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Abstract
We study lc pairs polarized by a nef and log big divisor. After proving the minimal model theory for projective lc
pairs polarized by a nef and log big divisor, we prove the effectivity of the Iitaka fibrations and some boundedness
results for dlt pairs polarized by a nef and log big divisor.

Contents

1 Introduction 1
2 Preliminaries 5

2.1 Divisors, morphisms and singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Abundant divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Minimal model theory for generalized pairs 12
3.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Generalized abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Minimal model program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Effectivity of Iitaka fibration 26
5 Boundedness results 31

5.1 Boundedness of complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Effective finite generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Appendix: On definition of generalized dlt pairs 44

1. Introduction

Throughout this paper, we will work over the complex number field C.
In this paper, we study triples (𝑋,Δ , 𝑀) such that (𝑋,Δ) is a projective lc pair and M is a nef

R-divisor on X that is log big with respect to (𝑋,Δ) (see Definition 2.13). By definition, the log bigness
coincides with the bigness in the case of klt pairs, and a nef R-divisor D on a normal projective variety
V is log big with respect to a projective lc pair (𝑉, 𝐵) if and only if (𝐷dim𝑉 ) > 0 and (𝑆 · 𝐷𝑛) > 0
for any n-dimensional lc center S of (𝑉, 𝐵). Especially, all ample divisors are nef and log big with
respect to any projective lc pair. The triples (𝑋,Δ , 𝑀) can be regarded as generalized pairs defined by
Birkar–Zhang [7]. Generalized pairs are the main objects in the study of lc-trivial fibrations. Because
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the log bigness is one of the special cases of the property of being log abundant (see Definition 2.13),
the recent progress of the canonical bundle formula for lc-trivial fibrations by Floris–Lazić [11] (see
also [34, Theorem 1.2] by Hu) implies that the above triples (𝑋,Δ , 𝑀) appear as the structures on the
base varieties of special lc-trivial fibrations. The goal of this paper is to develop the theory of the above
triples (𝑋,Δ , 𝑀) from viewpoints of the minimal model theory.

We start with the minimal model theory for the above triples (𝑋,Δ , 𝑀). If (𝑋,Δ) is a klt pair,
then we can run a minimal model program (MMP, for short) on 𝐾𝑋 + Δ + 𝑀 and we get a birational
contraction 𝜙 : 𝑋 � 𝑋 ′ such that 𝜙∗(𝐾𝑋 + Δ + 𝑀) is semiample or 𝑋 ′ has the structure of a Mori fiber
space with respect to 𝜙∗(𝐾𝑋 + Δ + 𝑀). This fact is a consequence of the celebrated result by Birkar–
Cascini–Hacon–McKernan [6]. Even if (𝑋,Δ) is not klt, the same statement is known by the author and
Hu [33] under the assumption of the ampleness of M. In the general case, the minimal model theory for
𝐾𝑋 + Δ + 𝑀 is not known. However, the abundance theorem (more strongly, the effective base point
free theorem in the Q-boundary case) was proved by Fujino [14] if 𝐾𝑋 + Δ + 𝑀 is nef and Cartier.
Moreover, Fujino [16] proved the abundance theorem for 𝐾𝑋 +Δ + 𝑀 in the case where (𝑋,Δ) is slc, a
more general situation than the lc case.

The first main result of this paper is the minimal model theory for 𝐾𝑋 + Δ + 𝑀 .
Theorem 1.1. Let (𝑋,Δ) be a projective lc pair, and let M be a nef R-divisor on X that is log big with
respect to (𝑋,Δ). Suppose that M is a finiteR>0-linear combination of nefQ-Cartier divisors on X. Then
there exists a birational contraction 𝜙 : 𝑋 � 𝑋 ′, which is a sequence of steps of a (𝐾𝑋 +Δ +𝑀)-MMP
such that 𝑋 ′ satisfies one of the following conditions.
◦ 𝜙∗(𝐾𝑋 + Δ + 𝑀) is semiample, or
◦ There is a contraction 𝑋 ′ → 𝑍 to a projective variety Z such that dim𝑍 < dim𝑋 ′, −𝜙∗(𝐾𝑋 +Δ + 𝑀)

is ample over Z and the relative Picard number is one.
Note that 𝐾𝑋 ′ + 𝜙∗Δ is R-Cartier and (𝑋 ′, 𝜙∗Δ) is an lc pair.

Theorem 1.1 is proved by generalizing [31, Theorem 3.5] to the context of generalized pairs. For
the generalization, see Theorem 3.15. To prove Theorem 1.1, we only need to prove the termination
of the MMP. It is because the abundance theorem in the situation of Theorem 1.1 was already proved
by Fujino [14]. The proof in [14] heavily depends on a vanishing theorem for quasi-log schemes (see
[17, Theorem 5.7.3]). On the other hand, for the termination of the MMP of Theorem 1.1, we need to
discuss the MMP in the framework of generalized pairs (see, for example, [25] by Han–Li) and we need
the techniques developed in [31]. By Theorem 3.15, we also know the existence of a minimal model for
generalized lc pairs with a polarization (Theorem 3.17), which was mentioned in [32]. We note that we
do not need the existence of flips for Q-factorial generalized lc pairs by Hacon–Liu [23] in the proof of
Theorem 1.1 or Theorem 3.17.

We apply Theorem 1.1 to study the effectivity of the Iitaka fibrations for the above triples (𝑋,Δ , 𝑀)

such that (𝑋,Δ) is a dlt pair. The effectivity of the Iitaka fibrations for higher dimensional lc pairs
was studied by Fujino–Mori [20], Viehweg–Zhang [41], Birkar–Zhang [7] and Hacon–Xu [24]. Those
results are based on the canonical bundle formula for the Iitaka fibrations [20]. If we know the effectivity
of the Iitaka fibrations for lc pairs, then we know the existence of an integer m, which is independent
of the variety, such that every projective lc pair (𝑌, 0) of fixed dimension with 𝜅(𝑌, 𝐾𝑌 ) ≥ 0 satisfies
𝐻0 (𝑌,O𝑌 (𝑚𝐾𝑌 )) ≠ 0. Especially, if 𝐾𝑌 is numerically trivial, then 𝑚𝐾𝑌 is Cartier. Hence, the
effectivity of the Iitaka fibrations for lc pairs is stronger than the boundedness of the Cartier indices of
numerically trivial lc varieties of fixed dimension.

In the case of klt pairs whose boundary divisors are big, the effectivity of the Iitaka fibrations is
known by Hacon–Xu [24]. In the non-klt case, the effectivity of the Iitaka fibrations for lc pairs of log
general type was proved by Hacon–McKernan–Xu [21], and their result was generalized to the context of
generalized lc pairs (see Definition 2.6) by Birkar–Zhang [7]. The theorem by Birkar–Zhang [7] implies
the effectivity of the Iitaka fibrations for 𝐾𝑋 +Δ +𝑀 of the triples (𝑋,Δ , 𝑀) such that 𝐾𝑋 +Δ +𝑀 are
big and M are finite R>0-linear combinations of nef Q-Cartier divisors. In this paper, we study the case
where 𝐾𝑋 + Δ + 𝑀 has an intermediate Iitaka dimension.
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Theorem 1.2. Let d and p be positive integers, and let Φ ⊂ Q≥0 be a DCC set. Then there exists a
positive integer m, depending only on d, p and Φ, satisfying the following. Let (𝑋,Δ) be a projective dlt
pair, and let M be a nef Q-divisor on X such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ belong to Φ,
◦ 𝑝𝑀 is Cartier and
◦ M is log big with respect to (𝑋,Δ) and 𝐾𝑋 + Δ + 𝑀 is pseudo-effective.

Then, the linear system | �𝑙𝑚(𝐾𝑋 + Δ + 𝑀)� | is not empty and it defines a map birational to the Iitaka
fibration for every positive integer l.

More precisely, we prove the existence of a generalized lc pair such that the coefficients of the
boundary divisor and the b-Cartier index of the nef part are controlled.

Theorem 1.3. Let d be a positive integer, and let Φ ⊂ Q≥0 be a DCC set. Then there exist positive
integers n and q and a DCC set Ω ⊂ Q≥0, depending only on d and Φ, satisfying the following. Let
(𝑋,Δ) be a projective dlt pair, and let 𝑀 =

∑
𝑖 𝜇𝑖𝑀𝑖 be a nef R-divisor on X, which is the sum of nef

and log big Cartier divisors 𝑀𝑖 with respect to (𝑋,Δ), such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ and 𝜇𝑖 belong to Φ and
◦ 𝐾𝑋 + Δ + 𝑀 is pseudo-effective but not big.

Then the variety 𝑍 := Proj
⊕

𝑙∈Z≥0
𝐻0(𝑋,O𝑋 (�𝑙 (𝐾𝑋 +Δ+𝑀)�)), which is well defined by Theorem 1.1,

has the structure of a generalized lc pair (𝑍,Δ𝑍 , N) such that

◦ 𝐻0 (𝑋,O𝑋 (�𝑙𝑛(𝐾𝑋 + Δ + 𝑀)�)) 
 𝐻0(𝑍,O𝑍 (�𝑙𝑛(𝐾𝑍 + Δ𝑍 + N𝑍 )�)) for every positive integer l,
◦ the coefficients of Δ𝑍 belong to Ω and
◦ 𝑞N is b-Cartier.

Theorem 1.2 directly follows from Theorem 1.3 and [7, Theorem 1.3].
We further study the structures of the Iitaka fibrations. In [39], Li defined the Iitaka volumes of

Q-Cartier divisors on normal projective varieties (see Definition 5.1). In our context, with notations as
in Theorem 1.3, the Iitaka volume of 𝐾𝑋 + Δ + 𝑀 coincides with the volume of 𝐾𝑍 + Δ𝑍 + N𝑍 . The
following theorem is the DCC for the Iitaka volumes of 𝐾𝑋 + Δ + 𝑀 .

Theorem 1.4. Let d be a positive integer and Φ ⊂ Q≥0 a DCC set. Then there exists a DCC set
Ω ⊂ Q>0, depending only on d and Φ, satisfying the following. Let (𝑋,Δ) be a projective dlt pair, and
let 𝑀 =

∑
𝑖 𝜇𝑖𝑀𝑖 be a nef R-divisor on X, which is the sum of nef and log big Cartier divisors 𝑀𝑖 with

respect to (𝑋,Δ), such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ and 𝜇𝑖 belong to Φ and
◦ 𝐾𝑋 + Δ + 𝑀 is pseudo-effective.

Then the Iitaka volume Ivol(𝐾𝑋 + Δ + 𝑀) is an element of Ω.

We give remarks on general fibers of the Iitaka fibrations. As shown in the example below, compared
to [24, Theorem 1.3], we cannot prove a kind of the boundedness of general fibers of the Iitaka fibrations.

Example 1.5 (see Example 4.6). We put 𝑑 = 2, 𝑝 = 1, and Φ = {1}. We consider the category C whose
objects are the triples (𝑋,Δ , 𝑀), where (𝑋,Δ) is a projective dlt pair and M is a nef Cartier divisor on
X which is log big with respect to (𝑋,Δ) such that dim𝑋 = 2, Δ is a Weil divisor, and 𝐾𝑋 +Δ +𝑀 ∼Q 0.
Then, for some set

D ⊂ {𝑋 | (𝑋,Δ , 𝑀) is a object of C for some Δ and 𝑀},
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D is unbounded. Indeed, for each positive integer n, defining 𝑋𝑛 := PP1 (OP1 ⊕ OP1 (−𝑛)), then there
are divisors Δ𝑛 and 𝑀𝑛 on 𝑋𝑛 such that (𝑋𝑛,Δ𝑛, 𝑀𝑛) is an object of C. However, we see that the set
{𝑋𝑛}𝑛≥1 is unbounded. For details, see Example 4.6.

Despite the example, it is possible to prove the effective nonvanishing (and the boundedness of
complements) for general fibers of the Iitaka fibrations for 𝐾𝑋 + Δ + 𝑀 .

Theorem 1.6. Let d be a positive integer, and let Φ ⊂ Q≥0 be a DCC set. Then there exists a positive
integer n, depending only on d and Φ, satisfying the following. Let (𝑋,Δ) be a projective dlt pair, and
let 𝑀 =

∑
𝑖 𝜇𝑖𝑀𝑖 be a nef R-divisor on X, which is the sum of nef and log big Cartier divisors 𝑀𝑖 with

respect to (𝑋,Δ) such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ and 𝜇𝑖 belong to Φ and
◦ 𝐾𝑋 + Δ + 𝑀 is pseudo-effective.

Let 𝜙 : 𝑋 � 𝑋 ′ be finite steps of a (𝐾𝑋 + Δ + 𝑀)-MMP such that 𝜙∗(𝐾𝑋 + Δ + 𝑀) is semiample
(see Theorem 1.1), and let F be a general fiber of the contraction induced by 𝜙∗(𝐾𝑋 + Δ + 𝑀). Put
Δ ′
𝐹 = 𝜙∗Δ |𝐹 and 𝑀 ′

𝐹 = 𝜙∗𝑀 |𝐹 . Then

◦ 𝑛(𝐾𝐹 + Δ ′
𝐹 + 𝑀 ′

𝐹 ) ∼ 0, and
◦ there is 𝐵′

𝐹 ∈ |𝑛𝑀 ′
𝐹 | such that (𝐹,Δ ′

𝐹 + 1
𝑛𝐵

′
𝐹 ) is an lc pair.

Theorem 1.6 is a consequence of the boundedness of complements for a special kind of dlt pairs
(Theorem 5.4). In Example 5.5, we show that the log bigness of 𝑀𝑖 cannot be relaxed to the bigness in
Theorem 1.2 and Theorem 1.6. It is not clear that the dlt property can be generalized to log canonicity.

Finally, we discuss the effective finite generation of the generalized log canonical rings for the above
(𝑋,Δ , 𝑀). A kind of the effective finite generation for projective klt threefolds (𝑉, 𝐵) was proved by
Cascini–Zhang [8] when 𝐾𝑉 + 𝐵 is big or B is nef and big. In this paper, we prove the following
theorem.

Theorem 1.7. Let d and p be positive integers, and let v be a positive real number. Then there exists a
positive integer m, depending only on d, p and v, satisfying the following. Let (𝑋,Δ) be a projective dlt
pair, let M be a nef Q-divisor on X that is log big with respect to (𝑋,Δ) and let 𝜙 : 𝑋 � 𝑋 ′ be finite
steps of a (𝐾𝑋 + Δ + 𝑀)-MMP such that

◦ dim𝑋 = 𝑑,
◦ 𝑝𝑀 is Cartier and 𝑝𝜙∗(𝐾𝑋 + Δ + 𝑀) is nef and Cartier and
◦ the Iitaka volume Ivol(𝐾𝑋 + Δ + 𝑀) is less than or equal to v.

Putting 𝑅𝑙 = 𝐻0(𝑋,O𝑋 (�𝑙 (𝐾𝑋 + Δ + 𝑀)�)) for every 𝑙 ∈ Z≥0, then

◦
⊕

𝑙∈Z≥0
𝑅𝑙𝑚 is generated by 𝑅𝑚 as a graded C-algebra, and

◦ the variety 𝑍 := Proj
⊕

𝑙∈Z≥0
𝑅𝑙 belongs to a bounded family 𝔉 that depends only on d, p and v.

The proof of the theorem heavily depends on the effective base point free theorem for spacial
generalized dlt pairs (Theorem 5.8) and the boundedness of generalized lc pairs in a special case
(Lemma 5.10), thus we will need some extra work to remove the upper bound of the Cartier index of
𝜙∗(𝐾𝑋 + Δ + 𝑀) in Theorem 1.7.

The contents of the paper are as follows: In Section 2, we collect notations and definitions. In Section 3,
we prove Theorem 1.1. In Section 4, we study the effectivity of the Iitaka fibrations for projective dlt
pairs polarized by nef and log big divisors, and we prove Theorem 1.2 and Theorem 1.3. In Section
5, we show some boundedness results, and we prove Theorem 1.4, Theorem 1.6 and Theorem 1.7. In
Section 6, which is an appendix, we discuss the definition of generalized dlt pairs.

https://doi.org/10.1017/fms.2022.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.75


Forum of Mathematics, Sigma 5

2. Preliminaries

In this section, we collect notations and definitions. We will freely use the notations in [38] and [6].

2.1. Divisors, morphisms and singularities

We collect notations and definitions on divisors, morphisms and singularities of generalized pairs.
We will use the standard definitions of nef R-divisor, ample R-divisor, semiample R-divisor and

pseudo-effective R-divisor. All big R-divisors in this paper are R-Cartier. For a morphism 𝑓 : 𝑋 → 𝑌
and an R-Cartier divisor D on Y, we sometimes denote 𝑓 ∗𝐷 by 𝐷 |𝑋 . For a prime divisor P over X,
the image of P on X is denoted by 𝑐𝑋 (𝑃). A projective morphism 𝑓 : 𝑋 → 𝑌 of varieties is called
a contraction if 𝑓∗O𝑋 
 O𝑌 . For a variety X and an R-divisor 𝐷 ′ on it, a log resolution of (𝑋, 𝐷 ′)

denotes a projective birational morphism 𝑓 : 𝑌 → 𝑋 from a smooth variety Y such that the exceptional
locus Ex( 𝑓 ) of f is pure codimension one and Ex( 𝑓 ) ∪ Supp 𝑓 −1

∗ 𝐷 ′ is an snc divisor.

Definition 2.1. We say that a subset of R satisfies the descending chain condition (DCC, for short) if
the subset does not contain a strictly decreasing infinite sequence. We say that a subset of R satisfies the
ascending chain condition (ACC, for short) if the subset does not contain a strictly increasing infinite
sequence. A subset of R is called a DCC set (resp. an ACC set) if the subset satisfies the DCC (resp.
ACC).

Let a be a real number. Then we define �𝑎� to be the unique integer satisfying �𝑎� ≤ 𝑎 < �𝑎� + 1,
and we define {𝑎} by {𝑎} = 𝑎 − �𝑎�.

Let X be a normal variety, and let D be an R-divisor on X. Let 𝐷 =
∑
𝑖 𝑑𝑖𝐷𝑖 be the prime decom-

position. Then we define �𝐷� :=
∑
𝑖 �𝑑𝑖�𝐷𝑖 , {𝐷} :=

∑
𝑖{𝑑𝑖}𝐷𝑖 and �𝐷� := −�−𝐷�. By definition, we

have 𝐷 = �𝐷� + {𝐷}.

Definition 2.2 (Hyperstandard set). Let ℜ ⊂ R be a subset. Throughout this paper, Φ(ℜ) is defined by

Φ(ℜ) =
{
1 −

𝑎

𝑟

��� 𝑎 ∈ ℜ, 𝑟 ∈ Z>0

}
,

and we call it a hyperstandard set associated to ℜ.

Definition 2.3 (Asymptotic vanishing order). Let X be a normal projective variety and D a pseudo-
effective R-Cartier divisor on X. Let P be a prime divisor over X. We define asymptotic vanishing order
of P with respect to D, which we denote 𝜎𝑃 (𝐷), as follows. We take a projective birational morphism
𝑓 : 𝑌 → 𝑋 such that P appears as a prime divisor on Y. When D is big, we define 𝜎𝑃 (𝐷) by

𝜎𝑃 (𝐷) = inf{ coeff𝑃 (𝐷
′) | 𝑓 ∗𝐷 ∼R 𝐷 ′ ≥ 0 } .

When D is not necessarily big, 𝜎𝑃 (𝐷) is defined by

𝜎𝑃 (𝐷) = lim
𝜖→+0

𝜎𝑃 (𝐷 + 𝜖 𝐴)

for an ample R-divisor A on X. It is easy to see that 𝜎𝑃 (𝐷) is independent of 𝑓 : 𝑌 → 𝑋 . We have
𝜎𝑃 (𝐷) ≥ 0, and 𝜎𝑃 (𝐷) is also independent of A ([40, III, 1.5 (2) Lemma]). We can easily check
𝜎𝑃 (𝐷) = sup{ 𝜎𝑃 (𝐷 + 𝐻) | 𝐻 is ample }.

Definition 2.4 (Negative part of Nakayama–Zariski decomposition). For X and D as in Definition 2.3,
the negative part of Nakayama–Zariski decomposition of D, denoted by 𝑁𝜎 (𝐷), is defined by

𝑁𝜎 (𝐷) =
∑

𝑃: prime divisor
on𝑋

𝜎𝑃 (𝐷)𝑃.

Note that 𝑁𝜎 (𝐷) is not necessarily R-Cartier in this paper.
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When X is smooth, the definition of 𝑁𝜎 (𝐷) coincides with [40, III, 1.12 Definition].
We refer to [31, Remark 2.3] for basic properties of asymptotic vanishing order and the negative part

of Nakayama–Zariski decomposition.

Definition 2.5 (b-divisor). Let X be a normal variety. Then an R-b-divisor D on X is a (possibly infinite)
R-linear combination of divisorial valuations 𝑣𝑃

D =
∑

𝑃: prime divisor
over𝑋

𝑟𝑃𝑣𝑃 (𝑟𝑃 ∈ R)

such that, for every projective birational morphism 𝑌 → 𝑋 , the set

{𝑃 | 𝑐𝑌 (𝑃) is a divisor on 𝑌 such that 𝑟𝑃 ≠ 0}

is a finite set. When 𝑟𝑃 ∈ Q for all P, we call D a Q-b-divisor. For a projective birational model Y of X,
the trace of an R-b-divisor D =

∑
𝑃 𝑟𝑃𝑣𝑃 on Y, which we denote D𝑌 , is defined by

D𝑌 =
∑

𝑐𝑌 (𝑃) is a divisor
on𝑌

𝑟𝑃𝑐𝑌 (𝑃).

By definition, D𝑌 is an R-divisor on Y.
Let D be an R-b-divisor on X. If there exists an R-Cartier divisor D on a projective birational model

Y of X such that

D =
∑

𝑃: prime divisor
over𝑋

ord𝑃 (𝐷) · 𝑣𝑃 ,

then we say that D is R-b-Cartier, we say that D descends to Y and we denote D = 𝐷. When D = 𝐷
and D is Q-Cartier, we say that D is Q-b-Cartier. When D = D𝑌 ′ and D𝑌 ′ is Cartier for some projective
birational model 𝑌 ′, we say that D is b-Cartier.

Suppose that X has a projective morphism 𝑋 → 𝑍 to a variety Z, and suppose in addition that
D = D𝑌 ′ and D𝑌 ′ is nef over Z (resp. big over Z) for some projective birational model 𝑌 ′ of X. Then, we
say that D is b-nef /𝑍 (resp. b-big/𝑍).

Let X and 𝑋 ′ be normal varieties which are projective over a variety Z, and let 𝜙 : 𝑋 � 𝑋 ′ be a
birational map over Z. Let D and D′ be R-b-divisors on X and 𝑋 ′, respectively. Then, we say that D = D′

by 𝜙 if D𝑌 = D′
𝑌 for all projective birational morphisms 𝑓 : 𝑌 → 𝑋 and 𝑓 ′ : 𝑌 → 𝑋 ′ such that 𝑓 ′ = 𝜙◦ 𝑓 .

Definition 2.6 (Singularities of generalized pairs). A generalized pair (𝑋,Δ , M)/𝑍 consists of

◦ a projective morphism 𝑋 → 𝑍 from a normal variety to a variety,
◦ an effective R-divisor Δ on X and
◦ a b-nef/𝑍 R-b-Cartier R-b-divisor M on X

such that 𝐾𝑋 + Δ + M𝑋 is R-Cartier. When M = 0, the generalized pair (𝑋,Δ , M)/𝑍 is a usual pair
(𝑋,Δ) with 𝑋 → 𝑍 . When Z is a point, we simply denote (𝑋,Δ , M).

Let (𝑋,Δ , M)/𝑍 be a generalized pair and P a prime divisor over X. Let 𝑓 : 𝑌 → 𝑋 be a projective
birational morphism such that M descends to Y and P appears as a divisor on Y. Then there is an
R-divisor Γ on Y such that

𝐾𝑌 + Γ + M𝑌 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ).

Then the generalized log discrepancy 𝑎(𝑃, 𝑋,Δ + M𝑋 ) of P with respect to (𝑋,Δ , M)/𝑍 is defined
to be 1 − coeff𝑃 (Γ). When M = 0, the generalized log discrepancy 𝑎(𝑃, 𝑋,Δ) coincides with the log
discrepancy of P with respect to the usual pair (𝑋,Δ).
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A generalized pair (𝑋,Δ , M)/𝑍 is called a generalized klt (resp. generalized lc) pair if 𝑎(𝑃, 𝑋,Δ +

M𝑋 ) > 0 (resp. 𝑎(𝑃, 𝑋,Δ + M𝑋 ) ≥ 0) for all prime divisors P over X. A generalized lc center of
(𝑋,Δ , M)/𝑍 is the image on X of a prime divisor P over X satisfying 𝑎(𝑃, 𝑋,Δ + M𝑋 ) = 0.

A generalized pair (𝑋,Δ , M)/𝑍 is a generalized dlt pair if it is generalized lc and for any generic
point 𝜂 of any generalized lc center of (𝑋,Δ , M)/𝑍 , (𝑋,Δ) is log smooth near 𝜂 and M descends to X
on a neighborhood of 𝜂.

Lemma 2.7. Let (𝑋,Δ , M)/𝑍 be a generalized dlt pair such that Z is quasi-projective, and let S be a
component of �Δ�. Then there is a plt pair (𝑋, 𝐵) such that 𝑆 = �𝐵�. In particular, S is normal, and
(𝑋, 𝐵′) is a klt pair for some 𝐵′.

Proof. In this proof, we will use the notion of generalized sub-lc pair, whose definition is the same as
that of generalized lc pairs except that the boundary part is not necessarily effective. This is an analogous
definition of sub-lc pairs.

First, we reduce the lemma to the case, where �Δ� = 𝑆. We can take an open subset 𝑈 ⊂ 𝑋 such that
(𝑈,Δ |𝑈 ) is log smooth, U contains the generic points of all generalized lc centers of (𝑋,Δ , M)/𝑍 and
M|𝑈 descends to U. We take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,Δ) such that

◦ f is an isomorphism over U, and
◦ −𝐸 is f -ample for some effective f -exceptional divisor E on Y.

We note that we do not assume M𝑌 to be nef over Z. We may write

𝐾𝑌 + Γ + M𝑌 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ).

Since U contains the generic points of all generalized lc centers of (𝑋,Δ , M)/𝑍 , there is a real number
𝑡 > 0 such that (𝑌, Γ+𝑡𝐸, M)/𝑍 is generalized sub-lc. Take an ample divisor A on X such that− 𝑡

2𝐸+ 𝑓 ∗𝐴
is ample. By perturbing the coefficients of Γ with − 𝑡

2𝐸 + 𝑓 ∗𝐴 and pushing down, we get an R-divisor
𝐺 ≥ 0 on X such that

◦ 𝐾𝑋 + Δ + M𝑋 + 𝐴 ∼R,𝑍 𝐾𝑋 + 𝐺 + M𝑋 ,
◦ (𝑈,𝐺 |𝑈 ) is log smooth,
◦ �𝐺� = 𝑆 and
◦ writing 𝐾𝑌 +𝐺𝑌 + M𝑌 = 𝑓 ∗(𝐾𝑋 +𝐺 + M𝑋 ), then (𝑌, 𝐺𝑌 , M)/𝑍 is a generalized sub-lc pair whose

generalized lc centers intersect 𝑓 −1(𝑈).

In this way, we get a generalized dlt pair (𝑋, 𝐺, M)/𝑍 such that �𝐺� = 𝑆.
In the case where �Δ� = 𝑆, we see that (𝑈,Δ |𝑈 ) is plt. Hence, 𝑎(𝑃, 𝑋,Δ + M𝑋 ) > 0 for all prime

divisors P over X except 𝑃 = 𝑆. Let 𝑔 : 𝑌 ′ → 𝑋 be a log resolution of (𝑋,Δ) such that

◦ M descends to 𝑌 ′, and
◦ −𝐹 ′ is g-ample for some g-exceptional divisor 𝐹 ′.

Let H be an ample divisor on X such that −𝐹 ′ + 𝑔∗𝐻 is ample. Since M𝑌 ′ is nef over Z and 𝑎(𝐹𝑖 , 𝑋,Δ +

M𝑋 ) > 0 for every component 𝐹𝑖 of 𝐹 ′, we can apply the argument of perturbation of coefficients. We
get a plt pair (𝑋, 𝐵) such that �𝐵� = 𝑆. �

We introduce properties of divisorial adjunction for generalized pairs.

Remark 2.8 (Divisorial adjunction). Let (𝑋,Δ , M)/𝑍 be a generalized lc pair, let S be a component of
�Δ� with the normalization 𝑆𝜈 and let (𝑆𝜈 ,Δ𝑆𝜈 , N)/𝑍 be a generalized lc pair defined with divisorial
adjunction for generalized pairs.

◦ If 𝑝M is b-Cartier, then 𝑝N is b-Cartier.
◦ We fix a DCC set Λ ⊂ R≥0. By [7, Proposition 4.9], there is a DCC set Ω ⊂ R≥0, depending only on

Λ, such that if the coefficients of Δ belong to Λ and M is the sum of finitely many b-nef/𝑍 b-Cartier
b-divisors with the coefficients in Λ, then the coefficients of Δ𝑆𝜈 belong to Ω.
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◦ We fix a finite set of rational numbers ℜ ⊂ [0, 1] and a positive integer p. By [4, Lemma 3.3], there
is a finite set of rational numbers𝔖 ⊂ [0, 1], depending only on ℜ and p, such that if the coefficients
of Δ belong to Φ(ℜ) and 𝑝M is b-Cartier, then the coefficients of Δ𝑆𝜈 belong to Φ(𝔖).

Definition 2.9 (Restriction morphism). Let (𝑋,Δ , M)/𝑍 be a generalized lc pair, and let S be a com-
ponent of �Δ� with the normalization 𝑆𝜈 . With divisorial adjunction for generalized pairs we define a
generalized lc pair (𝑆𝜈 ,Δ𝑆𝜈 , N)/𝑍 . Suppose that 𝑝M is b-Cartier. Let 𝜏 : 𝑆𝜈 → 𝑆 ↩→ 𝑋 be the natural
morphism. With the idea of [4, 3.1], we will define a morphism

O𝑋 (�𝑝(𝐾𝑋 + Δ + M𝑋 )�) −→ 𝜏∗O𝑆𝜈 (�𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )�).

We take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,Δ) such that M descends to Y, and we put 𝑇 = 𝑓 −1
∗ 𝑆. Note

that 𝑝M𝑌 is Cartier since 𝑝M is b-Cartier. Hence, we may replace 𝑝M𝑌 by a linear equivalence class
so that SuppM𝑌 does not contain T. We can write

𝑝(𝐾𝑌 + 𝑇 + Γ + M𝑌 ) = 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ),

and we have

�𝑝(𝐾𝑌 + 𝑇 + Γ + M𝑌 )� |𝑇 ∼ 𝑝𝐾𝑇 + �𝑝Γ� |𝑇 + 𝑝M𝑌 |𝑇 .

Thus, we obtain a natural morphism

𝑓∗O𝑌
(
�𝑝(𝐾𝑌 + 𝑇 + Γ + M𝑌 )�

)
−→ 𝜏∗ 𝑓𝑇 ∗O𝑇 (𝑝𝐾𝑇 + �𝑝Γ� |𝑇 + 𝑝M𝑌 |𝑇 ), (*)

where 𝑓𝑇 : 𝑇 → 𝑆𝜈 and 𝜏 : 𝑆𝜈 → 𝑆 → 𝑋 are the natural morphisms. With the relation

𝐾𝑌 + 𝑇 + Γ + M𝑌 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ),

we have

𝑓∗O𝑌
(
�𝑝(𝐾𝑌 + 𝑇 + Γ + M𝑌 )�

)

 O𝑋

(
�𝑝(𝐾𝑋 + Δ + M𝑋 )�

)
(**)

By construction of divisorial adjunction for generalized pairs, we have

𝑓 ∗𝑇 (𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 ) = 𝐾𝑇 + Γ|𝑇 + M𝑌 |𝑇

as R-divisors. Since 𝑝M𝑌 |𝑇 is a Weil divisor, we see that

� 𝑓 ∗𝑇
(
𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )

)
� = 𝑝𝐾𝑇 + �𝑝Γ� |𝑇 + 𝑝M𝑌 |𝑇 .

From this fact, we see that

𝑓𝑇 ∗O𝑇 (𝑝𝐾𝑇 + �𝑝Γ� |𝑇 + 𝑝M𝑌 |𝑇 ) 
 O𝑆𝜈

(
�𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )�

)
. (***)

By equations (*), (**) and (***), we can define the desired morphism.

Definition 2.10 (Models, cf. [25]). Let (𝑋,Δ , M)/𝑍 be a generalized lc pair, and let (𝑋 ′,Δ ′, M′)/𝑍 be
a generalized pair. Let 𝜙 : 𝑋 � 𝑋 ′ be a birational map over Z.

We say that (𝑋 ′,Δ ′, M′)/𝑍 is a generalized log birational model of (𝑋,Δ , M)/𝑍 if M = M′ by 𝜙
and Δ ′ = 𝜙∗Δ +

∑
𝑖 𝐸𝑖 , where 𝐸𝑖 runs over 𝜙−1-exceptional prime divisors.

We say that a generalized log birational model (𝑋 ′,Δ ′, M′)/𝑍 of (𝑋,Δ , M)/𝑍 is a weak generalized
log canonical model (weak generalized lc model, for short) over Z if

◦ 𝐾𝑋 ′ + Δ ′ + M′
𝑋 ′ is nef over Z, and

◦ 𝑎(𝐷, 𝑋,Δ +M𝑋 ) ≤ 𝑎(𝐷, 𝑋 ′,Δ ′ +M′
𝑋 ′ ) for every prime divisor D on X which is exceptional over 𝑋 ′.
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We say that a weak generalized lc model (𝑋 ′,Δ ′, M′)/𝑍 of (𝑋,Δ , M)/𝑍 is a minimal model over Z if
the inequality on generalized log discrepancies is strict.

We say that a minimal model (𝑋 ′,Δ ′, M′)/𝑍 of (𝑋,Δ , M)/𝑍 is a good minimal model over Z if
𝐾𝑋 ′ + Δ ′ + M′

𝑋 ′ is semiample over Z.

2.2. Abundant divisors

We define the invariant Iitaka dimension and the numerical dimension ([40]) for R-Cartier divisors on
normal projective varieties, then we define abundant divisors, log abundant divisors and log big divisors.

Definition 2.11 (Invariant Iitaka dimension). Let X be a normal projective variety, and let D be an
R-Cartier divisor on X. We define the invariant Iitaka dimension of D, denoted by 𝜅 𝜄 (𝑋, 𝐷), as follows
([9, Definition 2.2.1]; see also [17, Definition 2.5.5]): If there is an R-divisor 𝐸 ≥ 0 such that 𝐷 ∼R 𝐸 ,
set 𝜅 𝜄 (𝑋, 𝐷) = 𝜅(𝑋, 𝐸). Here, the right-hand side is the usual Iitaka dimension of E. Otherwise, we set
𝜅 𝜄 (𝑋, 𝐷) = −∞.

Let 𝑋 → 𝑍 be a projective morphism from a normal variety to a variety and D an R-Cartier divisor
on X. Then the relative invariant Iitaka dimension of D, denoted by 𝜅 𝜄 (𝑋/𝑍, 𝐷), is similarly defined:
If there is an R-divisor 𝐸 ≥ 0 such that 𝐷 ∼R,𝑍 𝐸 , then we set 𝜅 𝜄 (𝑋/𝑍, 𝐷) = 𝜅 𝜄 (𝐹, 𝐷 |𝐹 ), where F is a
sufficiently general fiber of the Stein factorization of 𝑋 → 𝑍 , and otherwise we set 𝜅 𝜄 (𝑋/𝑍, 𝐷) = −∞.

Definition 2.12 (Numerical dimension). Let X be a normal projective variety, and let D be an R-Cartier
divisor on X. We define the numerical dimension of D, denoted by 𝜅𝜎 (𝑋, 𝐷), as follows ([40, V, 2.5
Definition]): For any Cartier divisor A on X, we set

𝜎(𝐷; 𝐴) = max
{
𝑘 ∈ Z≥0

���� lim sup
𝑚→∞

dim𝐻0 (𝑋,O𝑋 (�𝑚𝐷� + 𝐴))

𝑚𝑘
> 0

}

if dim𝐻0(𝑋,O𝑋 (�𝑚𝐷� + 𝐴)) > 0 for infinitely many 𝑚 ∈ Z>0, and otherwise we set 𝜎(𝐷; 𝐴) := −∞.
Then, we define

𝜅𝜎 (𝑋, 𝐷) := max{ 𝜎(𝐷; 𝐴) | 𝐴 is a Cartier divisor on 𝑋} .

Let 𝑋 → 𝑍 be a projective morphism from a normal variety to a variety, and let D be an R-Cartier
divisor on X. Then, the relative numerical dimension of D over Z is defined by 𝜅𝜎 (𝐹, 𝐷 |𝐹 ), where F is a
sufficiently general fiber of the Stein factorization of 𝑋 → 𝑍 . Then 𝜅𝜎 (𝐹, 𝐷 |𝐹 ) does not depend on the
choice of F, so the relative numerical dimension is well-defined. In this paper, we denote 𝜅𝜎 (𝐹, 𝐷 |𝐹 )

by 𝜅𝜎 (𝑋/𝑍, 𝐷).

We refer to [31, Remark 2.14] (see also [40, V, 2.7 Proposition], [33, Remark 2.8]) for basic properties
of the invariant Iitaka dimension and the numerical dimension.

Definition 2.13 (Abundant divisor, log abundant divisor, log big divisor). Let 𝑋 → 𝑍 be a projective
morphism from a normal variety to a variety, and let D be an R-Cartier divisor on X. We say that D is
abundant over Z if 𝜅 𝜄 (𝑋/𝑍, 𝐷) = 𝜅𝜎 (𝑋/𝑍, 𝐷).

Let 𝑋 → 𝑍 and D be as above, and let (𝑋,Δ , M)/𝑍 be a generalized lc pair. We say that D is log
abundant over Z with respect to (𝑋,Δ , M)/𝑍 if D is abundant over Z and for any generalized lc center
S of (𝑋,Δ , M)/𝑍 with the normalization 𝑆𝜈 → 𝑆, the pullback 𝐷 |𝑆𝜈 is abundant over Z.

We say that D is log big over Z with respect to (𝑋,Δ , M)/𝑍 if D is big over Z and for any generalized
lc center S of (𝑋,Δ , M)/𝑍 with the normalization 𝑆𝜈 → 𝑆, the pullback 𝐷 |𝑆𝜈 is big over Z.

When Z is a point in the above definitions, we remove ‘over Z’ in each terminology.

Lemma 2.14 (cf. [33, Lemma 2.11], [40], [18]). Let (𝑋,Δ , M) be a generalized lc pair such that
𝐾𝑋 +Δ +M𝑋 is abundant and there is an effective R-divisor D on X such that 𝐷 ∼R 𝐾𝑋 +Δ +M𝑋 . Let
𝑋 � 𝑉 be the Iitaka fibration associated to D. We take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,Δ) such that
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M descends to Y and the induced map 𝑌 � 𝑉 is a morphism. Let (𝑌, Γ, M) be a generalized lc pair
such that

𝐾𝑌 + Γ + M𝑌 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + 𝐸

for some effective f-exceptional R-divisor E. Then 𝜅𝜎 (𝑌/𝑉, 𝐾𝑌 + Γ + M𝑌 ) = 0.

Proof. The argument in [33, Proof of Lemma 2.11] works with no changes because we may apply the
discussion in [18, Section 3]. �

Lemma 2.15. Let (𝑋,Δ) be a projective lc pair and 𝑀 =
∑
𝑖 𝜇𝑖𝑀𝑖 a finite R>0-linear combination of

nef Cartier divisors 𝑀𝑖 on X such that M is log big with respect to (𝑋,Δ) and 𝜇𝑖 > 2 · dim𝑋 for all i.
Then 𝐾𝑋 + Δ + 𝑀 is log big with respect to (𝑋,Δ).

Proof. We need to prove that if S is X or an lc center of (𝑋,Δ) with the normalization 𝑆𝜈 , then
(𝐾𝑋 + Δ + 𝑀) |𝑆𝜈 is big. Suppose by contradiction that there is an lc center S of (𝑋,Δ) or 𝑆 = 𝑋 such
that (𝐾𝑋 + Δ + 𝑀) |𝑆𝜈 is not big. By replacing M with (1 − 𝑡)𝑀 for some 0 < 𝑡 � 1, we may assume
that (𝐾𝑋 + Δ + 𝑀) |𝑆𝜈 is not pseudo-effective.

Taking a dlt blowup of (𝑋,Δ) and applying Ambro’s canonical bundle formula as in [19, Corollary
3.2], we get a generalized lc pair (𝑆𝜈 ,Δ𝑆𝜈 , N) such that

𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 ∼R (𝐾𝑋 + Δ) |𝑆𝜈 .

Let (𝑌, Γ, N) be aQ-factorial generalized dlt model of (𝑆𝜈 ,Δ𝑆𝜈 , N), and let 𝑀𝑌 be the pullback of 𝑀 |𝑆𝜈

to Y. Then 𝑀𝑌 is big and 𝐾𝑌 + Γ + N𝑌 + 𝑀𝑌 is not pseudo-effective.
By running a (𝐾𝑌 + Γ + N𝑌 + 𝑀𝑌 )-MMP with scaling of an ample divisor, we get a birational

contraction 𝜙 : 𝑌 � 𝑌 ′ to a normal projective variety 𝑌 ′ which has the structure of a Mori fiber space
𝑌 ′ → 𝑉 with respect to 𝜙∗(𝐾𝑌 + Γ + N𝑌 + 𝑀𝑌 ). By the length of extremal rays (cf. [25, Proposition
3.17]), the birational transform of 𝑀𝑌 is numerically trivial with respect to the extremal contraction in
each step of the MMP. Thus, 𝜙∗𝑀𝑌 is big and 𝜙∗𝑀𝑌 ∼R,𝑉 0, a contradiction because dim𝑌 ′ > dim𝑉 .

In this way, we see that (𝐾𝑋 + Δ + 𝑀) |𝑆𝜈 is big, and therefore 𝐾𝑋 + Δ + 𝑀 is log big with respect to
(𝑋,Δ). �

The following lemma plays a crucial role in Section 4 and Section 5.

Lemma 2.16. Let (𝑋,Δ , M)/𝑍 be a generalized lc pair with a morphism 𝜋 : 𝑋 → 𝑍 such that

◦ Δ is a Q-divisor and M is a Q-b-Cartier Q-b-divisor,
◦ 𝐾𝑋 + Δ + M𝑋 is nef over Z and
◦ there is a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,Δ) such that

– M descends to Y, and
– writing 𝐾𝑌 + Γ + M𝑌 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + 𝐸 , where Γ ≥ 0 and 𝐸 ≥ 0 have no common

components, then M𝑌 is log big over Z with respect to (𝑌, Γ).

Let S be a component of �Δ�, let 𝑆𝜈 be the normalization of S and let (𝑆𝜈 ,Δ𝑆𝜈 , N)/𝑍 be a generalized
lc pair with a morphism 𝜋𝑆𝜈 : 𝑆𝜈 → 𝑍 defined with divisorial adjunction for (𝑋,Δ , M)/𝑍 and S. Let p
be a positive integer such that 𝑝Δ is a Weil divisor and 𝑝M𝑌 is Cartier. Then, the morphism

𝜋∗O𝑋 (𝑙 𝑝(𝐾𝑋 + Δ + M𝑋 )) −→ 𝜋𝑆𝜈∗O𝑆𝜈 (�𝑙 𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )�)

induced by Definition 2.9 is surjective for every positive integer l.

Proof. The idea is very similar to [12]. We fix l.
We put

𝐿 = M𝑌 + (𝑙 𝑝 − 1) 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ).
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Since 𝐾𝑋 + Δ + M𝑋 is nef over Z and M𝑌 is nef and log big over Z with respect to (𝑌, Γ), it follows
that L is nef and log big over Z with respect to (𝑌, Γ). We have

𝐾𝑌 + Γ + 𝐿 = 𝑙 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + 𝐸. (1)

Since the coefficients of 𝑝Δ are integers and 𝑝M𝑌 is Cartier, we can write

𝑙 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) = �𝑙 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 )� + 𝐸 ′ (2)

with an effective f -exceptional Q-divisor 𝐸 ′. Put 𝑇 = 𝑓 −1
∗ 𝑆. By restricting sides of equation (2) to T and

taking the round down, we have

�
(
𝑙 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 )

) ��
𝑇
� = �𝑙 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 )� |𝑇 . (3)

We define Γ′ := Γ − 𝑇. By the definition, (𝑌, 𝑇 + Γ′) is a log smooth lc pair and L is nef and log big
over Z with respect to (𝑌, 𝑇 + Γ′). The relations (1) and (2) show

𝐾𝑌 + 𝑇 + Γ′ + 𝐿 = �𝑙 𝑝 𝑓 ∗ (𝐾𝑋 + Δ + M𝑋 )� + 𝐸 ′ + 𝐸. (4)

We define a Weil divisor F on Y so that

coeff𝑃 (𝐹) =

{
0 (coeff𝑃 (Γ′ − {(𝐸 + 𝐸 ′)}) ≥ 0)
1 (coeff𝑃 (Γ′ − {(𝐸 + 𝐸 ′)}) < 0)

for every prime divisor P. We put

𝐵 = Γ′ − {(𝐸 + 𝐸 ′)} + 𝐹 and 𝐺 = �(𝐸 + 𝐸 ′)� + 𝐹.

By the definition, we can check that B is a boundary divisor, �𝐵� ≤ �Γ′�, and G is an effective f -
exceptional Weil divisor. Since �𝐵� ≤ �Γ′�, the divisor L is nef and log big over Z with respect to
(𝑌, 𝑇 + 𝐵). Furthermore, the relation (4) implies

𝐾𝑌 + 𝑇 + 𝐵 + 𝐿 = �𝑙 𝑝 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 )� + 𝐺. (5)

We put 𝐷 = 𝑙 𝑝 𝑓 ∗ (𝐾𝑋 + Δ + M𝑋 ). Since G is f -exceptional, we have

O𝑋 (𝑙 𝑝(𝐾𝑋 + Δ + M𝑋 )) 
 𝑓∗O𝑌 (�𝐷� + 𝐺).

By construction, (𝑌, 𝐵) is a log smooth lc pair and L is nef and log big over Z with respect to (𝑌, 𝐵).
Thus, the Kodaira type vanishing theorem [12, Lemma 1.5] implies

𝑅1(𝜋 ◦ 𝑓 )∗O𝑌 (�𝐷� + 𝐺 − 𝑇) = 𝑅1(𝜋 ◦ 𝑓 )∗O𝑌 (𝐾𝑌 + 𝐵 + 𝐿) = 0.

From these facts, the morphism

(𝜋 ◦ 𝑓 )∗O𝑌 (�𝐷� + 𝐺) −→ (𝜋𝑆𝜈 ◦ 𝑓𝑇 )∗O𝑇
(
(�𝐷� + 𝐺) |𝑇

)
is surjective, where 𝑓𝑇 : 𝑇 → 𝑆𝜈 is the natural morphism. Since �𝐷� |𝑇 = �𝐷 |𝑇 � by equation (3), a
natural morphism

O𝑆𝜈 (�𝑙 𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )�) −→ 𝑓𝑇 ∗O𝑇 (�𝐷 |𝑇 �) ↩→ 𝑓𝑇 ∗O𝑇 (�𝐷� |𝑇 + 𝐺 |𝑇 )
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is defined. From these facts, we obtain the diagram

𝜋∗ 𝑓∗O𝑌 (�𝐷� + 𝐺) �� �� 𝜋𝑆𝜈∗ 𝑓𝑇 ∗O𝑇 (�𝐷� |𝑇 + 𝐺 |𝑇 )

𝜋∗O𝑋 (𝑙 𝑝(𝐾𝑋 + Δ + M𝑋 ))




��

�� 𝜋𝑆𝜈∗O𝑆𝜈

(
�𝑙 𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )�

)
,

��

��

and therefore the morphism

𝜋∗O𝑋 (𝑙 𝑝(𝐾𝑋 + Δ + M𝑋 )) −→ 𝜋𝑆𝜈∗O𝑆𝜈

(
�𝑙 𝑝(𝐾𝑆𝜈 + Δ𝑆𝜈 + N𝑆𝜈 )�

)
is surjective. �

3. Minimal model theory for generalized pairs

The goal of this section is to prove Theorem 1.1. All the arguments in this section are very similar to
those in [33], [29], [31] and [32].

The following results will be used without any mention.

Lemma 3.1. Let (𝑋,Δ , M)/𝑍 be a generalized lc pair and (𝑋 ′,Δ ′, M)/𝑍 a generalized lc pair with
a birational morphism 𝑋 ′ → 𝑋 such that (𝑋 ′,Δ ′, M)/𝑍 is a generalized log birational model of
(𝑋,Δ , M)/𝑍 as in Definition 2.10. Then (𝑋,Δ , M)/𝑍 has a minimal model (resp. a good minimal
model) if and only if (𝑋 ′,Δ ′, M)/𝑍 has a minimal model (resp. a good minimal model).

Lemma 3.2. Let (𝑋,Δ , M)/𝑍 be a generalized lc pair and (𝑋,Δ , M) � (𝑋 ′,Δ ′, M) finite steps of a
(𝐾𝑋 + Δ + M𝑋 )-MMP over Z. Then (𝑋 ′,Δ ′, M)/𝑍 is a generalized lc pair, and (𝑋,Δ , M)/𝑍 has a
minimal model (resp. a good minimal model) if and only if (𝑋 ′,Δ ′, M)/𝑍 has a minimal model (resp.
a good minimal model).

Lemma 3.3 (cf. [25, Theorem 4.1]). Let (𝑋,Δ , M)/𝑍 be a generalized lc pair such that Z is quasi-
projective, (𝑋, 0) is a Q-factorial klt pair and M is a finite R>0-linear combination of b-nef/𝑍
Q-b-Cartier Q-b-divisors. If (𝑋,Δ , M)/𝑍 has a minimal model, then any sequence of steps of a
(𝐾𝑋 + Δ + M𝑋 )-MMP over Z with scaling of an ample divisor terminates with a minimal model.

3.1. Auxiliary results

We collect results used in this section. Note that all results in this subsection are known in the case of
usual pairs.

Lemma 3.4 (cf. [33, Lemma 2.16]). Let (𝑋,Δ , M)/𝑍 be a generalized lc pair such that Z is quasi-
projective and (𝑋, 𝐵) is a dlt pair for some B. Let T be an empty set or a finite set of exceptional prime
divisors over X such that 0 < 𝑎(𝑃, 𝑋,Δ + M𝑋 ) < 1 for any 𝑃 ∈ T . Then there is a Q-factorial variety
𝑋 and a projective birational morphism 𝑓 : 𝑋 → 𝑋 such that f-exceptional prime divisors are exactly
elements of T .

Proof. Replacing B, we may assume that (𝑋, 𝐵) is klt. We pick a real number 0 < 𝑡 � 1 so that the
generalized klt pair

(
𝑋, (1 − 𝑡)Δ + 𝑡𝐵, (1 − 𝑡)M

)
/𝑍 satisfies

0 < 𝑎(𝑃, 𝑋, ((1 − 𝑡)Δ + 𝑡𝐵) + (1 − 𝑡)M𝑋 ) < 1

for any 𝑃 ∈ T . Replacing (𝑋,Δ , M)/𝑍 with
(
𝑋, (1 − 𝑡)Δ + 𝑡𝐵, (1 − 𝑡)M

)
/𝑍 , we may assume that

(𝑋,Δ , M)/𝑍 is generalized klt. By the perturbation of coefficients, we can find Δ ′ such that (𝑋,Δ ′) is
klt and 0 < 𝑎(𝑃, 𝑋,Δ ′) < 1 for any 𝑃 ∈ T , where 𝑎( · , 𝑋,Δ ′) is the log discrepancy. Then the lemma
follows from [33, Lemma 2.16]. �
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Lemma 3.5 (cf. [31, Lemma 2.6]). Let (𝑋,Δ , M) and (𝑋 ′,Δ ′, M′) be generalized dlt pairs with a
birational map 𝜙 : 𝑋 � 𝑋 ′ by which M = M′. Let S and 𝑆′ be generalized lc centers of (𝑋,Δ , M) and
(𝑋 ′,Δ ′, M′), respectively, such that 𝜙 is an isomorphism near the generic point of S and the restriction
𝜙|𝑆 defines a birational map 𝜙|𝑆 : 𝑆 � 𝑆′. Suppose that 𝐾𝑋 + Δ + M𝑋 is pseudo-effective. Suppose in
addition that

◦ 𝑎(𝐷 ′, 𝑋 ′,Δ ′ + M′
𝑋 ′ ) ≤ 𝑎(𝐷 ′, 𝑋,Δ + M𝑋 ) for every prime divisor 𝐷 ′ on 𝑋 ′, and

◦ 𝜎𝑃 (𝐾𝑋 + Δ + M𝑋 ) = 0 for every prime divisor P over X such that 𝑐𝑋 (𝑃) ∩ 𝑆 ≠ ∅ and
𝑎(𝑃, 𝑋,Δ + M𝑋 ) < 1, where 𝜎𝑃 ( · ) is as in Definition 2.3.

Let (𝑆,Δ𝑆 , N) and (𝑆′,Δ𝑆′ , N) be generalized dlt pairs which are constructed by applying divisorial
adjunctions for generalized pairs to (𝑋,Δ , M) and (𝑋 ′,Δ ′, M′) repeatedly. Then

𝑎(𝑄, 𝑆′,Δ𝑆′ + N𝑆′ ) ≤ 𝑎(𝑄, 𝑆,Δ𝑆 + N𝑆)

for all prime divisors Q on 𝑆′.

Proof. We closely follow [31, Proof of Lemma 2.6].
Taking an appropriate common log resolution 𝑓 : 𝑌 → 𝑋 and 𝑓 ′ : 𝑌 → 𝑋 ′ of the birational map

(𝑋,Δ) � (𝑋 ′,Δ ′), we may find a subvariety T of Y which is birational to S and 𝑆′ such that the induced
morphisms 𝑇 → 𝑆 and 𝑇 → 𝑆′ form a common resolution of 𝜙|𝑆 . Note that M does not necessarily
descend to Y. We may write

𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) = 𝑓 ′∗ (𝐾𝑋 ′ + Δ ′ + M′
𝑋 ′ ) + 𝐺+ − 𝐺−

such that 𝐺+ ≥ 0 and 𝐺− ≥ 0 have no common components. Then 𝐺+ is 𝑓 ′-exceptional by the first
condition of Lemma 3.5. Since 𝐾𝑋 +Δ +M𝑋 is pseudo-effective, we see that 𝐾𝑋 ′ +Δ ′ +M′

𝑋 ′ is pseudo-
effective. We have Supp𝐺+ ⊅ 𝑇 and Supp𝐺− ⊅ 𝑇 since S and 𝑆′ are generalized lc centers of (𝑋,Δ , M)

and (𝑋 ′,Δ ′, M′), respectively.
We can write

𝐺+ = 𝐺0 + 𝐺1,

where all components of𝐺0 intersect T and𝐺1 |𝑇 = 0. Pick any component E of𝐺0. Then ord𝐸 (𝐺−) = 0.
We have

𝜎𝐸 (𝐾𝑋 + Δ + M𝑋 )

=𝜎𝐸
(
𝑓 ∗(𝐾𝑋 + Δ + M𝑋 )

)
+ ord𝐸 (𝐺−) (ord𝐸 (𝐺−) = 0)

≥𝜎𝐸
(
𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + 𝐺−

)
([31, Remark 2.3 (1)])

=𝜎𝐸
(
𝑓 ′∗ (𝐾𝑋 ′ + Δ ′ + M′

𝑋 ′ ) + 𝐺+

)
=𝜎𝐸

(
𝑓 ′∗ (𝐾𝑋 ′ + Δ ′ + M′

𝑋 ′ )
)
+ ord𝐸 (𝐺+) ([31, Remark 2.3 (3)]),

therefore 𝜎𝑃 (𝐾𝑋 +Δ+M𝑋 ) > 0. By the second condition of Lemma 3.5, we see that 𝑎(𝐸, 𝑋,Δ+M𝑋 ) ≥

1, hence we have

𝑎(𝐸, 𝑋 ′,Δ ′ + M′
𝑋 ′ ) > 𝑎(𝐸, 𝑋,Δ + M𝑋 ) ≥ 1.

By the same argument as in [31, Proof of Lemma 2.5], we see that 𝐸 |𝑇 is exceptional over 𝑆′. Therefore,
𝐺0 |𝑇 is exceptional over 𝑆′. This implies that

coeff𝑄 (𝐺0 |𝑇 ) = 0
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for every prime divisor Q on 𝑆′. Since we have 𝐺1 |𝑇 = 0 and

𝑓 |∗𝑇
(
(𝐾𝑋 + Δ + M𝑋 ) |𝑆

)
− 𝑓 ′|∗𝑇

(
(𝐾𝑋 ′ + Δ ′ + M′

𝑋 ′ ) |𝑆′
)
= (𝐺0 + 𝐺1) |𝑇 − 𝐺−|𝑇 ,

the inequality

𝑎(𝑄, 𝑆′,Δ𝑆′ + N𝑆′ ) − 𝑎(𝑄, 𝑆,Δ𝑆 + N𝑆) ≤ 0

holds for every prime divisor Q on 𝑆′. Therefore, Lemma 3.5 holds. �

Lemma 3.6 (cf. [22, Lemma 5.3], [31, Lemma 2.25]). Let (𝑋,Δ , M) be a generalized lc pair such that
M is a finite R>0-linear combination of b-nef Q-b-Cartier Q-b-divisors. Let (𝑌, Γ, M) be a generalized
lc pair with a projective birational morphism 𝑓 : 𝑌 → 𝑋 . Suppose that 𝐾𝑋 +Δ +M𝑋 is pseudo-effective
and all prime divisors D on Y satisfy

0 ≤ 𝑎(𝐷,𝑌, Γ + M𝑌 ) − 𝑎(𝐷, 𝑋,Δ + M𝑋 ) ≤ 𝜎𝐷 (𝐾𝑋 + Δ + M𝑋 ).

Then (𝑋,Δ , M) has a minimal model (resp. a good minimal model) if and only if (𝑌, Γ, M) has a
minimal model (resp. a good minimal model).

Proof. Let 𝑔 : 𝑊 → 𝑌 be a log resolution of (𝑌, Γ) such that 𝑓 ◦𝑔 : 𝑊 → 𝑋 is a log resolution of (𝑋,Δ).
Let (𝑊,Δ𝑊 , M) and (𝑊, Γ𝑊 , M) be generalized log birational models of (𝑋,Δ , M) and (𝑌, Γ, M) as
in Definition 2.10, respectively. We may write

𝐾𝑊 + Δ𝑊 + M𝑊 = 𝑔∗ 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + 𝐸𝑊

for some 𝐸𝑊 ≥ 0 which is exceptional over X.
By [31, Remark 2.3 (3)], all prime divisors P on W satisfy

𝜎𝑃 (𝐾𝑊 + Δ𝑊 + M𝑊 ) = 𝜎𝑃 (𝐾𝑋 + Δ + M𝑋 ) + coeff𝑃 (𝐸𝑊 ).

If P is not exceptional over X, then we have

coeff𝑃 (𝐸𝑊 ) = 0, coeff𝑃 (Δ𝑊 ) = coeff 𝑓 (𝑔 (𝑃)) (Δ), and coeff𝑃 (Γ𝑊 ) = coeff𝑔 (𝑃) (Γ).

If P is exceptional over X but not exceptional over Y, then we have

coeff𝑃 (𝐸𝑊 ) = 𝑎(𝑃, 𝑋,Δ + M𝑋 ), coeff𝑃 (Δ𝑊 ) = 1, and coeff𝑃 (Γ𝑊 ) = coeff𝑔 (𝑃) (Γ).

If P is exceptional over Y, then we have

coeff𝑃 (𝐸𝑊 ) = 𝑎(𝑃, 𝑋,Δ + M𝑋 ), coeff𝑃 (Δ𝑊 ) = 1, and coeff𝑃 (Γ𝑊 ) = 1.

In any case, by simple computations using the hypothesis about the relations between generalized log
discrepancies, we see that

0 ≤ 𝑎(𝑃,𝑊, Γ𝑊 + M𝑊 ) − 𝑎(𝑃,𝑊,Δ𝑊 + M𝑊 ) ≤ 𝜎𝑃 (𝐾𝑊 + Δ𝑊 + M𝑊 ).

Thus, we see that (𝑊,Δ𝑊 , M) and (𝑊, Γ𝑊 , M) satisfy the hypothesis of Lemma 3.6. By Lemma 3.1,
we may replace (𝑋,Δ , M) and (𝑌, Γ, M) with (𝑊,Δ𝑊 , M) and (𝑊, Γ𝑊 , M), respectively. By the
replacement, we may assume that 𝑋 = 𝑌 and (𝑋, 0) is a Q-factorial klt pair.

We may carry out [22, Proof of Lemma 5.3] in the framework of generalized pairs. It is because
we may use the argument of the length of extremal rays [25, Proposition 3.17] and the result of the
termination of MMP [25, Theorem 4.1]. By the same argument as in [22, Proof of Lemma 5.3], we see
that Lemma 3.6 holds. �
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Lemma 3.7 (cf. [29, Lemma 2.15]). Let (𝑋,Δ , M) be a generalized lc pair such that M is a finite
R>0-linear combination of b-nef Q-b-Cartier Q-b-divisors. Let (𝑌, Γ, M) be a generalized lc pair with
a projective birational morphism 𝑓 : 𝑌 → 𝑋 . Suppose that we can write

𝐾𝑌 + Γ + M𝑌 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + 𝐸

such that E is effective and f-exceptional. Then (𝑋,Δ , M) has a minimal model (resp. a good minimal
model) if and only if (𝑌, Γ, M) has a minimal model (resp. a good minimal model).

Proof. Replacing (𝑌, Γ, M) by a Q-factorial generalized dlt model, we may assume that (𝑌, Γ, M) is
a Q-factorial generalized dlt pair. Running a (𝐾𝑌 + Γ + M𝑌 )-MMP over X and replacing (𝑌, Γ, M) by
a crepant generalized dlt model of (𝑋,Δ , M), we may assume 𝐸 = 0. Then Lemma 3.7 follows from
Lemma 3.6. �

Lemma 3.8 (cf. [31, Lemma 2.22]). Let (𝑋,Δ , M)/𝑍 be a generalized lc pair such that Z is quasi-
projective. Let S be a subvariety of X. We denote the morphism 𝑋 → 𝑍 by 𝜋. Let

(𝑋,Δ , M) =: (𝑋0,Δ0, M) � (𝑋1,Δ1, M) � · · · � (𝑋𝑖 ,Δ 𝑖 , M) � · · ·

be a sequence of steps of a (𝐾𝑋 +Δ +M𝑋 )-MMP over Z with scaling of someR-divisor 𝐴 ≥ 0. We define

𝜆𝑖 = inf { 𝜇 ∈ R≥0 |𝐾𝑋𝑖 + Δ 𝑖 + M𝑋𝑖 + 𝜇𝐴𝑖 is nef over 𝑍 } .

Suppose that each step of the (𝐾𝑋 + Δ + M𝑋 )-MMP is an isomorphism on a neighborhood of S and
lim𝑖→∞𝜆𝑖 = 0. Then, for any 𝜋-ample R-divisor H on X and any closed point 𝑥 ∈ 𝑆, there exists
𝐸 ≥ 0 such that 𝐸 ∼R,𝑍 𝐾𝑋 + Δ + M𝑋 + 𝐻 and Supp𝐸 ∌ 𝑥. In particular, if Z is a point, then
𝜎𝑃 (𝐾𝑋 + Δ + M𝑋 ) = 0 for every prime divisor P over X such that 𝑐𝑋 (𝑃) intersects S.

Proof. The argument in [31, Proof of Lemma 2.22] works with no changes. Note that [31, Proof of
Lemma 2.22] does not use any result about the abundance conjecture or the existence of flips for lc
pairs. �

Lemma 3.9 (cf. [31, Lemma 2.26]). Let (𝑋,Δ , M) and (𝑋 ′,Δ ′, M′) be generalized lc pairs with a
birational map 𝑋 � 𝑋 ′ such that M is a finite R>0-linear combination of b-nef Q-b-Cartier Q-b-
divisors and M = M′ by 𝑋 � 𝑋 ′. Suppose in addition that

◦ 𝑎(𝑃, 𝑋,Δ + M𝑋 ) ≤ 𝑎(𝑃, 𝑋 ′,Δ ′ + M′
𝑋 ′ ) for all prime divisors P on X, and

◦ 𝑎(𝑃′, 𝑋 ′,Δ ′ + M′
𝑋 ′ ) ≤ 𝑎(𝑃′, 𝑋,Δ + M𝑋 ) for all prime divisors 𝑃′ on 𝑋 ′.

Then 𝐾𝑋 +Δ +M𝑋 is abundant if and only if 𝐾𝑋 ′ +Δ ′ +M′
𝑋 ′ is abundant. Furthermore, (𝑋,Δ , M) has

a minimal model (resp. a good minimal model) if and only if (𝑋 ′,Δ ′, M′) has a minimal model (resp. a
good minimal model).

Proof. We closely follow [31, Proof of Lemma 2.26]. Let 𝑓 : 𝑌 → 𝑋 and 𝑓 ′ : 𝑌 → 𝑋 ′ be a common
log resolution of (𝑋,Δ) � (𝑋 ′,Δ ′) such that M descends to Y. We define an R-divisor Γ on Y by

Γ := −
∑
𝐷

min{𝑎(𝐷, 𝑋,Δ + M𝑋 ) − 1, 𝑎(𝐷, 𝑋 ′,Δ ′ + M′
𝑋 ′ ) − 1, 0}𝐷,

where D runs over prime divisors on Y. Then Γ is an effective snc R-divisor, (𝑌, Γ, M) is generalized lc
and there exist an f -exceptional R-divisor 𝐸 ≥ 0 and an 𝑓 ′-exceptional R-divisor 𝐸 ′ ≥ 0 such that

𝐸 + 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) = 𝐾𝑌 + Γ + M𝑌 = 𝑓 ′∗ (𝐾𝑋 ′ + Δ ′ + M′
𝑋 ′ ) + 𝐸 ′.

Lemma 3.9 follows from the relation and Lemma 3.7. �
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Lemma 3.10 (cf. [29, Proposition 3.3]). Let (𝑋,Δ , M) be a generalized lc pair such that M is a finite
R>0-linear combination of b-nef Q-b-Cartier Q-b-divisors. Let 𝜋 : 𝑋 → 𝑍 be a contraction to a normal
projective variety Z. Suppose that

◦ 𝜅 𝜄 (𝑋/𝑍, 𝐾𝑋 + Δ + M𝑋 ) = 𝜅𝜎 (𝑋/𝑍, 𝐾𝑋 + Δ + M𝑋 ) = 0,
◦ any generalized lc center of (𝑋,Δ , M) dominates Z and
◦ 𝜅𝜎 (𝑋, 𝐾𝑋 + Δ + M𝑋 ) = dim𝑍 .

Then (𝑋,Δ , M) has a good minimal model.

Proof. The argument in [29, Proof of Proposition 3.3] works with no changes because we can use the
generalized canonical bundle formula [26] instead of the canonical bundle formula [19]. So we only
outline the proof.

By taking a log resolution of (𝑋,Δ) and applying weak semistable reduction ([2]), we may assume
that (𝑋, 0) is Q-factorial klt and all fibers of 𝜋 have the same dimensions.

We run a (𝐾𝑋+Δ+M𝑋 )-MMP over Z with scaling of an ample divisor. Applying the negativity lemma
for very exceptional divisors ([3, Section 3]) and replacing (𝑋,Δ , M), we may assume 𝐾𝑋 +Δ+M𝑋 ∼R,𝑍
0 (but we lose the property of being equidimensional of 𝑋 → 𝑍). We used the first condition of
Lemma 3.10 for the reduction.

By generalized canonical bundle formula [26, Theorem 1.2] and the second condition of Lemma 3.10,
there is a generalized klt pair (𝑍,Δ𝑍 , N) such that

𝐾𝑋 + Δ + M𝑋 ∼R 𝜋∗(𝐾𝑍 + Δ𝑍 + N𝑍 ).

By the third condition of Lemma 3.10, we see that 𝐾𝑍 + Δ𝑍 + N𝑍 is big, so (𝑍,Δ𝑍 , N) has a good
minimal model (𝑍 ′,Δ𝑍 ′ , N) by [6]. Since (𝑍,Δ𝑍 , N) is generalized klt, the birational map 𝑍 � 𝑍 ′ is a
birational contraction. Hence, we can find an open subset 𝑈 ′ ⊂ 𝑍 ′ such that codim𝑍 ′ (𝑍 ′ \𝑈 ′) ≥ 2 and
𝑍 ′ � 𝑍 is an isomorphism on 𝑈 ′.

Let 𝑓 : 𝑌 → 𝑋 be a log resolution of (𝑋,Δ) such that M descends to Y and the map 𝜋𝑌 : 𝑌 � 𝑍 ′ is a
morphism. Let (𝑌, Γ, M) be a generalized log birational model of (𝑋,Δ , M) as in Definition 2.10. Then

𝐾𝑌 + Γ + M𝑌 ∼R 𝜋∗𝑌 (𝐾𝑍 ′ + Δ𝑍 ′ + N𝑍 ′ ) + 𝐸 + 𝐹

for some 𝐸 ≥ 0 and 𝐹 ≥ 0 such that E is exceptional over X and 𝜋𝑌 (Supp𝐹) ⊂ 𝑍 ′ \𝑈 ′. Then (𝑌, Γ, M)

has a good minimal model over 𝑈 ′.
Running a (𝐾𝑌 + Γ + M𝑌 )-MMP over 𝑍 ′ with scaling of an ample divisor, we get a birational

contraction 𝜙 : 𝑌 � 𝑌 ′ over 𝑍 ′ with the morphism 𝜋′ : 𝑌 ′ → 𝑍 ′ such that

𝜙∗(𝐾𝑌 + Γ + M𝑌 ) ∼R 𝜋′∗ (𝐾𝑍 ′ + Δ𝑍 ′ + N𝑍 ′ ) + 𝜙∗𝐸 + 𝜙∗𝐹

is the limit of movable divisors over 𝑍 ′ and 𝜙∗𝐸 |𝜋′−1 (𝑈 ′) = 0. Since codim𝑍 ′ (𝑍 ′ \𝑈 ′) ≥ 2, applying the
negativity lemma for very exceptional divisors ([3, Section 3]) to 𝜙∗𝐸 + 𝜙∗𝐹, we have 𝜙∗𝐸 + 𝜙∗𝐹 = 0.
Thus, we have

𝜙∗(𝐾𝑌 + Γ + M𝑌 ) ∼R 𝜋′∗ (𝐾𝑍 ′ + Δ𝑍 ′ + N𝑍 ′ ),

and the right-hand side is semiample. From the fact, we see that (𝑌, Γ, M) has a good minimal model.
So (𝑋,Δ , M) has a good minimal model. �

3.2. Generalized abundance

In this subsection, we study the property of being log abundant for special generalized lc pairs under
MMP.
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Theorem 3.11. Let (𝑋,Δ) be a projective lc pair, and let 𝜋 : 𝑋 → 𝑍 be a projective surjective morphism
to a normal projective variety Z. Suppose that there is an effective R-Cartier divisor C on X such that

◦ the pair (𝑋,Δ + 𝑡𝐶) is lc for some 𝑡 > 0, and
◦ 𝐾𝑋 + Δ + 𝐶 ∼R,𝑍 0.

Let 𝐴𝑍 be a big and semiample R-divisor on Z such that the pullback of 𝐴𝑍 to 𝜋(𝑆)𝜈 is big for any lc
center S of (𝑋,Δ), where 𝜋(𝑆)𝜈 is the normalization of 𝜋(𝑆). Then, 𝐾𝑋 + Δ + 𝜋∗𝐴𝑍 is abundant.

We will use Lemma 3.12 below to prove Theorem 3.11.

Lemma 3.12. Assume Theorem 3.11 for all projective lc pairs of dimension at most 𝑛 − 1. Let (𝑋,Δ)
be a projective lc pair, let 𝜋 : 𝑋 → 𝑍 be a morphism and let C and 𝐴𝑍 be R-Cartier divisors as in
Theorem 3.11 such that dim𝑋 ≤ 𝑛− 1. Let 𝑓 : 𝑌 → 𝑋 be a log resolution of (𝑋,Δ), and let Γ ≥ 0 be an
R-divisor on Y such that (𝑌, Γ) is an lc pair and the effective part of the divisor 𝐾𝑌 + Γ − 𝑓 ∗(𝐾𝑋 + Δ)
is f-exceptional. Then, 𝐾𝑌 + Γ + 𝑓 ∗𝜋∗𝐴𝑍 is abundant.

Proof. The argument in [33, Proof of Lemma 5.2] or [32, Proof of Lemma 3.6] works with no
changes. �

Proof of Theorem 3.11. The argument of [33, Proof of Theorem 5.4] works with no changes. We only
outline the proof. We prove Theorem 3.11 by induction on dim𝑋 .

We put 𝐴 = 𝜋∗𝐴𝑍 . We may assume that 𝐾𝑋 + Δ + 𝐴 is pseudo-effective and 𝜋 is a contraction. By
replacing A with a general one, we may also assume that (𝑋,Δ + 𝐴) is lc, Δ and A have no common
components and all lc centers of (𝑋,Δ+𝐴) are lc centers of (𝑋,Δ). By taking a dlt blowup of (𝑋,Δ+𝐴),
we may assume that (𝑋,Δ + 𝐴) is Q-factorial dlt.

If (𝑋,Δ + 𝐴) is a klt pair, then we follow [33, Proof of Lemma 5.3], and we see that 𝐾𝑋 + Δ + 𝐴 is
abundant. More generally, if 𝐾𝑋 +Δ − 𝜖 �Δ� + 𝐴 is pseudo-effective for some 𝜖 > 0, then the argument in
[33, Step 1 in the proof of Theorem 5.4] enables us to reduce to the klt case, hence we see that 𝐾𝑋 +Δ +𝐴
is abundant. From these facts, we may assume that 𝐾𝑋 +Δ − 𝜖 �Δ� + 𝐴 is not pseudo-effective for every
𝜖 > 0. Then there is a component S of �Δ� such that 𝐾𝑋 + Δ − 𝜖𝑆 + 𝐴 is not pseudo-effective for every
𝜖 > 0.

For all 𝜖 ′ > 0, we run a (𝐾𝑋 +Δ − 𝜖 ′𝑆 + 𝐴)-MMP and get a birational contraction 𝑋 � 𝑋 ′ to a Mori
fiber space 𝑋 ′ → 𝑍 . Let Δ ′, 𝑆′ and 𝐴′ be the birational transforms of Δ , S and A on 𝑋 ′, respectively.
By taking 𝜖 ′ > 0 sufficiently small with the aid of the ACC for lc thresholds ([21, Theorem 1.1]) and
the ACC for numerically trivial pairs ([21, Theorem 1.5]), we see that (𝑋 ′,Δ ′ + 𝐴′) is lc and we have
the relation 𝐾𝑋 ′ + Δ ′ + 𝐴′ ∼

R,𝑍 0.
Let 𝜙 : 𝑌 → 𝑋 and 𝑌 → 𝑋 ′ be a common log resolution of the birational map (𝑋,Δ) � (𝑋 ′,Δ ′).

Putting 𝐴𝑌 = 𝜙∗𝐴, we can write

𝐾𝑌 + Γ + 𝐴𝑌 = 𝜙∗(𝐾𝑋 + Δ + 𝐴) + 𝐸, (†)

where Γ ≥ 0 and 𝐸 ≥ 0 have no common components. We run a (𝐾𝑌 + Γ + 𝐴𝑌 )-MMP over 𝑍 with
scaling of an ample divisor. As in [33, Step 3 in the proof of Theorem 5.4], an appropriate (𝐾𝑌 +Γ+𝐴𝑌 )-
MMP terminates with a good minimal model (𝑌 ′, Γ′ + 𝐴𝑌 ′ ) over 𝑍 . Let𝑌 ′ → 𝑍 ′ be the contraction over
𝑍 induced by 𝐾𝑌 ′ + Γ′ + 𝐴𝑌 ′ . Then the induced morphism 𝑍 ′ → 𝑍 is birational. We have the following
diagram.

𝑌

𝜙
��

����� 𝑌 ′

��
𝑋

𝜋 ��

𝑍 ′

𝑍.
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We put 𝑇 = 𝜙−1
∗ 𝑆, and let 𝑇 ′ be the birational transform of T on 𝑌 ′. By construction, 𝑇 ′ dominates

𝑍 ′. We define projective dlt pairs

(𝑆,Δ𝑆), (𝑇, Γ𝑇 ), and (𝑇 ′, Γ𝑇 ′ )

with the divisorial adjunctions 𝐾𝑆+Δ𝑆 = (𝐾𝑋+Δ) |𝑆 , 𝐾𝑇 +Γ𝑇 = (𝐾𝑌 +Γ) |𝑇 and 𝐾𝑇 ′+Γ𝑇 ′ = (𝐾𝑌 ′+Γ′) |𝑇 ′ ,
respectively. We put

𝐴𝑆 = 𝐴|𝑆 , 𝐴𝑇 = 𝐴𝑌 |𝑇 , and 𝐴𝑇 ′ = 𝐴𝑌 ′ |𝑇 ′ .

By construction, it is sufficient to prove that 𝐾𝑌 ′ + Γ′ + 𝐴𝑌 ′ is abundant. Since we have 𝐾𝑌 ′ + Γ′ +

𝐴𝑌 ′ ∼R,𝑍 ′ 0 and 𝑇 ′ dominates 𝑍 ′, it is sufficient to prove that

𝐾𝑇 ′ + Γ𝑇 ′ + 𝐴𝑇 ′ ∼R (𝐾𝑌 ′ + Γ′ + 𝐴𝑌 ′ ) |𝑇 ′

is abundant. We take a common log resolution 𝜏 : 𝑇 ′′ → 𝑇 and 𝜏′ : 𝑇 ′′ → 𝑇 ′ of the birational map
(𝑇, Γ𝑇 ) � (𝑇 ′, Γ𝑇 ′ ). Replacing A with a general member of |𝐴|R, we may assume that

◦ 𝐴𝑇 ≥ 0 and 𝐴𝑇 ′ ≥ 0,
◦ 𝜏∗𝐴𝑇 ≤ 𝜏′−1

∗ 𝐴𝑇 ′ (see [33, Lemma 2.1]) and
◦ 𝜏′ : 𝑇 ′′ → 𝑇 ′ is a log resolution of (𝑇 ′, Γ𝑇 ′ + 𝐴𝑇 ′ ) (see [33, Lemma 2.2]).

Let 𝜋𝑆 : 𝑆 → 𝑍 be the restriction of 𝜋 : 𝑋 → 𝑍 to S, and let 𝜙𝑇 : 𝑇 → 𝑆 be the birational morphism
induced by 𝜙 : 𝑌 → 𝑋 . Now we have the following diagram.

𝑇 ′′

𝜏

�����
���

� 𝜏′

����
���

��

𝑇

𝜙𝑇 ��

��������� 𝑇 ′

��
𝑆

𝜋𝑆 ��

𝑍 ′

𝑍.

By restricting equation (†) to T, we get

𝐾𝑇 + Γ𝑇 + 𝐴𝑇 = 𝜙∗
𝑇 (𝐾𝑆 + Δ𝑆 + 𝐴𝑆) + 𝐸 |𝑇

such that Γ𝑇 and 𝐸 |𝑇 are effective. By [33, Lemma 2.4], we see that Γ𝑇 + 𝐴𝑇 and 𝐸 |𝑇 have no common
components and 𝐸 |𝑇 is 𝜙𝑇 -exceptional. We put 𝐴𝑇 ′′ = 𝜏∗𝐴𝑇 . Then 𝐴𝑇 ′′ ≤ 𝜏′−1

∗ 𝐴𝑇 ′ . We have

𝐾𝑇 ′′ + Ψ𝑇 ′′ + 𝐴𝑇 ′′ = 𝜏′∗ (𝐾𝑇 ′ + Γ𝑇 ′ + 𝐴𝑇 ′ ) + 𝐸𝑇 ′′

for some Ψ𝑇 ′′ ≥ 0 and 𝐸𝑇 ′′ ≥ 0 such that (𝑇 ′′,Ψ𝑇 ′′ + 𝐴𝑇 ′′ ) is a log smooth lc pair and Ψ𝑇 ′′ + 𝐴𝑇 ′′ and
𝐸𝑇 ′′ have no common components.

We may write

𝐾𝑇 ′′ + Ψ𝑇 ′′ + 𝐴𝑇 ′′ = 𝜏∗𝜙∗
𝑇 (𝐾𝑆 + Δ𝑆 + 𝐴𝑆) + 𝑀 − 𝑁,

with 𝑀 ≥ 0 and 𝑁 ≥ 0 having no common components. Pick any component Q of M. If Q is not
exceptional over S, then we have 𝑎(𝑄,𝑇 ′′,Ψ𝑇 ′′ + 𝐴𝑇 ′′ ) < 𝑎(𝑄, 𝑆,Δ𝑆 + 𝐴𝑆) ≤ 1. We apply [33, Step 6
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in the proof of Theorem 5.4], and we get the following contradiction

𝑎(𝑄, 𝑆,Δ𝑆 + 𝐴𝑆) =min{1, 𝑎(𝑄, 𝑆,Δ𝑆 + 𝐴𝑆)} (𝑎(𝑄, 𝑆,Δ𝑆 + 𝐴𝑆) ≤ 1)
=min{1, 𝑎(𝑄,𝑇, Γ𝑇 + 𝐴𝑇 )} (𝐸 |𝑇 is 𝜙𝑇 -exceptional)
≤min{1, 𝑎(𝑄,𝑇 ′, Γ𝑇 ′ + 𝐴𝑇 ′ )} ([13, Lemma 4.2.10])
=𝑎(𝑄,𝑇 ′′,Ψ𝑇 ′′ + 𝐴𝑇 ′′ ) ([33, Lemma 2.3])
<𝑎(𝑄, 𝑆,Δ𝑆 + 𝐴𝑆).

From this, we see that M is exceptional over S.
By applying the induction hypothesis of Theorem 3.11 to (𝑆,Δ𝑆) → 𝜋(𝑆)𝜈 , 𝐶 |𝑆 and 𝐴𝑍 |𝜋 (𝑆)𝜈 , we

see that 𝐾𝑆 +Δ𝑆 + 𝐴𝑆 is abundant. By applying Lemma 3.12 to (𝑆,Δ𝑆) → 𝜋(𝑆)𝜈 and (𝑇 ′′,Ψ𝑇 ′′ ) → 𝑆,
we see that 𝐾𝑇 ′′ + Ψ𝑇 ′′ + 𝐴𝑇 ′′ is abundant. Then 𝐾𝑇 ′ + Γ𝑇 ′ + 𝐴𝑇 ′ is abundant, hence 𝐾𝑋 + Δ + 𝐴 is
abundant. �

Corollary 3.13 (cf. [32, Theorem 4.1]). Let (𝑋,Δ) be a projective lc pair and 𝑀 ≥ 0 a semiample R-
divisor on X such that M is log big with respect to (𝑋,Δ) and (𝑋,Δ +𝑀) is an lc pair whose lc centers
coincide with those of (𝑋,Δ). Then, for any sequence of steps of a (𝐾𝑋 + Δ + 𝑀)-MMP starting the lc
pair (𝑋,Δ + 𝑀)

(𝑋,Δ + 𝑀) � (𝑋 ′,Δ ′ + 𝑀 ′),

the divisor 𝐾𝑋 ′ + Δ ′ + 𝑀 ′ is log abundant with respect to (𝑋 ′,Δ ′ + 𝑀 ′).

Proof. We can apply Lemma 3.12, and the argument in [32, Proof of Theorem 4.1] works with no
changes. �

3.3. Minimal model program

In this subsection, we study the termination of MMP for generalized lc pairs that preserves the property
of being log abundant.

Theorem 3.14 (cf. [31, Theorem 3.4]). Let (𝑋,Δ , M) be a generalized dlt pair such that M is a finite
R>0-linear combination of b-nef Q-b-Cartier Q-b-divisors. Suppose that

◦ 𝐾𝑋 + Δ + M𝑋 is pseudo-effective and abundant,
◦ for any generalized lc center S of (𝑋,Δ , M), the restriction (𝐾𝑋 + Δ + M𝑋 ) |𝑆 is nef, and
◦ for any prime divisor P over X such that 𝑐𝑋 (𝑃) intersects a generalized lc center of (𝑋,Δ , M) and

𝑎(𝑃, 𝑋,Δ + M𝑋 ) < 1, we have 𝜎𝑃 (𝐾𝑋 + Δ + M𝑋 ) = 0.

Then (𝑋,Δ , M) has a minimal model.

Proof. We closely follow [31, Subsection 3.1]. We prove Theorem 3.14 in several steps.

Step 1. In this step, we replace (𝑋,Δ , M) with a crepant Q-factorial generalized dlt model which has
good properties. We follow [31, Proof of Proposition 3.2].

Since 𝐾𝑋 + Δ + M𝑋 is pseudo-effective and abundant, there is an effective R-divisor D on X such
that 𝐾𝑋 + Δ + M𝑋 ∼R 𝐷. We take the Iitaka fibration 𝑋 � 𝑉 associated to D. Then we have

dim𝑉 = 𝜅𝜎 (𝑋, 𝐾𝑋 + Δ + M𝑋 ).

We take a log resolution 𝑓 : 𝑋 → 𝑋 of (𝑋,Δ) such that M descends to 𝑋 and the induced map
𝑋 � 𝑉 is a morphism. Then we have

𝐾𝑋 + Δ + M𝑋 = 𝑓
∗
(𝐾𝑋 + Δ + M𝑋 ) + 𝐸
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for some Δ ≥ 0 and 𝐸 ≥ 0 which have no common components. By construction and Lemma 2.14, we
have
(i) 𝜅𝜎 (𝑋, 𝐾𝑋 + Δ + M𝑋 ) = dim𝑉 and 𝜅𝜎 (𝑋/𝑉, 𝐾𝑋 + Δ + M𝑋 ) = 0.

Moreover, 𝐾𝑋 + Δ + M𝑋 is R-linearly equivalent to the sum of an effective R-divisor and the pullback
of an ample divisor on V. Therefore, we can find an effective R-divisor

𝐷 ∼R 𝐾𝑋 + Δ + M𝑋

such that Supp𝐷 contains all generalized lc centers of (𝑋,Δ , M) which are vertical over V. By applying
[28, Lemma 2.10] to the morphism (𝑋,Δ) → 𝑉 and replacing (𝑋,Δ), we may assume that

(ii) Δ = Δ
′
+ Δ

′′
such that Δ

′
is effective, Δ ′′ = 0 or Δ

′′
is reduced and vertical over V, and all

generalized lc centers of (𝑋,Δ − 𝑠Δ
′′
, M) dominate V for all 𝑠 ∈ (0, 1].

By taking a log resolution of (𝑋,Δ +𝐷) and replacing (𝑋,Δ) and 𝐷, we may assume that (𝑋,Δ +𝐷)

is log smooth. Note that (ii) is preserved after this replacement. Since SuppΔ
′′

is a union of generalized
lc centers of (𝑋,Δ , M) which are vertical over V, we see that Supp𝐷 ⊃ SuppΔ

′′
. By decomposing 𝐷

appropriately, we obtain effective R-divisors 𝐺 and 𝐻 such that
(iii) 𝐾𝑋 + Δ + M𝑋 ∼R 𝐺 + 𝐻,
(iv) SuppΔ

′′
⊂ Supp𝐺 ⊂ Supp�Δ� and

(v) no component of 𝐻 is a component of �Δ� and (𝑋,Δ + 𝐻) is log smooth.
We fix a real number 𝑡0 ∈ (0, 1) such that Δ − 𝑡0𝐺 ≥ 0. We pick 𝑡 ∈ (0, 𝑡0], and we consider

(𝑋,Δ − 𝑡𝐺, M). Then the morphism

(𝑋,Δ − 𝑡𝐺, M) → 𝑉

satisfies the following three conditions.
◦ Any generalized lc center of (𝑋,Δ − 𝑡𝐺, M) dominates V,
◦ 𝜅𝜎 (𝑋, 𝐾𝑋 + Δ − 𝑡𝐺 + M𝑋 ) = dim𝑉 and
◦ 𝜅 𝜄 (𝑋/𝑉, 𝐾𝑋 + Δ − 𝑡𝐺 + M𝑋 ) = 𝜅𝜎 (𝑋/𝑉, 𝐾𝑋 + Δ − 𝑡𝐺 + M𝑋 ) = 0.
Indeed, the first condition follows from (iv) and (ii), and the other two conditions follow from (iii), (i)
and [33, Remark 2.8 (1)]. By Lemma 3.10, we see that (𝑋,Δ − 𝑡𝐺, M) has a good minimal model for
all 𝑡 ∈ (0, 𝑡0].

Running a (𝐾𝑋 + Δ + M𝑋 )-MMP over X, we get a crepant generalized dlt model

�̃� : (𝑋, Δ̃ , M) → (𝑋,Δ , M).

Let 𝐺 (resp. 𝐻) be the birational transform of 𝐺 (resp. 𝐻) on 𝑋 . Then

𝐾𝑋 + Δ̃ + M𝑋 ∼R 𝐺 + 𝐻

by (iii). By (v) and replacing 𝑡0, we may assume that (𝑋,Δ + 𝑡0𝐻, M) is a Q-factorial generalized dlt
pair, and we may further assume that 𝑋 � 𝑋 is a sequence of steps of a (𝐾𝑋 +Δ + 𝑡𝐻+M𝑋 )-MMP and a
sequence of steps of a (𝐾𝑋 +Δ − 𝑡𝐺 +M𝑋 )-MMP for all 𝑡 ∈ (0, 𝑡0]. Then it follows that (𝑋, Δ̃ + 𝑡0𝐻, M)

is a Q-factorial generalized dlt pair, and (𝑋, Δ̃ − 𝑡𝐺, M) has a good minimal model for all 𝑡 ∈ (0, 𝑡0]
since (𝑋,Δ − 𝑡𝐺, M) has a good minimal model.

Applying [31, Lemma 2.4] to 𝐾𝑋 + Δ̃ + M𝑋 and 𝐻 and replacing 𝑡0, we may assume that

Supp𝑁𝜎 (𝐾𝑋 + Δ̃ + 𝑡𝐻 + M𝑋 )

is independent of the choice of 𝑡 ∈ (0, 𝑡0].
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Since 𝐾𝑋 + Δ̃ +M𝑋 = �̃� ∗(𝐾𝑋 +Δ +M𝑋 ), it is easy to check that (𝑋, Δ̃ , M) satisfies all the conditions
of Theorem 3.14. Replacing (𝑋,Δ , M) by (𝑋, Δ̃ , M), we may assume that X is Q-factorial and there
exist effective R-divisors G and H on X such that

◦ 𝐾𝑋 + Δ + M𝑋 ∼R 𝐺 + 𝐻,
◦ Supp𝐺 ⊂ Supp�Δ� and
◦ there exists a real number 𝑡0 > 0 such that the following properties hold for all 𝑡 ∈ (0, 𝑡0]:

– (𝑋,Δ + 𝑡𝐻, M) is generalized dlt and Supp𝑁𝜎 (𝐾𝑋 + Δ + 𝑡𝐻 + M𝑋 ) does not depend on t, and
– (𝑋,Δ − 𝑡𝐺, M) has a good minimal model.

Step 2. We follow [31, Proof of Proposition 3.3].
Pick any real number 𝑡 ∈ (0, 𝑡0]. Since (𝑋,Δ − 𝑡

1+𝑡𝐺, M) has a good minimal model and

𝐾𝑋 + Δ + 𝑡𝐻 + M𝑋 ∼R (1 + 𝑡)
(
𝐾𝑋 + Δ −

𝑡

1 + 𝑡
𝐺 + M𝑋

)
,

there is a sequence of steps of a (𝐾𝑋 + Δ + 𝑡𝐻 + M𝑋 )-MMP to a good minimal model

𝜙𝑡 : (𝑋,Δ + 𝑡𝐻, M) � (𝑋𝑡 ,Δ 𝑡 + 𝑡𝐻𝑡 , M).

Because Supp𝑁𝜎 (𝐾𝑋 +Δ + 𝑡𝐻 +M𝑋 ) is independent of 𝑡 ∈ (0, 𝑡0], prime divisors contracted by 𝜙𝑡 are
independent of 𝑡 ∈ (0, 𝑡0]. Therefore, putting

𝑋0 = 𝑋𝑡0 , Δ0 = Δ 𝑡0 , and 𝐻0 = 𝐻𝑡0 ,

then 𝑋0 and 𝑋𝑡 are isomorphic in codimension one for all 𝑡 ∈ (0, 𝑡0]. From this fact, we see that
(𝑋𝑡 ,Δ 𝑡 + 𝑡𝐻𝑡 , M) is a good minimal model of (𝑋0,Δ0 + 𝑡𝐻0, M).

By applying [29, Proof of Lemma 2.14] and [31, Proof of Proposition 3.3], we get a sequence of
steps of a (𝐾𝑋0 + Δ0 + M𝑋0)-MMP with scaling of 𝑡0𝐻0

(𝑋0,Δ0, M) � (𝑋1,Δ1, M) � · · · � (𝑋𝑖 ,Δ 𝑖 , M) � · · ·

such that

◦ if we define 𝑡𝑖 = inf { 𝜇 ∈ R≥0 | 𝐾𝑋𝑖 + Δ 𝑖 + M𝑋𝑖 + 𝜇𝐻𝑖 is nef } for each i, then lim𝑖→∞𝑡𝑖 = 0,
◦ for all 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖−1] ∩ R>0, the generalized pair (𝑋𝑖 ,Δ 𝑖 + 𝑡𝐻𝑖 , M) is a good minimal model of both

(𝑋,Δ + 𝑡𝐻, M) and (𝑋0,Δ0 + 𝑡𝐻0, M), and
◦ the MMP occurs only in Supp�Δ0�.

By the argument as in [31, Step 1 in the proof of Theorem 3.4], it is sufficient to prove the termination
of the (𝐾𝑋0 + Δ0 + M𝑋0)-MMP.

Step 3. We follow [31, Step 1 in the proof of Theorem 3.4].
For every i and generalized lc center 𝑆𝑖 of (𝑋𝑖 ,Δ 𝑖 , M), we define a generalized dlt pair (𝑆𝑖 ,Δ𝑆𝑖 , N) by

applying divisorial adjunction for generalized pairs repeatedly. We put 𝐻𝑆𝑖 = 𝐻𝑖 |𝑆𝑖 . Similarly, for every
generalized lc center S of (𝑋,Δ , M), we define a generalized dlt pair (𝑆,Δ𝑆 , N) by applying divisorial
adjunction for generalized pairs repeatedly. We put 𝐻𝑆 = 𝐻 |𝑆 .

There exists 𝑚0 � 0 such that, for every 𝑖 ≥ 𝑚0, the birational map 𝑋𝑚0 � 𝑋𝑖 is an isomorphism
on a neighborhood of the generic points of all generalized lc centers of (𝑋𝑚0 ,Δ𝑚0 , M).

We will prove the termination of the (𝐾𝑋0 + Δ0 + M𝑋0 )-MMP by applying the special termination
for MMP for generalized dlt pairs (cf. [25, Subsection 4.2]). More precizely, by induction on 𝑙 ∈ Z≥0,
we will prove that the MMP terminates on a neighborhood of all l-dimensional generalized lc centers
of (𝑋𝑚0 ,Δ𝑚0 , M) for all l. Pick 𝑙 ∈ Z≥0. By the induction hypothesis and the standard argument of the
special termination, we can find 𝑚 � 𝑚0 such that, for every 𝑖 ≥ 𝑚 and every generalized lc center 𝑆𝑚
of (𝑋𝑚,Δ𝑚, M) with dim𝑆𝑚 ≤ 𝑙, the induced birational map 𝑆𝑚 � 𝑆𝑖 to the corresponding generalized
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lc center 𝑆𝑖 of (𝑋𝑖 ,Δ 𝑖 , M) is small and the birational transform of Δ𝑆𝑚 (resp. 𝐻𝑆𝑚 , N𝑆𝑚 ) to 𝑆𝑖 is equal
to Δ𝑆𝑖 (resp. 𝐻𝑆𝑖 , N𝑆𝑖 ).

To prove the special termination, it is sufficient to prove the existence of a minimal model of
(𝑆𝑚,Δ𝑆𝑚 , N) for every generalized lc center 𝑆𝑚 of (𝑋𝑚,Δ𝑚, M).

Step 4. We follow [31, Step 2 in the proof of Theorem 3.4].
From now on, we fix a generalized lc center 𝑆𝑚 of (𝑋𝑚,Δ𝑚, M). Unless otherwise stated, we assume

that all integers i appearing in the rest of the proof satisfy 𝑖 ≥ 𝑚. For all i, let 𝑆𝑖 be the generalized lc
center of (𝑋𝑖 ,Δ 𝑖 , M) such that 𝑋𝑚 � 𝑋𝑖 induces a birational map 𝑆𝑚 � 𝑆𝑖 . By construction of the
birational map 𝑋 � 𝑋𝑖 , we can find a generalized lc center S of (𝑋,Δ , M) such that 𝑋 � 𝑋𝑖 induces a
birational map 𝑆 � 𝑆𝑖 . Using the S, we will define the following variety, divisor and inequalities.

(a) A birational morphism 𝜓 : 𝑇 → 𝑆𝑚 from a projectiveQ-factorial variety T such that, for every prime
divisor �̄� on S, if we have 𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) < 𝑎(�̄�, 𝑆,Δ𝑆 + N𝑆), then �̄� is a 𝜓-exceptional
divisor on T,

(b) An effective R-divisor Ψ on T defined by Ψ = −
∑

𝐷

(
𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) − 1

)
𝐷, where D runs over

all prime divisors on T,
(c) The inequality 𝑎(𝑄, 𝑆, (Δ𝑆 + 𝑡𝑖𝐻𝑆) + N𝑆) ≤ 𝑎(𝑄, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 ) for all i and all prime

divisors Q over S and
(d) The inequality 𝑎(𝑄 ′, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) ≤ 𝑎(𝑄 ′, 𝑇,Ψ + N𝑇 ) for all prime divisors 𝑄 ′ over 𝑆𝑚, in

particular, the generalized pair (𝑇,Ψ, N) is generalized lc.

The generalized pair (𝑋𝑖 ,Δ 𝑖 + 𝑡𝑖𝐻𝑖 , M) is a good minimal model of (𝑋,Δ + 𝑡𝑖𝐻, M), hence the
negativity lemma (see also [13, Proof of Lemma 4.2.10]) implies the inequality

𝑎(𝑄, 𝑆, (Δ𝑆 + 𝑡𝑖𝐻𝑆) + N𝑆) ≤ 𝑎(𝑄, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 )

for all prime divisors Q over S. We have (c).
In this paragraph, we prove that the equality

𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) = 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) (★)

holds for all prime divisors 𝐷 on 𝑆𝑚. Note that 𝐷 is a prime divisor on 𝑆𝑖 for every i since the birational
map 𝑆𝑚 � 𝑆𝑖 is small. For every i, we may apply Lemma 3.5 to the birational map (𝑋,Δ , M) �
(𝑋𝑖 ,Δ 𝑖 , M) and the generalized pairs (𝑆,Δ𝑆 , N) and (𝑆𝑖 ,Δ𝑆𝑖 , N) because (𝑋,Δ , M) � (𝑋𝑖 ,Δ 𝑖 , M)

obviously satisfies the first condition of Lemma 3.5, and the second condition of Lemma 3.5 follows
from the third condition of Theorem 3.14. Thus, we have

𝑎(𝐷, 𝑆𝑖 ,Δ𝑆𝑖 + N𝑆𝑖 ) ≤ 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆),

and therefore we have

𝑎(𝐷, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 ) ≤ 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆)

for all prime divisors 𝐷 on 𝑆𝑚. By this inequality and (c), we have

𝑎(𝐷, 𝑆, (Δ𝑆 + 𝑡𝑖𝐻𝑆) + N𝑆) ≤ 𝑎(𝐷, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 ) ≤ 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆).

We have 𝑎(𝐷, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 ) = 𝑎(𝐷, 𝑆𝑚, (Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 ) + N𝑆𝑚 ) for all i since 𝐷 appears as a
prime divisor on 𝑆𝑚 and 𝑆𝑖 . Since lim𝑖→∞𝑡𝑖 = 0, we get equation (★) for all prime divisors 𝐷 on 𝑆𝑚 by
taking the limit 𝑖 → ∞.
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We put

C =

{
�̄�

���� �̄� is a prime divisor on 𝑆 such that
𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) < 𝑎(�̄�, 𝑆,Δ𝑆 + N𝑆)

}
.

By equation (★), all elements of C are exceptional over 𝑆𝑚. By a basic property of generalized log
discrepancies and (c), we have

𝑎(�̄�, 𝑆, (Δ𝑆 + 𝑡𝑚𝐻𝑆) + N𝑆) ≤ 𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ).

This implies

𝑎(�̄�, 𝑆, (Δ𝑆 + 𝑡𝑚𝐻𝑆) + N𝑆) ≤ 𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) < 𝑎(�̄�, 𝑆,Δ𝑆 + N𝑆)

for all �̄� ∈ C. Since every element of C is a prime divisor on S, we see that all elements of C are
components of 𝐻𝑆 . Thus, C is a finite set, and 𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) < 1 for all �̄� ∈ C because
𝑎(�̄�, 𝑆,Δ𝑆 + N𝑆) ≤ 1. From these facts, for every �̄� ∈ C we get the relation

0 ≤𝑎(�̄�, 𝑆, (Δ𝑆 + 𝑡0𝐻𝑆) + N𝑆)

<𝑎(�̄�, 𝑆, (Δ𝑆 + 𝑡𝑚𝐻𝑆) + N𝑆) (�̄� is a component of 𝐻𝑆 and 𝑚 � 0)
≤𝑎(�̄�, 𝑆𝑚, (Δ𝑆𝑚 + 𝑡𝑚𝐻𝑆𝑚 ) + N𝑆𝑚 ) (the inequality (c))
≤𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 )

<𝑎(�̄�, 𝑆,Δ𝑆 + N𝑆) ≤ 1 (definition of C).

In this way, we have 0 < 𝑎(�̄�, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) < 1. By Lemma 3.4, there exists a projective birational
morphism 𝜓 : 𝑇 → 𝑆𝑚 such that T is Q-factorial and 𝜓−1 exactly extracts elements of C. We have
constructed the desired birational morphism as in (a).

Let D be a prime divisor on T. When D is 𝜓-exceptional, by the definitions of C and 𝜓 we have

𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) < 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) ≤ 1.

When D is not 𝜓-exceptional, from equation (★) we see that

𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) = 𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) ≤ 1.

Thus, the relation

𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) ≤ 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) ≤ 1. (★★)

holds for all prime divisors D on T. Note that only finitely many prime divisors D on T satisfy
𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) < 1 Therefore, we may define an R-divisor Ψ ≥ 0 on T by

Ψ = −
∑
𝐷

(
𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) − 1

)
𝐷,

where D runs over all prime divisors on T. This is the divisor stated in (b).
Finally, we prove (d). Since T is Q-factorial, 𝐾𝑇 +Ψ +N𝑇 is R-Cartier. By equation (★★), we obtain

𝐾𝑇 + Ψ + N𝑇 ≤ 𝜓∗(𝐾𝑆𝑚 + Δ𝑆𝑚 + N𝑆𝑚 ).

From this, we have

0 ≤ 𝑎(𝑄 ′, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) ≤ 𝑎(𝑄 ′, 𝑇,Ψ + N𝑇 )

for any prime divisor 𝑄 ′ over 𝑆𝑚. This shows (d).
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Step 5. The goal of this step is to show that (𝑇,Ψ, N) has a minimal model. We follow [31, Step 3 in
the proof of Theorem 3.4].

By the second condition of Theorem 3.14, the generalized pair (𝑆,Δ𝑆 , N) is a minimal model of
(𝑆,Δ𝑆 , N) itself. By applying [31, Step 3 in the proof of Theorem 3.4] with minor changes, we see that
the following property holds.

◦ Let 𝑄 be a prime divisor over S. Then the following two statements hold:

– If 𝑄 is a divisor on S, then 𝑎(𝑄, 𝑆,Δ𝑆 + N𝑆) ≤ 𝑎(𝑄,𝑇,Ψ + N𝑇 ), and
– If 𝑄 is a divisor on T, then 𝑎(𝑄,𝑇,Ψ + N𝑇 ) ≤ 𝑎(𝑄, 𝑆,Δ𝑆 + N𝑆).

By applying Lemma 3.9 to the map (𝑇,Ψ, N) � (𝑆,Δ𝑆 , N), we see that (𝑇,Ψ, N) has a minimal model.

Step 6. We follow [31, Step 4 in the proof of Theorem 3.4]. With this step, we complete the proof of
the special termination of the (𝐾𝑋0 + Δ0 + M𝑋0 )-MMP in Step 3.

We recall that 𝑆𝑚 � 𝑆𝑖 is small, Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 is equal to the birational transform of Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 on
𝑆𝑖 , and the divisor

𝐾𝑆𝑖 + Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 + N𝑆𝑖 ∼R (𝐾𝑋𝑖 + Δ 𝑖 + 𝑡𝑖𝐻𝑖 + M𝑋𝑖 ) |𝑆𝑖

is nef. So (𝑆𝑖 ,Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 , N) is a weak generalized lc model of (𝑆𝑚,Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 , N) for every i.
We pick an arbitrary prime divisor D on T. By using the generalized pair analogue of [31, Remark

2.9 (1)], we see that

𝜎𝐷 (𝐾𝑆𝑚 + Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 + N𝑆𝑚 )

=𝑎(𝐷, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 ) − 𝑎(𝐷, 𝑆𝑚, (Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 ) + N𝑆𝑚 ).

From the relation, we have

𝜎𝐷 (𝐾𝑆𝑚 + Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 + N𝑆𝑚 )

=𝑎(𝐷, 𝑆𝑖 , (Δ𝑆𝑖 + 𝑡𝑖𝐻𝑆𝑖 ) + N𝑆𝑖 ) − 𝑎(𝐷, 𝑆𝑚, (Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 ) + N𝑆𝑚 )

≥𝑎(𝐷, 𝑆, (Δ𝑆 + 𝑡𝑖𝐻𝑆) + N𝑆) − 𝑎(𝐷, 𝑆𝑚, (Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 ) + N𝑆𝑚 ) ((c) in Step 4).

By (b) in Step 4, the equality 𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) = 𝑎(𝐷,𝑇,Ψ + N𝑇 ) holds. From these relations and the
fact that lim𝑖→∞𝑡𝑖 = 0, we obtain

𝜎𝐷 (𝐾𝑆𝑚 + Δ𝑆𝑚 + N𝑆𝑚 )

= lim
𝑖→∞

𝜎𝐷 (𝐾𝑆𝑚 + Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 + N𝑆𝑚 ) ([31, Remark 2.3 (2)])

≥ lim
𝑖→∞

(
𝑎(𝐷, 𝑆, (Δ𝑆 + 𝑡𝑖𝐻𝑆) + N𝑆) − 𝑎(𝐷, 𝑆𝑚, (Δ𝑆𝑚 + 𝑡𝑖𝐻𝑆𝑚 ) + N𝑆𝑚 )

)
=𝑎(𝐷, 𝑆,Δ𝑆 + N𝑆) − 𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 )

=𝑎(𝐷,𝑇,Ψ + N𝑇 ) − 𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 )

for all prime divisors D on T. By this relation and (d) in Step 4, we obtain

0 ≤ 𝑎(𝐷,𝑇,Ψ + N𝑇 ) − 𝑎(𝐷, 𝑆𝑚,Δ𝑆𝑚 + N𝑆𝑚 ) ≤ 𝜎𝐷 (𝐾𝑆𝑚 + Δ𝑆𝑚 + N𝑆𝑚 ).

Therefore, we may apply Lemma 3.6 to (𝑆𝑚,Δ𝑆𝑚 , N) and (𝑇,Ψ, N). Because (𝑇,Ψ, N) has a minimal
model, (𝑆𝑚,Δ𝑆𝑚 , N) has a minimal model.

By arguments in the last paragraph of Step 3, we complete the special termination.

Since the (𝐾𝑋0 +Δ0 +M𝑋0)-MMP occurs only in Supp�Δ0� (see Step 2), we see that the (𝐾𝑋0 +Δ0 +
M𝑋0 )-MMP terminates, so (𝑋,Δ , M) has a minimal model. �
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Theorem 3.15 (cf. [31, Theorem 3.5]). Let (𝑋,Δ , M) be a generalized lc pair such that M is a finite
R>0-linear combination of b-nef Q-b-Cartier Q-b-divisors. Let A be an R-divisor on X such that
𝐾𝑋 + Δ + M𝑋 + 𝐴 is nef.

Then, no infinite sequence of steps of a (𝐾𝑋 + Δ + M𝑋 )-MMP with scaling of A

(𝑋,Δ , M) =: (𝑋0,Δ0, M) � (𝑋1,Δ1, M) � · · · � (𝑋𝑖 ,Δ 𝑖 , M) � · · ·

satisfies the following properties.

◦ If we define 𝜆𝑖 = inf { 𝜇 ∈ R≥0 | 𝐾𝑋𝑖 + Δ 𝑖 + M𝑋𝑖 + 𝜇𝐴𝑖 is nef } for each 𝑖 ≥ 0, then lim
𝑖→∞

𝜆𝑖 = 0, and
◦ There are infinitely many i such that 𝐾𝑋𝑖 + Δ 𝑖 + M𝑋𝑖 is log abundant with respect to (𝑋𝑖 ,Δ 𝑖 , M).

Proof. The argument of [31, Proof of Theorem 3.5] works without any change by using Lemma 3.8, the
special termination for generalized dlt pairs ([25, Subsection 4.2]), and Theorem 3.14 instead of [31,
Lemma 2.22], [13] and [31, Theorem 3.5], respectively. �

Theorem 3.16. Let (𝑋,Δ) be a projective lc pair, and let M be a finite R>0-linear combination of nef
Q-divisors on X. Suppose that 𝐾𝑋 + Δ + 𝑀 is pseudo-effective and M is log big with respect to (𝑋,Δ).
We put M = 𝑀 . Then there is a sequence of steps of a (𝐾𝑋 +Δ +𝑀)-MMP starting with the generalized
lc pair (𝑋,Δ , M)

(𝑋,Δ , M) � · · · � (𝑋𝑖 ,Δ 𝑖 , M) � · · ·

that terminates with a good minimal model.

Proof. We first reduce the theorem to the case where 𝐾𝑋 +Δ + 𝑙𝑀 is nef for some positive real number
𝑙 > 2. We may write 𝑀 =

∑
𝑗 𝑟 𝑗𝑀

( 𝑗) , where 𝑀 ( 𝑗) are nef Cartier divisors on X and 𝑟 𝑗 > 0. We fix
a real number 𝑙 > 2 such that 𝑙𝑟 𝑗 > 2 · dim𝑋 for all j. Pick an ample R-divisor A on X such that
𝐾𝑋 + Δ + 𝑙𝑀 + 𝐴 is nef. Since M is nef, by [33, Theorem 1.5], the generalized lc pair (𝑋,Δ , 𝑙M + 𝑡𝐴)
has a good minimal model for every real number 𝑡 > 0. Applying the argument in [29, Proof of Lemma
2.14] (see [33, Proof of Theorem 1.7]) with the aid of the length of extremal rays ([15, Section 18] or
[17, Theorem 4.6.2]), we may construct a (𝐾𝑋 + Δ + 𝑙𝑀)-MMP with scaling of A

(𝑋,Δ , 𝑙M) � · · · � (𝑋𝑖 ,Δ 𝑖 , 𝑙M) � · · ·

such that if we define

𝜆𝑖 = inf { 𝜇 ∈ R≥0 | 𝐾𝑋𝑖 + Δ 𝑖 + 𝑙M𝑋𝑖 + 𝜇𝐴𝑖 is nef }

for each i, then lim𝑖→∞𝜆𝑖 = 0. By the choice of l and the length of extremal rays (see [15, Section 18] or
[17, Theorem 4.6.2]), the birational transforms 𝑀

( 𝑗)
𝑖 of 𝑀 ( 𝑗) on 𝑋𝑖 are numerically trivial with respect

to the extremal contraction of the MMP. This fact implies the following properties:

◦ 𝑀
( 𝑗)
𝑖 is nef and Cartier for every i and j, and

◦ the sequence of birational maps 𝑋 � · · · � 𝑋𝑖 � · · · is a sequence of steps of a (𝐾𝑋 +Δ+𝑀)-MMP.

By the first property, M𝑋𝑖 =
∑

𝑗 𝑟 𝑗𝑀
( 𝑗)
𝑖 is a finite R>0-linear combination of nef Cartier divisors on

𝑋𝑖 , and the log bigness of M shows that M𝑋𝑖 is log big with respect to (𝑋𝑖 ,Δ 𝑖) for every i. By Lemma
2.15, we see that 𝐾𝑋𝑖 + Δ 𝑖 + 𝑙M𝑋𝑖 is log big with respect to (𝑋𝑖 ,Δ 𝑖) for every i. By Theorem 3.15, the
(𝐾𝑋 + Δ + 𝑙𝑀)-MMP terminates with a minimal model (𝑋𝑚,Δ𝑚, 𝑙M). Then the birational map

𝑋 � 𝑋𝑚

is a sequence of steps of a (𝐾𝑋 + Δ + 𝑀)-MMP. To prove Theorem 3.16, it is sufficient to prove the
existence of a (𝐾𝑋𝑚 + Δ𝑚 + M𝑋𝑚 )-MMP that terminates with a good minimal model. In this way,
replacing (𝑋,Δ , M) with (𝑋𝑚,Δ𝑚, M), we may assume that 𝐾𝑋 + Δ + 𝑙𝑀 is nef for some 𝑙 > 2.
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Replacing l by 2𝑙, we may assume that 𝐾𝑋 +Δ + 𝑙𝑀 is log big with respect to (𝑋,Δ). By the argument
of Shokurov polytope (cf. [25, Subsection 3.3]) and [12], we see that 𝐾𝑋 + Δ + 𝑙𝑀 is semiample. We
fix an effective R-divisor

𝐵 ∼R 𝐾𝑋 + Δ + 𝑙𝑀

such that (𝑋,Δ + 𝐵) is lc. Then

𝑙 (𝐾𝑋 + Δ + 𝑀) = (𝑙 − 1) (𝐾𝑋 + Δ) + (𝐾𝑋 + Δ + 𝑙𝑀) ∼R (𝑙 − 1)
(
𝐾𝑋 + Δ +

1
𝑙 − 1

𝐵

)
.

By Corollary 3.13, 𝐾𝑋 + Δ + 1
𝑙−1 𝐵 is log abundant with respect to (𝑋,Δ + 1

𝑙−1 𝐵) and every (𝐾𝑋 +

Δ + 1
𝑙−1 𝐵)-MMP preserves the property of being log abundant. Then the argument in [31, Proof of

Corollary 3.9] implies the existence of a sequence of steps of a (𝐾𝑋 + Δ + 1
𝑙−1 𝐵)-MMP that terminates

with a good minimal model.
Since all (𝐾𝑋 + Δ + 1

𝑙−1 𝐵)-MMP are (𝐾𝑋 + Δ + 𝑀)-MMP, there exists a sequence of steps of a
(𝐾𝑋 +Δ +𝑀)-MMP that terminates with a good minimal model. In this way, we see that Theorem 3.16
holds. �

Proof of Theorem 1.1. If 𝐾𝑋 + Δ + 𝑀 is pseudo-effective, then Theorem 1.1 follows from Theorem
3.16. If 𝐾𝑋 + Δ + 𝑀 is not pseudo-effective, then take an ample R-divisor A on X and a real number
𝜖 > 0 such that 𝐾𝑋 + Δ + 𝑀 + 𝐴 is nef and 𝐾𝑋 + Δ + 𝑀 + 𝜖 𝐴 is not pseudo-effective. Since 𝑀 + 𝜖 𝐴
is ample, by [33, Theorem 1.7] there is 𝑋 � 𝑋 ′ a sequence of steps of a (𝐾𝑋 + Δ + 𝜖 𝐴 + 𝑀)-MMP
with scaling of A that terminates with a Mori fiber space. Then 𝑋 � 𝑋 ′ is a sequence of steps of a
(𝐾𝑋 + Δ + 𝑀)-MMP with scaling of A terminating with a Mori fiber space. �

The following result was mentioned in [32].

Theorem 3.17. Let (𝑋, 𝐵, M) be a generalized lc pair such that M is a finite R>0-linear combination of
b-nef Q-b-Cartier Q-b-divisors. Let A be an effective ample R-divisor on X such that (𝑋, 𝐵 + 𝐴, M) is a
generalized lc pair and generalized lc centers of (𝑋, 𝐵 + 𝐴, M) are generalized lc centers of (𝑋, 𝐵, M).
Let (𝑌, Γ, M) be aQ-factorial generalized dlt model of (𝑋, 𝐵+ 𝐴, M). Then, every (𝐾𝑌 +Γ+M𝑌 )-MMP
with scaling of an ample divisor

(𝑌, Γ, M) =: (𝑌0, Γ0, M) � · · · � (𝑌𝑖 , Γ𝑖 , M) � · · ·

terminates with a minimal model.

Proof. By [32, Theorem 1.3], we see that 𝐾𝑌𝑖 + Γ𝑖 + M𝑌𝑖 is log abundant with respect to (𝑌𝑖 , Γ𝑖 , M) for
all i. Hence, the theorem follows from Theorem 3.15. �

4. Effectivity of Iitaka fibration

In this section, we prove Theorem 1.2 and Theorem 1.3.

Theorem 4.1. Let d and p be positive integers, and let Φ ⊂ Q be a DCC set. Then, there exists a positive
integer m, depending only on d, p and Φ, satisfying the following. Let (𝑋,Δ , M) be a generalized dlt
pair such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ belong to Φ,
◦ 𝑝M is b-Cartier,
◦ 𝐾𝑋 + Δ + M𝑋 ≡ 0 and
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◦ there is a log resolution 𝑓 : �̃� → 𝑋 of (𝑋,Δ) such that

– f is an isomorphism over an open subset 𝑈 ⊂ 𝑋 containing all the generic points of generalized lc
centers of (𝑋,Δ , M),

– M descends to �̃� and
– writing 𝐾�̃� + Δ̃ + M�̃� = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + �̃� , where Δ̃ ≥ 0 and �̃� ≥ 0 have no common

components, then M�̃� is log big with respect to ( �̃�, Δ̃).

Then 𝐻0(𝑋,O𝑋 (�𝑚(𝐾𝑋 + Δ + M𝑋 )�)) ≠ 0. In particular, 𝑚(𝐾𝑋 + Δ + M𝑋 ) ∼ 0.

Proof. We prove the theorem by induction on the dimension of X.
By the global ACC [7, Theorem 1.6], we can find a finite set Φ′ ⊂ Φ, depending only on d, p

and Φ, such that the coefficients of Δ belong to Φ′. By [4, Theorem 1.10], there exists a positive
integer 𝑚′, depending only on d, p and Φ′, such that if (𝑋,Δ , M) is a generalized klt pair, then
𝐻0 (𝑋,O𝑋 (�𝑚

′(𝐾𝑋 + Δ + M𝑋 )�)) ≠ 0. Let s be the minimum positive integer such that 𝑠𝑎 ∈ Z for
every 𝑎 ∈ Φ′. If (𝑋,Δ , M) is not generalized klt, then we may find a component S of �Δ�. Since 𝑠𝑝M�̃�

is Cartier and 𝑠𝑝𝑎 ∈ Z for every 𝑎 ∈ Φ′, by the projective case of Lemma 2.16 the morphism

𝐻0(𝑋,O𝑋 (�𝑙𝑠𝑝(𝐾𝑋 + Δ + M𝑋 )�)) −→ 𝐻0(𝑆,O𝑆 (�𝑙𝑠𝑝(𝐾𝑆 + Δ𝑆 + N𝑆)�))

is surjective for every positive integer l, where the divisor 𝐾𝑆 +Δ𝑆 +N𝑆 is the generalized log canonical
divisor of the generalized pair (𝑆,Δ𝑆 , N) defined with divisorial adjunction for (𝑋,Δ , M). By Remark
2.8, there exists a DCC set Ω ⊂ Q, depending only on d, p and Φ′, such that all the coefficients of Δ𝑆

belong to Ω. By the induction hypothesis of Theorem 4.1, there is a positive integer 𝑚′′, depending only
on 𝑑 − 1, p and Ω, such that 𝐻0(𝑆,O𝑆 (�𝑚

′′(𝐾𝑆 +Δ𝑆 +N𝑆)�)) ≠ 0. Then 𝐻0(𝑋,O𝑋 (�𝑚
′′𝑠𝑝(𝐾𝑋 +Δ +

M𝑋 )�)) ≠ 0 by the above surjection. Hence, 𝑚 := 𝑚′𝑚′′𝑠𝑝 is the desired positive integer. �

We will use the following result about the generalized canonical bundle formula by Filipazzi–Moraga
[10].

Lemma 4.2 (cf. [10, Theorem 1.5], see also [4, Proposition 6.3]). Let d and p be positive integers. Let
ℜ ⊂ [0, 1] be a finite set of rational numbers and Φ(ℜ) the hyperstandard set associated to ℜ. Then,
there exist positive integers n and q and a DCC set Ω ⊂ Q, depending only on d, p and ℜ, satisfying
the following. Let 𝜋 : 𝑋 → 𝑍 be a contraction of normal projective varieties, and let (𝑋,Δ , M) be a
generalized klt pair such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ belong to Φ(ℜ),
◦ 𝑝M is b-Cartier,
◦ 𝐾𝑋 + Δ + M𝑋 ∼Q,𝑍 0 and
◦ X is of Fano type over an open subset U of Z,

Then 𝑛(𝐾𝑋 + Δ + M𝑋 ) ∼ 𝜋∗𝐷 for some Q-Cartier divisor D on Z and there exists a generalized lc pair
(𝑍,Δ𝑍 , N) constructed with generalized canonical bundle formula such that

◦ 𝐾𝑍 + Δ𝑍 + N𝑍 = 1
𝑛𝐷,

◦ the coefficients of Δ𝑍 belong to Ω and
◦ 𝑞N is b-Cartier.

Remark 4.3. The existence of n satisfying 𝑛(𝐾𝑋 +Δ +M𝑋 ) ∼ 𝑛𝜋∗(𝐾𝑍 +Δ𝑍 +N𝑍 ) in Lemma 4.2 was
proved in [10, Proof of Theorem 1.5] (see [10, Proof of Lemma 5.4] or [4, Proof of Proposition 6.3]).
If dim𝑍 = 0, then the existence of n is equivalent to the existence of n-complements, which was proved
by Birkar [4, Theorem 1.10].

Theorem 4.4. Let d and p be positive integers, and let Φ ⊂ Q be a DCC set. Then, there exist positive
integers n and q and a DCC set Ω ⊂ Q, depending only on d, p and Φ, satisfying the following. Let
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𝜋 : 𝑋 → 𝑍 be a contraction of normal projective varieties, and let (𝑋,Δ , M) be a generalized lc pair
such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ belong to Φ,
◦ M is b-big/𝑍 and 𝑝M is b-Cartier,
◦ 𝐾𝑋 + Δ + M𝑋 ∼Q,𝑍 0 and
◦ all generalized lc centers of (𝑋,Δ , M) are vertical over Z.

Then 𝑛(𝐾𝑋 + Δ + M𝑋 ) ∼ 𝜋∗𝐷 for some Q-Cartier divisor D on Z and there exists a generalized lc pair
(𝑍,Δ𝑍 , N) constructed with generalized canonical bundle formula such that

◦ 𝐾𝑍 + Δ𝑍 + N𝑍 = 1
𝑛𝐷,

◦ the coefficients of Δ𝑍 belong to Ω and
◦ 𝑞N is b-Cartier.

Proof. We first show the existence of Ω. Let J (𝑑,Φ, 𝑝) ⊂ R be the set of the generalized lc thresholds
of effective Cartier divisors with respect to generalized lc pairs (𝑌, Γ, L)/𝑊 such that dim𝑌 = 𝑑, the
coefficients of Γ belong to Φ and 𝑝L is b-Cartier. Then we have J (𝑑,Φ, 𝑝) ⊂ Q since Φ ⊂ Q, and
J (𝑑,Φ, 𝑝) is an ACC set by [7, Theorem 1.5]. Let P be a prime divisor on Z. Then there is an open
subset𝑈 ⊂ 𝑍 containing the generic point of P such that the generalized lc threshold of 𝜋∗𝑃 with respect
to (𝑋,Δ , M) over the generic point of P is equal to the generalized lc threshold of 𝜋∗𝑃 |𝜋−1 (𝑈 ) with
respect to (𝜋−1 (𝑈),Δ |𝜋−1 (𝑈 ) , M|𝜋−1 (𝑈 ) )/𝑈. From this and the construction of the discriminant part of
generalized canonical bundle formula, we see that the set

Ω := { 1 − 𝑡 | 𝑡 ∈ J (𝑑,Φ, 𝑝) }

is the desired DCC set.
From now on, we prove the existence of n and q of Theorem 4.4. Replacing (𝑋,Δ , M) by aQ-factorial

generalized dlt model, we may assume that (𝑋, 0) is a Q-factorial klt pair. Let Δℎ be the horizontal part
of Δ . Restricting (𝑋,Δ , M) to the general fiber of 𝜋 and applying [7, Theorem 1.6], we can find a finite
set Φ′ ⊂ Φ, which depends only on d, p and Φ, such that the coefficients of Δℎ belong to Φ′.

Since M is b-big/𝑍 and (𝑋,Δℎ , M) is generalized klt (𝑋,Δℎ , M) has a good minimal model
(𝑋 ′,Δ ′ℎ , M) over Z by [6]. Let 𝜋′ : 𝑋 ′ → 𝑍 ′ be the contraction over Z induced by 𝐾𝑋 ′ + Δ ′ℎ + M𝑋 ′ .
Then 𝑍 ′ → 𝑍 is birational. Since M is b-big/𝑍 and (𝑋 ′,Δ ′ℎ , M) is generalized klt, it follows that 𝑋 ′

is of Fano type over 𝑍 ′. By applying Lemma 4.2 to (𝑋 ′,Δ ′ℎ , M) → 𝑍 ′, we get a generalized lc pair
(𝑍 ′,Δ𝑍 ′ , N′) on 𝑍 ′ such that

𝑛(𝐾𝑋 ′ + Δ ′ℎ + M𝑋 ′ ) ∼ 𝑛𝜋′∗ (𝐾𝑍 ′ + Δ𝑍 ′ + N′
𝑍 ′ )

and 𝑞N′ is b-Cartier, where n and q depend only on d, Φ′ and p.
By construction, there are open subsets𝑉 ⊂ 𝑍 and𝑉 ′ ⊂ 𝑍 ′ such that the restriction of (𝑋,Δ , M) → 𝑍

over V coincides with the restriction of (𝑋 ′,Δ ′ℎ , M) → 𝑍 ′ over 𝑉 ′. By an argument similar to [4, 3.4
(2)], we see that the moduli part of the generalized canonical bundle formula for 𝜋 : (𝑋,Δ , M) → 𝑍
depends only on the generic fiber of 𝜋. This implies that N′ is the moduli part of the general-
ized canonical bundle formula for (𝑋,Δ , M) → 𝑍 . Thus, the integer q satisfy the condition of
Theorem 4.4.

We can easily check that n also satisfies the condition of Theorem 4.4. Thus, n and q are the desired
positive integers. �

Theorem 4.5. Let d and p be positive integers, and let Φ ⊂ Q be a DCC set. Then, there exist positive
integers n and q and a DCC set Ω ⊂ Q, depending only on d, p and Φ, satisfying the following.
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Let 𝜋 : 𝑋 → 𝑍 be a contraction of normal projective varieties, and let (𝑋,Δ , M) be a generalized dlt
pair such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ belong to Φ,
◦ 𝑝M is b-Cartier,
◦ 𝐾𝑋 + Δ + M𝑋 ∼Q,𝑍 0 and
◦ there is a log resolution 𝑓 : �̃� → 𝑋 of (𝑋,Δ) such that

– f is an isomorphism over an open subset 𝑈 ⊂ 𝑋 containing all the generic points of generalized lc
centers of (𝑋,Δ , M),

– M descends to �̃� and
– writing 𝐾�̃� + Δ̃ + M�̃� = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + �̃� , where Δ̃ ≥ 0 and �̃� ≥ 0 have no common

components, then M�̃� is log big with respect to ( �̃�, Δ̃).

Then 𝑛(𝐾𝑋 +Δ +M𝑋 ) ∼ 𝜋∗𝐷 for some Q-Cartier divisor D on Z, and there exists a generalized lc pair
(𝑍,Δ𝑍 , N) such that

◦ 𝐾𝑍 + Δ𝑍 + N𝑍 = 1
𝑛𝐷,

◦ the coefficients of Δ𝑍 belong to Ω and
◦ 𝑞N is b-Cartier.

Proof. We prove the theorem by induction on the dimension of X.
If all generalized lc centers of (𝑋,Δ , M) are vertical over Z, then Theorem 4.5 directly follows from

Theorem 4.4. Hence, we may assume that there is a component S of �Δ� dominating Z.
Applying Theorem 4.1 to the general fiber of 𝜋, we can find a positive integer n, depending only on

d, p and Φ, such that 𝑛(𝐾𝑋 + Δ + M𝑋 ) ∼ 𝜋∗𝐷 for some Q-Cartier divisor D on Z.
Let m be a positive integer, which may depend on (𝑋,Δ , M), such that 𝑚Δ is a Weil divisor and

both 𝑚M�̃� and 𝑚𝐷 are Cartier. Then Lemma 2.16 implies that the morphism 𝜋∗O𝑋 ⊗ O𝑍 (𝑚𝐷) →

𝜋𝑆∗O𝑆 ⊗ O𝑍 (𝑚𝐷) is surjective, where 𝜋𝑆 = 𝜋 |𝑆 . Thus, 𝜋𝑆 is a contraction.
Let (𝑆,Δ𝑆 , L) be a generalized dlt pair constructed with divisorial adjunction for generalized pairs.

Then we have

𝑛(𝐾𝑆 + Δ𝑆 + L𝑆) ∼ 𝜋∗𝑆𝐷.

By Remark 2.8, there is a DCC set Ψ ⊂ Q, depending only on d, p and Φ, such that the coefficients of
Δ𝑆 belong to Ψ. We apply the induction hypothesis of Theorem 4.5 to 𝜋𝑆 : (𝑆,Δ𝑆 , L) → 𝑍 . We can
find positive integers 𝑛′ and 𝑞′ and a DCC set Ω ⊂ Q, depending only on d, p and Ψ, such that

𝑛′(𝐾𝑆 + Δ𝑆 + L𝑆) ∼ 𝜋∗𝑆𝐷
′

for some Q-Cartier divisor 𝐷 ′ on Z and there exists a generalized lc pair (𝑍,Δ ′
𝑍 , N′) such that

◦ 𝐾𝑍 + Δ ′
𝑍 + N′

𝑍 = 1
𝑛′ 𝐷

′,
◦ the coefficients of Δ ′

𝑍 belong to Ω and
◦ 𝑞′N′ is b-Cartier.

Let D and D′ be the b-divisors defined by D = 𝐷 and D′ = 𝐷 ′, respectively. We define a generalized
lc pair (𝑍,Δ𝑍 , N) by putting

Δ𝑍 = Δ ′
𝑍 and N = N′ −

1
𝑛′

D′ +
1
𝑛

D.

We will prove that 𝑛𝑛′𝑞′N′ is b-Cartier. Let 𝑍 → 𝑍 be a resolution of Z such that N′ descends to 𝑍 . Let
𝑆 → 𝑆 be a resolution of S such that the induced map 𝜋𝑆 : 𝑆 � 𝑍 is a morphism. By the relation
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𝑛𝑛′𝜋∗𝑆

(
1
𝑛
𝐷

)
∼ 𝑛𝑛′(𝐾𝑆 + Δ𝑆 + L𝑆) ∼ 𝑛𝑛′𝜋∗𝑆

(
1
𝑛′

𝐷 ′

)

and the definitions of N′ and N, it follows that 𝑛𝑛′𝑞′𝜋∗
𝑆

N𝑍 ∼ 𝑛𝑛′𝑞′𝜋∗
𝑆

N′

𝑍
. Since 𝑛𝑛′𝑞′N′

𝑍
is Cartier, by

[10, Proposition 5.3] we see that 𝑛𝑛′𝑞′N𝑍 is Cartier.
We put 𝑞 = 𝑛𝑛′𝑞′. The generalized lc pair (𝑍,Δ𝑍 , N) satisfies 𝐾𝑍 +Δ𝑍 +N𝑍 = 1

𝑛𝐷, the coefficients
of Δ𝑍 belong to Ω and 𝑞N is b-Cartier. From the above discussion, the integers n and q and the DCC
set Ω satisfy the condition of Theorem 4.5. �

We are ready to prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.3. Let 𝜙 : 𝑋 � 𝑋 ′ be finite steps of a (𝐾𝑋 +Δ+𝑀)-MMP such that 𝜙∗(𝐾𝑋 +Δ+𝑀)

is semiample, and let 𝜋 : 𝑋 ′ → 𝑍 be the contraction induced by 𝜙∗(𝐾𝑋 + Δ + 𝑀). We put Δ ′ = 𝜙∗Δ
and 𝑀 ′ = 𝜙∗𝑀 . We consider the generalized dlt pair (𝑋 ′,Δ ′, 𝑀).

Let 𝑈 ′ ⊂ 𝑋 ′ be an open subset such that (𝑈 ′,Δ ′ |𝑈 ′ ) is log smooth, 𝑈 ′ contains all the generic points
of generalized lc centers of (𝑋 ′,Δ ′, 𝑀) and 𝑋 ′ � 𝑋 is an isomorphism on 𝑈 ′. Since M is nef and log
big with respect to (𝑋,Δ), by taking an appropriate resolution of the graph of 𝜙, we get a common
log resolution 𝑓 : �̃� → 𝑋 and 𝑓 ′ : �̃� → 𝑋 ′ of (𝑋,Δ) � (𝑋 ′,Δ ′) such that 𝑓 ′ and 𝑈 ′ satisfy the final
condition of Theorem 4.5.

Since 𝐾𝑋 + Δ + 𝑀 is not big, we have dim𝑍 < dim𝑋 ′. Let F be the general fiber of 𝜋, and put
�̃� = 𝑓 ′−1(𝐹). We recall the hypothesis that 𝑀 =

∑
𝑖 𝜇𝑖𝑀𝑖 and 𝑀𝑖 are log big with respect to (𝑋,Δ).

Since dim𝐹 > 0, we see that ( 𝑓 ∗𝑀𝑖) |�̃� is not numerically trivial for all i. Applying the global ACC
[7, Theorem 1.6] to the restriction of (𝑋 ′,Δ ′, 𝑀) to F, we see that all 𝜇𝑖 belong to a finite set Φ′ ⊂ Φ
depending only on d and Φ. Therefore, there exists a positive integer p, depending only on d and Φ,
such that 𝑝𝜇𝑖 are integers. Then 𝑝𝑀 is b-Cartier.

Obviously, the coefficients of Δ ′ belong to Φ, hence we can apply Theorem 4.5 to (𝑋 ′,Δ ′, 𝑀) → 𝑍 .
By Theorem 4.5, there exist positive integers n and q and a DCC set Ω ⊂ Q, depending only on d, p and
Φ, such that

𝑛(𝐾𝑋 ′ + Δ ′ + 𝑀 ′) ∼ 𝜋∗𝐷

for some Q-Cartier divisor D on Z and there is a generalized lc pair (𝑍,Δ𝑍 , N) such that

◦ 𝐾𝑍 + Δ𝑍 + N𝑍 = 1
𝑛𝐷,

◦ the coefficients of Δ𝑍 belong to Ω and
◦ 𝑞N is b-Cartier.

Then n, q and Ω depend only on d and Φ because p depends only on d and Φ. Since we have

𝐻0(𝑋,O𝑋 (�𝑙𝑛(𝐾𝑋 + Δ + 𝑀)�)) 
 𝐻0 (𝑋 ′,O𝑋 ′ ( �𝑙𝑛(𝐾𝑋 ′ + Δ ′ + 𝑀 ′)�))


 𝐻0 (𝑋 ′,O𝑋 ′ ( �𝑙𝜋∗𝐷�))


 𝐻0 (𝑍,O𝑍 (�𝑙𝑛(𝐾𝑍 + Δ𝑍 + N𝑍 )�))

for every positive integer l, we get the desired n, p and Ω. �

Proof of Theorem 1.2. The theorem follows from Theorem 1.3 and [7, Theorem 1.3]. �

Example 4.6. We fix positive integers d and p. We consider the category C whose objects are generalized
dlt pairs (𝑋,Δ , 𝑀) such that dim𝑋 = 𝑑, Δ is a Weil divisor, 𝑝𝑀 is Cartier, M is nef and log big with
respect to (𝑋,Δ) and 𝐾𝑋 + Δ + 𝑀 ∼Q 0. We show that even if 𝑑 = 2 and 𝑝 = 1, some set

D ⊂ {𝑋 | (𝑋,Δ , 𝑀) ∈ C for some Δ and 𝑀}

is unbounded.
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We put 𝑉 = P1. We fix a very ample Cartier divisor 𝐻𝑉 such that O𝑉 (𝐻𝑉 ) = O𝑉 (1). We construct
a P1-bundle

𝑋𝑛 := P𝑉 (O𝑉 ⊕ O𝑉 (−𝑛𝐻𝑉 ))
𝑓

−→ 𝑉.

LetΔ𝑛 be the unique section corresponding toO𝑋𝑛 (1). Define 𝑀𝑛 := Δ𝑛+(𝑛+2) 𝑓 ∗𝐻𝑉 . By construction,
we have 𝐾𝑋𝑛 +Δ𝑛 +𝑀𝑛 ∼ 0. We can easily check that (𝑋𝑛,Δ𝑛) is a dlt pair and 𝑀𝑛 is an ample Cartier
divisor. We also see that (−𝐾𝑋𝑛 · 𝐴𝑛) ≥ 𝑛 for every n and every ample Cartier divisor 𝐴𝑛 on 𝑋𝑛. Indeed,
we may write 𝐴𝑛 ∼ 𝑎𝑛Δ𝑛 + 𝑏𝑛 𝑓

∗𝐻𝑉 for some 𝑎𝑛 ≥ 1 and 𝑏𝑛 ≥ 1 (cf. [27, III, Exercise 12.5]). Then

(−𝐾𝑋𝑛 · 𝐴𝑛) = (Δ𝑛 + 𝑀𝑛) · 𝐴𝑛 > (𝑛 𝑓 ∗𝐻𝑉 · 𝐴𝑛) ≥ (𝑛 𝑓 ∗𝐻𝑉 · 𝑎𝑛Δ𝑛) ≥ 𝑛.

This fact shows that the set {𝑋𝑛}𝑛≥1 is unbounded.

5. Boundedness results

In this section, we prove some boundedness results. Before we start the main parts of this section, we
recall the notion of the Iitaka volume for Q-Cartier divisors and we prove Theorem 1.4.

Definition 5.1 (Iitaka volume, [39, Definition 1.1]). Let X be a normal projective variety, and let D be
a Q-Cartier divisor on X such that the Iitaka dimension 𝜅(𝑋, 𝐷) is nonnegative. Then the Iitaka volume
of D, denoted by Ivol(D), is defined by

Ivol(D) := lim sup
𝑚→∞

dim𝐻0(𝑋,O𝑋 (�𝑚𝐷�))

𝑚𝜅 (𝑋,𝐷) /𝜅(𝑋, 𝐷)!
.

Proof of Theorem 1.4. The theorem follows from Theorem 1.3 and [5, Theorem 1.3]. With notations
as in Theorem 1.3, the divisor 𝐾𝑍 + Δ𝑍 + N𝑍 is ample and Q-Cartier. Therefore, Ivol(𝐾𝑋 + Δ + 𝑀) =
(𝐾𝑍 + Δ𝑍 + N𝑍 )

dim𝑍 ∈ Q>0. �

From now on, we prove some boundedness results, and we prove Theorems 1.6 and Theorem 1.7.

5.1. Boundedness of complements

In this subsection, we prove Theorem 1.6.

Lemma 5.2. Let ℜ ⊂ [0, 1] be a finite set of rational numbers, and let Φ(ℜ) be the hyperstandard set
associated to ℜ. Let q be a positive integer such that 𝑞𝑎 ∈ Z for every 𝑎 ∈ ℜ. Then 𝑏 − {−𝑞𝑚𝑏} ≥ 0
for every 𝑏 ∈ Φ(ℜ) and every positive integer m.

Proof. We may write 𝑏 = 1 − 𝑎
𝑟 for some 𝑎 ∈ ℜ and 𝑟 ∈ Z>0. Then

𝑏 − {−𝑞𝑚𝑏} = 1 −
𝑎

𝑟
−
{
−𝑞𝑚

(
1 −

𝑎

𝑟

)}
= 1 −

𝑎

𝑟
−
{ 𝑞𝑚𝑎

𝑟

}
.

Since 𝑞𝑎 ∈ Z and 𝑚 ∈ Z, we have {
𝑞𝑚𝑎
𝑟 } ≤ 𝑟−1

𝑟 . Since 𝑎 ≤ 1, we have

1 −
𝑎

𝑟
−
{ 𝑞𝑚𝑎

𝑟

}
≥ 1 −

1
𝑟
−

𝑟 − 1
𝑟

≥ 0.

Therefore, 𝑏 − {−𝑞𝑚𝑏} ≥ 0. �

Lemma 5.3. Let (𝑋,Δ) be a subpair such that X is projective, and let D be a Cartier divisor on X. Let
n be a positive integer, and let 𝑉1, · · · , 𝑉𝑙 be subvarieties of X. Suppose that, for each 1 ≤ 𝑖 ≤ 𝑙, there
is 𝐷𝑖 ∈ |𝐷 | such that (𝑋,Δ + 1

𝑛𝐷𝑖) is sub-lc on a neighborhood of 𝑉𝑖 . Then, for every general member
𝐷 ′ ∈ |𝐷 | the subpair (𝑋,Δ + 1

𝑛𝐷
′) is sub-lc on a neighborhood of

⋃𝑙
𝑖=1 𝑉𝑖 .
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Proof. We take a resolution 𝑓 : 𝑌 → 𝑋 of the linear system |𝐷 |, i.e., 𝑓 ∗ |𝐷 | = |𝑀 | +𝐹, where M is a base
point free Cartier divisor and F is the fixed divisor. Replacing X by Y and replacing Δ , D and 𝑉1, · · · , 𝑉𝑙
accordingly, we may assume that the movable part of |𝐷 | is base point free. By the hypothesis, F satisfies
the property that (𝑋,Δ + 1

𝑛𝐹) is sub-lc on a neighborhood of
⋃𝑙

𝑖=1 𝑉𝑖 . Thus, Lemma 5.3 holds true. �

The following theorem is the main result of this subsection.

Theorem 5.4. Let d be a positive integer. Let ℜ ⊂ [0, 1] be a finite set of rational numbers and Φ(ℜ)

the hyperstandard set associated to ℜ. Then there exists a positive integer n, depending only on d and
ℜ, satisfying the following. Let (𝑋,Δ) be a projective dlt pair such that

◦ dim𝑋 = 𝑑,
◦ the coefficients of Δ belong to Φ(ℜ) and
◦ −(𝐾𝑋 + Δ) is nef and log big.

Then there is an effective Q-divisor Ξ such that (𝑋,Δ + Ξ) is lc and 𝑛(𝐾𝑋 + Δ + Ξ) ∼ 0.

Proof. We prove the theorem by induction on the dimension of X.
If (𝑋,Δ) is klt, then the existence of n is proved by Birkar [4]. So we may assume that (𝑋,Δ) is not

klt. Let p be the minimum positive integer such that 𝑝𝑎 ∈ Z for all 𝑎 ∈ ℜ.
Since (𝑋,Δ) is dlt, there is a log resolution 𝑓 : �̃� → 𝑋 of (𝑋,Δ) such that f is an isomorphism over

an open subset𝑈 ⊂ 𝑋 containing all the generic points of lc centers of (𝑋,Δ). We put �̃� = 𝑓 ∗(𝐾𝑋 +Δ).
We put 𝑆 = 𝑓 −1

∗ 𝑆 for any component S of �Δ�. We prove Theorem 5.4 in two steps.

Step 1. In this step. we prove that the morphsim

𝐻0 ( �̃�,O�̃� (�−𝑚𝑝�̃��)) −→ 𝐻0(𝑆,O�̃� (�−𝑚𝑝�̃�� |�̃�))

defined with Definition 2.9 is surjective for every component S of �Δ� and every positive integer m. We
closely follow the proof of Lemma 2.16.

We can write

𝐾�̃� + Δ̃ = 𝑓 ∗(𝐾𝑋 + Δ) + �̃� ,

where Δ̃ ≥ 0 and �̃� ≥ 0 have no common components. Then −�̃� is nef and log big with respect to
( �̃�, Δ̃), and we can write

𝐾�̃� + Δ̃ − (𝑚𝑝 + 1)�̃� = −𝑚𝑝�̃� + �̃� .

We can write −𝑚𝑝�̃� = �−𝑚𝑝�̃�� + {−𝑚𝑝 𝑓 −1
∗ Δ} + �̃� ′ with an effective f -exceptional Q-divisor �̃� ′. We

put

Δ̃ ′ = Δ̃ − {−𝑚𝑝 𝑓 −1
∗ Δ} − 𝑆.

By Lemma 5.2, we have Δ̃ ′ ≥ 0 and

𝐾�̃� + 𝑆 + Δ̃ ′ − (𝑚𝑝 + 1)�̃� = �−𝑚𝑝�̃�� + �̃� + �̃� ′.

We define a Weil divisor �̃� on �̃� so that

coeff𝑃 (�̃�) =

{
0 (coeff𝑃 (Δ̃ ′ − {(�̃� + �̃� ′)}) ≥ 0)
1 (coeff𝑃 (Δ̃ ′ − {(�̃� + �̃� ′)}) < 0)

for every prime divisor P. We put

�̃� = Δ̃ ′ − {(�̃� + �̃� ′)} + �̃� and �̃� = �(𝐸 + �̃� ′)� + �̃�.
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Then we have

𝐾�̃� + 𝑆 + �̃� − (𝑚𝑝 + 1)�̃� = �−𝑚𝑝�̃�� + �̃�.

By the definition, we can check that �̃� is a boundary divisor, ��̃�� ≤ �Δ̃ ′� and �̃� is an effective
f -exceptional Weil divisor. Then −�̃� is nef and log big with respect to ( �̃�, 𝑆 + �̃�). By the Kodaira type
vanishing theorem [12, Lemma 1.5], we see that

𝐻0( �̃�,O�̃� (�−𝑚𝑝�̃�� + �̃�)) −→ 𝐻0 (𝑆,O�̃� ((�−𝑚𝑝�̃�� + �̃�) |�̃�))

is surjective. Since �̃� is f -exceptional, there are natural isomorphisms

𝐻0( �̃�,O�̃� (�−𝑚𝑝�̃��)) 
 𝐻0(𝑋,O𝑋 (�−𝑚𝑝(𝐾𝑋 + Δ)�)) 
 𝐻0( �̃�,O�̃� (�−𝑚𝑝�̃�� + �̃�)).

From the following diagram

𝐻0( �̃�,O�̃� (�−𝑚𝑝�̃�� + �̃�)) �� �� 𝐻0(𝑆,O�̃� ((�−𝑚𝑝�̃�� + �̃�) |�̃�))

𝐻0( �̃�,O�̃� (�−𝑚𝑝�̃��))




��

�� 𝐻0 (𝑆,O�̃� (�−𝑚𝑝�̃�� |�̃�)),
��

��

the lower horizontal morphism is surjective. We finish this step.

For each component S of �Δ�, we define a dlt pair (𝑆,Δ𝑆) by divisorial adjunction 𝐾𝑆 + Δ𝑆 =
(𝐾𝑋 + Δ) |𝑆 . By Remark 2.8, there exists a finite set 𝔖 ⊂ [0, 1] of rational numbers, depending only
on d and ℜ, such that all the coefficients of Δ𝑆 belong to the hyperstandard set associated to 𝔖. By the
induction hypothesis of Theorem 5.4, there is an 𝑛′, depending only on 𝑑 − 1 and𝔖, such that, for every
(𝑆,Δ𝑆) where S is a component of �Δ�, there is

Δ+
𝑆 ≥ Δ𝑆

such that (𝑆,Δ+
𝑆) is lc and 𝑛′(𝐾𝑆 + Δ+

𝑆) ∼ 0.

Step 2. We put 𝑛 = 𝑛′𝑝. From now on, we prove that the n satisfies the property of Theorem 5.4.
Pick a component S of �Δ�, put 𝑆 = 𝑓 −1

∗ 𝑆 and take a Q-divisor Δ+
𝑆 ≥ Δ𝑆 on S such that (𝑆,Δ+

𝑆) is lc
and 𝑛′(𝐾𝑆 + Δ+

𝑆) ∼ 0. We put

𝐶𝑆 = 𝑛(Δ+
𝑆 − Δ𝑆) ∼ −𝑛(𝐾𝑆 + Δ𝑆).

We put 𝐶�̃� = 𝑓 ∗
�̃�
𝐶𝑆 , where 𝑓�̃� = 𝑓 |�̃� : 𝑆 → 𝑆. Then −𝑛�̃� |�̃� ∼ 𝐶�̃� . We put �̃� = {−𝑛�̃�}. Then

−𝑛�̃� |�̃� = �−𝑛�̃�� |�̃� + �̃� |�̃� ,

and �̃� |�̃� is well-defined as a Q-divisor on 𝑆. We have ��̃� |�̃�� = 0 since Supp(�̃� + 𝑆) is snc. Therefore, we
have

�−𝑛�̃�� |�̃� = �−𝑛�̃� |�̃�� and �̃� |�̃� = {−𝑛�̃� |�̃�}.

Therefore, we have

�−𝑛�̃�� |�̃� ∼ �𝐶�̃�� and �̃� |�̃� = {𝐶�̃�}.

By Step 1, we can find an effective Weil divisor �̃� ∼ �−𝑛�̃�� such that �̃� |�̃� = �𝐶�̃��. We put𝐶 = 𝑓∗(�̃�+ �̃�).
Since �̃� + �̃� ∼ −𝑛�̃� and �̃� = 𝑓 ∗(𝐾𝑋 + Δ), we can easily check 𝐶 ∼ −𝑛(𝐾𝑋 + Δ) and �̃� + �̃� = 𝑓 ∗𝐶.
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By definition of C, we see that

𝐶 |𝑆 = 𝑓�̃�∗((�̃� + �̃�) |�̃�) = 𝑓�̃�∗𝐶�̃� = 𝐶𝑆 = 𝑛(Δ+
𝑆 − Δ𝑆).

From this and inversion of adjunction [35], the pair (𝑋,Δ + 1
𝑛𝐶) is lc on a neighborhood of S. We define

Γ̃ by 𝐾�̃� + Γ̃ = 𝑓 ∗(𝐾𝑋 + Δ). Since 𝑓 ∗𝐶 = �̃� + �̃�, we see that the subpair ( �̃�, Γ̃ + 1
𝑛 (�̃� + �̃�)) is sub-lc

on a neighborhood of 𝑓 −1(𝑆).
In this way, for every component S of �Δ�, we may find �̃� ∈ |�−𝑛�̃�� | such that the subpair

( �̃�, Γ̃ + 1
𝑛 �̃� + 1

𝑛 �̃�) is sub-lc on a neighborhood of 𝑓 −1(𝑆). By Lemma 5.3, there is

�̃� ∈ |�−𝑛�̃�� |

such that ( �̃�, Γ̃ + 1
𝑛 �̃� + 1

𝑛 �̃�) is sub-lc on a neighborhood of 𝑓 −1(�Δ�). By construction, we have
�̃� + �̃� ∼ −𝑛 𝑓 ∗(𝐾𝑋 + Δ). By putting

𝑀 = 𝑓∗(�̃� + �̃�),

we have 𝑀 ∼ −𝑛(𝐾𝑋 + Δ) and the pair (𝑋,Δ + 1
𝑛𝑀) is lc on a neighborhood of �Δ�.

Finally, if (𝑋,Δ+ 1
𝑛𝑀) is not lc, then there is 𝜖 ∈ (0, 1

𝑛 ) such that the non-klt locus of (𝑋,Δ+( 1
𝑛−𝜖)𝑀)

has at least two connected components. Then we get a contradiction by the connectedness principle
for non-klt locus [37, 17.4 Theorem]. Thus, (𝑋,Δ + 1

𝑛𝑀) is lc, and therefore Ξ := 1
𝑛𝑀 is the desired

divisor. �

Proof of Theorem 1.6. We will freely use the notations in Theorem 1.6. We may assume that 𝐾𝑋 +Δ+𝑀
is not big. By the argument similar to the proof of Theorem 1.3, the global ACC [7, Theorem 1.6] implies
the existence of a positive integer m, depending only on d and Φ, such that 𝑚Δ ′

𝐹 is a Weil divisor and
𝑚𝑀 is Cartier. By Theorem 4.1, we have 𝑛1 (𝐾𝐹 + Δ ′

𝐹 + 𝑀 ′
𝐹 ) ∼ 0 for some positive integer 𝑛1 which

depends only on d and m. If there exists 𝑛2 ∈ Z>0 depending only on d and m such that (𝐹,Δ ′
𝐹 + 1

𝑛2
𝐵′
𝐹 )

is lc for some 𝐵′
𝐹 ∈ | − 𝑛2 (𝐾𝐹 + Δ ′

𝐹 ) |, then 𝑛 := 𝑛1𝑛2 is the desired positive integer. In this way, we
only need to prove the existence of the above 𝑛2 ∈ Z>0.

We run a (𝐾𝑋 + Δ + 3𝑑𝑚𝑀)-MMP with scaling of an ample divisor. By the length of extremal rays
([15, Section 18] or [17, Theorem 4.6.2]) and the same argument as in the proof of Theorem 3.16, we
get a sequence of steps of a (𝐾𝑋 + Δ + 3𝑑𝑚𝑀)-MMP to a good minimal model

(𝑋,Δ , 3𝑑𝑚𝑀) � ( �̃�, Δ̃ , 3𝑑𝑚𝑀)

such that

◦ 𝑋 � �̃� is a sequence of steps of a (𝐾𝑋 + Δ + 𝑀)-MMP, and
◦ defining �̃� to be the birational transform of M on �̃� , then 𝑚�̃� is a nef Cartier divisor on �̃� that is

log big with respect to ( �̃�, Δ̃).

With the argument in [29, Proof of Lemma 2.14], we may construct a sequence of steps of a (𝐾�̃�+Δ̃+�̃�)-
MMP with scaling of (3𝑑𝑚 − 1)�̃� terminating with a good minimal model

( �̃�, Δ̃ , 𝑀) � ( �̃� ′, Δ̃ ′, 𝑀).

Let �̃� ′ be the birational transform of M on �̃� ′. By construction, 𝐾�̃� ′ + Δ̃ ′ + (1+ 𝑡)�̃� ′ is nef for some
𝑡 > 0. Moreover, taking a common resolution of �̃� � �̃� ′ and using the negativity lemma, we see that
�̃� ′ is log big with respect to ( �̃� ′, Δ̃ ′). Let �̃� : �̃� ′ → 𝑍 be the contraction induced by 𝐾�̃� ′ + Δ̃ ′ + �̃� ′,
and let �̃� be the general fiber of �̃�. We put Δ̃ ′

�̃�
= Δ̃ ′ |�̃� and �̃� ′

�̃�
= �̃� ′ |�̃� .
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Since 𝐾�̃� ′ + Δ̃ ′ + �̃� ′ ∼Q,𝑍 0 and 𝐾�̃� ′ + Δ̃ ′ + (1 + 𝑡)�̃� ′ is nef for some 𝑡 > 0, we see that the divisor

�̃� ′ ∼Q,𝑍 −(𝐾�̃� ′ + Δ̃ ′)

is nef and log big over Z with respect to ( �̃� ′, Δ̃ ′). By Theorem 5.4, there exists a positive integer 𝑛2,
depending only on d and m, such that (�̃�, Δ̃ ′

�̃�
+ 1

𝑛2
�̃�′

�̃�
) is an lc pair for some �̃�′

�̃�
∈ | − 𝑛2 (𝐾�̃� + Δ̃ ′

�̃�
) |.

Because 𝑋 � 𝑋 ′ and 𝑋 � �̃� ′ are sequences of steps of (𝐾𝑋 +Δ +𝑀)-MMP to good minimal models,
the induced birational map 𝑋 ′ � �̃� ′ is isomorphic in codimension one and therefore so is 𝐹 � �̃�.
Then (𝐹,Δ ′

𝐹 + 1
𝑛2

𝐵′
𝐹 ) is lc for some 𝐵′

𝐹 ∈ | − 𝑛2(𝐾𝐹 + Δ ′
𝐹 ) |. Hence, 𝑛 := 𝑛1𝑛2 satisfies the conditions

of Theorem 1.6. �

The following example shows that the condition of the log bigness of the nef divisors in Theorem 1.2
and Theorem 1.6 cannot be relaxed to the bigness.

Example 5.5. Let (𝑋,Δ) be a projective log smooth dlt pair such that Δ is a reduced divisor,
𝐻1 (𝑋,O𝑋 ) ≠ 0 and −(𝐾𝑋 + Δ) is nef and big. For example, take an elliptic curve E with a very
ample divisor H and define

𝑋 := P𝐸 (O𝐸 ⊕ O𝐸 (−𝐻)).

For each 𝑛 ≥ 1, let 𝐷𝑛 be a Cartier divisor on X such that 𝑛𝐷𝑛 ∼ 0 and 𝑙𝐷𝑛 � 0 for all 0 < 𝑙 < 𝑛.
We define 𝐿𝑛 := −(𝐾𝑋 + Δ) + 𝐷𝑛, and we consider the set {(𝑋,Δ , 𝐿𝑛)}𝑛≥1. If the log bigness of 𝑀𝑖

in Theorem 1.2 or Theorem 1.6 can be relaxed to the bigness, then there is a positive integer m such
that 𝑚𝐷𝑛 = 𝑚(𝐾𝑋 + Δ + 𝐿𝑛) ∼ 0 for all n, which contradicts the definition of 𝐷𝑛. Therefore, the log
bigness of 𝑀𝑖 in Theorem 1.2 and Theorem 1.6 cannot be relaxed to the bigness.

5.2. Effective finite generation

In this subsection, we prove Theorem 1.7.
We will first prove the effective base point free theorem for special generalized dlt pairs (Theorem 5.8).

For the proof, we need the base point free theorem for quasi-log schemes [17, Theorem 6.5.1] (see also
[1, Theorem 5.1]).

Definition 5.6 (Quasi-log scheme, [17, Definition 6.2.2], see also [1, Definition 4.1]). A quasi-log
scheme is a scheme X endowed with an R-Cartier divisor (or R-line bundle) 𝜔 on X, a closed subscheme
𝑋−∞ � 𝑋 and a finite collection {𝐶} of reduced and irreducible subschemes of X such that there is a
proper morphism 𝑓 : (𝑌, 𝐵𝑌 ) → 𝑋 from a globally embedded simple normal crossing pair satisfying
the following properties:

◦ 𝑓 ∗𝜔 ∼R 𝐾𝑌 + 𝐵𝑌 ,
◦ the natural map O𝑋 → 𝑓∗O𝑌 (�−(𝐵

<1
𝑌 )�) induces an isomorphism

I𝑋−∞



−→ 𝑓∗O𝑌 (�−(𝐵

<1
𝑌 )� − �𝐵>1

𝑌 �),

where I𝑋−∞
is the defining ideal sheaf of 𝑋−∞, and

◦ the collection of reduced and irreducible subschemes {𝐶} coincides with the images of the strata of
(𝑌, 𝐵𝑌 ) that are not included in 𝑋−∞.

We simply write [𝑋, 𝜔] to denote the above data

(𝑋, 𝜔, 𝑓 : (𝑌, 𝐵𝑌 ) → 𝑋)

if there is no risk of confusion. We sometimes use Nqlc(𝑋, 𝜔) to denote 𝑋−∞.
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Theorem 5.7 [15, Theorem 6.5.1]. Let [𝑋, 𝜔] be a quasi-log scheme and 𝜋 : 𝑋 → 𝑆 a projective
morphism to a scheme S. Let D be a 𝜋-nef Cartier divisor on X such that 𝑝𝐷 − 𝜔 is 𝜋-ample for some
positive integer p and O𝑋−∞

(𝑚𝐷 |𝑋−∞
) is 𝜋 |𝑋−∞

-generated for all 𝑚 � 0. Then there is a positive integer
𝑚0 such that O𝑋 (𝑚𝐷) is 𝜋-generated for every integer m such that 𝑚 ≥ 𝑚0.

Theorem 5.8. Let d and p be positive integers. Then there exists a positive integer m, depending only
on d and p, satisfying the following. Let (𝑋,Δ , M) be a generalized dlt pair such that

◦ dim𝑋 = 𝑑,
◦ M is a Q-b-divisor and 𝑝(𝐾𝑋 + Δ + M𝑋 ) is nef and Cartier and
◦ there is a log resolution 𝑓 : �̃� → 𝑋 of (𝑋,Δ) such that

– f is an isomorphism over an open subset 𝑈 ⊂ 𝑋 containing all the generic points of generalized lc
centers of (𝑋,Δ , M),

– M descends to �̃� and
– writing 𝐾�̃� + Δ̃ + M�̃� = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 ) + �̃� , where Δ̃ ≥ 0 and �̃� ≥ 0 have no common

components, then M�̃� is log big with respect to ( �̃�, Δ̃).

Then 𝑚(𝐾𝑋 + Δ + M𝑋 ) is base point free.

Proof. We prove it by induction on the dimension of X.
If (𝑋,Δ , M) is generalized klt, then we may find a Q-divisor 𝐸 ≥ 0 on X such that M𝑋 − 𝐸 is ample

and (𝑋,Δ + 𝐸) is klt. Then Theorem 5.8 follows from the effective base point free theorem for klt pairs
[36]. Thus, we may assume that (𝑋,Δ , M) is not generalized klt.

Step 1. In this step, we define the structure of a quasi-log scheme on X.
Let A be an ample Q-divisor on X. Since M�̃� is nef and big, rescaling A if necessary, we can find

�̃� := �̃�1 + �̃�2 ∈ |M�̃� − 𝑓 ∗𝐴|Q

such that �̃�1 is ample and �̃�2 ≥ 0. We take a log resolution 𝑔 : 𝑌 → �̃� of ( �̃�, Δ̃ + �̃� + �̃�), where Δ̃ and
�̃� are as in Theorem 5.8, such that −𝐸𝑌 is g-ample for a g-exceptional Q-divisor 𝐸𝑌 ≥ 0. Rescaling 𝐸𝑌 ,
we may assume that −𝐸𝑌 +𝑔∗ �̃�1 is ample. We put ℎ = 𝑓 ◦𝑔 : 𝑌 → 𝑋 . Then, for every 0 < 𝑡 � 1 we have

𝑔∗M�̃� − 𝑡ℎ∗𝐴 ∼Q(1 − 𝑡)𝑔∗M�̃� + 𝑡𝑔∗ �̃�

=(1 − 𝑡)𝑔∗M�̃� + 𝑡 (𝑔∗ �̃�1 − 𝐸𝑌 ) + 𝑡𝐸𝑌 + 𝑡𝑔∗ �̃�2.

We define Δ𝑌 by 𝐾𝑌 + Δ𝑌 = 𝑔∗(𝐾�̃� + Δ̃ − �̃�). By choosing 𝑡 > 0 sufficiently small, we can find

𝑅𝑌 ∼Q 𝑔∗M�̃� − 𝑡ℎ∗𝐴

such that

◦ 𝑅𝑌 is the sum of an effective ample Q-divisor and an effective Q-divisor,
◦ (𝑌,Δ𝑌 + 𝑅𝑌 ) is log smooth and
◦ �(Δ𝑌 + 𝑅𝑌 )� = �Δ𝑌 �.

By perturbation of the coefficients of Δ𝑌 + 𝑅𝑌 , we may assume that no coefficient of Δ𝑌 + 𝑅𝑌 is one.
We put

𝐵𝑌 = Δ𝑌 + 𝑅𝑌 and 𝐵 = ℎ∗𝐵𝑌 .

Then 𝐾𝑌 + 𝐵𝑌 ∼Q (𝐾𝑌 + Δ𝑌 ) + 𝑔∗M�̃� − 𝑡ℎ∗𝐴, and therefore we have

𝐾𝑌 + 𝐵𝑌 ∼Q 𝑔∗(𝐾�̃� + Δ̃ − �̃�) + 𝑔∗M�̃� − ℎ∗(𝑡𝐴) = ℎ∗(𝐾𝑋 + Δ + M𝑋 − 𝑡𝐴).
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From this, we have

𝐾𝑌 + 𝐵𝑌 = ℎ∗(𝐾𝑋 + 𝐵) and 𝐾𝑋 + Δ + M𝑋 ∼Q 𝐾𝑋 + 𝐵 + 𝑡𝐴. (I)

Recalling that no coefficient of 𝐵𝑌 is one, we have

�(−𝐵<1
𝑌 )� − �𝐵>1

𝑌 � = −�𝐵𝑌 � = −�Δ𝑌 �

and the right-hand side is the sum of −𝑔∗ �Δ̃� and an effective h-exceptional divisor. From this, we can
check that

ℎ∗O𝑌 (�(−𝐵
<1
𝑌 )� − �𝐵>1

𝑌 �) = O𝑋 (−�Δ�). (II)

As in (I) and (II), we defined an effective Q-divisor B on X, a log resolution ℎ : 𝑌 → 𝑋 of (𝑋, 𝐵) and
an Q-divisor 𝐵𝑌 defined with 𝐾𝑌 + 𝐵𝑌 = ℎ∗(𝐾𝑋 + 𝐵) such that

◦ (𝐾𝑋 + Δ + M𝑋 ) − (𝐾𝑋 + 𝐵) is ample, and
◦ no coefficient of 𝐵𝑌 is one and ℎ∗O𝑌 (�(−𝐵

<1
𝑌 )� − �𝐵>1

𝑌 �) = O𝑋 (−�Δ�).

From now on, we put 𝐿 = 𝐾𝑋 + Δ + M𝑋 .

Step 2. In this step, we prove the existence of a positive integer 𝑚′, depending only on d and p, such
that O𝑋 (𝑚

′𝐿) is generated by global sections on a neighborhood of �Δ�.
Pick any component S of �Δ�, and put 𝑆 = 𝑓 −1

∗ 𝑆. Let (𝑆,Δ𝑆 , M′) be the generalized dlt pair defined
with divisorial adjunction. We have

𝐿 |𝑆 ∼Q 𝐾𝑆 + Δ𝑆 + M′
𝑆 .

We define M′′ to be a Q-b-divisor on S such that M′′
𝑆 = 𝐿 |𝑆 − (𝐾𝑆 + Δ𝑆 + M′

𝑆) and M′′ descends to S.
Then the generalized dlt pair

(𝑆,Δ𝑆 , M′ + M′′)

satisfies the condition that 𝑝(𝐾𝑆 +Δ𝑆 +M′
𝑆 +M′′

𝑆 ) = 𝑝𝐿 |𝑆 is Cartier. It is easy to see that we may apply
the induction hypothesis of Theorem 5.8 to (𝑆,Δ𝑆 , M′ + M′′). Since 𝐾𝑆 + Δ𝑆 + M′

𝑆 + M′′
𝑆 = 𝑝𝐿 |𝑆 ,

applying the induction hypothesis of Theorem 5.8 to (𝑆,Δ𝑆 , M′ + M′′), there exists a positive integer
𝑚′′, depending only on d and p, such that 𝑚′′𝐿 |𝑆 is base point free.

By our assumption of Δ̃ and �̃� , we see that Δ̃ + ��̃�� − �̃� is a boundary Q-divisor such that
�Δ̃� = �(Δ̃ + ��̃�� − �̃�)� and

𝐾�̃� + Δ̃ + ��̃�� − �̃� + M�̃� + (𝑚′′𝑝 − 1) 𝑓 ∗𝐿 = 𝑚′′𝑝 𝑓 ∗𝐿 + ��̃�� .

Then M�̃� + (𝑚′′𝑝 − 1) 𝑓 ∗𝐿 is nef and log big with respect to ( �̃�, Δ̃ + ��̃�� − �̃�). From the fact and the
Kodaira type vanishing theorem [12, Lemma 1.5], we have

𝐻1 ( �̃�,O�̃� (𝑚
′′𝑝 𝑓 ∗𝐿 + ��̃�� − 𝑆)) = 0.

By the same argument as in [12] or the proof of Lemma 2.16, we obtain the diagram.

𝐻0 ( �̃�,O�̃� (𝑚
′′𝑝 𝑓 ∗𝐿 + ��̃��)) �� �� 𝐻0 (𝑆,O�̃�

(
(𝑚′′𝑝 𝑓 ∗𝐿 + ��̃��) |�̃�

) )

𝐻0 (𝑋,O𝑋 (𝑚
′′𝑝𝐿))




��

�� 𝐻0(𝑆,O𝑆 (𝑚
′′𝑝𝐿 |𝑆)).

��

��
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Therefore, the base locus of 𝑚′′𝑝𝐿 does not intersect S. Since S is a component of �Δ� and 𝑚′′𝑝 does
not depend on S, we see that 𝑚′ := 𝑚′′𝑝 is the desired positive integer.

Step 3. In this step, we construct a contraction 𝜋 : 𝑋 → 𝑍 induced by 𝑚′𝐿 such that 𝑚′𝐿 ∼ 𝜋∗𝐷𝑍 for
some ample Cartier divisor 𝐷𝑍 on Z.

By Step 1, we get a quasi-log scheme (𝑋, 𝐾𝑋 + 𝐵, ℎ : (𝑌, 𝐵𝑌 ) → 𝑋) such that

𝑚′𝐿 − (𝐾𝑋 + 𝐵) = (𝑚′ − 1)𝐿 + (𝐾𝑋 + Δ + M𝑋 ) − (𝐾𝑋 + 𝐵)

is ample. By Step 2 and �Δ� = Nqlc(𝑋, 𝐾𝑋 + 𝐵), we see that

ONqlc(𝑋,𝐾𝑋+𝐵) (𝑚
′𝐿 |Nqlc(𝑋,𝐾𝑋+𝐵) )

is globally generated. Since X is projective, applying Theorem 5.7 to [𝑋, 𝐾𝑋 + 𝐵] and 𝑚′𝐿, we get a
contraction 𝜋 : 𝑋 → 𝑍 induced by 𝑚′𝐿 and a positive integer 𝑚0 such that both 𝑚0𝑚

′𝐿 and (𝑚0+1)𝑚′𝐿
are the pullbacks of Cartier divisors on Z. Therefore, 𝑚′𝐿 ∼ 𝜋∗𝐷𝑍 for some Cartier divisor 𝐷𝑍 on Z.
By construction, 𝐷𝑍 is ample.

Step 4. From this step, we prove the existence of m in Theorem 5.8. In this step, we treat the case when
there is a component 𝑆′ of �Δ� dominating Z.

By Lemma 2.16, the restriction 𝜋𝑆′ := 𝜋 |𝑆′ : 𝑆′ → 𝑍 is a contraction. By Step 3, we have
𝜋𝑆′∗O𝑆′ (𝑚

′𝐿 |𝑆′ ) 
 O𝑍 (𝐷𝑍 ). By Step 2, it follows that 𝑚′𝐿 |𝑆′ is base point free. Then 𝐷𝑍 is base
point free, and therefore 𝑚′𝐿 is base point free.

Step 5. Finally, we treat the case when �Δ� is vertical over Z.
We put 𝐿 ′ = 𝑚′𝐿. For each positive integer l, let 𝑍𝑙 ⊂ 𝑍 be the base locus of |𝑙𝐷𝑍 |. By the relation

𝐿 ′ ∼ 𝜋∗𝐷𝑍 , we see that 𝜋−1 (𝑍𝑙) is disjoint from �Δ� for all l.
In the rest of the proof, we closely follow [14, Proof of Theorem 1.1]. We recall the property that the

non-klt locus of (𝑋, 𝐵) and the non-lc locus of (𝑋, 𝐵) are the same and they coincide with �𝐵� = �Δ�
(see Step 1). We put

𝐴′
𝑙 =

3
2
𝑙𝐿 ′ − (𝐾𝑋 + 𝐵)

for each positive integer l. By Step 1, it follows that 𝐴′
𝑙 is ample for all l. Fix an arbitrary positive integer

l, and suppose 𝑍𝑙 ≠ ∅. Let 𝐶0, 𝐶1, · · · , 𝐶𝑑 be general members of |𝑙𝐷𝑍 |, and we put

𝐶 = 𝜋∗(
1
2
𝐶0 + 𝐶1 + · · · + 𝐶𝑑).

Then 𝐶 ∼Q (𝑑 + 1
2 )𝑙𝜋

∗𝐷𝑍 , and the non-lc locus of (𝑋, 𝐵 +𝐶) is the disjoint union of 𝜋−1 (𝑍𝑙) and �𝐵�.
Pick an arbitrary irreducible component V of 𝜋−1(𝑍𝑙) such that 𝜋(𝑉) has the maximal dimension.

Then V is disjoint from �𝐵�. Let ℎ̃ : 𝑌 → 𝑋 be a log resolution of (𝑋, 𝐵 +𝐶) such that ℎ̃−1 (𝜋−1 (𝜋(𝑉))
is an snc divisor. We may write

𝐾𝑌 = ℎ̃∗(𝐾𝑋 + 𝐵) +
∑
𝑖

𝑒𝑖𝐸𝑖

for some 𝑒𝑖 ∈ Q. Let 𝛾 be the lc threshold of C with respect to (𝑋, 𝐵) over the generic point of 𝜋(𝑉). It
follows that 𝛾 ∈ (0, 1) ∩Q because (𝑋, 𝐵) is klt on 𝑋 \ �𝐵� and 𝜋(𝑉) is disjoint from 𝜋(�𝐵�). We may
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write 𝛾ℎ̃∗𝐶 =
∑
𝑖 𝛾𝑖𝐸𝑖 for some 𝛾𝑖 ∈ Q≥0. Then we have

ℎ̃∗𝜋∗((𝑑 + 2)𝑙𝐷𝑍 ) ∼Q
3
2
ℎ̃∗(𝑙𝐿 ′) + ℎ̃∗𝜋∗((𝑑 +

1
2
)𝑙𝐷𝑍 )

∼Q ℎ̃
∗(𝐾𝑋 + 𝐵 + 𝐴′

𝑙) + 𝛾ℎ̃∗𝐶 + (1 − 𝛾) ℎ̃∗𝐶

∼Q𝐾𝑌 +
∑
𝑖

(𝛾𝑖 − 𝑒𝑖)𝐸𝑖 + ℎ̃∗𝐴′
𝑙 + (1 − 𝛾) ℎ̃∗𝐶.

We can write ∑
𝑖

�(𝛾𝑖 − 𝑒𝑖)�𝐸𝑖 = 𝐹 + 𝐺1 + 𝐺2 − 𝐻,

where 𝐹, 𝐺1, 𝐺2, and 𝐻 are all effective and they have no common components with each other such that

◦ the image of every component of 𝐹 by 𝜋 ◦ ℎ̃ is 𝜋(𝑉),
◦ the image of every component of 𝐺1 by 𝜋 ◦ ℎ̃ does not contain 𝜋(𝑉),
◦ the image of every component of 𝐺2 by 𝜋 ◦ ℎ̃ contains 𝜋(𝑉) but does not coincide with 𝜋(𝑉) and
◦ 𝐻 is ℎ̃-exceptional.

Note that ℎ̃−1
∗ �𝐵� ⊂ Supp𝐺1, 𝐹 is a nonzero reduced divisor by the definition of 𝛾, and 𝐺2 is reduced

because every irreducible component of (𝜋 ◦ ℎ̃) (𝐺2) intersects 𝜋(𝑉) and (𝑌,
∑
𝑖 (𝛾𝑖 − 𝑒𝑖)𝐸𝑖) is sub-lc

over a neighborhood of the generic point of 𝜋(𝑉). By taking blowups along lc centers of (𝑌, 𝐺2) if
necessary, we may assume that any lc center T of (𝑌, 𝐺2) does not satisfy (𝜋 ◦ ℎ̃) (𝑇) ⊂ 𝜋(𝑉).

For each 𝑗 ∈ Z≥0, we define

𝑁 𝑗 := ℎ̃∗𝜋∗(( 𝑗 + 𝑑 + 2)𝑙𝐷𝑍 ) + 𝐻 − 𝐺1,

and consider the exact sequence

0 −→ O𝑌 (𝑁 𝑗 − 𝐹) −→ O𝑌 (𝑁 𝑗 ) −→ O𝐹 (𝑁 𝑗 |𝐹 ) −→ 0.

By construction, we have

𝑁 𝑗 − 𝐹 ∼Q 𝐾𝑌 +
∑
𝑖

{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 + 𝐺2 + ℎ̃∗𝐴′
𝑙 + (1 − 𝛾) ℎ̃∗𝐶 + 𝑗 𝑙 ℎ̃∗𝜋∗𝐷𝑍 , (♠)

and no lc center T of the lc pair
(
𝑌,

∑
𝑖{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 + 𝐺2

)
satisfies (𝜋 ◦ ℎ̃) (𝑇) ⊂ 𝜋(𝑉). Here, the log

canonicity of the pair
(
𝑌,

∑
𝑖{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 +𝐺2

)
follows from the facts that

(
𝑌, Supp(

∑
𝑖 𝐸𝑖 +𝐺2)

)
is log

smooth, 𝐺2 is reduced and 𝐺2 and
∑
𝑖{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 have no common components. By [15, Theorem 6.3

(i)], the connecting morphism

(𝜋 ◦ ℎ̃)∗O𝐹 (𝑁 𝑗 |𝐹 ) −→ 𝑅1(𝜋 ◦ ℎ̃)∗O𝑌 (𝑁 𝑗 − 𝐹)

is a zero map. Thus, we get the following exact sequence

0 −→ (𝜋 ◦ ℎ̃)∗O𝑌 (𝑁 𝑗 − 𝐹) −→ (𝜋 ◦ ℎ̃)∗O𝑌 (𝑁 𝑗 ) −→ (𝜋 ◦ ℎ̃)∗O𝐹 (𝑁 𝑗 |𝐹 ) −→ 0.

Since 𝐴′
𝑙 is ample, there is an 𝐴 ∼Q ℎ̃∗𝐴′

𝑙 such that
(
𝑌,

∑
𝑖{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 +𝐺2 + 𝐴

)
is a log smooth lc pair.

Because (1 − 𝛾) ℎ̃∗𝐶 + 𝑗 𝑙 ℎ̃∗𝜋∗𝐷𝑍 is the pullback of an ample Q-divisor on Z, we have

𝐻1 (𝑍, (𝜋 ◦ ℎ̃)∗O𝑌 (𝑁 𝑗 − 𝐹)) = 0

https://doi.org/10.1017/fms.2022.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.75


40 Kenta Hashizume

by equation (♠) and [15, Theorem 6.3 (ii)]. From this, we get a surjective morphism

𝐻0(𝑌,O𝑌 (𝑁 𝑗 )) −→ 𝐻0 (𝐹,O𝐹 (𝑁 𝑗 |𝐹 )). (♣)

From the definitions of 𝛾 and 𝐹, it follows that no component of 𝐹 is a component of
∑
𝑖{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 .

By equation (♠) and the construction of 𝐴, we have

𝑁 𝑗 |𝐹 ∼Q 𝐾𝐹 +
(∑

𝑖

{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 + 𝐺2 + 𝐴
)���
𝐹
+
(
(1 − 𝛾) ℎ̃∗𝐶 + 𝑗 𝑙 ℎ̃∗𝜋∗𝐷𝑍

)���
𝐹

and
(
𝐹, (

∑
𝑖{𝛾𝑖 − 𝑒𝑖}𝐸𝑖 + 𝐺2 + 𝐴) |𝐹

)
is a simple normal crossing pair. By the vanishing theorem for

simple normal crossing pairs [14, Theorem 3.2 (b)], we see that

𝐻𝑞 (𝜋(𝑉), (𝜋 ◦ ℎ̃)∗O𝐹 (𝑁 𝑗 |𝐹 )) = 0

for all 𝑞 > 0. Thus, we have

dim𝐻0 (𝐹,O𝐹 (𝑁 𝑗 |𝐹 )) =dim𝐻0 (𝜋(𝑉), (𝜋 ◦ ℎ̃)∗O𝐹 (𝑁 𝑗 |𝐹 )
)

=𝜒
(
𝜋(𝑉), (𝜋 ◦ ℎ̃)∗O𝐹 (𝑁 𝑗 |𝐹 )

)
.

By definition of 𝑁 𝑗 , we have

(𝜋 ◦ ℎ̃)∗O𝐹 (𝑁 𝑗 |𝐹 ) = (𝜋 ◦ ℎ̃)∗O𝐹 (𝐻 |𝐹 − 𝐺1 |𝐹 ) ⊗ O𝜋 (𝑉 )

(
( 𝑗 + 𝑑 + 2)𝑙𝐷𝑍 |𝜋 (𝑉 )

)
,

and (𝜋 ◦ ℎ̃)∗O𝐹 (𝐻 |𝐹 −𝐺1 |𝐹 ) is a nonzero sheaf because 𝐺1 |𝐹 is zero at the generic point of 𝜋(𝑉) (see
the definition of 𝐺1). Therefore, dim𝐻0(𝐹,O𝐹 (𝑁 𝑗 |𝐹 )) is a nonzero polynomial of degree at most d
with one variable j. Then there is 0 ≤ 𝑗 ′ ≤ 𝑑 such that

𝐻0(𝐹,O𝐹 (𝑁 𝑗′ |𝐹 )) ≠ 0,

so 𝐻0 (𝑌,O𝑌 (𝑁 𝑗′ )) has an element not vanishing on 𝐹 by equation (♣).
Since 𝑁 𝑗′ = ℎ̃∗𝜋∗(( 𝑗 ′ + 𝑑 + 2)𝑙𝐷𝑍 ) + 𝐻 − 𝐺1 and Supp𝐺1 ⊅ 𝐹, we see that

𝐻0 (𝑌,O𝑌 ( ℎ̃
∗𝜋∗(( 𝑗 ′ + 𝑑 + 2)𝑙𝐷𝑍 ) + 𝐻))

has an element not vanishing on 𝐹. Since 𝐻 is ℎ̃-exceptional, it follows that

𝐻0(𝑋,O𝑋 (𝜋
∗(( 𝑗 ′ + 𝑑 + 2)𝑙𝐷𝑍 )))

has an element not vanishing on ℎ̃(𝐹). This implies that the base locus of ( 𝑗 ′ + 𝑑 + 2)𝑙𝐷𝑍 does not
contain 𝜋(𝑉).

Recall that V is an arbitrary irreducible component of 𝜋−1 (𝑍𝑙) such that 𝜋(𝑉) has the maximal di-
mension. From the above argument, it follows that 𝑍 (2𝑑+2)!·𝑙 does not contain any irreducible component
of 𝑍𝑙 of the maximal dimension. Thus, we have

dim𝑍 (2𝑑+2)!·𝑙 < dim𝑍𝑙

for all 𝑙 ∈ Z>0. Therefore, 𝑚𝐿 is base point free, where m is defined to be ((2𝑑 + 2)!)𝑑 · 𝑚′.

We finish the proof of Theorem 5.8. �
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Remark 5.9. By arguing inductively, for fixed integers d and p and every generalized dlt pair (𝑋,Δ , M)

as in Theorem 5.8, we can check that ((2𝑑 + 2)!)𝑑2
𝑝(𝐾𝑋 + Δ + M𝑋 ) is base point free. However,

compared to [14, Remark 1.2], it looks far from optimal.

Lemma 5.10. Let d and p be positive integers, and let v be a positive real number. Then there exists a
positive integer m, depending only on d, p and v, satisfying the following. Let (𝑋,Δ , M) be a generalized
lc pair such that

◦ dim𝑋 = 𝑑,
◦ 𝑝M is b-Cartier,
◦ 𝑝(𝐾𝑋 + Δ + M𝑋 ) is an ample and base point free Cartier divisor and
◦ vol(𝑋, 𝐾𝑋 + Δ + M𝑋 ) ≤ 𝑣.

Then 𝑚(𝐾𝑋 + Δ + M𝑋 ) is very ample, and putting 𝑅𝑙 = 𝐻0 (𝑋,O𝑋 (�𝑙 (𝐾𝑋 + Δ + M𝑋 )�)) for every
𝑙 ∈ Z≥0 then

⊕
𝑙∈Z≥0

𝑅𝑙𝑚 is generated by 𝑅𝑚 as a graded C-algebra.

Proof. If Lemma 5.10 does not hold, then there is a sequence of generalized lc pairs {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1
as in Lemma 5.10 such that if 𝑚𝑖 is the smallest positive integer such that 𝑚𝑖 (𝐾𝑋𝑖 + Δ 𝑖 + M𝑖

𝑋𝑖
) is very

ample and 𝐻0(𝑋𝑖 ,O𝑋𝑖 (𝑚𝑖 (𝐾𝑋𝑖 + Δ 𝑖 + M𝑖
𝑋𝑖
))) generates

⊕
𝑙∈Z≥0

𝐻0(𝑋𝑖 ,O𝑋𝑖 (𝑙𝑚𝑖 (𝐾𝑋𝑖 + Δ 𝑖 + M𝑖
𝑋𝑖
))),

then lim𝑖→∞𝑚𝑖 = ∞.
Since 𝑝M𝑖 is b-Cartier and 𝑝(𝐾𝑋𝑖 + Δ 𝑖 + M𝑖

𝑋𝑖
) is Cartier, 𝑝Δ 𝑖 is a Weil divisor for every i. By the

effective birationality for generalized pairs [7, Theorem 1.3], there exists a positive integer 𝑝′, depending
only on d and p, such that |𝑝𝑝′(𝐾𝑋𝑖 + Δ 𝑖 + M𝑖

𝑋𝑖
) | defines a birational morphism. Then we may find

𝐺𝑖 ∈ |𝑝𝑝′(𝐾𝑋𝑖 + Δ 𝑖 + M𝑖
𝑋𝑖
) |. Note that

◦ 𝐺𝑖 is Cartier and base point free,
◦ vol(𝑋𝑖 , 𝐺𝑖) ≤ 𝑝𝑑 𝑝′𝑑𝑣 and
◦ 𝐺𝑖 − (𝐾𝑋𝑖 + Δ 𝑖) is the pushdown of a pseudo-effective Q-divisor.

By [4, Proposition 4.4] and replacing {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1 with a subsequence, we can find a projective
morphism ℎ : 𝑉 → 𝑇 of varieties, a reduced divisor D on V and a positive real number c, depending only
on d, p and v, such that, for every i, there is a closed point 𝑡𝑖 ∈ 𝑇 with the fibers 𝑉𝑡𝑖 and 𝐷𝑡𝑖 satisfying
the following.

◦ (𝑉𝑡𝑖 , 𝐷𝑡𝑖 ) is log smooth,
◦ there is a birational map 𝜙𝑖 : 𝑋𝑖 � 𝑉𝑡𝑖 such that if 𝐸𝑖 is the sum of 𝜙𝑖∗𝐺𝑖 and the reduced

𝜙−1
𝑖 -exceptional divisor, then Supp𝐸𝑖 ⊂ 𝐷𝑡𝑖 and

◦ if 𝑓𝑖 : 𝑌 → 𝑋𝑖 and 𝑓 ′𝑖 : 𝑌 → 𝑉𝑡𝑖 is a common resolution of 𝜙𝑖 , then 𝑓 ∗𝑖 𝐺𝑖 ∼Q,𝑉𝑡𝑖
0 and all the

coefficients of 𝑓 ′𝑖∗ 𝑓
∗
𝑖 𝐺𝑖 are at most c.

Shrinking T and replacing {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1 with a subsequence if necessary, we may assume that the
set {𝑡𝑖}𝑖≥1 is dense in T.

Put 𝐷 ′
𝑖 = 𝑓 ′𝑖∗ 𝑓

∗
𝑖 𝐺𝑖 for each i. Then 𝑓 ∗𝑖 𝐺𝑖 = 𝑓 ′∗𝑖 𝐷 ′

𝑖 by the third property. Since 𝐺𝑖 is ample, the
birational map 𝜑𝑖 := 𝜙−1

𝑖 : 𝑉𝑡𝑖 � 𝑋𝑖 is a morphism. Taking a log resolution of (𝑉, 𝐷) and shrinking T,
we may assume that the morphism ℎ : (𝑉, 𝐷) → 𝑇 is log smooth and T is affine. Moreover, taking an
appropriate étale base change of h, we may assume that the restriction of every component of D to 𝑉𝑡 is
irreducible for every closed point 𝑡 ∈ 𝑇 with the fiber 𝑉𝑡 .

Since 𝜑∗
𝑖𝐺𝑖 is an effective Cartier divisor on 𝑉𝑡𝑖 such that Supp𝜑∗

𝑖𝐺𝑖 ⊂ Supp𝐷 |𝑉𝑡𝑖
and all the

coefficients of 𝜑∗
𝑖𝐺𝑖 is at most c, the coefficients of 𝜑∗

𝑖𝐺𝑖 belong to a finite set depending only on d, p
and v. Therefore, replacing {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1 by a subsequence, we may find a Cartier divisor �̃� on V
such that, for every i, we have �̃� |𝑉𝑡𝑖

= 𝜑∗
𝑖𝐺𝑖 .

We consider the morphism

ℎ∗ℎ∗O𝑉 (�̃�) → O𝑉 (�̃�).
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Then there is an open set 𝑈 ⊂ 𝑇 such that, for any 𝑡 ′ ∈ 𝑈, the morphism

ℎ∗O𝑉 (�̃�) ⊗ 𝑘 (𝑡 ′) → 𝐻0(𝑉𝑡′ ,O𝑉𝑡′
(�̃� |𝑉𝑡′

))

is an isomorphism, where 𝑘 (𝑡 ′) is the quotient field of O𝑇 ,𝑡′ (see [27, III, Theorem 12.8] and [27, III,
Corollary 12.9]). Since O𝑉𝑡𝑖

(𝜑∗
𝑖𝐺𝑖) is globally generated, the morphism

ℎ∗ℎ∗O𝑉 (�̃�) ⊗ 𝑘 (𝑡 ′) → O𝑉 (�̃�) ⊗ 𝑘 (𝑡 ′)

is surjective for all 𝑡 ′ ∈ 𝑈∩{𝑡𝑖}𝑖≥1. Since {𝑡𝑖}𝑖≥1 is dense in T, we see that𝑈∩{𝑡𝑖}𝑖≥1 is not empty. From
this fact, shrinking T and replacing {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1, we may assume that �̃� is base point free over T.

Let 𝜏 : 𝑉 → 𝑊 be the contraction over T induced by �̃�. Then there is a Cartier divisor H, which is
ample over T, such that �̃� ∼ 𝜏∗𝐻. By shrinking T and replacing {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1 by a subsequence,
we may assume that for every closed point 𝑡 ∈ 𝑇 the fiber 𝑊𝑡 is normal. We consider the morphisms
𝜏𝑖 := 𝜏 |𝑉𝑡𝑖

: 𝑉𝑡𝑖 → 𝑊𝑡𝑖 and 𝜑𝑖 : 𝑉𝑡𝑖 → 𝑋𝑖 for each i. Since 𝜏∗𝑖 𝐻 |𝑊𝑡𝑖
∼ �̃� |𝑉𝑡𝑖

= 𝜑∗
𝑖𝐺𝑖 and both 𝐻 |𝑊𝑡𝑖

and
𝐺𝑖 are ample, we see that dim𝑊𝑡𝑖 = dim𝑋𝑖 . This shows that 𝜏𝑖 : 𝑉𝑡𝑖 → 𝑊𝑡𝑖 is birational, hence 𝜏𝑖 is a
contraction. Since 𝜏∗𝑖 𝐻 |𝑊𝑡𝑖

∼ 𝜑∗
𝑖𝐺𝑖 and both 𝐻 |𝑊𝑡𝑖

and 𝐺𝑖 are ample, we see that 𝑊𝑡𝑖 
 𝑋𝑖 .
By this discussion, we get

◦ a projective morphism 𝑊 → 𝑇 from a normal variety W to an affine variety T, and
◦ an ample Cartier divisor H

such that, for every i, there exist a closed point 𝑡𝑖 ∈ 𝑇 and an isomorphism 𝜓𝑖 : 𝑊𝑡𝑖 → 𝑋𝑖 such that
𝜓∗
𝑖𝐺𝑖 ∼ 𝐻 |𝑊𝑡𝑖

. Shrinking T and replacing {(𝑋𝑖 ,Δ 𝑖 , M𝑖)}𝑖≥1, we may assume that the morphism𝑊 → 𝑇
is flat.

Let m be a positive integer such that

◦ 𝑚𝐻 is very ample over T,
◦ 𝐻0 (𝑊,O𝑊 (𝑚𝐻)) generates

⊕
𝑙∈Z≥0

𝐻0 (𝑊,O𝑊 (𝑙𝑚𝐻)) and
◦ 𝐻𝑞 (𝑊,O𝑊 (𝑙𝐻)) = 0 for all 𝑙 ≥ 𝑚 and 𝑞 > 0.

Then 𝐻0 (𝑊,O𝑊 (𝑙𝑚𝐻)) ⊗ 𝑘 (𝑡) → 𝐻0(𝑊𝑡 ,O𝑊𝑡 (𝑙𝑚𝐻 |𝑊𝑡 )) is surjective for every closed point 𝑡 ∈ 𝑇 .
Therefore, for every closed point 𝑡 ∈ 𝑇 and every 𝑙 ∈ Z≥0, we see that

𝐻0(𝑊𝑡 ,O𝑊𝑡 (𝑚𝐻 |𝑊𝑡 )) ⊗ 𝐻0(𝑊𝑡 ,O𝑊𝑡 (𝑙𝑚𝐻 |𝑊𝑡 )) −→ 𝐻0(𝑊𝑡 ,O𝑊𝑡 ((1 + 𝑙)𝑚𝐻 |𝑊𝑡 ))

is surjective. Therefore, we see that 𝑚𝐺𝑖 is very ample and 𝐻0(𝑋𝑖 ,O𝑋𝑖 (𝑚𝐺𝑖)) generates the graded
ring

⊕
𝑙∈Z≥0

𝐻0(𝑋𝑖 ,O𝑋𝑖 (𝑚𝑙𝐺𝑖)) for every i. This is a contradiction since we have 𝑚𝐺𝑖 ∼ 𝑚𝑝𝑝′(𝐾𝑋𝑖 +

Δ 𝑖 + M𝑖
𝑋𝑖
) for all i. Thus, Lemma 5.10 holds. �

Proof of Theorem 1.7. We will freely use the notations as in Theorem 1.7, and we put Δ ′ = 𝜙∗Δ and
𝑀 ′ = 𝜙∗𝑀 . Since M is nef and log big with respect to (𝑋,Δ), we may apply Theorem 5.8 to the
generalized dlt pair (𝑋 ′,Δ ′, 𝑀). By Theorem 5.8, there exists 𝑚′, depending only on d and p, such that
𝑚′(𝐾𝑋 ′ +Δ ′ +𝑀 ′) is base point free. Let 𝜋 : 𝑋 ′ → 𝑍 be the Stein factorization of the morphism defined
with |𝑚′(𝐾𝑋 ′ + Δ ′ + 𝑀 ′) |. Then Z is nothing but Proj

⊕
𝑙∈Z≥0

𝑅𝑙 in Theorem 1.7. There is an ample
and base point free Cartier divisor 𝐻𝑍 on Z such that

𝑚′(𝐾𝑋 ′ + Δ ′ + 𝑀 ′) ∼ 𝜋∗𝐻𝑍 .

Since 𝑝𝑀 ′ and 𝑝(𝐾𝑋 ′ +Δ ′ + 𝑀 ′) are Weil divisors, 𝑝Δ ′ is a Weil divisor. Applying Theorem 4.5 to
𝜋 : (𝑋 ′,Δ ′, 𝑀) → 𝑍 , we can find positive integers n and q, depending only on d and p, such that Z has
the structure of a generalized lc pair (𝑍,Δ𝑍 , N) with

◦ 𝑛(𝐾𝑋 ′ + Δ ′ + 𝑀 ′) ∼ 𝑛𝜋∗(𝐾𝑍 + Δ𝑍 + N𝑍 ), and
◦ 𝑞N is b-Cartier.
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By the first property, we have

𝑛𝑚′𝜋∗(𝐾𝑍 + Δ𝑍 + N𝑍 ) ∼ 𝑛𝑚′(𝐾𝑋 ′ + Δ ′ + 𝑀 ′) ∼ 𝑛𝜋∗𝐻𝑍 .

By [10, Proposition 5.3], we see that 𝑛𝑚′(𝐾𝑍 + Δ𝑍 + N𝑍 ) ∼ 𝑛𝐻𝑍 . In particular, we see that 𝑛𝑚′(𝐾𝑍 +

Δ𝑍 + N𝑍 ) is ample and base point free.
Since we have

vol(𝑍, 𝐾𝑍 + Δ𝑍 + N𝑍 ) = Ivol(𝐾𝑋 + Δ + 𝑀) ≤ 𝑣,

we may apply Lemma 5.10 to (𝑍,Δ𝑍 , N). There is a positive integer 𝑚′′, depending only on d, 𝑛𝑚′ and
v, such that

◦ 𝑚′′(𝐾𝑍 + Δ𝑍 + N𝑍 ) is very ample, and
◦ putting 𝑅′

𝑙 = 𝐻0(𝑍,O𝑍 (𝑙𝑚
′′(𝐾𝑍 + Δ𝑍 + N𝑍 ))), then 𝑅′

1 generates
⊕

𝑙∈Z≥0
𝑅′
𝑙 .

We define 𝑚 = 𝑛𝑚′𝑚′′. By construction, we can check that

◦ m depends only on d, p and v,
◦ 𝑚(𝐾𝑍 + Δ𝑍 + N𝑍 ) is very ample and
◦ 𝐻0 (𝑍,O𝑍 (𝑚(𝐾𝑍 + Δ𝑍 + N𝑍 ))) generates

⊕
𝑙∈Z≥0

𝐻0 (𝑍,O𝑍 (𝑙𝑚(𝐾𝑍 + Δ𝑍 + N𝑍 ))) as a graded
C-algebra.

Now we have

𝐻0 (𝑋,O𝑋 (�𝑙𝑚(𝐾𝑋 + Δ + 𝑀)�)) 
 𝐻0(𝑋 ′,O𝑋 ′ (𝑙𝑚(𝐾𝑋 ′ + Δ ′ + 𝑀 ′)))


 𝐻0(𝑍,O𝑍 (𝑙𝑚(𝐾𝑍 + Δ𝑍 + N𝑍 )))

for every positive integer l. In this way, we see that
⊕

𝑙∈Z≥0
𝑅𝑙𝑚 is generated by 𝑅𝑚 as a gradedC-algebra,

where 𝑅𝑙𝑚 = 𝐻0(𝑋,O𝑋 (�𝑙𝑚(𝐾𝑋 +Δ +𝑀)�)). Furthermore, the inequality vol(𝑍, 𝑚(𝐾𝑍 +Δ𝑍 +N𝑍 )) ≤

𝑚𝑑𝑣 shows that 𝑍 = Proj
⊕

𝑙∈Z≥0
𝑅𝑙 belongs to a bounded family 𝔉 that depends only on d, p and v.

We finish the proof. �

Finally, we introduce an application of Theorem 5.8.

Theorem 5.11. Let d and p be positive integers. Then there exists a positive integer m, depending only
on d and p, satisfying the following. Let (𝑋,Δ , M) be a generalized dlt pair such that

◦ dim𝑋 = 𝑑,
◦ M is a Q-b-divisor and 𝑝(𝐾𝑋 + Δ + M𝑋 ) is nef and Cartier, and
◦ 𝐾𝑋 + Δ + M𝑋 is log big with respect to (𝑋,Δ , M).

Then 𝑚(𝐾𝑋 + Δ + M𝑋 ) is base point free.

Proof. By Theorem 6.1, there is a log resolution 𝑓 : �̃� → 𝑋 of (𝑋,Δ) such that M descends to �̃� and f
is an isomorphism over an open subset U containing all the generic points of generalized lc centers of
(𝑋,Δ , M). Set 𝐷 = 𝐾𝑋 + Δ + M𝑋 , and consider the generalized dlt pair (𝑋,Δ , M + 𝐷). We can write

𝐾�̃� + Δ̃ + M�̃� + 𝑓 ∗𝐷 = 𝑓 ∗(𝐾𝑋 + Δ + M𝑋 + 𝐷) + �̃�

with Δ̃ ≥ 0 and �̃� ≥ 0 having no common components. Since D is nef and log big with respect to
(𝑋,Δ , M) and f is an isomorphism over the genetic points of all generalized lc centers of (𝑋,Δ , M),
we see that M�̃� + 𝑓 ∗𝐷 is nef and log big with respect to ( �̃�, Δ̃). Thus, we may apply Theorem 5.8.
There exists 𝑚′, depending only on d and p, such that 𝑚′(𝐾𝑋 + Δ + M𝑋 + 𝐷) is base point free. Then
2𝑚′(𝐾𝑋 + Δ + M𝑋 ) is base point free. Hence, 𝑚 := 2𝑚′ is the desired positive integer. �
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Corollary 5.12. Let d and p be positive integers, and let v be a positive real number. Then there exists a
positive integer m, depending only on d, p and v, satisfying the following. Let (𝑋,Δ , M) be a generalized
dlt pair such that

◦ dim𝑋 = 𝑑,
◦ 𝑝M is b-Cartier and 𝑝(𝐾𝑋 + Δ + M𝑋 ) is Cartier,
◦ 𝐾𝑋 + Δ + M𝑋 is ample and
◦ vol(𝑋, 𝐾𝑋 + Δ + M𝑋 ) ≤ 𝑣.

Then 𝑚(𝐾𝑋 +Δ +M𝑋 ) is very ample. In particular, (𝑋,Δ , M) belongs to a bounded family𝔉 depending
only on d, p and v in the sense of Birkar [5].

Proof. By Theorem 5.11, there exists a positive integer n, depending only on d and p, such that
𝑛(𝐾𝑋 + Δ + M𝑋 ) is base point free for every generalized dlt pair (𝑋,Δ , M) as in Corollary 5.12. Then
Corollary 5.12 follows from Lemma 5.10. �

6. Appendix: On definition of generalized dlt pairs

The goal of this appendix is to prove that the definition of generalized dlt pairs by Birkar [4] and that by
Han–Li [25] are equivalent when the nef part of a generalized pair is a finite R>0-linear combination of
b-nef Q-b-Cartier Q-b-divisors.

Theorem 6.1. The following three conditions are equivalent for every generalized lc pair (𝑋,Δ , M)/𝑍
such that M is a finite R>0-linear combination of b-nef/𝑍 Q-b-Cartier Q-b-divisors.

1. For any generic point 𝜂 of any generalized lc center of (𝑋,Δ , M)/𝑍 , (𝑋,Δ) is log smooth near 𝜂
and M descends to X on a neighborhood of 𝜂 ([4, 2.13]).

2. There is an open subset 𝑈 ⊂ 𝑋 such that (𝑈,Δ |𝑈 ) is log smooth, U contains the generic point
of any generalized lc center of (𝑋,Δ , M)/𝑍 and the generic point of any generalized lc center of
(𝑋,Δ , M)/𝑍 is the generic point of an lc center of (𝑈,Δ |𝑈 ) ([25, Definition 2.3]).

3. There is a log resolution 𝑓 : �̃� → 𝑋 of (𝑋,Δ) and an open subset 𝑉 ⊂ 𝑋 such that M descends
to �̃� , f is an isomorphism over V and V contains the generic point of any generalized lc center of
(𝑋,Δ , M)/𝑍 .

We note that we do not need to assume that X or Z is quasi-projective.
The following result is the key ingredient for the proof.

Lemma 6.2 (cf. [23, Lemma 5.18]). Let (𝑋,Δ , M)/𝑍 be a generalized klt pair such that M𝑋 is R-
Cartier and M is a finite R>0-linear combination of b-nef/𝑍 Q-b-Cartier Q-b-divisors. Then there is a
projective birational morphism 𝑔 : 𝑌 → 𝑋 such that M descends to Y and the divisor 𝐹 := 𝑔∗M𝑋 −M𝑌

satisfies Supp𝐹 = Ex(𝑔).

Proof. Since M𝑋 is R-Cartier, (𝑋,Δ) is a klt pair. Let 𝑓 : �̄� → 𝑋 be a log resolution of (𝑋,Δ) such
that M descends to �̄� . We can write

𝐾�̄� + Δ̄ = 𝑓 ∗(𝐾𝑋 + Δ) + �̄�

with Δ̄ ≥ 0 and �̄� ≥ 0 having no common components. We may write M�̄� =
∑
𝑖 𝜇𝑖𝑀𝑖 , where 𝜇𝑖 ∈ R>0

and 𝑀𝑖 are Cartier divisors that are nef over Z. We fix 𝛼 such that 𝛼𝜇𝑖 > 2 · dim𝑋 for all i.
We fix an open affine covering {𝑋 𝑗 } 𝑗 of X. In particular, all 𝑋 𝑗 are quasi-projective. We put �̄� 𝑗 =

𝑓 −1(𝑋 𝑗 ), Δ̄ 𝑗 = Δ̄ |�̄� 𝑗
and M 𝑗 = M|𝑋 𝑗 . In the rest of the proof, for any projective birational morphism

𝑊 → 𝑋 and any open subset 𝑉 ⊂ 𝑊 , we will denote M𝑊 |𝑉 by M𝑉 .
Since ( �̄� 𝑗 , Δ̄ 𝑗 , 𝛼M 𝑗 )/𝑋 𝑗 is generalized klt, by applying [6] we get a sequence of steps of a

(𝐾�̄� 𝑗
+ Δ̄ 𝑗 + 𝛼M�̄� 𝑗

)-MMP over 𝑋 𝑗 that terminates with a good minimal model ( �̄� ′
𝑗 , Δ̄

′
𝑗 , 𝛼M 𝑗 )/𝑋 𝑗
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of ( �̄� 𝑗 , Δ̄ 𝑗 , 𝛼M 𝑗 )/𝑋 𝑗 . By the length of extremal rays ([15, Section 18] or [17, Theorem 4.6.2]), it fol-
lows that the birational transform of M�̄� 𝑗

is numerically trivial with respect to the extremal contraction
in each step of the MMP. Therefore, we see that

◦ M 𝑗 descends to �̄� ′
𝑗 , and

◦ �̄� 𝑗 � �̄� ′
𝑗 is a sequence of steps of a (𝐾�̄� 𝑗

+ Δ̄ 𝑗 + (𝛼 + 𝑡)M�̄� 𝑗
)-MMP over 𝑋 𝑗 to a minimal model

( �̄� ′
𝑗 , Δ̄

′
𝑗 , (𝛼 + 𝑡)M 𝑗 )/𝑋 𝑗 for all 𝑡 ≥ 0.

Then 𝐾�̄� ′
𝑗
+ Δ̄ ′

𝑗 + (𝛼 + 𝑡)M�̄� ′
𝑗

is semiample over 𝑋 𝑗 .
Let 𝜙 : �̄� ′

𝑗 → 𝑌 𝑗 be the contraction over 𝑋 𝑗 induced by 𝐾�̄� ′
𝑗
+ Δ̄ ′

𝑗 + 2𝛼M�̄� ′
𝑗
, and let �̄� ′

𝑗 → 𝑌 ′
𝑗 be

the contraction over 𝑋 𝑗 induced by 𝐾�̄� ′
𝑗
+ Δ̄ ′

𝑗 + 𝛼M�̄� ′
𝑗
. We pick any curve 𝜉 ⊂ �̄� ′

𝑗 that is contracted by
�̄� ′
𝑗 → 𝑋 𝑗 . Since 𝐾�̄� ′

𝑗
+ Δ̄ ′

𝑗 + 𝛼M�̄� ′
𝑗

and 𝛼M�̄� ′
𝑗

are nef over 𝑋 𝑗 , if 𝜉 is contracted by 𝜙 : �̄� ′
𝑗 → 𝑌 𝑗 , then

0 = 𝜉 · (𝐾�̄� ′
𝑗
+ Δ̄ ′

𝑗 + 2𝛼M�̄� ′
𝑗
) ≥ 𝜉 · (𝐾�̄� ′

𝑗
+ Δ̄ ′

𝑗 + 𝛼M�̄� ′
𝑗
) ≥ 0.

Thus, if 𝜉 is contracted by 𝜙 : �̄� ′
𝑗 → 𝑌 𝑗 , then 𝜉 is contracted by �̄� ′

𝑗 → 𝑌 ′
𝑗 . In particular, the induced

birational map 𝑌 𝑗 � 𝑌 ′
𝑗 is a morphism. Then we have

𝛼M�̄� ′
𝑗
= (𝐾�̄� ′

𝑗
+ Δ̄ ′

𝑗 + 2𝛼M�̄� ′
𝑗
) − (𝐾�̄� ′

𝑗
+ Δ̄ ′

𝑗 + 𝛼M�̄� ′
𝑗
) ∼R,𝑌𝑗 0,

so M𝑌𝑗 is R-Cartier and M�̄� ′
𝑗
= 𝜙∗M𝑌𝑗 . From this, we see that M 𝑗 descends to 𝑌 𝑗 .

Put Δ𝑌𝑗 = 𝜙∗Δ̄ ′
𝑗 . By construction, the generalized pair (𝑌 𝑗 ,Δ𝑌𝑗 , 2𝛼M 𝑗 )/𝑋 𝑗 is a weak generalized

lc model of ( �̄� 𝑗 , Δ̄ 𝑗 , 2𝛼M 𝑗 )/𝑋 𝑗 such that 𝐾𝑌𝑗 + Δ𝑌𝑗 + 2𝛼M𝑌𝑗 is ample over 𝑋 𝑗 . This is a generalized
pair analogue of the relative log canonical models for lc pairs. Hence, we may glue 𝑌 𝑗 , and we get a
projective birational morphism 𝑔 : 𝑌 → 𝑋 and a birational contraction 𝜓 : �̄� � 𝑌 over X such that

◦ M descends to Y, and
◦ 𝐾𝑌 + 𝜓∗Δ̄ + 2𝛼M𝑌 is ample over X.

Since M𝑋 is R-Cartier, we see that 𝐾𝑋 +Δ +2𝛼M𝑋 is R-Cartier. Then there is an effective g-exceptional
R-divisor 𝐸𝑌 on Y such that

𝐾𝑌 + 𝜓∗Δ̄ + 2𝛼M𝑌 = 𝑔∗(𝐾𝑋 + Δ + 2𝛼M𝑋 ) − 𝐸𝑌

and Supp𝐸𝑌 = Ex(𝑔). We recall the relation 𝐾�̄� + Δ̄ = 𝑓 ∗(𝐾𝑋 + Δ) + �̄� , so we have 𝐾𝑌 + 𝜓∗Δ̄ =
𝑔∗(𝐾𝑋 + Δ) + 𝜓∗�̄� . We put

𝐹 =
1

2𝛼
(𝐸𝑌 + 𝜓∗�̄�).

Then F is effective and g-exceptional, Supp𝐹 ⊃ Ex(𝑔) and 2𝛼M𝑌 = 𝑔∗(2𝛼M𝑋 ) − 2𝛼𝐹. From these
facts, we see that 𝑔 : 𝑌 → 𝑋 is the desired morphism. �

From now on, we prove Theorem 6.1.

Proof of Theorem 6.1. Clearly, (3) implies (1), and (1) implies (2). Hence, we only need to prove that (2)
implies (3). Let𝑈 ⊂ 𝑋 be the open subset as in (2). We will prove the existence of a projective birational
morphism 𝑔 : 𝑌 → 𝑋 and an open subset 𝑉 ⊂ 𝑈 such that M descends to Y, g is an isomorphism over V
and V contains the generic point of any generalized lc center of (𝑋,Δ , M)/𝑍 . Assuming the existence
of such g, then we can construct the desired log resolution 𝑓 : �̃� → 𝑋 and the open subset 𝑉 ⊂ 𝑋 by
considering an appropriate log resolution of (𝑋,Δ) factoring through g. Thus, we only need to prove
the existence of 𝑔 : 𝑌 → 𝑋 and 𝑉 ⊂ 𝑈 stated above.
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In this paragraph, we reduce the problem to the case where 𝐾𝑋 is Q-Cartier and M𝑋 is R-Cartier.
By [30, Proposition 4.12], with notations as in [30], the pair 〈𝑋,Δ〉 of X and Δ is pseudo-lc in the
sense of [30, Definition 4.2]. By [30, Theorem 1.2], there exists a projective small birational morphism
ℎ : 𝑊 → 𝑋 from a normal variety W such that putting Δ𝑊 = ℎ−1

∗ Δ then 𝐾𝑊 + Δ𝑊 is an h-ample
R-Cartier divisor on W. Note that [30, Theorem 1.2] can be applied without the quasi-projectivity of the
variety. Since h is small, (𝐾𝑊 + Δ𝑊 ) |ℎ−1 (𝑈 ) is the pullback of (𝐾𝑋 + Δ) |𝑈 , hence h is an isomorphism
over U. Since h is small, we can check that (𝑊,Δ𝑊 , M)/𝑍 is a generalized lc pair and ℎ−1 (𝑈) contains
the generic point of any generalized lc center of (𝑊,Δ𝑊 , M)/𝑍 . Then it is easy to see that ℎ−1 (𝑈)

satisfies the conditions of (2). Thus, replacing (𝑋,Δ , M)/𝑍 with (𝑊,Δ𝑊 , M)/𝑍 , we may assume that
𝐾𝑋 + Δ is R-Cartier. Then M𝑋 is R-Cartier. With notations as in [30], the log canonicity of (𝑋,Δ) and
[30, Lemma 4.3] imply that the pair 〈𝑋, 0〉 is pseudo-lc in the sense of [30, Definition 4.2]. By [30,
Theorem 1.2], we get a projective small birational morphism ℎ′ : 𝑊 ′ → 𝑋 from a normal variety 𝑊 ′

such that 𝐾𝑊 ′ is an ℎ′-ample R-Cartier divisor on 𝑊 ′. Then 𝐾𝑊 ′ |ℎ′−1 (𝑈 ) is the pullback of 𝐾𝑋 |𝑈 , hence
ℎ′ is an isomorphism over U. It is easy to see that (𝑊 ′, ℎ′−1

∗ Δ , M)/𝑍 is a generalized lc pair and ℎ′−1 (𝑈)

satisfies the conditions of (2). Replacing (𝑋,Δ , M)/𝑍 with (𝑊 ′, ℎ′−1
∗ Δ , M)/𝑍 , we may assume that 𝐾𝑋

is Q-Cartier. In this way, we may assume that 𝐾𝑋 is Q-Cartier and M𝑋 is R-Cartier.
By the definition of U, it follows that (𝑋,Δ) is dlt. Hence, (𝑋, 0) is klt. By applying Lemma 6.2 to

the generalized klt pair (𝑋, 1
2Δ , 1

2 M)/𝑍 , we get a projective birational morphism 𝑔 : 𝑌 → 𝑋 such that
1
2 M descends to Y and the divisor 𝐹 = 1

2𝑔
∗M𝑋 − 1

2 M𝑌 satisfies Supp𝐹 = Ex(𝑔). Let 𝑉0 ⊂ 𝑋 be the
largest open subset over which g is an isomorphism. Let 𝜂 be the generic point of a generalized lc center
of (𝑋,Δ , M)/𝑍 . Then 𝜂 is the generic point of an lc center of (𝑈,Δ |𝑈 ), and 𝜂 is also the generic point
of a generalized lc center of (𝑈,Δ |𝑈 , M|𝑈 )/𝑈 with the identity 𝑈 → 𝑈. Pick a prime divisor P over U
whose center is {𝜂} ∩𝑈 and the log discrepancy 𝑎(𝑃,𝑈,Δ |𝑈 ) is zero. Then

0 ≤ 𝑎(𝑃,𝑈,Δ |𝑈 + M𝑈 ) ≤ 𝑎(𝑃,𝑈,Δ |𝑈 ) = 0.

In particular, we have 𝑎(𝑃,𝑈,Δ |𝑈 +M𝑈 ) = 𝑎(𝑃,𝑈,Δ |𝑈 ). Since Supp𝐹 = Ex(𝑔), the center 𝑐𝑔−1 (𝑈 ) (𝑃)

of P on 𝑔−1 (𝑈) is not contained in Ex(𝑔). Then 𝑐𝑔−1 (𝑈 ) (𝑃) intersects 𝑔−1(𝑉0), hence we see that 𝜂 ∈ 𝑉0.
We set 𝑉 = 𝑉0 ∩ 𝑈. Then g is an isomorphism over V. By the above discussion, V contains the

generic point of any generalized lc center of (𝑋,Δ , M)/𝑍 . By the property of U in (2), we see that
(𝑉,Δ |𝑉 ) is log smooth. In this way, we get a projective birational morphism 𝑔 : 𝑌 → 𝑋 and an open
subset 𝑉 ⊂ 𝑈 such that M descends to Y, g is an isomorphism over V and V contains the generic point
of any generalized lc center of (𝑋,Δ , M)/𝑍 . From this fact, (2) implies (3). We complete the proof. �
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