linearly independent and | X| = cf(}).
From (a’) we obtain a subset {{,, « € cf(A) } of [», A) with

sup{f, @« € cfA)} =X and x, + U € V,
Let x, + U = x;, + U with x;, € V,,, then

My {x,, a € cfd) }
contradicts the maximality of M.

LemMma 3.8. Let (V, #, F N bea double-filtered vector space on o such
that dim V,, = dim V* is O or infinite for all « € [0, 0). Let p € o be the

smallest ordinal with dim V,, = « for all « € [u, o). Then

(i) dim(¥V, + V¥)/V* = dim V*/ V"for all a € [0, p)

(ii) There are two subspaces X', X* of V* such that

(a) X' and X* are dense on [p, a)

b)) X' n X* =0.

Proof. (i). Since dim V* < dim ¥, = dim V* = N, we apply (3.3) and
derive (1).

(i1). Let

D =

RN

N
BE(p0)

and consider first

Case 1. dim D = k.

Since dim D = dim ¥V, = dim VE and D € V¥ there are two
complements X l and X2 of D in V" such that X' N X2 = 0. Therefore (i1)
(b) holds. If i € {1, 2}, then

VE=X'®D and 2 N V=0D
BE[p0)

for all § € [u, o) implies
VE = X'+ ¥

Hence X' and X? are dense on [p, o) and (i) (a) is shown; compare

3.1.
Case 2. dim D < k.
If o = 6 + 1, then

dimD =dim _ NV =dim¥ =&
Belnd+)

which is excluded. Hence o is a limit ordinal.
From (3.6) we obtain a disjoint family

{X, € V,a € «}
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such that
* 1X,] = cf(o) for all « € «.
(**) | X, 0 Vgl = cf(o) for all @ € «k and B € [u, 0)
(***) U X, is linearly independent.
Now we decompose

V= @ (X)) ®C

where

€= @ (

ack
is an arbitrary complement. Since
dim V* = dim V.=«
also dim C = k = k. Consider the family

Y — {Xafora € Kk\K
@ X, U {c,]} for a € k.

Then the following conditions are obviously satisfied:
(+) 1Y, N Vgl = cf(o) for all @ € k and B € [p, 0)
(++) Y, n Y, = 0 for different a, «’ € « and |Y,| = cf(A) for all
a € K.
(+++) W Y, is linearly independent and V* = (Y, a € k).
Therefore we can decompose Y, = Y}, uY i such that

Yy = |Yi = cf(e) and

|Yl, N V3l = cf(o) foralla € x and B € [u, o).
Let

Yo ={( an).n € cf0) )
be an enumeration of Y}, for all @ € k. Also decompose

k= U kK

acx ¢

with |k,| = cf(o) and enumerate

ke = {a,, n € cf(o) }

with the help of (3.3). Then the following holds:
(****) If E is a finite subset of k and

EC U «k

a€E @
then E = @. Finally we let
I =« X cf(e), I™ = {(B,8) € 1|6 # 0}
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and define
1 _
X= O (Lan+Qe0)0 O, (28473
- (2,80))
and
X2 =

B (2t (1.6,0)© @ (180

1, B,0) ).

We want to show that X' and X satisfy (i) (b). Therefore assume
X' n X* # 0 for contradiction. Then we can find subsets E,, E; € I
and E,, E C I such that the following holds.

2 (@ an+ 2 a0)

(an) EE,

+ 2 BB —(280)
(B.OEE,

= 2 (@n(@amn+(1a,0)
(a,m) EE)

+ 2 (B (1,88 — (1,80)

(B EE,

with elements (a, 7)*, (a, n), (8, 8)** and (B, 6)” in the field F and
different from 0 and E, U E, # 0.
Since

(Y}x,aE@ﬂ(Yi,aE:c}:O,

we derive two equations

0= 2 (@nlLamn= 2 (B0AEY

(am) EE, Boe 2
+ 2 BYMLAO - X (), a0
(BS)EE, (a)EE,

and

0= 2 (@nan— 2 (B ™28

(a,m) EE) (BO)EE,

+ 2 BB~ X (6 n)*Q2 a0

(BB EE, (am) EE,

Let
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and similarly
1=E; Nk X0 and E} =G} VY H].

From the last two equations we derive

E@MW%W—EWﬂmﬂﬁ

=§mwu%m—§wmmwm—§wwmmm

and

gmmumm—gmwmﬁ&

=§@m%%m—§mwumm—§mwmﬁm

with the obvious summation parameters.
Since

(Goa,m), (m) €TTY N (G, a,0,a €k) =0 fori=1,2,
we conclude H, = E5 and H} = E,. Let
S = {a,, (a,m) € E},
S = {a,, (o, n) € E}} and
el — k((a,n) = a)
the canonical projection. Then
S C Gy UEY and S C G)'UE
follows also from the last two equations. Hence we derive
S"C Gy UEY=G,UH, = (G UH) =E| and
SCG'UE =G'UH'= (G UH) = E}"
Therefore
|Eil = ISl = |E\| = |E\| = |S| = |E}Y = |E]]
implies ' = E, and S = FEj. Finally we consider

SUS =EFE UE'"'=(E UE)C U
S 1 E; (E, D) ae(EluE,l)t"a

and derive from (***) that £, U E| = . Therefore also E, = E; = # and
E, U E, = @ contradicts our choice of these sets.
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Finally we show (ii) (a) and let y € [p, 0); compare (3.1). We will
restrict our consideration to X'. A similar argument holds for X% We
want to show that

VE=V, + X
From (+ + +) we see that it suffices to show that
G,a,f) € V, + X' foralli € {1,2}, (a, B) € .
From
Y, N Vgl = cf(o)

we obtain that Yi N V, # 0 and we find some (2, &, §) € Yi N v,
We want to show that

2, a0 €V, + X\
Therefore we have finished if § = 0 and assume § # 0. Hence
2, a,8) — (2,2,0) € X' and
2060 =Q2a0 - (2ad—(2a0)cE ¥+ X,.
If 8 # 0 also
2, a8 — (2, a0 € X' and
Qap=02a0-(2ap—Q2a0)el+X
and (I, a, B) € V, + X' follows from
1, a, B) + (2, ag 0) € X\,
Consequently X !'is dense on [1, o) and (3.8) is shown.

Proof of Theorem 3.2. We use transfinite induction on o. If 0 = 1, then
(3.4) implies (3.2). Therefore let 6 be an ordinal > 1 such that (3.2) holds
for all vector spaces on p with p << 0. Now let p be the smallest ordinal
such that one of the following three conditions holds:

(i) If dim V, = N, then dim V, = const. for all « € [u, o).

(ii) If there is ' € [0, o) such that ¥, = 0, then ¥, = 0 for all
a € [y, 0).

(iii) If there is ' € [0, o) such that

0 # dim V/ <NO

then dim V, < NO for all @ € [u, 0).

Now we apply (3.5) and (3.8). If dim V, = 8, or 0 we find n = 2 and in
general a finite number » of subspaces Xf (j € [1, n]) which are dense on
[ 0) and

X =0

JE€[ln]
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as shown in (3.8) and (3.5) respectively.
Now we consider factor spaces ¥ = (Y + V¥*)/V* for Y € V. In
particular
VAVpae[0,p}h (Vi ac(0,m})

is a (new) double-filtered vector space. By our choice of p and (3.3) we
derive

dim 7, = dim 7* = 8, for all & € [0, p).

From the induction hypothesis we find two subspaces W/ € ¥V such
that W/ N V¥ = 0, W is piece-wise dense on [0, p) for j = 1, 2 and
Wnw=01Vv=we V,, then also W is dense on [0, p) and we
choose U/ = X/ + W/ forj € [1 n] where W’/ = W for j € [3, n] and
n =3
_Next we will show (3.2) (1) and consider a subspace U’. Since X’ and
W/ are piece-wise dense on [u, o) respectively on [0, p), we find an
increasing finite sequence {»;, i € [O, s]} of ordinals such that », = 0,

= p for some m € [0, s] and »; = ¢ from Definition 3.1. We want to
show that U’ is dense on all 1ntervals [, v;+1). This is trivial for
i Z m. Therefore leti < m, a € [, v,,,) and a € V. We have finished if
ae U + V., [compare (3.1) ]. Since

a+VFPevVic W+,
we find W/ € w/, v, € ¥, and v* € V* such that

a=w +v, + "
From a < p we have

vhC X/ + 1,

and therefore

aeW+V,+VFCcwW +Xx + V¥ =U +V,
Finally we want to show (3.2) (2) that is

n U =
JE€[1,n]

If

D= N U and a € D,
jelin]

then
a+V'e N X +Wh= n X =0
jelln jelial

and therefore ¢ € V* Since ¢ € D, we find x/ € X/ and w/ € W/
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such that @ = x/ + w/ for all j € [1, n]. Because a € V¥, X/ € v*and
W/ n V* = 0, we obtain

a—x'=weVPNn W =0 and a = x'.
Therefore also

ae N X =
JE[1,n]

by our choice of X/. Consequently a = 0 and D = 0.

4. The link between valuated abelian groups and double-filtered vector
spaces. In this section we will restrict ourselves to vector spaces over the
field F = Z(p) and these are related to abelian groups as follows.

Let (E, v) always denote a valuated abelian group, S € E a fixed
subgroup of E and ¢ > 0 some ordinal. The Z( p)-vector space (E/S)[p]
has two natural comparable o-filtrations

= {V, = E[pl(p*/S) |la < 0}
and
= {V* = E(p*/S)[p]la < o}

compare Sections 2 and 3.

We will call ((E/S)[pl, %, %) the canonically double-filtered vector
space and # C % the o-filtrations induced from the valuation map v,. A
subspace U/S < (E/S)[p] is called v °-dense on a certain 1nterval of
ordinals < o (respectively piece-wise dense) if U/S is dense (respectively
piece-wise dense) with respect to ((E/S)[p], %, %); compare Definition
3.1

The the following holds

LemMMA 4.1. Let (E, v) be a valuated group and let U/S S (E/S)[p] be
piece-wise vp-dense Then we can find M < E such that
(1) (M/S)[pl = U/S
() M/S C (E/S)
(i) M is v zsotype in (E, v).

Proof. By our choice of U/S we can find a finite chain 0 = 0* <
. < n* = ¢ of ordinals j* for j € [0, n] such that U/S is v;-dense on

[(j — D*, '*) for all j € [1, n]. Next we construct by induction a
chain M, € M, _ ... € M, of subgroups with the following properties
for j € [0, n]:

(1) S € M, CEQpPH+S

2 M/S 1s a p-group

3 (M/S)[p] = (U/S) N E(pJ/S)[p]

4) E(p /M)lp]l = E[p)(p° /M;) for all § € [* o).
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Let M, € E such that
SC M, and M,/S = U/Sn EQp"/S)p)

n

Obviously (1n), (2n) and (3n) are satisfied and since n* = ¢ implies
[n*, 6) = @, condition (4n) holds trivially.

We assume that M, € ... S M, with (1j) to (4j) for j € [i, n] are
constructed for some i € [0, n]. In order to define M,_ let

M,_;:= (M < E(p"" V) + S, M, € M, M/S p-group,
(M/S)[p] = U/S 0 E(p“~V78)[p]}.

First we observe that

M., # 0.
To see this let

M/S = {U/S n E(p""V78)[p]} + MJ/S.
Therefore M; € M C E(p(iul)*) + S follows from

M, CE(p")+SCEQP'Y)+s.

Because M,/S and U/S N E(p(i_l)*/S)[p] are p-groups also M/S is a
p-group. Since

U/s n E(p""V78[p] € (M/S)[p]
it remains to show for M € I, _, that

(M/S)[pl € U/S n E(p“ V78 pl.
Hence we choose m + S € (M/S)[p]. We can find

x+SeUusnEQpPV/S)p] and y + S € (M/S)
such thatm + S = (x + §) + (y + §). Since

px+ S =0 and O=pm+ S =(px +S)+ (py +95)
also

y+ S e M/S)pl=U/S 0 E(p/S)p]
U/S n E(pY"V7S[p]

Il

N

by induction hypothesis (3i). Therefore
m+S=x+y+S8SeUSnEQP VISP

and M € M,_,ie, M,_, # 0.

The set M;_, is obviously inductive, since unions of chains in I, _,
are in I, _ ;. From the maximum principle we obtain a maximal element
M;,_, € M,_,. By our choice of M;_, the group M, | satisfies the
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condition (1¢; — 1)), 2(G — 1)) and (3G — 1)).
In order to show (4(i — 1)) let

de[(—1D*o) and 0+ x + M,_, € E(p°/M,_))[p]

such that x € E(ps). In the first case we assume § € (i — 1)*, /*) and let
M = (x, M; ;). Obviously M satisfies the first three conditions of the set
M, _; and since M,_,; is maximal in M, |, however M, ;| & M we
conclude M & M, | hence

M/S)p]l # U/S n E(pU V78 pl.
Therefore we can find
m+ S e M/S)[pI\U/S N EPV78)p)).
Since M C E(p(i_')*) + S also
m+ S e E(p" V78 pl.
By hypothesis U/S is v,-dense on [ (i — 1)*, i*) and therefore
m+ S e E(pU V7S pl € U/S + E[p)p°/S).
We find u € U and e € E(p%)[p] such that
m+ S=u-+e+S.
Next we will show u € M;_,. From
u+S=m-—e+ S,
m+ S e E(p" VS p] and
e + S € E[p)p’/S) € E(p*/S)p] € E(p""V7S)p]
it follows that
u+ S e EPVS)pl
Therefore
u+ S e UusnEPTVIS)p) = M,_/S)p]

using (3(; — 1) ). In particular u € M,_,.

Since m € M = (x, M;_,) there are a natural number k and y € M,_,
such that m = kx + y. If p divides k we have m € M, | from
px € M,_,. Therefore

m+ S e M,_,/S)pl=USnEQp" V78 p]
by (3(i — 1)). This contradicts our choice of m and hence
m+ M,_ | =kx + M,_,

where p does not divide k. Since
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m+S=kx+ M_,=u+e+ M_,
=e+ M, _, € E[p](pS/MI-_l)
and p does not divide k, we derive
x + M,_, € E[p}(p’/M,_)).

Therefore (4(i — 1) is shown in this case.

Next we consider the remaining case 8§ € [i*, ). We assume px & M,
for contradiction. Since px € M, |, S €& M; and M;_,/S is a p-group by
(2(i — 1)), we can find a natural number m = 1 such that

0 # p"x + M, € E(p'/M,)[p).

From (4i) we obtain e € E(p")[p] such that
pi'x + M, =e+ M, # 0.

Since e & M, also
e+ S & M/S)pl

Sincepx € M, _,e —p"x &€ M, C M, _;andm = 1 we derivee € M,_,.

Therefore (3(i — 1)) and e € E(p')[p] imply
e+ SeM_/S)pl=USnEP' V7S p]

and a fortiorie + S € U/S.
With the help of (3i/) and

e + S € E[p)(p'/S) S E(p"/S)[p]
we conclude

e+ S e U/SnEQPSpl=(M/S)p)
contradicting

e+ S & (M/S)pl.
Therefore px € M; and

x + M, € E(p®/M,)p] = E[p)p*/M,)
from (47). In particular

x + M,_, € E[p)(p°/M,_)).

Finally we choose M = M, from the constructed chain and properties (10)
to (40) imply 4.1).

In order to mix different primes we derive

LeEMMA 4.2. Let (E, v) be a valuated group, 7 a set of primes, 0 < ¢ € O
and S © M, € E for allp € w with:
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(i) M,/S is a p-group
(ii) M, is v)-isotype in E.
Then

M=2Mp

pem
is vi-isotype in E.
Proof. If p € m we want to show
E[pl(p’/M) = E(p"/M)[p] forallv < o.

Since

E[p)(p’/M) S E(p"/M)[p]
holds trivially let

0#x+ Me E(p'/M)[p] with x € E(p").
Since px € M and M/S is torsion, px + S has finite order. Let
O(px +S) =k p"
such that (k, p) = 1. Therefore
Okx + 8§) = p"™! and
pkx + S € M/S 0 (E/S), = M,/S.
Since (k, p) = 1 we obtain from the definition of p-valuations that
v,(x) = v,(kx)
and therefore
kx + M, € E(p'/M)[p].
From (ii) we have
E(p"/M,)pl = E[p)p’/M,)
and there exists e € E(p")[p] such that
e+ M, =kx + M,
Also
kx + M =e + M € E[pl(p'/M).
Since (k, p) = 1 and px € M Euclid’s argument leads to
x + M € E[pl(p'/M).

COROLLARY 4.3. Let (E, v) be a valuated group, S € E,0 <o € O, 7a
set of primes and n > 1 an integer. If p € wandj € [1, n), let
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U,/S € (E/S)p]

such that
(a) U{,/S is piece-wise vz-dense in (E/S)[p]
J—
(b) je[r]w’n] U, S.
Then there exist subgroups M’ C E such that

J =
DM =3

) M//S € @ (E/S),
pET

(3) M7 is v-isotype in E.
Proof. From (4.1) we obtain Mf, C F such that
() (M}/S)[p] = U})/S
(jj) M%,/S < (E/S),
(Jij) Mi, is v2-isotype in (E, v)
forallj € [I,n]and p € 7. If

M = 3 M,
pEvT

then M’ is v’-isotype in (E, v) by (4.2) and obviously
M//S € @ (E/S)y
pET

from (jj). Therefore we only have to show (1).
Since
ScC n M
JEln]
let x € E — S and it remains to show x € E — M’ for some j € [, n].
We consider different cases: _ ,
Case 1. O(x + S) = oo. Since M’/S is torsion, also x & M.

Case 1. Let O(x + S) be finite and not divisible by p for all p € .
Then

x+ S e ,,EeBﬂ (E/S)[p]

and in particular x + S & M//S for all j € [1, n]. Therefore x & M’ in
this case.
Case 111. Let p € = such that O(x + S) = p - k. Therefore

0+ kx + S € (E/S)[p].
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Since
jeﬂ,n] U;/S

we can find / € [1, n] such that
kx + S & U,/S.

From
U/S = (M}/S)p]

we conclude kx & M;, and also kx & M. Therefore x ¢ M’ and (1) is
shown.

5. Proof of the theorem and the corollary. First we will show

PROPOSITION 5.1. Let (E, v) be a valuated group, m # @ a set of primes
6 > 0 an ordinal and k = 2 an integer. If a subgroup S S E is the
intersection of k vi-isotype subgroups of (E, v), then the following condition
holds:

(*) dim E(p’/S)[p] = k- dim E[pl(p"/S) forallv < o.
This is an immediate consequence of

Observation 5.2. Let ¢;:V — V¥, be homomorphisms between vector
spaces over F for i € [1, k] such that

N .= 0.
el ker o, 0

Then
dim V = k - max{dim V, i € [1, k] }.
Proof. The homomorphism

V= ie(EIB.k] Vo = 0")enny

is injective and therefore

dim V = dim( @k] I{) = k max{dim V, i € [1, k] }.
iell,

Proof of (5.1). Let p € 7 and v < ¢ and consider the canonical
homomorphisms

o E(p"/S)pl = E(p"/M)[pl(e + S —e+ M)
where M, for i € [1, k] are the given vj-isotype subgroups of E with

N M,
i€k
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We conclude

ieﬂ’k] ker ¢, = 0

and let j € [1, k] such that

dim E(p"/M,;)[p] = max{dim E(p’/M)[pl, i €[, k]}.
Since M; is vo-isotype in E and p € 7 we have

E(p"/M)[p] = E[p](p"/M;) and

dim E(p"/S)[p] = k dim E[p](p"/M))
from (5.2). If

E[p)p'/M) = @ (x; + M),

then from § C M; we derive that {x; + S, i € I} is a linearly independ-
ent subset of E[p](p"/S). Therefore

dim E[p)(p"/M,) = dim E[p)(p’/S) and
dim E(p"/S)[p] = k - dim E[p](p"/M;) = k - dim E[p](p"/S).

Proof of the theorem in Section 1. (1) = (2) follows from (5.1). (2) = (1):
If p € 7, we obtain from Theorem 3.2 subgroups Uf /S € E/S[p] for
J € [1, n] such that
(i) U,/S is piece-wise dense on [0, o)
(ii) ﬂ | UJ/S =0
(ii1) n = 2 if dim E(p”/S)[p] = 0 or infinite for all » < o.
From Corollary 4.3 we find vJ-isotype subgroups M’ of E such that
N M =S.
jE&[ln]
Proof of the corollary in Section 1. (1) = (2) follows from 5.1).2)=(1):
From (3.4) we find n complements U/ /S of E[p](p /S) in E(pO/S)[p]
such that

N _UL/S =0.
jElln] P

The subspaces Uf,/ S are dense on [0, 1) by Definition 3.1. Hence we can
apply (4.3) and derive (1).

Example 5.3. A subgroup D € G which is an intersection of pure
subgroups but not an intersection of finitely many pure subgroups. Let k
be an uncountable cardinal and

B, = 663 Z(p") foralli € «.
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1f
G=@B, and B = @ B,

=1
we want to show that D = B'[p] is the desired example. Obviously
G =B ®HF and
p'Glp) = p’B|[p] ® p'B[p] forallv € w.
Since G is a separable p-group and

Glpl(p'/D) = p’Bi[p] # 0 forallv € w,

we derive from the proposition in Section 1 that D is an intersection of
pure subgroups. On the other hand

dim G(p”/D)[p] = k = 8, and
dim G[p](p’/D)

From our Theorem in Section 1 we derive that D cannot be a finite
intersection of pure subgroups.

I

Ry, forallv € w.

REFERENCES

1. J. Becvar, Intersections of T-isotype subgroups in abelian groups, Proc. Amer. Math. Soc.
86 (1982), 199-204.

2. K. Benabdallah and S. Robert, Intersections finies des sous-groupes nets, Can. J. Math. 32
(1980), 885-892.

3. D. Boyer and K. M. Rangaswamy, Intersections of pure subgroups in abelian groups, Proc.
Amer. Math. Soc. 87 (1981), 178-180.

4. B. Charles, Une caractérisation des intersections de sousgroupes divisibles, C.R. Acad. Sci.

Paris 250 (1960), 256-257.

. L. Fuchs, Abelian groups, Publ. House of the Hungar. Acad. Sci. Budapest (1958).

Infinite abelian groups, Vol. I (Academic Press, New York, 1970), and Vol. II
(Academic Press, New York, 1973).

7. R. Gobel and R. Vergohsen, Intersection of pure subgroups of valuated abelian groups,
Archiv der Math. 39 (1982), 525-534.

8. C. Megibben, On subgroups of primary abelian groups, Publ. Math. Debrecen /2 (1965),
293-294.

9. R. J. Nunke, Uniquely elongating modules, Symposia Math. 13 (1974), 315-330.

10. F. Richman and E. A. Walker, Valuated groups, J. Algebra 56 (1979), 145-167.

11. L. Salce, Struttura dei p-gruppi abeliani, Bologna (1980).

o w

Universitiit Essen,
Essen, West Germany

https://doi.org/10.4153/CJM-1986-015-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-015-x

