SOLUTION OF A PROBLEM OF L. FUCHS CONCERNING FINITE INTERSECTIONS OF PURE SUBGROUPS

R. GÖBEL AND R. VERGOHSEN

1. Introduction. L. Fuchs states in his book "Infinite Abelian Groups" [6, Vol. I, p. 134] the following

Problem 13. Find conditions on a subgroup of A to be the intersection of a finite number of pure (*p*-pure) subgroups of A.

The answer to this problem will be given as a special case of our theorem below. In order to find a better setting of this problem recall that a subgroup $S \subseteq E$ is *p*-pure if $p^n E \cap S = p^n S$ for all natural numbers. Then S is pure in E if S is *p*-pure for all primes *p*. This generalizes to p^{σ} -isotype, a definition due to L. J. Kulikov, cf. [6, Vol. II, p. 75] and [11, pp. 61, 62]. If σ is an ordinal, then S is p^{σ} -isotype if

 $p^{\nu}E \cap S = p^{\nu}S$ for all $\nu \leq \sigma$.

Obviously p^{ω} -isotype is purity and p^{1} -isotype is neatness. This concept extends to valuated abelian groups. Recall that (E, v) is a valuated abelian group if E is an abelian group and $v = \{v_{p}, p \text{ prime}\}$ a set of p-valuations v_{p} , i.e., $v_{p}: E \to \mathbf{O} \cup \{\infty\}$ is a map from E into the ordinals \mathbf{O} and $\{\infty\}$ such that the following holds:

(1) $v_p(x + y) \ge \min\{v_p(x), v_p(y)\}$ (2) $v_p(px) > v_p(x)$ (assume $\infty < \infty, \alpha < \infty$ if $\alpha \in \mathbf{Q}$), (3) $v_p(nx) = v_p(x)$ if *n* is not divisible by *p*, c.f. [10]. If $h_p: E \to \mathbf{Q} \cup \{\infty\}$ is the *p*-height-function then

 $(E, h = \{h_p, p \text{ prime}\})$

is a valuated group. Let

$$E(p^{\nu}) = \{e \in E, v_p(e) \ge \nu\} \text{ and }$$

$$E[p] = \{ e \in E, pe = 0 \}$$

be the *p*-socle of *E*. Observe that

$$p^{\nu}E = E(p^{\nu}) \quad \text{if } \nu_p = h_p.$$

Received February 13, 1984.

We will use the following notation throughout this paper. If $S \subseteq E$ and (E, v) is a valuated group and $v \in \mathbf{O}$, we denote

$$E[p](p^{\nu}/S) := (E(p^{\nu})[p] + S)/S$$

and

$$E(p^{\nu}/S)[p] := ((E(p^{\nu}) + S)/S)[p].$$

If π is a set of primes, we say that S is v_{π}^{σ} -isotype in (E, v) if

 $E[p](p^{\nu}/S) = E(p^{\nu}/S)[p]$

for all $\nu < \sigma$ and all $p \in \pi$.

If $\pi = \{p\}$ then S is v_p^{σ} -isotype in E and if π is the set of all primes P, then S is v^{σ} -isotype in E. This notation coincides with Kulikov's definition if v = h, cf. [7, p. 527, Proposition 3.2]. The main result of [7, 526, Theorem] is a characterization of arbitrary intersections of v^{σ} -isotype groups. We recall from [7] the following

PROPOSITION. For a subgroup $S \subseteq (E, v)$ of a valuated group and an ordinal $\sigma > 0$ the following are equivalent:

(1) S is an intersection of v^{σ} -isotype subgroups of E.

(2) $E(p^{\nu}/S)[p] \neq 0$ implies $E[p](p^{\nu}/S) \neq 0$ for all $p \in \mathbf{P}$ and all $\nu < \sigma$.

If $\sigma = \omega$ and $v_p = h_p$ we derive a characterization of intersections of pure subgroups. Then (2) becomes

(2*) If $x \in E - S$ and $p^n x \in S$, $p^{n-1}x \notin S$, then there exists $y \in E$ such that $p^n y = 0$ and $p^{n-1}y \notin S$.

This case is due to D. Boyer and K. M. Rangaswamy [3]. It answers a question in [5]. Another special case of our proposition was derived independently by J. Becvár [1]. Other corollaries from the proposition are obtained in [4, 8] and papers mentioned in [7]. In the case of finite intersections condition (2) must obviously be sharpened. In fact we will prove the following

THEOREM. For a subgroup S of a valuated group (E, v) and ordinal $\sigma > 0$, a set $\pi \neq \emptyset$ of primes the following are equivalent:

(1) S is a finite intersection of v_{π}^{σ} -isotype subgroups of E.

(2) Either

dim $\operatorname{E}(p^{\nu}/S)[p] = \operatorname{dim}_{\mathbf{Z}_{p}} \operatorname{E}[p](p^{\nu}/S) \ge \aleph_{0}$

or else dim $E(p^{\nu}/S)[p]$ is finite and in this case

 $E(p^{\nu}/S)[p] \neq 0$

if and only if $E[p](p^{\nu}/S) \neq 0$ for all primes $p \in \pi$ and ordinals $\nu < \sigma$. If in (2) dim $E(p^{\nu}/S)[p]$ is infinite or 0 for all $p \in \pi$ and $\nu < \sigma$, then S is an intersection of two v_{π}^{σ} -isotype subgroups of E. The case $\sigma = \omega$ and $v_p = h_p$ is the characterization of finite intersections of pure (*p*-pure) subgroups which solves L. Fuchs' problem. If $\sigma = 1$ and $v_p = h_p$ the theorem characterizes finite intersections of neat subgroups. Moreover we have a stronger

COROLLARY. For a subgroup S of a valuated group (E, v), a set $\pi \neq \emptyset$ of primes and an integer $n \ge 2$ the following are equivalent:

(1) S is an intersection of n v_{π}^{l} -isotype subgroups of (E, v).

(2) $\dim(E/S)[p] \leq n \cdot \dim(E[p] + S)/S.$

In the case $v_p = h_p$ the v_{π}^1 -isotype subgroups of *E* are called π -neat subgroups. Therefore the corollary characterizes intersections of *n* neat subgroups. This was recently shown by K. Benabdallah and S. Robert [2].

The strategy of the proof consists of two parts. First, in Section 4 we transform the major burden of the problem into linear algebra and will solve a problem on double-filtered vector spaces (Section 3).

In Section 5 we put all pieces together and prove the theorem mentioned above. Finally we will construct a subgroup $S \subseteq E$ which is an intersection of pure subgroups but not of finitely many pure subgroups.

2. Definitions. Let **O** be the class of all ordinals with the natural well-ordering. If σ is an ordinal, we will identify σ with the set of all ordinals $\alpha < \sigma$. In particular $\alpha < \sigma$ if and only if $\alpha \in \sigma$. A cardinal κ is identified with the ordinal

 $\inf\{\alpha \in \mathbf{O}, |\alpha| = \kappa\}.$

If α is an ordinal then

 $\operatorname{cof} \alpha = \inf\{ |X|, X \subseteq \alpha, \sup X = \alpha \}.$

For ordinals $\alpha \leq \beta$ we will consider the open and closed intervals

 $(\alpha, \beta) = \{ \gamma \in \mathbf{O}, \alpha < \gamma < \beta \}$

respectively

 $[\alpha, \beta] = \{\gamma \in \mathbf{O}, \alpha \leq \gamma \leq \beta\}$

and the intervals

$$[\alpha, \beta] = \{ \gamma \in \mathbf{O}, \alpha \leq \gamma < \beta \}$$

and

$$(\alpha, \beta] = \{ \gamma \in \mathbf{O}, \alpha < \gamma \leq \beta \}.$$

If V is a vector space over a field F, then the dimension $\dim_F V = \dim V$ of V is a cardinal.

Thus $\langle X \rangle \subseteq V$ denotes the subspace of V generated by $X \subseteq V$. The

same notation will be used for groups. The letter p always denotes a prime and $\mathbf{Z}(p) = \mathbf{Z}/p\mathbf{Z}$ the cyclic group (respectively the field) of p elements. All other notations are also standard and can be found in [6].

3. Some results on linear algebra. Let V be a vector space over the field F and $\mu < \sigma$ two ordinals. A family

$$\mathscr{F}_{1} = \{ V_{\alpha}, \alpha \in [\mu, \sigma) \}$$

of subspaces $V_{\alpha} \subseteq V$ with $V_{\beta} \subseteq V_{\alpha}$ for all $\alpha \leq \beta$ is a $[\mu, \sigma)$ -filtration on V and the pair (V, \mathcal{F}_1) will be a filtered vector space on $[\mu, \sigma)$.

If $\mathscr{F}^2 = \{ V^{\alpha}, \alpha \in [\mu, \sigma) \}$ is another $[\mu, \sigma)$ -filtration on V, then $\mathscr{F}_1 \subseteq \mathscr{F}^2$ if $V_{\alpha} \subseteq V^{\alpha}$ for all $\alpha \in [\mu, \sigma)$.

A vector space V with two comparable filtrations $\mathscr{F}_1 \subseteq \mathscr{F}^2$ will be called a *double-filtered* vector space on $[\mu, \sigma)$. We denote this space by $(V, \mathscr{F}_1, \mathscr{F}^2)$ and we will always use the notation $V_{\alpha} \in \mathscr{F}_1$ and $V^{\alpha} \in \mathscr{F}^2$ as above. If $\mu = 0$ we replace $[\mu, \sigma)$ by σ . Motivated by abelian p-groups, we will use the following

Definition 3.1. Let $(V, \mathscr{F}_1, \mathscr{F}^2)$ be a double filtered vector space on $[\mu, \sigma)$, U a subspace of V and $\mu \leq \alpha \leq \beta \leq \sigma$. Then U will be called *dense* on $[\alpha, \beta)$ if

$$V^{\alpha} \subseteq V_{\delta} + U$$

for all $\delta \in [\alpha, \beta)$.

The subspace U will be called *piece-wise dense* on $[\alpha, \beta)$ if there is a finite chain $\alpha = \alpha_0 \leq \alpha_1 \leq \ldots \leq \alpha_{n+1} = \beta$ such that U is dense on (α_i, α_{i+1}) for all $i \in [0, n]$.

The main result of this section will be a theorem on double-filtered vector spaces and piece-wise dense subspaces:

THEOREM 3.2. Let $(V, \mathscr{F}_1, \mathscr{F}^2)$ be a double-filtered vector space on σ such that

(a) dim $V_{\alpha} \ge \aleph_0$ implies dim $V^{\alpha} = \dim V_{\alpha}$ for all $\alpha \in [0, \sigma)$ (b) $0 \neq \dim V^{\alpha} < \aleph_0$ implies $V_{\alpha} \neq 0$.

Then we can find finitely many subspaces U^{j} ($j \in [1, n]$) such that

(1) U^{j} is piece-wise dense on $[0, \sigma]$

(2)
$$\bigcap_{j \in [1,n]} U^j = 0.$$

If dim $V_{\alpha} \ge \aleph_0$ or = 0 for all $\alpha \in \sigma$ then we can choose n = 2.

This will follow from a sequence of Lemmata. We begin with a trivial observation which is used several times.

Observation 3.3. Let $(V, \mathcal{F}_1, \mathcal{F}^2)$ be a double-filtered vector space on σ and $\mu \in [0, \sigma)$ such that

dim $V^{\mu} < \dim V_{\alpha} = \dim V^{\alpha} \ge \aleph_0$ for all $\alpha \in [0, \mu)$.

Then

dim $V^{\alpha}/V^{\mu} = \dim(V_{\alpha} + V^{\mu})/V^{\mu}$ for all $\alpha \in [0, \mu)$.

Proof. If $\mu = 0$, then $[0, \mu) = \emptyset$ and (3.3) holds trivially. Therefore let $\mu > 0$ and $\alpha \in [0, \mu)$. Since dim $V^{\mu} < \dim V_{\alpha}$ and dim V_{α} is infinite, we obtain from a simple cardinal argument that

 $\dim(V_{\alpha} + V^{\mu})/V^{\mu} = \dim V_{\alpha} = \dim V^{\alpha} = \dim(V^{\alpha}/V^{\mu}).$

LEMMA 3.4. Let U be a subspace of the vector space V such that dim $V \leq n \cdot \dim U$ for some integer $n \geq 2$. Then we can find n complements U^j of U in V for $j \in [1, n]$ such that

$$\bigcap_{j\in[1,n]} U^j = 0.$$

Proof. Case n = 2. Let $V = U^{l} \oplus U$ by any decomposition and B any basis of U^{l} . We may assume $U^{l} \neq 0$ and hence $B \neq \emptyset$. Since dim $V \leq 2$ dim U, also

 $|B| = \dim U^{l} \leq \dim U.$

Therefore we can find a linearly independent subset $\{b^*|b \in B\}$ of U. Now we choose

$$U^2 = \bigoplus_{b \in B} \langle b + b^* \rangle.$$

Obviously

$$U^2 \oplus U = U^1 \oplus U = V$$
 and $U^1 \cap U^2 = 0$.

We now proceed by induction on $n \ge 3$ and assume that (3.4) holds for all n' < n.

If $U \subseteq V$ such that dim $V \leq n \cdot \dim U$, choose any decomposition $V = C \oplus U$. Therefore

dim $C \leq (n-1) \dim U$.

If dim $C \leq \dim U$ we have

dim $V \leq 2 \cdot \dim U$.

Therefore (3.4) follows from the case n = 2 above. Thus we assume dim $U \leq \dim C$ and decompose $C = D \oplus E$ such that dim $U = \dim D$. We conclude

$$\dim(U \oplus E) = \dim U + \dim E = \dim D + \dim E$$

$$= \dim C \leq (n - 1) \dim U.$$

Therefore

 $\dim(U \oplus E) \leq (n-1) \dim U$

and we can apply induction for $U \subseteq U + E$. There are decompositions

 $U \oplus E = V^j \oplus U$ for $j \in [1, n-1]$

such that

$$\bigcap_{j\in[1,n-1]} V^j = 0.$$

Let

$$D = \bigoplus_{b \in B} \left\langle b \right\rangle$$

and from

 $|B| = \dim D = \dim U$

we have a linearly independent subset $\{b^*|b \in B\}$ of U. Choose

$$U^{n} = \bigoplus_{b \in B} \langle b + b^{*} \rangle \oplus E \text{ and}$$
$$U^{j} = D \oplus V^{j} \text{ for } j \in [1, n-1].$$

Therefore $U \oplus U^j = V$ for all $j \in [1, n]$ and

$$\bigcap_{j\in[1,n-1]} U^j = D$$

implies

$$\bigcap_{j\in[1,n]} U^j = D \cap U^n = 0.$$

LEMMA 3.5. Let $(V, \mathcal{F}_1, \mathcal{F}^2)$ be a double-filtered vector space on $[\mu, \sigma)$ such that

(a) $0 \neq \dim V^{\mu} < \aleph_0$

(b) $V^{\alpha} \neq 0$ implies $V_{\alpha} \neq 0$ for all $\alpha \in [\mu, \sigma)$. Then we can find finitely many subspaces $U^{j} \subseteq V^{\mu}$ which are dense on $[\mu, \sigma)$ with

$$\bigcap_j U^j = 0$$

Proof. Let $\mu \leq \rho \leq \nu \leq \sigma$ such that:

(i) $V_{\alpha} = 0$ for all $\alpha \in [\nu, \sigma)$ and ν minimal

(ii) dim $V_{\alpha} = \dim V_{\beta}$ for all $\alpha, \beta \in [\rho, \nu)$. If $y \in V_{\rho}$ and dim $V^{\mu} = n$, we apply (3.4) and find *n* subspaces U^{j} such that

$$\langle y \rangle \oplus U^j = V^{\mu}$$
 and $\bigcap_{j \in [1,n]} U^j = 0.$

From $\alpha \in [\mu, \nu)$ we have $y \in V_{\alpha}$ and therefore

 $V^{\mu} = \langle y \rangle \oplus U^{j} = V_{\alpha} + U^{j}.$

If $\alpha \in [\nu, \sigma) \ (\neq \emptyset)$ then $V_{\alpha} = 0$ by (i) and $V^{\alpha} = 0$ from (b). Therefore $V^{\alpha} \subseteq V_{\alpha} + U^{j}$ holds trivially in this case and U^{j} is dense on $[\mu, \sigma)$ for all $j \in [1, n]$.

LEMMA 3.6. If $\aleph_0 \leq \rho \leq \kappa$ are cardinals then there is a decomposition $\{\kappa_{\beta}, \beta \in \kappa\}$ of κ into κ many subsets κ_{β} of cardinality ρ such that the following holds:

(*) If E is a finite subset of κ and

$$E \subseteq \bigcup_{\beta \in E} \kappa_{\beta},$$

then $E = \emptyset$.

Proof. Let $f: \kappa \to \kappa$ be a bijection such that f has only infinite cycles. Then κ decomposes into κ cycles $\mathbf{Z}_i (i \in \kappa)$ such that f acts on $\mathbf{Z}_i = \{z_i, z \in \mathbf{Z}\}$ as

$$f(z_i) = (z + 1)_i$$
 for all $z \in \mathbb{Z}$.

Since $|\kappa \times \rho| = \kappa$, there is a bijection

 $\nu:\kappa \times \rho \to \kappa$

and the canonical projection

 $\pi: \kappa \times \rho \rightarrow \kappa((k, r) \rightarrow k)$

defines a trivial fibration on $\kappa \times \rho$ with fibres isomorphic to ρ . This is used to define an induced fibration on κ with κ many fibres κ_{β} ($\beta \in \kappa$) each of cardinality ρ . Let

$$\overline{\gamma} = \{\beta \in \kappa | \pi \nu^{-1} \beta = \gamma\} \text{ and } \\ \overline{\kappa}_{\gamma} = \nu(f^{-1}\gamma \times \rho) \text{ for all } \gamma \in \kappa$$

Then

$$\kappa = \underset{\gamma \in \kappa}{\cup} \overline{\gamma} = \underset{\gamma \in \kappa}{\cup} \overline{\kappa}_{\gamma} \text{ and } |\overline{\gamma}| = |\overline{\kappa}_{\gamma}| = \rho.$$

Therefore we can decompose

$$\overline{\kappa}_{\gamma} = \bigcup_{\beta \in \overline{\gamma}} \kappa_{\beta}$$

such that $|\kappa_{\beta}| = \rho$ for all $\beta \in \overline{\gamma}$ and $\gamma \in \kappa$. Hence we have

$$\kappa = \bigcup_{\beta \in \kappa} \kappa_{\beta}$$

such that

$$\kappa_{\boldsymbol{\beta}} \subseteq \nu((f^{-1}\pi\nu^{-1}\boldsymbol{\beta}) \times \rho) \text{ and }$$

 $|\kappa_{\beta}| = \rho$ for all $\beta \in \kappa$.

In order to show (*) consider $E \subseteq \kappa$ such that

$$E \subseteq \bigcup_{\beta \in E} \kappa_{\beta}.$$

By definition of κ_{β} we have

$$E \subseteq \bigcup_{\beta \in E} \nu((f^{-1}\pi\nu^{-1}\beta) \times \rho).$$

Application of ν^{-1} and $\alpha = \nu^{-1}\beta$ leads to

$$\nu^{-1}E \subseteq \bigcup_{\beta \in E} (f^{-1}\pi\nu^{-1}\beta) \times \rho = \bigcup_{\alpha \in \nu^{-1}E} f^{-1}\pi\alpha \times \rho$$

If $F = \nu^{-1} E$ and $\pi \alpha = \gamma$, then

$$F \subseteq \bigcup_{\alpha \in F} f^{-1} \pi \alpha \times \rho = \bigcup_{\gamma \in \pi F} f^{-1} \gamma \times \rho.$$

Now suppose that E is a finite non-empty set. Then $F \neq \emptyset$ is finite and also πF is a non-empty finite subset of κ . Since

$$\kappa = \bigcup_{i \in \kappa} \mathbf{Z}_i$$

we find a largest integer $z \in \mathbb{Z}$ such that $z_i \in \pi F$ for some $i \in \kappa$. In particular there is an $r \in \rho$ such that $(z_i, r) \in F$. We want to show that

$$(z_i, r) \notin \bigcup_{\mathbf{y} \in \pi F} f^{-1} \mathbf{y} \times \mathbf{\rho}$$

which contradicts

$$F \subseteq \bigcup_{\gamma \in \pi F} f^{-1} \gamma \times \rho$$

and (*) is shown. If

 $(z_i, r) \in f^{-1}\gamma \times \rho$ for some $\gamma \in \pi F$,

then $\gamma = w_j \in \mathbf{Z}_j$ for some $j \in \kappa$ and $w \leq z$ by the maximality of z. However

 $z_i = f^{-1} \gamma = (w - 1)_j$

leads to the contradiction z = w - 1 < z.

The proof of the following lemma is similar to [9, Lemma 15, pp. 318, 319].

LEMMA 3.7. Let (V, \mathcal{F}_1) be a σ -filtered vector space and $\nu < \lambda \leq \sigma$ with λ a limit ordinal such that dim $V_{\beta} = \kappa \geq \aleph_0$ for all $\beta \in [\nu, \lambda)$ and

$$\dim \bigcap_{\beta \in [\nu,\lambda)} V_{\beta} < \kappa.$$

Then we can find a disjoint family $\{X_{\alpha}, \alpha \in \kappa\}$ of subsets of V with (i) $|X_{\alpha}| = cf(\lambda)$ for all $\alpha \in \kappa$

(ii) $|X_{\alpha} \cap V_{\beta}| = cf(\lambda)$ for all $\alpha \in \kappa$ and $\beta \in [\nu, \lambda)$

(iii) $\bigcup_{\alpha \in \kappa} X_{\alpha}$ is linearly independent.

Proof. If

$$\dim \bigcap_{\beta \in [\nu,\lambda)} V_{\beta} < \kappa \quad \text{and} \quad \dim V_{\beta} = \kappa$$

then $cf(\lambda) \leq \kappa$ and we can find a sequence

$$X = \{ x_{\alpha} | \alpha \in \mathrm{cf}(\lambda) \}$$

with

(a) $|X \cap V_{\beta}| = cf(\lambda)$ for all $\beta \in [\nu, \lambda)$

(b) X is linearly independent and $|X| = cf(\lambda)$.

Since $cf(\lambda) \leq \kappa$ either $\kappa = cf(\lambda)$ or $cf(\lambda) < \kappa$. In the first case we can choose κ disjoint subsequences of X with (a) and (b). Hence (3.7) is shown in the first case.

Now assume $cf(\lambda) < \kappa$ and consider the sets

 $M = \{X \subseteq V, X \text{ satisfies (a) and (b)} \}$

such that different $X, X' \in M$ are disjoint and

 $\bigcup_{X \in M} X$

is linearly independent.

Let \mathfrak{M} be the collection of all these sets M. Then $\{X\} \in \mathfrak{M}$ as shown above and \mathfrak{M} is obviously an inductive set. From the maximum principle of set theory we obtain a maximal element $M \in \mathfrak{M}$. If $|M| = \kappa$ the lemma is shown. Therefore we assume $|M| < \kappa$ for contradiction. Since

$$\dim U < \kappa \quad \text{for } U = \langle \bigcup_{X \in M} X \rangle,$$

we derive a λ -filtered vector space

$$(V/U, \{\overline{V}_{\alpha} = (V_{\alpha} + U)/U, \alpha \in \lambda\})$$

with

dim $\overline{V}_{\alpha} = \kappa$ for all $\alpha \in [\nu, \lambda]$.

Therefore we can choose a sequence

$$\bar{X} = \{ 0 \neq x_{\alpha} + U, \alpha \in cf(\lambda) \}$$

of V/U with the properties

(a') $|\overline{X} \cap \overline{V_{\beta}}| = cf(\lambda)$ for all $\beta \in [\nu, \lambda)$ (b') \overline{X} is linearly independent and $|\overline{X}| = cf(\lambda)$. From (a') we obtain a subset $\{\xi_{\alpha}, \alpha \in cf(\lambda)\}$ of $[\nu, \lambda)$ with

$$\sup\{\xi_{\alpha}, \alpha \in \mathrm{cf}(\lambda)\} = \lambda \quad \text{and} \quad x_{\alpha} + U \in \overline{V_{\xi\alpha}}.$$

Let $x_{\alpha} + U = x'_{\alpha} + U$ with $x'_{\alpha} \in V_{\xi\alpha}$, then

 $M \cup \{x'_{\alpha}, \alpha \in \mathrm{cf}(\lambda)\}$

contradicts the maximality of M.

LEMMA 3.8. Let $(V, \mathcal{F}_1, \mathcal{F}^2)$ be a double-filtered vector space on σ such that dim $V_{\alpha} = \dim V^{\alpha}$ is 0 or infinite for all $\alpha \in [0, \sigma]$. Let $\mu \in \sigma$ be the smallest ordinal with dim $V_{\alpha} = \kappa$ for all $\alpha \in [\mu, \sigma)$. Then

- (i) $\dim(V_{\alpha} + V^{\mu})/V^{\mu} = \dim V^{\alpha}/V^{\mu}$ for all $\alpha \in [0, \mu)$ (ii) There are two subspaces X^{1} , X^{2} of V^{μ} such that (a) X^{1}_{μ} and X^{2}_{μ} are dense on $[\mu, \sigma)$

- (b) $X^1 \cap X^2 = 0$.

Proof. (i). Since dim $V^{\mu} < \dim V_{\alpha} = \dim V^{\alpha} \ge \aleph_0$, we apply (3.3) and derive (i).

(ii). Let

$$D = \bigcap_{\beta \in [\mu,\sigma)} V_{\beta}$$

and consider first

Case 1. dim $D = \kappa$.

Since dim $D = \kappa = \dim V_{\mu} = \dim V^{\mu}$ and $D \subseteq V^{\mu}$ there are two complements X^1 and X^2 of D in V^{μ} such that $X^1 \cap X^2 = 0$. Therefore (ii) (b) holds. If $i \in \{1, 2\}$, then

$$V^{\mu} = X^{\iota} \oplus D$$
 and $V_{\delta} \supseteq \bigcap_{\beta \in [\mu,\sigma)} V_{\beta} = D$

for all $\delta \in [\mu, \sigma)$ implies

$$V^{\mu} = X^{\iota} + V_{\delta}.$$

Hence X^1 and X^2 are dense on $[\mu, \sigma)$ and (ii) (a) is shown; compare (3.1).

Case 2. dim $D < \kappa$. If $\sigma = \delta + 1$, then

$$\dim D = \dim \bigcap_{\beta \in [\mu, \delta+1)} V_{\beta} = \dim V_{\delta} = \kappa,$$

which is excluded. Hence σ is a limit ordinal.

From (3.6) we obtain a disjoint family

 $\{X_{\alpha} \subseteq V, \alpha \in \kappa\}$

such that

(*) $|X_{\alpha}| = cf(\sigma)$ for all $\alpha \in \kappa$. (**) $|X_{\alpha} \cap V_{\beta}| = cf(\sigma)$ for all $\alpha \in \kappa$ and $\beta \in [\mu, \sigma)$ (***) $\cup X_{\alpha}$ is linearly independent. Now we decompose

$$V^{\mu} = \bigoplus_{\alpha \in \kappa} \langle X_{\alpha} \rangle \oplus C$$

where

$$C = \bigoplus_{\alpha \in \overline{\kappa}} \left\langle c_{\alpha} \right\rangle$$

is an arbitrary complement. Since

 $\dim V^{\mu} = \dim V_{\mu} = \kappa,$

also dim $C = \overline{\kappa} \leq \kappa$. Consider the family

$$Y_{\alpha} = \begin{cases} X_{\alpha} \text{ for } \alpha \in \kappa \setminus \overline{\kappa} \\ X_{\alpha} \cup \{c_{\alpha}\} \text{ for } \alpha \in \overline{\kappa} \end{cases}$$

Then the following conditions are obviously satisfied:

 $(+) |Y_{\alpha} \cap V_{\beta}| = cf(\sigma) \text{ for all } \alpha \in \kappa \text{ and } \beta \in [\mu, \sigma)$ (++) $Y_{\alpha} \cap Y_{\alpha'} = \emptyset$ for different $\alpha, \alpha' \in \kappa$ and $|Y_{\alpha}| = cf(\lambda)$ for all $\alpha \in \kappa$.

 $(+++) \cup Y_{\alpha}$ is linearly independent and $V^{\mu} = \langle Y_{\alpha}, \alpha \in \kappa \rangle$. Therefore we can decompose $Y_{\alpha} = Y_{\alpha}^{1} \cup Y_{\alpha}^{2}$ such that

$$|Y_{\alpha}^{1}| = |Y_{\alpha}^{2}| = cf(\sigma)$$
 and
 $|Y_{\alpha}^{i} \cap V_{\beta}| = cf(\sigma)$ for all $\alpha \in \kappa$ and $\beta \in [\mu, \sigma)$.

Let

 $Y^{i}_{\alpha} = \{ (i, \alpha, \eta), \eta \in \mathrm{cf}(\sigma) \}$

be an enumeration of Y^i_{α} for all $\alpha \in \kappa$. Also decompose

$$\kappa = \bigcup_{\alpha \in \kappa} \kappa_{\alpha}$$

with $|\kappa_{\alpha}| = cf(\sigma)$ and enumerate

 $\kappa_{\alpha} = \{\alpha_{\eta}, \eta \in \mathrm{cf}(\sigma)\}$

with the help of (3.3). Then the following holds:

(****) If E is a finite subset of κ and

$$E \subseteq \bigcup_{\alpha \in E} \kappa_{\alpha}$$

then $E = \emptyset$. Finally we let

 $I = \kappa \times \mathrm{cf}(\sigma), \quad I^+ = \{ (\beta, \delta) \in I | \delta \neq 0 \}$

314

and define

$$X^{l} = \bigoplus_{(\alpha,\eta)\in I} \langle (1, \alpha, \eta) + (2, \alpha_{\eta}, 0) \rangle \oplus \bigoplus_{(\beta,\delta)\in I^{+}} \langle (2, \beta, \delta) - (2, \beta, 0) \rangle$$

and

$$X^{2} = \bigoplus_{(\alpha,\eta)\in I} \langle (2, \alpha, \eta) + (1, \alpha_{\eta}, 0) \rangle \oplus \bigoplus_{(\beta,\delta)\in I^{+}} \langle (1, \beta, \delta) - (1, \beta, 0) \rangle.$$

We want to show that X^1 and X^2 satisfy (ii) (b). Therefore assume $X^1 \cap X^2 \neq 0$ for contradiction. Then we can find subsets $E_1, E'_1 \subseteq I$ and $E_2, E'_2 \subseteq I^+$ such that the following holds.

$$\sum_{(\alpha,\eta)\in E_1} (\alpha, \eta)^* ((1, \alpha, \eta) + (2, \alpha_\eta, 0)) + \sum_{(\beta,\delta)\in E_2} (\beta, \delta)^{**} ((2, \beta, \delta) - (2, \beta, 0)) = \sum_{(\alpha,\eta)\in E'_1} (\alpha, \eta)' ((2, \alpha, \eta) + (1, \alpha_\eta, 0)) + \sum_{(\beta,\delta)\in E'_2} (\beta, \delta)'' ((1, \beta, \delta) - (1, \beta, 0))$$

with elements $(\alpha, \eta)^*$, $(\alpha, \eta)'$, $(\beta, \delta)^{**}$ and $(\beta, \delta)''$ in the field F and different from 0 and $E_1 \cup E_2 \neq \emptyset$. Since

$$\langle Y^{1}_{\alpha}, \alpha \in \kappa \rangle \cap \langle Y^{2}_{\alpha}, \alpha \in \kappa \rangle = 0,$$

we derive two equations

$$0 = \sum_{(\alpha,\eta)\in E_1} (\alpha, \eta)^* (1, \alpha, \eta) - \sum_{(\beta,\delta)\in E_2'} (\beta, \delta)'' (1, \beta, \delta)$$
$$+ \sum_{(\beta,\delta)\in E_2'} (\beta, \delta)'' (1, \beta, 0) - \sum_{(\alpha,\eta)\in E_1} (\alpha, \eta)' (1, \alpha_{\eta}, 0)$$

and

$$0 = \sum_{(\alpha,\eta)\in E_1'} (\alpha, \eta)'(2, \alpha, \eta) - \sum_{(\beta,\delta)\in E_2} (\beta, \delta)^{**}(2, \beta, \delta)$$

+
$$\sum_{(\beta,\delta)\in E_2} (\beta, \delta)^{**}(2, \beta, 0) - \sum_{(\alpha,\eta)\in E_1} (\alpha, \eta)^{*}(2, \alpha_{\eta}, 0).$$

Let

 $G_1 = E_1 \cap (\kappa \times 0)$ and $E_1 = G_1 \cup H_1$ and similarly

 $G'_1 = E'_1 \cap (\kappa \times 0)$ and $E'_1 = G'_1 \cup H'_1$. From the last two equations we derive

$$\sum_{H_1} (\alpha, \eta)^* (1, \alpha, \eta) - \sum_{E'_2} (\beta, \delta)'' (1, \beta, \delta)$$

= $\sum_{E_1} (\alpha, \eta)' (1, \alpha_{\eta}, 0) - \sum_{G_1} (\alpha, 0)^* (2, \alpha, 0) - \sum_{E'_2} (\beta, \delta)'' (1, \beta, 0)$

and

$$\sum_{H'_1} (\alpha, \eta)'(2, \alpha, \eta) - \sum_{E_2} (\beta, \delta)^{**}(2, \beta, \delta)$$

= $\sum_{E_1} (\alpha, \eta)^*(2, \alpha_{\eta}, 0) - \sum_{G'_1} (\alpha, 0)'(2, \alpha, 0) - \sum_{E_2} (\beta, \delta)^{**}(2, \beta, 0)$

with the obvious summation parameters.

Since

 $\langle (i, \alpha, \eta), (\alpha, \eta) \in I^+ \rangle \cap \langle (i, \alpha, 0), \alpha \in \kappa \rangle = 0$ for i = 1, 2, we conclude $H_1 = E'_2$ and $H'_1 = E_2$. Let

$$S = \{\alpha_{\eta}, (\alpha, \eta) \in E_1\},\$$

$$S' = \{\alpha_{\eta}, (\alpha, \eta) \in E'_1\} \text{ and }\$$

$$\iota: I \to \kappa((\alpha, \eta) \to \alpha)$$

the canonical projection. Then

 $S' \subseteq G_1^{\iota} \cup E_2^{\prime \iota}$ and $S \subseteq G_1^{\prime \iota} \cup E_2^{\iota}$

follows also from the last two equations. Hence we derive

 $S' \subseteq G_1^t \cup E_2'^t = G_1^t \cup H_1^t = (G_1 \cup H_1)^t = E_1^t \text{ and } S \subseteq G_1'^t \cup E_2^t = G_1'^t \cup H_1'^t = (G_1' \cup H_1')^t = E_1'^t.$

Therefore

$$|E'_1| = |S'| \le |E'_1| \le |E_1| = |S| \le |E'_1| \le |E'_1|$$

implies $S' = E_1$ and $S = E'_1$. Finally we consider

$$S \cup S' = E_1^{\iota} \cup E_1'^{\iota} = (E_1 \cup E_1')^{\iota} \subseteq \bigcup_{\alpha \in (E_1 \cup E_1')^{\iota}} \kappa_{\alpha}$$

and derive from (***) that $E_1 \cup E'_1 = \emptyset$. Therefore also $E_2 = E'_2 = \emptyset$ and $E_1 \cup E_2 = \emptyset$ contradicts our choice of these sets.

Finally we show (ii) (a) and let $\gamma \in [\mu, \sigma)$; compare (3.1). We will restrict our consideration to X^{1} . A similar argument holds for X^{2} . We want to show that

 $V^{\mu} = V_{\gamma} + X^{\mathrm{l}}.$

From (+++) we see that it suffices to show that

 $(i, \alpha, \beta) \in V_{\gamma} + X^{1}$ for all $i \in \{1, 2\}, (\alpha, \beta) \in I$.

From

 $|Y_{\alpha}^{i} \cap V_{\beta}| = \mathrm{cf}(\sigma)$

we obtain that $Y_{\alpha}^2 \cap V_{\gamma} \neq \emptyset$ and we find some $(2, \alpha, \delta) \in Y_{\alpha}^2 \cap V_{\gamma}$. We want to show that

 $(2, \alpha, 0) \in V_{\gamma} + X^{1}.$

Therefore we have finished if $\delta = 0$ and assume $\delta \neq 0$. Hence

 $(2, \alpha, \delta) - (2, \alpha, 0) \in X^{l}$ and

$$(2, \alpha, 0) = (2, \alpha, \delta) - ((2, \alpha, \delta) - (2, \alpha, 0)) \in V_{\gamma} + X_{1}.$$

If $\beta \neq 0$ also

 $(2, \alpha, \beta) - (2, \alpha, 0) \in X^1$ and

$$(2, \alpha, \beta) = (2, \alpha, 0) - ((2, \alpha, \beta) - (2, \alpha, 0)) \in V_{\gamma} + X^{1}$$

and $(1, \alpha, \beta) \in V_{\gamma} + X^{1}$ follows from

 $(1, \alpha, \beta) + (2, \alpha_{\beta}, 0) \in X^{\mathrm{l}}.$

Consequently X^{l} is dense on $[\mu, \sigma)$ and (3.8) is shown.

Proof of Theorem 3.2. We use transfinite induction on σ . If $\sigma = 1$, then (3.4) implies (3.2). Therefore let σ be an ordinal > 1 such that (3.2) holds for all vector spaces on μ with $\mu < \sigma$. Now let μ be the smallest ordinal such that one of the following three conditions holds:

(i) If dim $V_{\alpha} \ge \aleph_0$, then dim $V_{\alpha} = \text{const.}$ for all $\alpha \in [\mu, \sigma)$.

(ii) If there is $\mu' \in [0, \sigma)$ such that $V_{\mu'} = 0$, then $V_{\alpha} = 0$ for all $\alpha \in [\mu, \sigma)$.

(iii) If there is $\mu' \in [0, \sigma)$ such that

 $0 \neq \dim V_{u'} < \aleph_0$

then dim $V_{\alpha} < \aleph_0$ for all $\alpha \in [\mu, \sigma)$.

Now we apply (3.5) and (3.8). If dim $V_{\mu} \ge \aleph_0$ or 0 we find n = 2 and in general a finite number *n* of subspaces X^j ($j \in [1, n]$) which are dense on $[\mu, \sigma)$ and

$$\bigcap_{j\in[1,n]} X^j = 0$$

as shown in (3.8) and (3.5) respectively.

Now we consider factor spaces $\overline{Y} = (Y + V^{\mu})/V^{\mu}$ for $Y \subseteq V$. In particular

 $(\overline{V}, \{\overline{V}_{\alpha}, \alpha \in [0, \mu)\}, \{\overline{V}^{\alpha}, \alpha \in [0, \mu)\})$

is a (new) double-filtered vector space. By our choice of μ and (3.3) we derive

dim $\overline{V}_{\alpha} = \dim \overline{V}^{\alpha} \ge \aleph_0$ for all $\alpha \in [0, \mu)$.

From the induction hypothesis we find two subspaces $W^j \subseteq V$ such that $W^j \cap V^{\mu}$, = 0, \overline{W}^j is piece-wise dense on $[0, \mu)$ for j = 1, 2 and $\overline{W}^1 \cap \overline{W}^2 = 0$. If $V = W \oplus V_{\mu}$, then also \overline{W} is dense on $[0, \mu)$ and we choose $U^j = X^j + W^j$ for $j \in [1, n]$ where $W^j = W$ for $j \in [3, n]$ and $n \ge 3$.

Next we will show (3.2) (1) and consider a subspace U^j . Since X^j and \overline{W}^j are piece-wise dense on $[\mu, \sigma)$ respectively on $[0, \mu)$, we find an increasing finite sequence $\{v_i, i \in [0, s]\}$ of ordinals such that $v_0 = 0$, $v_m = \mu$ for some $m \in [0, s]$ and $v_s = \sigma$ from Definition 3.1. We want to show that U^j is dense on all intervals $[v_i, v_{i+1})$. This is trivial for $i \ge m$. Therefore let $i < m, \alpha \in [v_i, v_{i+1})$ and $a \in V^{v_i}$. We have finished if $a \in U^j + V_{\alpha}$ [compare (3.1)]. Since

 $a + V^{\mu} \in V^{\nu i} \subseteq \overline{W}^{j} + \overline{V}_{\alpha},$

we find $W^j \in w^j$, $v_{\alpha} \in V_{\alpha}$ and $v^{\mu} \in V^{\mu}$ such that

$$a = w^{j} + v_{\alpha} + v^{\mu}.$$

From $\alpha < \mu$ we have

 $V^{\mu} \subseteq X^{j} + V_{\alpha}$

and therefore

$$a \in W^j + V_{\alpha} + V^{\mu} \subseteq W^j + X^j + V_{\alpha} = U^j + V_{\alpha}.$$

Finally we want to show (3.2)(2) that is

$$\bigcap_{j\in[1,n]} U^j = 0.$$

If

$$D = \bigcap_{j \in [1,n]} U^j$$
 and $a \in D$,

then

$$a + V^{\mu} \in \bigcap_{j \in [1,n]} (\overline{X^{j} + W^{j}}) = \bigcap_{j \in [1,n]} \overline{X^{j}} = 0$$

and therefore $a \in V^{\mu}$. Since $a \in D$, we find $x^{j} \in X^{j}$ and $w^{j} \in W^{j}$

318

such that $a = x^j + w^j$ for all $j \in [1, n]$. Because $a \in V^{\mu}, X^j \subseteq V^{\mu}$ and $W^j \cap V^{\mu} = 0$, we obtain

$$a - x^j = w^j \in V^\mu \cap W^j = 0$$
 and $a = x^j$.

Therefore also

$$a \in \bigcap_{j \in [1,n]} X^j = 0$$

by our choice of X^{j} . Consequently a = 0 and D = 0.

4. The link between valuated abelian groups and double-filtered vector spaces. In this section we will restrict ourselves to vector spaces over the field $F = \mathbf{Z}(p)$ and these are related to abelian groups as follows.

Let (E, v) always denote a valuated abelian group, $S \subseteq E$ a fixed subgroup of E and $\sigma > 0$ some ordinal. The $\mathbb{Z}(p)$ -vector space (E/S)[p]has two natural comparable σ -filtrations

$$\mathscr{F}_{1} = \{ V_{\alpha} = E[p](p^{\alpha}/S) | \alpha < \sigma \}$$

and

$$\mathscr{F}_{2} = \{ V^{\alpha} = E(p^{\alpha}/S)[p] | \alpha < \sigma \}$$

compare Sections 2 and 3.

We will call $((E/S)[p], \mathscr{F}_1, \mathscr{F}_2)$ the canonically double-filtered vector space and $\mathscr{F}_1 \subseteq \mathscr{F}_2$ the σ -filtrations induced from the valuation map v_p . A subspace $U/S \subseteq (E/S)[p]$ is called v_p^{σ} -dense on a certain interval of ordinals $< \sigma$ (respectively piece-wise dense) if U/S is dense (respectively piece-wise dense) with respect to $((E/S)[p], \mathscr{F}_1, \mathscr{F}_2)$; compare Definition 3.1.

The the following holds

LEMMA 4.1. Let (E, v) be a valuated group and let $U/S \subseteq (E/S)[p]$ be piece-wise v_p^{σ} -dense. Then we can find $M \subseteq E$ such that

(i) (M/S)[p] = U/S(ii) $M/S \subseteq (E/S)_p$

(iii) M is v_p^{σ} -isotype in (E, v).

Proof. By our choice of U/S we can find a finite chain $0 = 0^* < \ldots < n^* = \sigma$ of ordinals j^* for $j \in [0, n]$ such that U/S is v_p^{σ} -dense on $[(j - 1)^*, j^*)$ for all $j \in [1, n]$. Next we construct by induction a chain $M_n \subseteq M_{n-1} \subseteq \ldots \subseteq M_0$ of subgroups with the following properties for $j \in [0, n]$:

(1j) $S \subseteq M_j \subseteq E(p^{j^*}) + S$ (2j) M_j/S is a p-group (3j $(M_j/S)[p] = (U/S) \cap E(p^{j^*}/S)[p]$ (4j) $E(p^{\delta}/M_j)[p] = E[p](p^{\delta}/M_j)$ for all $\delta \in [j^*, \sigma)$. Let $M_n \subseteq E$ such that

 $S \subseteq M_n$ and $M_n/S = U/S \cap E(p^{n^*}/S)[p]$.

Obviously (1n), (2n) and (3n) are satisfied and since $n^* = \sigma$ implies $[n^*, \sigma] = \emptyset$, condition (4n) holds trivially.

We assume that $M_n \subseteq \ldots \subseteq M_i$ with (1*j*) to (4*j*) for $j \in [i, n]$ are constructed for some $i \in [0, n]$. In order to define M_{i-1} let

$$\mathfrak{M}_{i-1} := \{ M \subseteq E(p^{(i-1)^*}) + S, M_i \subseteq M, M/S p \text{-group}, \\ (M/S)[p] = U/S \cap E(p^{(i-1)^*}/S)[p] \}.$$

First we observe that

 $\mathfrak{M}_{i-1} \neq \emptyset.$

To see this let

$$M/S = \{U/S \cap E(p^{(i-1)^*}/S)[p]\} + M_i/S.$$

Therefore $M_i \subseteq M \subseteq E(p^{(i-1)^*}) + S$ follows from

 $M_i \subseteq E(p^{i^*}) + S \subseteq E(p^{(i-1)^*}) + S.$

Because M_i/S and $U/S \cap E(p^{(i-1)^*}/S)[p]$ are p-groups also M/S is a p-group. Since

 $U/S \cap E(p^{(i-1)^*}/S[p] \subseteq (M/S)[p]$

it remains to show for $M \in \mathfrak{M}_{i-1}$ that

$$(M/S)[p] \subseteq U/S \cap E(p^{(i-1)^*}/S)[p].$$

Hence we choose $m + S \in (M/S)[p]$. We can find

$$x + S \in U/S \cap E(p^{(i-1)^*}/S)[p]$$
 and $y + S \in (M_i/S)$

such that m + S = (x + S) + (y + S). Since

px + S = 0 and 0 = pm + S = (px + S) + (py + S)also

$$y + S \in (M_i/S)[p] = U/S \cap E(p^{i^*}/S)[p]$$
$$\subseteq U/S \cap E(p^{(i-1)^*}/S[p]$$

by induction hypothesis (3i). Therefore

 $m + S = x + y + S \in U/S \cap E(p^{(i-1)^*}/S)[p]$

and $M \in \mathfrak{M}_{i-1}$, i.e., $\mathfrak{M}_{i-1} \neq \emptyset$.

The set \mathfrak{M}_{i-1} is obviously inductive, since unions of chains in \mathfrak{M}_{i-1} are in \mathfrak{M}_{i-1} . From the maximum principle we obtain a maximal element $M_{i-1} \in \mathfrak{M}_{i-1}$. By our choice of \mathfrak{M}_{i-1} the group M_{i-1} satisfies the

condition (1(i - 1)), (2(i - 1)) and (3(i - 1)). In order to show (4(i - 1)) let

$$\delta \in [(i-1)^*, \sigma) \text{ and } 0 \neq x + M_{i-1} \in E(p^{\delta}/M_{i-1})[p]$$

such that $x \in E(p^{\delta})$. In the first case we assume $\delta \in (i-1)^*$, i^*) and let $M = \langle x, M_{i-1} \rangle$. Obviously M satisfies the first three conditions of the set \mathfrak{M}_{i-1} and since M_{i-1} is maximal in \mathfrak{M}_{i-1} however $M_{i-1} \subsetneq M$ we conclude $M \notin \mathfrak{M}_{i-1}$ hence

$$(M/S)[p] \neq U/S \cap E(p^{(i-1)^*}/S)[p].$$

Therefore we can find

$$m + S \in (M/S)[p] \setminus (U/S \cap E(p^{(i-1)^*}/S)[p])$$

Since $M \subseteq E(p^{(i-1)^*}) + S$ also

 $m + S \in E(p^{(i-1)^*}/S)[p].$

By hypothesis U/S is v_p^{σ} -dense on [$(i - 1)^*$, i^*) and therefore

 $m + S \in E(p^{(i-1)^*}/S)[p] \subseteq U/S + E[p](p^{\delta}/S).$

We find $u \in U$ and $e \in E(p^{\delta})[p]$ such that

m + S = u + e + S.

Next we will show $u \in M_{i-1}$. From

$$u + S = m - e + S,$$

 $m + S \in E(p^{(i-1)^*}/S)[p]$ and
 $e + S \in E[p](p^{\delta}/S) \subseteq E(p^{\delta}/S)[p] \subseteq E(p^{(i-1)^*}/S)[p]$

it follows that

 $u + S \in E(p^{(i-1)^*}/S)[p].$

Therefore

$$u + S \in U/S \cap E(p^{(i-1)^*}/S)[p] = (M_{i-1}/S)[p]$$

using (3(i-1)). In particular $u \in M_{i-1}$.

Since $m \in M = \langle x, M_{i-1} \rangle$ there are a natural number k and $y \in M_{i-1}$ such that m = kx + y. If p divides k we have $m \in M_{i-1}$ from $px \in M_{i-1}$. Therefore

$$m + S \in (M_{i-1}/S)[p] = U/S \cap E(p^{(i-1)^*}/S)[p]$$

by (3(i - 1)). This contradicts our choice of m and hence

$$m + M_{i-1} = kx + M_{i-1}$$

where p does not divide k. Since

$$m + S = kx + M_{i-1} = u + e + M_{i-1}$$
$$= e + M_{i-1} \in E[p](p^{\delta}/M_{i-1})$$

and p does not divide k, we derive

 $x + M_{i-1} \in E[p](p^{\delta}/M_{i-1}).$

Therefore (4(i - 1)) is shown in this case.

Next we consider the remaining case $\delta \in [i^*, \sigma)$. We assume $px \notin M_i$ for contradiction. Since $px \in M_{i-1}$, $S \subseteq M_i$ and M_{i-1}/S is a *p*-group by (2(i-1)), we can find a natural number $m \ge 1$ such that

 $0 \neq p^m x + M_i \in E(p^{i^*}/M_i)[p].$

From (4*i*) we obtain $e \in E(p^{i^*})[p]$ such that

 $p^m x + M_i = e + M_i \neq 0.$

Since $e \notin M_i$ also

 $e + S \notin (M_i/S)[p].$

Since $px \in M_{i-1}$, $e - p^m x \in M_i \subseteq M_{i-1}$ and $m \ge 1$ we derive $e \in M_{i-1}$. Therefore (3(i-1)) and $e \in E(p^{i^*})[p]$ imply

$$e + S \in (M_{i-1}/S)[p] = U/S \cap E(p^{(i-1)^*}/S)[p]$$

and a fortiori $e + S \in U/S$.

With the help of (3i) and

$$e + S \in E[p](p^{l^*}/S) \subseteq E(p^{l^*}/S)[p]$$

we conclude

$$e + S \in U/S \cap E(p^{l^*}/S)[p] = (M_{i}/S)[p]$$

contradicting

 $e + S \notin (M_i/S)[p].$

Therefore $px \in M_i$ and

$$x + M_i \in E(p^{\delta}/M_i)[p] = E[p](p^{\delta}/M_i)$$

from (4i). In particular

 $x + M_{i-1} \in E[p](p^{\delta}/M_{i-1}).$

Finally we choose $M = M_0$ from the constructed chain and properties (1*o*) to (4*o*) imply 4.1).

In order to mix different primes we derive

LEMMA 4.2. Let (E, v) be a valuated group, π a set of primes, $0 < \sigma \in \mathbf{O}$ and $S \subseteq M_p \subseteq E$ for all $p \in \pi$ with:

$$M = \sum_{p \in \pi} M_p$$

is v_{π}^{σ} -isotype in E.

Proof. If $p \in \pi$ we want to show

$$E[p](p^{\nu}/M) = E(p^{\nu}/M)[p] \text{ for all } \nu < \sigma.$$

Since

$$E[p](p^{\nu}/M) \subseteq E(p^{\nu}/M)[p]$$

holds trivially let

$$0 \neq x + M \in E(p^{\nu}/M)[p]$$
 with $x \in E(p^{\nu})$.

Since $px \in M$ and M/S is torsion, px + S has finite order. Let

 $O(px + S) = k \cdot p^n$

such that (k, p) = 1. Therefore

 $O(kx + S) = p^{n+1} \text{ and }$

$$pkx + S \in M/S \cap (E/S)_p = M_p/S.$$

Since (k, p) = 1 we obtain from the definition of *p*-valuations that

$$v_p(x) = v_p(kx)$$

and therefore

$$kx + M_p \in E(p^{\nu}/M)[p].$$

From (ii) we have

$$E(p^{\nu}/M_{p})[p] = E[p](p^{\nu}/M_{p})$$

and there exists $e \in E(p^{\nu})[p]$ such that

 $e + M_p = kx + M_p.$

Also

 $kx + M = e + M \in E[p](p^{\nu}/M).$

Since (k, p) = 1 and $px \in M$ Euclid's argument leads to

 $x + M \in E[p](p^{\nu}/M).$

COROLLARY 4.3. Let (E, v) be a valuated group, $S \subseteq E, 0 < \sigma \in \mathbf{O}, \pi$ a set of primes and n > 1 an integer. If $p \in \pi$ and $j \in [1, n]$, let

 $U_{p}^{j}/S \subseteq (E/S)[p]$ such that (a) U_{p}^{j}/S is piece-wise v_{p}^{σ} -dense in (E/S)[p](b) $\bigcap_{j \in [1,n]} U_{p}^{j} = S$. Then there exist subgroups $M^{j} \subseteq E$ such that (1) $\bigcap_{j \in [1,n]} M^{j} = S$ (2) $M^{j}/S \subseteq \bigoplus_{p \in \pi} (E/S)_{p}$ (3) M^{j} is v_{π}^{σ} -isotype in E. Proof. From (4.1) we obtain $M_{p}^{j} \subseteq E$ such that (j) $(M_{p}^{j}/S)[p] = U_{p}^{j}/S$ (jj) $M_{p}^{j}/S \subseteq (E/S)_{p}$

(jjj)
$$M_p^j$$
 is v_{π}^{σ} -isotype in (E, v)

for all $j \in [1, n]$ and $p \in \pi$. If

$$M^j = \sum_{p \in \pi} M^j_p,$$

then M^{j} is v_{π}^{σ} -isotype in (E, v) by (4.2) and obviously

$$M^j/S \subseteq \bigoplus_{p \in \pi} (E/S)p$$

from (jj). Therefore we only have to show (1). Since

$$S \subseteq \bigcap_{j \in [1,n]} M^j$$

let $x \in E - S$ and it remains to show $x \in E - M^j$ for some $j \in [1, n]$. We consider different cases:

Case I. $O(x + S) = \infty$. Since M^j/S is torsion, also $x \notin M^j$.

Case II. Let O(x + S) be finite and not divisible by p for all $p \in \pi$. Then

 $x + S \notin \bigoplus_{p \in \pi} (E/S)[p]$

and in particular $x + S \notin M^j/S$ for all $j \in [1, n]$. Therefore $x \notin M^j$ in this case.

Case III. Let $p \in \pi$ such that $O(x + S) = p \cdot k$. Therefore

$$0 \neq kx + S \in (E/S)[p].$$

Since

$$\bigcap_{j \in [1,n]} U_p^j / S$$

we can find $l \in [1, n]$ such that

$$kx + S \notin U_p^l/S.$$

From

$$U_p^l/S = (M_p^l/S)[p]$$

we conclude $kx \notin M_p^l$ and also $kx \notin M^l$. Therefore $x \notin M^l$ and (1) is shown.

5. Proof of the theorem and the corollary. First we will show

PROPOSITION 5.1. Let (E, v) be a valuated group, $\pi \neq \emptyset$ a set of primes $\sigma > 0$ an ordinal and $k \ge 2$ an integer. If a subgroup $S \subseteq E$ is the intersection of $k v_{\pi}^{\sigma}$ -isotype subgroups of (E, v), then the following condition holds:

(*) dim $E(p^{\nu}/S)[p] \leq k \cdot \dim E[p](p^{\nu}/S)$ for all $\nu < \sigma$.

This is an immediate consequence of

Observation 5.2. Let $\varphi_i: V \to V_i$ be homomorphisms between vector spaces over F for $i \in [1, k]$ such that

$$\bigcap_{i \in [1,k]} \ker \varphi_i = 0$$

Then

dim $V \leq k \cdot \max\{\dim V_i, i \in [1, k]\}$.

Proof. The homomorphism

$$\psi: V \to \bigoplus_{i \in [1,k]} V_i(v \to (v^{\varphi_i})_{i \in [1,k]})$$

is injective and therefore

dim
$$V \leq \dim \left(\bigoplus_{i \in [1,k]} V_i \right) \leq k \max \{ \dim V_i, i \in [1, k] \}.$$

Proof of (5.1). Let $p \in \pi$ and $\nu < \sigma$ and consider the canonical homomorphisms

$$\varphi_i: E(p^{\nu}/S)[p] \to E(p^{\nu}/M_i)[p] (e + S \to e + M_i)$$

where M_i for $i \in [1, k]$ are the given v_{π}^{σ} -isotype subgroups of E with

$$S = \bigcap_{i \in [1,k]} M_i.$$

We conclude

 $\bigcap_{i \in [1,k]} \ker \varphi_i = 0$

and let $j \in [1, k]$ such that

dim $E(p^{\nu}/M_i)[p] = \max\{\dim E(p^{\nu}/M_i)[p], i \in [1, k]\}.$

Since M_i is v_{π}^{σ} -isotype in E and $p \in \pi$ we have

 $E(p^{\nu}/M_{j})[p] = E[p](p^{\nu}/M_{j})$ and

dim $E(p^{\nu}/S)[p] \leq k \dim E[p](p^{\nu}/M_j)$

from (5.2). If

$$E[p](p^{\nu}/M_j) = \bigoplus_{i \in I} \langle x_i + M_j \rangle,$$

then from $S \subseteq M_j$ we derive that $\{x_i + S, i \in I\}$ is a linearly independent subset of $E[p](p^{\nu}/S)$. Therefore

dim $E[p](p^{\nu}/M_i) \leq \dim E[p](p^{\nu}/S)$ and

 $\dim E(p^{\nu}/S)[p] \leq k \cdot \dim E[p](p^{\nu}/M_i) \leq k \cdot \dim E[p](p^{\nu}/S).$

Proof of the theorem in Section 1. (1) \Rightarrow (2) follows from (5.1). (2) \Rightarrow (1): If $p \in \pi$, we obtain from Theorem 3.2 subgroups $U_p^j/S \subseteq E/S[p]$ for $j \in [1, n]$ such that

(i) U_p^j/S is piece-wise dense on $[0, \sigma)$

(ii) $\bigcap_{j \in [1,n]} U_p^j / S = 0$

(iii) n = 2 if dim $E(p^{\nu}/S)[p] = 0$ or infinite for all $\nu < \sigma$.

From Corollary 4.3 we find v_{π}^{σ} -isotype subgroups M^{j} of E such that

$$\bigcap_{j\in[1,n]}M^j=S.$$

Proof of the corollary in Section 1. (1) \Rightarrow (2) follows from (5.1). (2) \Rightarrow (1): From (3.4) we find *n* complements U_p^j/S of $E[p](p^0/S)$ in $E(p^0/S)[p]$ such that

$$\bigcap_{j\in[1,n]} U_p^j/S = 0.$$

The subspaces U_p^j/S are dense on [0, 1) by Definition 3.1. Hence we can apply (4.3) and derive (1).

Example 5.3. A subgroup $D \subseteq G$ which is an intersection of pure subgroups but not an intersection of finitely many pure subgroups. Let κ be an uncountable cardinal and

$$B_i = \bigoplus_{n \in \omega} Z(p^n)$$
 for all $i \in \kappa$.

326

If

$$G = \bigoplus_{i \in \kappa} B_i$$
 and $B' = \bigoplus_{\substack{i \in \kappa \\ i > 1}} B_i$,

we want to show that D = B'[p] is the desired example. Obviously

$$G = B_1 \oplus B'$$
 and

$$p^{\nu}G[p] = p^{\nu}B_{1}[p] \oplus p^{\nu}B'[p]$$
 for all $\nu \in \omega$.

Since G is a separable p-group and

$$G[p](p^{\nu}/D) \cong p^{\nu}B_{1}[p] \neq 0 \text{ for all } \nu \in \omega,$$

we derive from the proposition in Section 1 that D is an intersection of pure subgroups. On the other hand

dim
$$G(p^{\nu}/D)[p] = \kappa \ge \aleph_1$$
 and
dim $G[p](p^{\nu}/D) = \aleph_0$ for all $\nu \in \omega$.

From our Theorem in Section 1 we derive that D cannot be a finite intersection of pure subgroups.

REFERENCES

- 1. J. Becvár, Intersections of Γ -isotype subgroups in abelian groups, Proc. Amer. Math. Soc. 86 (1982), 199-204.
- 2. K. Benabdallah and S. Robert, *Intersections finies des sous-groupes nets*, Can. J. Math. 32 (1980), 885-892.
- 3. D. Boyer and K. M. Rangaswamy, *Intersections of pure subgroups in abelian groups*, Proc. Amer. Math. Soc. 81 (1981), 178-180.
- 4. B. Charles, Une caractérisation des intersections de sousgroupes divisibles, C.R. Acad. Sci. Paris 250 (1960), 256-257.
- 5. L. Fuchs, Abelian groups, Publ. House of the Hungar. Acad. Sci. Budapest (1958).
- 6. ——— Infinite abelian groups, Vol. I (Academic Press, New York, 1970), and Vol. II (Academic Press, New York, 1973).
- 7. R. Göbel and R. Vergohsen, Intersection of pure subgroups of valuated abelian groups, Archiv der Math. 39 (1982), 525-534.
- 8. C. Megibben, On subgroups of primary abelian groups, Publ. Math. Debrecen 12 (1965), 293-294.
- 9. R. J. Nunke, Uniquely elongating modules, Symposia Math. 13 (1974), 315-330.
- 10. F. Richman and E. A. Walker, Valuated groups, J. Algebra 56 (1979), 145-167.
- 11. L. Salce, Struttura dei p-gruppi abeliani, Bologna (1980).

Universität Essen, Essen, West Germany