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SOLUTION OF A PROBLEM OF L. FUCHS 
CONCERNING FINITE INTERSECTIONS OF PURE 

SUBGROUPS 

R. GÔBEL AND R. VERGOHSEN 

1. Introduction. L. Fuchs states in his book "Infinite Abelian Groups" 
[6, Vol. I, p. 134] the following 

Problem 13. Find conditions on a subgroup of A to be the intersection of 
a finite number of pure (/?-pure) subgroups of A. 

The answer to this problem will be given as a special case of our 
theorem below. In order to find a better setting of this problem recall that 
a subgroup S Q E is /?-pure if pnE n S = pnS for all natural numbers. 
Then S is pure in E if S is /?-pure for all primes p. This generalizes to 
/?a-isotype, a definition due to L. J. Kulikov, cf. [6, Vol. II, p. 75] and 
[11, pp. 61, 62]. If a is an ordinal, then S is /Aisotype if 

pvE n S = pvS for all v ^ a. 

Obviously /Aisotype is purity and px-isotype is neatness. This concept 
extends to valuated abelian groups. Recall that (E, v) is a valuated abelian 
group if E is an abelian group and v = {v_, p prime} a set of/^-valuations 
vp, i.e., vp:E —> O U {oo} is a map from E into the ordinals O and {oo} 
such that the following holds: 

(1) vp(x + y) ^ m i n ^ O ) , vp(y) } 
(2) vp(px) > v (x) (assume oo < oo, a < oo if a G Q), 
(3) v (nx) = v (x) if n is not divisible by/?, cf. [10]. 
If hp\E - ^ Q U {oo} is the/7-height-function then 

(£, h = {hp, p prime} ) 

is a valuated group. Let 

E(pv) = {e G E, vp(e) ^ v) and 

E[p] = {e G E9pe = 0} 

be the /?-socle of E. Observe that 

p'E = E(p') if vp = hp. 
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We will use the following notation throughout this paper. If S Q E and 
(£, v) is a valuated group and v G O, we denote 

E[p](//S):=(E(pv)[p] + S)/S 

and 

E(pv/S)[p]:=((E(pv) + S)/S)[p]. 

If 77 is a set of primes, we say that S is v^-isotype in (E, v) if 

E[p](p"/S) = E(pv/S)[p] 

for all v < a and all/? G 77. 
If 77 = {p } then S is v^-isotype in E and if 77 is the set of all primes P, 

then S is va-isotype in E. This notation coincides with Kulikov's definition 
if v = h, cf. [7, p. 527, Proposition 3.2]. The main result of [7, 526, 
Theorem] is a characterization of arbitrary intersections of va-isotype 
groups. We recall from [7] the following 

PROPOSITION. For a subgroup S Q (E, v) of a valuated group and an 
ordinal a > 0 the following are equivalent: 

(1) S is an intersection of va-isotype subgroups of E. 
(2) E(pv/S)[p] # 0 implies E[p](pv/S) ¥* 0 for all p G P and all 

v < a. 
If a = (o and v̂  = /z we derive a characterization of intersections of 

pure subgroups. Then (2) becomes 
(2*) If x G E - S a n d / x G S,pn~lx £ S, then there exists y G E 

such that / /> = 0 a n d / 2 - 1 ^ £ S-
This case is due to D. Boyer and K. M. Rangaswamy [3]. It answers a 

question in [5]. Another special case of our proposition was derived 
independently by J. Becvâr [1]. Other corollaries from the proposition are 
obtained in [4, 8] and papers mentioned in [7]. In the case of finite 
intersections condition (2) must obviously be sharpened. In fact we will 
prove the following 

THEOREM. For a subgroup S of a valuated group (E, v) and ordinal o > 0, 
a set 77 7̂  0 of primes the following are equivalent: 

(1) S is a finite intersection of v^-isotype subgroups of E. 
(2) Either 

dimE(pv/S)[p] = dimz E[p](pv/S) ^ K0 

or else dim E(pv/S)[p] is finite and in this case 

E(p"/S)[p] * 0 

if and only if E[p](pv/S) ¥= 0 for all primes p G 77 and ordinals v < a. 
If in (2) dim E(pv/S)[p] is infinite or 0 for all p G 77 and v < a, then 

S is an intersection of two v^-isotype subgroups of E. 
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The case a = co and vp = hp is the characterization of finite intersections 
of pure (/7-pure) subgroups which solves L. Fuchs' problem. If a = 1 and 
v = h the theorem characterizes finite intersections of neat subgroups. 
Moreover we have a stronger 

COROLLARY. For a subgroup S of a valuated group (E, v), a set 77 ¥= & of 
primes and an integer n = 2 the following are equivalent: 

(1) S is an intersection of n v^-isotype subgroups of (E, v). 
(2) àim(E/S)[p] ^ n • dim(E[p] + S)/S. 

In the case v = h the v^-isotype subgroups of E are called 77-neat 
subgroups. Therefore the corollary characterizes intersections of n 
neat subgroups. This was recently shown by K. Benabdallah and S. Robert 

[2]. 
The strategy of the proof consists of two parts. First, in Section 4 we 

transform the major burden of the problem into linear algebra and will 
solve a problem on double-filtered vector spaces (Section 3). 

In Section 5 we put all pieces together and prove the theorem mentioned 
above. Finally we will construct a subgroup S Q E which is an 
intersection of pure subgroups but not of finitely many pure subgroups. 

2. Definitions. Let O be the class of all ordinals with the natural 
well-ordering. If a is an ordinal, we will identify a with the set of all 
ordinals a < o. In particular a < a if and only if a e a. A cardinal K is 
identified with the ordinal 

inf{a G O, \a\ = K}. 

If a is an ordinal then 

cof a = inf{ \X\, X Q a, sup X = a}. 

For ordinals a ^ /? we will consider the open and closed intervals 

( a J ) = { y G O , « < Y < /?} 

respectively 

[a, j8] = {y € O, a < y < £} 

and the intervals 

[a, 13] = {y G O, a ^ y < £} 

and 

( a J ] = { y E O , a < y ^ £}. 

If F is a vector space over a field F, then the dimension dimF V = dim V 
of K is a cardinal. 

Thus (X) ç y denotes the subspace of V generated by X Q V. The 
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same notation will be used for groups. The letter p always denotes a prime 
and Z(p) = Z/pZ the cyclic group (respectively the field) of p elements. 
All other notations are also standard and can be found in [6]. 

3. Some results on linear algebra. Let F be a vector space over the field 
F and /x < a two ordinals. A family 

&x = {Va, a G [/x,a)} 

of subspaces Va Q V with Vp Q Va for all a ^ /? is a [/x, a)-filtration on V 
and the pair (V, &\) will be a filtered vector space on [/x, a). 

I f& 1 = {Va,a G [ji, a) } is another [ix, a)-filtration on F, then Ĵ f c J^2 

if ^ c Va for all a G [/X, a). 
A vector space V with two comparable titrations J*j c J£" will be 

called a double-filtered vector space on [/x, a). We denote this space by 
(V,&\, ^2) and we will always use the notation Va G J*J and F a G J*"2 as 
above. If /x = 0 we replace [JU,, a) by a. Motivated by abelian /^-groups, we 
will use the following 

Definition 3.1. Let (V, &\, J^2) be a double filtered vector space on [JU, a), 
U a subspace of F and /x ^ a ^ fi ^ a. Then £/ will be called de«se on 
[«, )8) if 

F a ç V8 + (7 

for all 8 G [a, 0). 
The subspace U will be called piece-wise dense on [a, /?) if there is a 

finite chain a = a0 ^ ax ^ . . . ^ aw + J = /? such that f/ is dense on 
(az, a/ + 1) for all / G [0, «]. 

The main result of this section will be a theorem on double-filtered 
vector spaces and piece-wise dense subspaces: 

THEOREM 3.2. Let (V, J*J, ̂  ) be a double-filtered vector space on o such 
that 

(a) dim Va ^ S0 /m/tf/es dim Va = dim J^/or a// a G [0, a) 
(b) 0 # dim F a < S0 /m/>//es ^ ^ 0. 

Then we can find finitely many subspaces UJ(j G [1, n] ) such that 
(\) UJ is piece-wise dense on [0, a] 
(2) n UJ = 0. 

ye[i,«] 

//" dim Va = tf0 or = 0 for all a G a //ze« we aw choose n = 2. 

This will follow from a sequence of Lemmata. We begin with a trivial 
observation which is used several times. 

Observation 3.3. Let (V,&\, ^F2) be a double-filtered vector space on o and 
/x G [0, o) such that 
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dim V* < dim Va = dim Va â S0 for all a G [0, /i). 

dim Ka/KM = d im(^ + V^IV* for all a G [0, /x). 

Proof If JU = 0, then [0, //,) = 0 and (3.3) holds trivially. Therefore let 
JU > 0 and a G [0, /i). Since dim V^ < dim J^ and dim Va is infinite, we 
obtain from a simple cardinal argument that 

d im(^ + vyv*1 = dim ^ = dim Va = dim(Ka/K'4). 

LEMMA 3.4. Le/ U be a subspace of the vector space V such that dim V = 
n • dim U for some integer n = 2. 77zen we can find n complements UJ of U 
in Vfor j G [1, n] such that 

n uj = 0. 
j^lhn] 

Proof Case « = 2. Let F = t/1 0 U by any decomposition and B any 
basis of U\ We may assume É/1 # 0 and hence B ¥= 6. Since dim F ^ 
2 dim [/, also 

|J9| = dim U] ^ dim £/. 

Therefore we can find a linearly independent subset {b*\b G B} of £/. 
Now we choose 

U2 = © <£ + fc*>. 

Obviously 

U2@U=Ul®U=V and t/1 n U2 = 0. 

We now proceed by induction on n ^ 3 and assume that (3.4) holds for all 
ri < n. 

If [/ c V such that dim F ^ « • dim U, choose any decomposition 
V = CQ U. Therefore 

dim C ^ (n - 1) dim f/. 

If dim C ^ dim U we have 

dim F ^ 2 • dim U. 

Therefore (3.4) follows from the case n = 2 above. Thus we assume 
dim U ^ dim C and decompose C = D © E such that dim U = dim D. 
We conclude 

dim(U © E) = dim U + dim £ = dim Z> + dim £ 

= dim C ^ (« - 1) dim I/. 

Therefore 
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dim(U@E) ^ (n - 1) dim U 

and we can apply induction for U Q U + E. There are decompositions 

U@E=VJeU fory e [1, w - 1] 

such that 

n vJ = o. 
7e [ l , / i - l ] 

Let 

Z) = 0 (ft) 

and from 

\B\ = dim D = dim £/ 

we have a linearly independent subset {b*\b G 5 } of £/. Choose 

Un = © (ft + b*) © E and 

t/-7* = D © Vj for y e [1, /i - 1]. 

Therefore 1/ 0 l/->: = F for ally G [1, n] and 

n ^ = D 
y e [ l , w - l ] 

implies 

n uj = D n un = 0. 

ye[i,«] 

LEMMA 3.5. Le/ (F, J*J, J*~ ) fte a double-filtered vector space on [ju, a) swc/z 
(a) 0 ^ dim V* < S0 

(b) F* ¥= 0 wip/ies Va¥> Ofor all a G [/x, a). 
TTĴ W we can find finitely many subspaces UJ Q V^ which are dense on 

[jti, a) with 

n uj = 0. 

Proo/. Let //, ^ p ^ v ^ a such that: 
(i) J^ = 0 for all a G [J>, a) and v minimal 

(ii) dim Va = dim Vp for all a, fi G [p, *>). 
If y ^ Vp and dim F*1 = «, we apply (3.4) and find « subspaces £/7 such 
that 

<v> 0 I/-> = V* and n f/-> = 0. 

From a G [/i, *>) we have y ^ Va and therefore 

https://doi.org/10.4153/CJM-1986-015-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-015-x


310 R. GÔBEL AND R. VERGOHSEN 

V» = (y) 0 UJ = Va + UJ. 

If a G [v, a) (¥= 0) then Va = 0 by (i) and V = 0 from (b). Therefore 
V" Q Va + Uj holds trivially in this case and t/y is dense on [ju, o) for all 

y e [ l , » ] . 

LEMMA 3.6. If^0^p^K are cardinals then there is a decomposition 
{KO, fi G K} of K into K many subsets Ko of cardinality p such that the 

following holds: 
(*) If E is a finite subset of K and 

E Q U KO, 

then E = 0. 

Proof Let/:/c - ^ i c b e a bijection such t h a t / h a s only infinite cycles. 
Then K decomposes into K cycles Z-(/ e K) such that / acts on Zz- = 
{z,, z e Z} as 

f(z.) = (z + 1). for all z e Z. 

Since |/c X p| = K, there is a bijection 

P:/C X p —> K 

and the canonical projection 

7T:K X p —> K( (/:, r ) —» /c) 

defines a trivial fibration on K X p with fibres isomorphic to p. This is 
used to define an induced fibration on K with K many fibres K^ (fi e K) 
each of cardinality p. Let 

y = {/? G /C|T7T-1/? = y} and 

/cy = K / _ 1 Y X P) f° r all y G /c. 

Then 

K = u y = U lcy and |y| = |icJ = p. 

Therefore we can decompose 

Ky = U Ko 

such that \KQ\ = p for all /? e y and y e K. Hence we have 

K = U Ko 

such that 

KO c v((f~x<nv~xp) X p) and 
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|/cg| = p for all j 8 e K . 

In order to show (*) consider E Q K such that 

E Q U KO. 

By definition of Ko we have 

EQ ^EK(f~Xirv~XP) X P). 

Application of p - 1 and a = v~{fi leads to 

?"'£ ç u (f~x*"~*P) x p = u /"Va X p. 
j«e£ « e c E 

\î F = v~xE and 77a = y, then 

FQ U / _ 1 ™ X p = U / _ 1 Y X p. 

Now suppose that £ is a finite non-empty set. Then F ¥= 0 is finite and 
also nF is a non-empty finite subset of K. Since 

K = U Z, 

we find a largest integer z G Z such that zi G 77F for some i G /C. In 
particular there is an r E p such that (zi9 r) G F. We want to show that 

(z,, r) « U f _ 1 y X p 
JŒTTF 

which contradicts 

F C U / " ^ X p 

and (*) is shown. If 

(zi9 r) G f~xy X p for some y G 77F, 

then y = w- G Z for some y G K and w i z by the maximality of z. 
However 

leads to the contradiction z = w — 1 < z. 

The proof of the following lemma is similar to [9, Lemma 15, pp. 318, 
319]. 

LEMMA 3.7. Let (V, J*J) be a o-filtered vector space and v < X ^ a with X 
a limit ordinal such that dim Vp = K = S0 /or #// /? G [v, X) and 

dim Pi Va < K. 
0e[,r,A) P 
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Then we can find a disjoint family {Xa, a G K} of subsets of V with 
(i) \Xa\ = cf(X)for alla G K 

(ii) \Xa n Vp\ = cf(X) for alla G K and 0 G [V, X) 
(iii) U A' w linearly independent. 

Proof If 

dim n K> < /c and dim VR = K 

then cf(X) ^ K and we can find a sequence 

X = {xja G cf(X) } 

with 
(a) \X n Vp\ = cf(X) for all $ G [?, X) 
(b) X is linearly independent and \X\ = cf(X). 
Since cf(X) ^ /c either /c = cf(X) or cf(X) < K. In the first case we can 

choose K disjoint subsequences of X with (a) and (b). Hence (3.7) is shown 
in the first case. 

Now assume cf(X) < K and consider the sets 

M = {X ç y, X satisfies (a) and (b) } 

such that different X, X G M are disjoint and 

U X 

is linearly independent. 
Let Wl be the collection of all these sets M. Then {X} G W as shown 

above and Wl is obviously an inductive set. From the maximum principle 
of set theory we obtain a maximal element M G Tl. If \M\ = K the lemma 
is shown. Therefore we assume \M\ < K for contradiction. Since 

dim U < K for U = ( U X), 

we derive a X-filtered vector space 

(K/£/, {Pa = (Va + ! /) /£/ ,« G X}) 

with 

dim Va = K for all a G [?, X]. 

Therefore we can choose a sequence 

X = {0 ^ jca + £/, a G cf(X) } 

of K/ £/ with the properties 
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(a') \X n Vp\ = cf(\) for all fi e= [^A) 
(b') X is linearly independent and \X\ = cf(X). 
From (a') we obtain a subset {£a, a G cf(À) } of [v9 X) with 

sup{£a, a G cf(X) } = X and x f t + [ / G ^ . 

Let xa + U = x'a + U with x'a G J^a, then 

M U « , a G cf(X) } 

contradicts the maximality of M. 

LEMMA 3.8. Let (V, J^j, tF ) be a double-filtered vector space on o such 
that dim Va = dim Va is 0 or infinite for all a G [0, a). Let fi ^ o be the 
smallest ordinal with dim Va = K for all a G [jit, a). 77ie« 

(i) dim(J^ + vyv11 = dim VaIV* for all a G [0, /x) 
(ii) T'Aère are /wo subspaces X , X of V^ such that 
(a) JT W XA are dense on [ju, a) 
(b) I 1 n I 2 - 0. 

Proo/. (i). Since dim V* < dim Va = dim F a ^ «0, we apply (3.3) and 
derive (i). 

(ii). Let 

D = n Vo 

and consider first 
Case 1. dim D = K. 
Since dim D = K = dim V = dim FM and D Q V^ there are two 

complements X1 and X2 of D in FM such that X1 n X2 = 0. Therefore (ii) 
(b) holds. If/' G {1,2}, then 

F ^ I ' e D and K 3 n F* = D 

for all S G [it, a) implies 

J/** - *'' + V8. 

Hence Xx and X2 are dense on [/x, a) and (ii) (a) is shown; compare 
(3.1). 

Case 2. dim D < K. 
If a = 8 + 1, then 

dim D = dim n K> = dim V* = K, 

which is excluded. Hence a is a limit ordinal. 
From (3.6) we obtain a disjoint family 

{Xa ç y, a G K} 
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such that 
(*) \Xa\ = cf(a) for all a G K. 

(**) \Xa
 n vp\ = c f ( a ) f o r a11 « e /c and yS G [/i, a) 

(***) u Xa is linearly independent. 
Now we decompose 

V* = © ( J O 0 C 

where 

c - m <<«> 
is an arbitrary complement. Since 

dim FM = dim V^ = /c, 

also dim C = ic ^ K. Consider the family 

y _ \ Xa for a & K\K 
a ~ [Xa U {ca} fo ra G K. 

Then the following conditions are obviously satisfied: 
( + ) \Ya n Vp\ = cf(a) for all a G /c and 0 G [/Z, a) 

( + + ) ya n ya, = 0 for different a, a' G K and | y j = cf(A) for all 
a G K. 

( + + + ) U Ya is linearly independent and FM = (Ya, a G K). 
Therefore we can decompose Ya = Ya U y^ such that 

\Y\\ = \Y2
a\ = cf(a) and 

|y^ n J£| = cf(a) for all a G K and yS G [^ a). 

Let 

Yl
a = { (/, a, n\ ri G cf(a) } 

be an enumeration of Yl
a for all a G K. Also decompose 

/C = U Ka 
a<E/c a 

with |/cj = cf(a) and enumerate 

Ka = K ' ^ G cf(a) ) 
with the help of (3.3). Then the following holds: 

(****) If E is a finite subset of K and 

E Q U Ka 

then £ = 0. Finally we let 

I = K X cf(a), / + = { (ft S) G 7|5 ^ 0} 
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and define 
A X] = ffi ( (1, a, i)) + (2, a_, 0) > 0 © , ( (2, 0, 8) 

" (2, ft 0) > 

and 

xl = (a% < <2' «• *> + <*• «*• °> > e « J / - < <»• A 6> 
- (i, A o) >. 

We want to show that Xx and X2 satisfy (ii) (b). Therefore assume 
X1 n X2 ¥= 0 for contradiction. Then we can find subsets Ex, E\ Q I 
and E2, E'2 Q I+ such that the following holds. 

2 (a,ij)*((l,a,T|) 4- ( 2 , ^ , 0 ) ) 
(a,i?)e£, 

+ 2 (ftS)**((2,ftS) - (2,ft0)) 

= 2 (a,iïy((2,a,îï) + ( l ,a„,0)) 
(a,ij)eF, 

+ 2 0M)"((i,jM) - (i, A0)) 
(/?,S)€E£2 

with elements (a, TJ)*, (a, TJ)', (ft 8)** and (ft 8)" in the field i7 and 
fferent 
Since 

different from 0 and Ex U E2 ^ 0. 

<y*, <* G K> n <y2, a G K> = 0 , 

we derive two equations 

0 = 2 («, T?)*(1, a,ri) ~ 2 (ft «)"0, A 8) 
(a,i»)e£, (A«)eF2 

+ 2 (ft «)"(1, ft 0) - 2 (a, irtU «,, 0) 

and 

0 = 2 (a, TJ)'(2, a, i|) - 2 (ft S)**(2, ft 8) 
(a,i»)eF, (]8,«)eE2 

+ 2 (ft 8)**(2, ft 0) - 2 (a, r0*(2, a,, 0). 
(£,S)e£2 («,Tj)e£, 

Let 
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Gx = Ex n (K X 0) and Ex = G1 U i/j 

and similarly 

G\ = E\ n (K X 0) and £', = Ĝ  U ^ . 

From the last two equations we derive 

2 (a, TJ)*(1, a, 7i) ~ 2 08, 8)"(1, P, «) 

= 2 (a, t?)'(l, «,. 0) - 2 («, 0)*(2, o, 0) - 2 08, fi)"(l, j8, 0) 
£, Gj £2 

and 

2 («, TJ)'(2, a, rj) - 2 08, 5)**(2, j8, 8) 

= 2 (a, ij)*(2, a,, 0) - 2 (a, 0)'(2, a, 0) - 2 08, 6)**(2, j8, 0) 
£, G', £2 

with the obvious summation parameters. 
Since 

< (/, a, y), (a, 7]) e / + ) n ( (/, a, 0), a G /c> - 0 for z = 1, 2, 

we conclude i/j = E2 and i / , = E2. Let 

y = {«,,(«,*?) e £{} and 

L:I -> /c( (a, TJ) -> a) 

the canonical projection. Then 

S" Ç G1, U # / and 5 ç G'/ U EL
2 

follows also from the last two equations. Hence we derive 

S" Q G\ U E'2
l = G\ U H\ = (Gx U H{f = E\ and 

5 ç G\l U El
2 = G\l U i/ ' / = (G\ U ^ y = E\L. 

Therefore 

|F, | = |51 fk |£îl ^ |£ , | = \S\ ^ \E\l\ ^ \E\\ 

implies S' = Ej and S = E\. Finally we consider 

S U S' = E\ U £' / = (£i U E\)1 Q U Ka 

and derive from (***) that i^ U E\ = 0. Therefore also E2 = E2 = 0 and 
£, U £9 = 0 contradicts our choice of these sets. 
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Finally we show (ii) (a) and let y G [JU, a); compare (3.1). We will 
1 9 

restrict our consideration to X . A similar argument holds for X . We 
want to show that 

v* = vy + x\ 
From ( + + + ) we see that it suffices to show that 

(z, a, p) G Vy + X1 for all i G {1, 2}, (a, /?) G /. 

From 

\Yl
a O rç| = cf(a) 

we obtain that Y2
a n Fy ^ 0 and we find some (2, a, §) G y£ n PÇ. 

We want to show that 

(2, a, 0) G PC + X1. 

Therefore we have finished if S = 0 and assume 8 ^ 0 . Hence 

(2, a, 5) - (2, a, 0) G X1 and 

(2, a, 0) = (2, a, 5) - ( (2, a, 5) - (2, a, 0) ) G Fy + Xv 

If £ ^ 0 also 

(2, a, j8) - (2, a, 0) G X1 and 

(2, a, 0) = (2, a, 0) - ( (2, a, 0) - (2, a, 0) ) G Fy + X1 

and (1, a, p) G PC + Xx follows from 

(1, a, 0) + (2, aj8, 0) G X1. 

Consequently X is dense on [//,, a) and (3.8) is shown. 

Proof of Theorem 3.2. We use transfinite induction on a. If a = 1, then 
(3.4) implies (3.2). Therefore let a be an ordinal > 1 such that (3.2) holds 
for all vector spaces on JU, with \x < o. Now let JU be the smallest ordinal 
such that one of the following three conditions holds: 

(i) If dim Va ^ S0, then dim Va = const, for all a G [/X, a). 
(ii) If there is /i' G [0, a) such that V^ = 0, then Va = 0 for all 

a G [jit, a ) . 

(iii) If there is /x' G [0, a) such that 

0 ^ dim J/, < S0 

then dim P̂  < N0 for all a G [jit, a). 
Now we apply (3.5) and (3.8). If dim V ^ S0 or 0 we find n = 2 and in 

general a finite number n of subspaces XJ(j G [1, n] ) which are dense on 
[/A, a) and 
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as shown in (3.8) and (3.5) respectively. 
Now we consider factor spaces Y = (Y + V^)IV^ for Y Q K In 

particular 

(F, {Va,a G [0,/x)}, {P ,<* G [0,/x)}) 

is a (new) double-filtered vector space. By our choice of \x and (3.3) we 
derive 

dim Va = dim Va â N0 for all a G [0, /x). 

From the induction hypothesis we find two subspaces WJ Q V such 
that Ŵ 7 n FM, = 0, W-J is piece-wise dense on [0, /A) for j = 1, 2 and 
Wx n J^2 = 0. If V = W 0 Vp then also J^ is dense on [0, /A) and we 
choose UJ = XJ + WJ for; G [1, n] where WJ = Wîox j G [3, n] and 

Next we will show (3.2) (1) and consider a subspace UJ. Since XJ and 
WJ are piece-wise dense on [/A, a) respectively on [0, LA), we find an 
increasing finite sequence {vh i G [0, s] } of ordinals such that v0 = 0, 
vm = jit for some m G [0, s] and vs = o from Definition 3.1. We want to 
show that UJ is dense on all intervals [vi9 vi+x). This is trivial for 
/ = m. Therefore let /' < m,a G [vt, J>/ + 1) and a G Vvl. We have finished if 
a G UJ' + Va [compare (3.1) ]. Since 

a + V* G Vvl Q ^ + Ktt, 

we find W7 G H>7, va G J/ and v** G KM such that 

tf = WJ + Va + VM. 

From a < fi we have 

^ Q Xj + Va 

and therefore 

a G WJ + 1/ + J^ ç wJ + X7 -f Va = UJ + J^. 

Finally we want to show (3.2) (2) that is 

n uJ = 0. 
yen,*] 

if 

Z) = n £/7 and a G £>, 
7"e[l,«] 

then 

« + FM
 G n (*7 + w7) - n x7 = 0 

yep,*] yep,*] 
and therefore a G FM. Since a G D, we find JC7 G X7 and w7 G Wy 
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such that a = xJ + wJ for ally e [1, n]. Because a G FM, Xj Q V^ and 
Wj n V^ = 0, we obtain 

a - X
J' = wJ

 G FM n WJ' = 0 and Û = x7. 

Therefore also 

a e n X7 = 0 
je[\,n] 

by our choice of X7. Consequently a = 0 and D = 0. 

4. The link between valuated abelian groups and double-filtered vector 
spaces. In this section we will restrict ourselves to vector spaces over the 
field F = Z(p) and these are related to abelian groups as follows. 

Let (E, v) always denote a valuated abelian group, S Q E a fixed 
subgroup of E and a > 0 some ordinal. The Z(/?)-vector space (E/S)[p] 
has two natural comparable a-filtrations 

^ = {Va = E[p](pa/S)\a<a} 

and 

^ = [V
a = E(pa/S)[p]\a<a] 

compare Sections 2 and 3. 
We will call ( (E/S)[p], J^, S^) the canonically double-filtered vector 

space and J*J ç J^ the a-filtrations induced from the valuation map vp. A 
subspace U/S Q (E/S)[p] is called v^-dense on a certain interval of 
ordinals < a (respectively piece-wise dense) if U/S is dense (respectively 
piece-wise dense) with respect to ( (E/S)[p], &\9 J^); compare Definition 
3.1. 

The the following holds 

LEMMA 4.1. Let (E, v) be a valuated group and let U/S Q (E/S)[p] be 
piece-wise v°-dense. Then we can find M Q E such that 

(i) (M/S)[p] = U/S 
(ii) M/S ç (E/S)p 

(iii) M is v°-isotype in (E, v). 

Proof. By our choice of U/S we can find a finite chain 0 = 0* < 
. . . < « * = a of ordinals j * for j e [0, n] such that U/S is v^-dense on 
[(j — 1)*, y*) for all j G [1, «]. Next we construct by induction a 
chain Mw ç Mn_x Q . . . Q M0 of subgroups with the following properties 
for y e [0, n]: 

(1/) SQMjQ E(pJ*) + 5 
(2/) ^ / S is a/7-group 
(3/ (M/S)[/>] = (£//S) n £V*/S)[ />] 
(4/) E( / /M,)[ />] = £[ />]( / /M,) for all Ô G [j*, a). 
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Let Mn Q E such that 

S Q Mn and MJS = U/S n £ ( /* /£ ) [ /> ] . 

Obviously (1«), (2w) and (3n) are satisfied and since n* = o implies 
[«*, a) = 0, condition (An) holds trivially. 

We assume that Mn Q . . . Q Mt with (1/) to (4/) for 7 G [/, «] are 
constructed for some / G [0, n]. In order to define M(_} let 

2K /_1:= {M ç E(p(i~]r) + 5, Mz- ç M, M/S>group , 

(M/s)[/?] = iz/s n £(/ -1 )7s)[/?]}. 

First we observe that 

arc,.-! # 0. 

To see this let 

M/S = {I//S n £ ( / - 1 ) 7 s ) [ / ? ] } + Mt/S. 

Therefore Mt Q M Q E(p(i~l)*) + S follows from 

Ml ç E(/) + S Ç E(p{i~])*) + 5. 

Because Mz-/S and U/S n £(/?(/_1)*/S)[/>] are /^-groups also Af/S is a 
/?-group. Since 

U/S n £ ( / - 1 ) 7 S [ / ? ] ç (M/S)[p] 

it remains to show for M G 30î7._j that 

(M/S)[p] Q U/S n E(pV~l)*/S)[p]. 

Hence we choose m + S Œ (M/S)[p]. We can find 

x -f S G I//S n E Q ^ - ^ / S ) ^ ] and 7 4- S G (M,./5) 

such that m + S = (x + S) + ( j + S). Since 

px + S = 0 and 0 = pm + S = O c + S) + (#y + 5") 

also 

>> + s G (M/s)!/?] = i//s n E(//S)[p] 

Q u/s n £(/?(/_1)7s[/?] 
by induction hypothesis (3/). Therefore 

m + S = x+y + SeU/Sn E(p(l~ir/S)[p] 

and M G SR,.^, i.e., STC,-., * 0. 
The set 37̂ -̂ t is obviously inductive, since unions of chains in Wi^] 

are in 90ft/_1. From the maximum principle we obtain a maximal element 
M7_j G SDÎ^j. By our choice of 3W/_1 the group Mz-_] satisfies the 
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condition (l(z - 1) ), (2(i - 1) ) and (3(z - 1) ). 
In order to show (4(/ — 1) ) let 

! G [ ( I - 1)*, a) and 0 ¥= x + Mt_x G E(ps/M^x)[p] 

such that x G E(p ). In the first case we assume 8 G (i - 1)*, /'*) and let 
M = (x, Mz _ j ). Obviously M satisfies the first three conditions of the set 
Wlj-i and since Mi_] is maximal in Wli_x however Mt_x Ç M we 
conclude M <£ 9Dt/_1 hence 

(M/S)[p] ¥= U/S n £ ( / _ 1 ) 7 s ) [ / ? ] . 

Therefore we can find 

m -f S G (M/S)[p]\(U/S n E(p(l~l)*/S)[p]). 

Since M Q E(p(l~V)*) + 5* also 

m + S G £(/> ( , '_ 1 )7s)|>]. 

By hypothesis £//£ is v^-dense on [ (i — 1)*, /*) and therefore 

m + S G ^(^(,'_1)*/S)[/>] Ç [//s + £ [ /> ] ( / /S ) . 

We find w e t / and e G £( /? Ô ) [ /? ] such that 

rn + S = u + e + S. 

Next we will show u G Mt_x. From 

u + S = m — e + S, 

m + 5 G E O 0 - 0 * / ^ / ? ] and 

e + S G £ [ / > ] ( / / £ ) ç £(//<>)[/?] ç E(/l-V*/S)[p] 

it follows that 

w + S G E(p{l~ir/S)[p]. 

Therefore 

w 4- S G £//£ n E(/?(l'""1)*/S')[^] = (Mt_x/S)[p] 

using (3(z — 1) ). In particular u G Mt_x. 
Since w G M = (x, Mt_x) there are a natural number /c and;; G M Z _ ] 

such that m = kx + y. \l p divides k we have m G MZ-_] from 
px G Mz_j. Therefore 

m + S G (Af^/S)!/?] = I//S n £ ( / _ 1 ) 7 S ) [ / ? ] 

by (3(z — 1) ). This contradicts our choice of m and hence 

m + Mz-_! = kx + Mz-_! 

where /? does not divide /c. Since 
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m + S = kx + M ; _, = u + e + M ; _, 

= e + M,_, e £ [ / > ] ( / / ^ , - - i ) 

and /? does not divide k, we derive 

x + Mf._, G ^ [ ^ K Z / M ^ O -

Therefore (4(z — 1) is shown in this case. 
Next we consider the remaining case S G [/*, a). We assume px <£ Mz 

for contradiction. Since px G Mt_x, S Q M- and Mt_x/S is a/?-group by 
(2(/ — 1) ), we can find a natural number m ^ 1 such that 

0 ^ pmx + Ml G £ ( / / M z ) [ / ? ] . 

From (4/) we obtain e G £(/?' )[/?] such that 

pmx + Mt = e + Mt * 0. 

Since e £ Mt also 

e + S £ (Mt/S)[p]. 

S'mcepx G M z _ b e — pmx G MZ C Mi_l and m è 1 we derive e G M Z _ ! -
Therefore (3(z — 1) ) and e G E(pl )[p] imply 

<? + s G (M^/sxp] = u/s n ^/""^Vs)!/?] 
and a fortiori e + S G [//S. 

With the help of (3/) and 

e + 5 G £ [ / > ] ( / / £ ) c £ ( / / £ ) [ / > ] 

we conclude 

e + 5 G U/S n E(jj*/S)[p] = (Mt/S)[p] 

contradicting 

e + 5 « (Mt/S)[p]. 

Therefore px G MZ and 

x + M, e £ ( / / M , ) [ ^ ] = £ [ /> ] ( / /M, ) 

from (4/). In particular 

x + M,_, e ^ ( / / M , ^ ) -

Finally we choose M = M0 from the constructed chain and properties (\o) 
to (4o) imply 4.1). 

In order to mix different primes we derive 

LEMMA 4.2. Let (E, v) be a valuated group, TT a set of primes, 0 < a G O 
and S Q M Q E for all p G 77 with : 
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(i) M IS is a p-group 
(ii) M is v°-isotype in E. 

Then 

M = 2 Mp 
p <^m 

is v^-isotype in E. 

Proof. \ip e 77 we want to show 

E[p](pv/M) = E(pv/M)[p] for all v < o. 

Since 

E[p](p"/M) c E(p"/M)[p] 

holds trivially let 

O ^ i + M e E(pv/M)[p] with x e E(pv). 

Since/7x e M and M/S is torsion, px + S has finite order. Let 

<9(/?x + S) = it • />" 

such that (A:, /?) = 1. Therefore 

0(kx + S) = / + 1 and 

pkx + 5 e Af/S n ( £ / £ ) , = Af/S. 

Since (k, p) = 1 we obtain from the definition of ^-valuations that 

vp(x) = v
P(kx) 

and therefore 

kx + Mp Œ E(pv/M)[p]. 

From (ii) we have 

E(pv/Mp)[p] = E[p](pr/Mp) 

and there exists e e E(pv)[p] such that 

e 4- Mp = foe + M^. 

Also 

fex + M = e + M e £[/>](//Af). 

Since (k, p) = 1 and/?* e M Euclid's argument leads to 

x + M G £[/?](/?7M). 

COROLLARY 4.3. Le/ (£", v) be a valuated group, SQE,0<o^O,7ra 
set of primes and n > 1 an integer. Ifp e IT and j e [1, H], /ef 
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UJ
p/S Q (E/S)[p] 

such that 
(a) UJ IS is piece-wise va-dense in (E/S)[p] 
(b) n u{ = S. 

Then there exist subgroups MJ Q E such that 

(1) n MJ = S 
je[hn] 

(2) MJ/S Q © (E/S)„ 

(3) MJ is v^-isotype in E. 

Proof. From (4.1) we obtain MJ Q E such that 

(J) (MJ
p/S)[p] = UJ

p/S 

(jj) MJp/S Q (E/S)p 

(jjj) MJ
p is v£-isotype in (£, v) 

for ally e [I, n] and p e IT. If 

MJ = 2 Mj
p, 

p G 7T 

then MJ is v^-isotype in (E, v) by (4.2) and obviously 

Mj/S Q © (£/S)/> 

from (jj). Therefore we only have to show (1). 
Since 

S Q n MJ 

let x e E — S and it remains to show x e is — M7 for some7 G [1, «]. 
We consider different cases: 

Case I. 0(x + S) = 00. Since MJ/S is torsion, also JC £ MJ. 
Case II. Let 0 (x + S) be finite and not divisible by p for all p <E <rr. 

Then 

x + S £ © (£/£)[/?] 

and in particular x + S £ M7 '/5 for ally G [1, «]. Therefore JC £ MJ in 
this case. 

Owe III. Let/? G 77 such that 0(x + S) = /? • /:. Therefore 

0 ^ £JC + S e (E/S)[p]. 

https://doi.org/10.4153/CJM-1986-015-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-015-x


PURE SUBGROUPS 325 

Since 

n UJJS 
J*lUn] P 

we can find / £ [1, n] such that 

kx + S £ Ul
p/S. 

From 

Ul
p/S = (M'p/S)[p] 

we conclude /:x € Mi and also /DC £ Ml. Therefore x £ Ml and (1) is 
shown. 

5. Proof of the theorem and the corollary. First we will show 

PROPOSITION 5.1. Let (E, v) be a valuated group, *n =£ 0 a set of primes 
o > 0 an ordinal and k ^ 2 an integer. If a subgroup S Q E is the 
intersection of k v^-isotype subgroups of(E, v), then the following condition 
holds: 

(*) dim E(pv/S)[p] ^ k • dim E[p](p"/S) for all v < o. 

This is an immediate consequence of 

Observation 5.2. Let yf.V —> Vt be homomorphisms between vector 
spaces over F for i e [1, k] such that 

n ker <p7 = 0. 
ie[l ,*] 

Then 

dim K ^ A: • max{dim P£ / e [1, A:] }. 

Proof The homomorphism 

^ : ^ - » . e K(v^(v*Oie[U]) 
/ G [ l , / c ] 

is injective and therefore 

dim V â dim( © K) ^ fc maxldim K / e [1, fc] }. 
ve[ l ,A] / 

Proof of (5.1). Let p ^ IT and *> < a and consider the canonical 
homomorphisms 

Vi:E(pv/S)[p] -> £ ( / / M f . ) [/>] (e + S -> e + M7) 

where M,- for /* e [1, /c] are the given v^-isotype subgroups of E with 

s = n M, 
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We conclude 

n ker <p; = 0 
i e [ l , * ] 

and let j e [1, k] such that 

dim E(pv/Mj)[p] = max{dim E{pv/Mi)[pl i e [1, k] }. 

Since M is v^-isotype in E and /? e 77 we have 

£ ( / /M y ) [ / ? ] = £ [ / ? ] ( / /M y ) and 

dim £ ( / / S ) [ / > ] ^ A: dim £[ /? ] ( / /M y ) 

from (5.2). If 

E[p](p'/Mj) = £ <*,- + My>, 

then from S Q M- we derive that {xt + S, / e / } is a linearly independ
ent subset of £[/?](pv/S). Therefore 

dim E[p](pv/Mj) ^ dim E[p](pv/S) and 

dim £ ( / / £ ) [ / > ] ^ k • dim E[p\{pv/Mf) â fc • dim £ [ / ? ] ( / / £ ) . 

Proof of the theorem in Section 1. (1) => (2) follows from (5.1). (2) =» (1): 
If /? e 77, we obtain from Theorem 3.2 subgroups C/^/S' C E/S[p] for 
7 <E [1, n] such that 

(i) t /^/S is piece-wise dense on [0, o) 

(ii) n I /{/5 = 0 

(iii) « = 2 if dim i i^VSX/?] = 0 or infinite for all v < o. 
From Corollary 4.3 we find v^-isotype subgroups MJ of E such that 

n My = S. 
y e [ i , « ] 

Proof of the corollary in Section 1. (1) => (2) follows from (5.1). (2) =̂> (1): 
From (3.4) we find n complements UJ

p/S of E[p](p°/S) in E(p°/S)[p] 
such that 

n ui/S = 0. 
y € = [ l , „ ] ^ 

The subspaces UJJS are dense on [0, 1) by Definition 3.1. Hence we can 
apply (4.3) and derive (1). 

Example 5.3. A subgroup D Q G which is an intersection of pure 
subgroups but not an intersection of finitely many pure subgroups. Let K 
be an uncountable cardinal and 

Bf = 0 Z(pn) for all i <E K. 
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If 

G = © Bj and V = © Bh 

i>\ 

we want to show that D = jBr[/?] is the desired example. Obviously 

G = Bx® B' and 

pvG[p] = pvBx[p] ®pvB'[p] for all v e <o. 

Since G is a separable /?-group and 

G[p](pv/D) = pvBx[p] ¥> 0 for all *> e co, 

we derive from the proposition in Section 1 that D is an intersection of 
pure subgroups. On the other hand 

dim G(pv/D)[p] = K g Kx and 

dim G[p](pv/D) = S0 for all v G œ. 

From our Theorem in Section 1 we derive that D cannot be a finite 
intersection of pure subgroups. 
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