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THE SPECTRUM OF SKEW ROOM SQUARES
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Abstract

We give a short proof that skew Room squares exist for all odd sides s exceeding 5.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30.

1. Introduction

A Room square of side ̂  is a square array R of side s, satisfying:
(1) each cell of R is either empty or contains a 2-subset of a set S1 of size

s + I,
(2) each symbol occurs exactly once in each row and each column of R,
(3) every 2-subset of S occurs in a unique cell of R.
The existence question for Room squares has been solved. The following is

shown by Mullin and Wallis in [4].

THEOREM 1.1. A Room square of side s exists if and only if s is an odd positive
integer other than 3 or 5.

A Room square R, on symbol set S, is said to be standardized with respect to
oo e S provided that the rows and columns of R have been permuted so that oo
occurs in the cells on the main diagonal of R. We will index the rows and
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columns of such a standardized Room square by S\{oo}, so that {oo, x}
occurs in cell (x, x), for all x G S \ {oo}.

A standardized Room square is skew provided that, of any two cells (i,f) and
(J, i) with i =£j, precisely one is empty. Skew Room squares have been studied
extensively: see the list of references.

We show here that a skew Room square of side 5 exists if and only if s is an
odd positive integer other than 3 or 5, that is, skew Room squares exist for
precisely the same set of sides as Room squares.

2. Frames and Room squares

Let 5 be a set of size s, and partition S = U "_ ] Sj.
An {Sv . . . , Sn}-frame is a square array F of side s, having rows and

columns indexed by S, which satisfies:
(1) each cell is either empty or contains a 2-subset of 5,
(2) the subsquares S2 of F are empty, for 1 < j < n,
(3) row (or column) x contains precisely the symbols S \ 5,, where x G Sjf

(4) the 2-subsets occurring in F are precisely those {x, y) such that
(x,y) e S2\ U"_, S2.

A frame is skew provided that for all (/, k) G S2 \ U"_, Sf, exactly one of
cell (j, k) or (k, i) is empty.

A Room square of side s (standardized with respect to some element oo £ S)
can be constrtucted from an {{s}: s G S'j-frame by placing {oo, x) in cell
{x, x), for all x EL S. Similarly, a skew Room square can be constructed from a
skew frame of that type.

The study of Room squares predates that of frames, of course. However, the
above construction indicates the fact that frames are a generalization of Room
squares. The study of frames seems to be of interest in its own right, as well for
applications in the construction of Room squares and Howell designs. The
reader is referred to [1], [2], [5], [6], [10], [12], [15],[16], [17], and [18].

We make use of frames as follows.

LEMMA 2.1. Suppose a skew {S1,, . . . , Sn)-frame exists, and suppose also that
skew Room squares of side \Sj\ + 1 exist, for 1 < i < n. Then a skew Room square
of side 1 + 2*Li|S,-| exists.

PROOF. See [16, Theorem 3.1]
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We will describe a construction for frames which uses group-divisible designs
(GDDs). A GDD is a triple (A', §, <$•) where * is a set (of points), % is a set of
subsets of X (called blocks), such that every 2-subset of X not contained in a
group is contained in a unique block, and such that a group and a block contain
at most one common point. A weighting of a GDD is a map w: X —» Z + u {0}.
The following construction is a generalization of [16, Theorem 2.1], where all
weights are equal. The reader will note the similarity between this construction
and Wilson's fundamental construction for GDDs [20].

CONSTRUCTION 2.2. Suppose (X, §, 6B) is a GDD and w is a weighting. For
every x G X, let Sx be a set of size w(x). Suppose these Sx's are disjoint, and for
any T C S, define ST = UxeT Sx. For every block A G &,, suppose FA is a
skew {Sx: x e A)-frame. Let F be the array obtained by superimposing all
these FA's. Then F is a skew {SG: G G S }-frame.

In the next section, we derive a corollary to the above construction which will
enable us to close the spectrum of skew Room squares, given an initial segment.

We close this section by indicating four frames we will use in the next section.
We say that an {5,, . . . , 5n}-frame has type t"1 • • • tf if there are M, ^ ' S of size
/„ for 1 < i < k.

LEMMA 2.3. There exist skew frames of type 44, 4*2', 45, and 446\

PROOF. See [17].

3. The spectrum

LEMMA 3.1. Suppose there exist three MOLS {mutually orthogonal Latin
squares) of order m, and skew Room squares of sides Am + 1 and It + 1, where
0 < t < 3m. Then a skew Room square of side 16m + It + 1 exists.

PROOF. Since three MOLS of order m exist, there is a GDD (X, §, &) with
five groups of size m and m2 blocks of size 5.

Define a weighting w: X -»(0, 2, 4, 6} by setting w(x) = 4 if x G X \ G5, and
defining w(x) for x e G5 so that 2X(=G vK-*) = 2/.
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Now apply Construction 2.2. A block A requires one of the four frames of
Lemma 2.3, and the result is a skew frame of type 4m*2tl. Apply Lemma 2.1 to
obtain a skew Room square of side 16m + It + 1.

Denote SRS = {s > 7: a skew Room square of side s exists}.

LEMMA 3.2 Suppose {7, 9, . . . , 117} C SRS. Then SRS = {s > 7: s odd).

PROOF. The proof is by induction on 5. Let s > 119 be odd, and write
j = 16m + It + 1 with m odd and 3 < f < 18. Then m > 7, so / < 3m. Since m
is odd and exceeds 5, there exist three MOLS of order m by [19]. Lemma 3.1
implies the result.

Thus we have only to construct skew Room squares of sides 7 through 117.
We will do this mainly by using results which appear in the literature.

LEMMA 3.3. Suppose q = 2"t + 1 is a prime power with t odd, t > 1. Then
q G SRS.

PROOF. Mullin and Nemeth [8].

LEMMA 3.4. Suppose s = \6t2 + 1. Then s G SRS.

PROOF. Dinitz [4].

LEMMA 3.5.

(i) / / {u, v} C SRS, then uv G SRS.
(ii) If {u, v] C SRS and v¥^l, then u(v - 1) + 1 G SRS.
(iii) / / v G SRS, t> ¥= 13, and u = 1 mod 4 is a prime power, then u{v — 1) + 1

GSRS.

PROOF. For (i) and (ii), see [9]; for (iii), see [10].

The other small skew Room squares have been constructed by various
methods, some of which are generalizations of the constructions of Lemma 3.5.
In Table 1 below, we list sides from 7 to 117 which are not constructed by
Lemmas 3.3 and 3.4, together with a reference describing their construction.

https://doi.org/10.1017/S1446788700024289 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024289


[ s 1 The spectrum of skew Room squares 479

Order

9
15
21
33
35
39
45
51
55
57
63
69
75
77
85
87
91
93
95
99
105
111
115
117

TABLE 1

Construction

Beaman and Wallis [3]
Mullin, Schellenberg, Stinson and Vanstone [9]
[9]
Mullin and Wallis [13]
[9]
[9]
[9]
Lemma 3.5(iii), 51 = 5(11 - 1) + 1
Lemma 3.5(iii), 55 = 9(7 - 1) + 1
Lemma 3.5(ii), 57 = 7(9 - 1) + 1
Lemma 3.5(i), 63 = 7 • 9
Stinson [17]
Anderson, Mullin and Stinson [1]
Lemma 3.5(i), 77 = 7 • 11
Lemma 3.5(ii), 85 = 7(13 - 1) + 1
Lemma 3.1, m = 5, t = 3
Lemma 3.5(i), 91 = 7-13
Stinson [16]
Lemma 3.1, m = 5, / = 7
Lemma 3.5(i), 99 = 9 - 11
Lemma 3.5(i), 105 = 7 • 15
Lemma 3.5(ii), 111 = 11(11 - 1) + 1
[1]
Lemma 3.5(i), 117 = 9- 13

THEOREM 3.6. SRS = {s: s > 1 is odd}.

PROOF. Lemmata 3.1-3.5 and Table 1.
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