Association between zinc pool sizes and iron stores in premenopausal women without anaemia

Katsuhiko Yokoi1, Harold H. Sandstead2, Norman G. Egger3, Nancy W. Alcock2, V. M. Sadagopa Ramanujam2, Hari H. Dayal2 and James G. Penland4

1Department of Human Nutrition, Seitoku University Graduate School, 550 Iwase, Matsudo, Chiba 271-8555, Japan
2Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX, USA
3Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
4United States Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA

(Received 3 January 2007 – Revised 17 May 2007 – Accepted 24 May 2007)

The simultaneous occurrence of Zn and Fe deficiencies in man has been known since the discovery of human Zn deficiency. However, it is not established that low Fe stores per se or Fe-deficiency anaemia infer low Zn status. Therefore our objective was to identify relationships between Zn and Fe status in premenopausal women without anaemia. We also examined the contribution of food frequencies and blood loss to Zn and Fe status. The subjects were thirty-three apparently healthy premenopausal women without anaemia, who were not taking dietary supplements containing Zn or Fe or oral contraceptives. Main outcomes were Zn kinetic parameters based on the three-compartment mammillary model and serum ferritin (SF) concentration; contributing factors were the frequency of consumption of specific foods and menorrhagia. Lower SF was significantly associated with smaller sizes of Zn pools. The breakpoint in the relationship between SF and the lesser peripheral Zn pool was found to be 21·0 µg/l, a criterion to detect low Zn status.

Exchangeable zinc pool: Serum ferritin: Premenopausal women

Co-occurrence of severe Zn deficiency and Fe-deficiency anaemia was first observed in Zn-deficient Iranian farmers1 and confirmed in Egyptian farmers2–3. Subsequently, it was noted that Zn and Fe nutriture are affected by many of the same dietary factors4–9. Most recently, the co-occurrence of Zn and Fe deficiencies was described from Thailand7, India8 and Sri Lanka9. The latter study, adolescents with ferritin <30 µg/l had a statistically significant relative risk of 1·7 for serum Zn < 9·95 µmol/l.

Based on the above, we propose a commonality hypothesis that both indices of Zn nutriture (plasma Zn and Zn pool sizes) and Fe nutriture (serum Fe and serum ferritin) are correlated with frequencies of consumption of common foods containing bioavailable Zn and Fe or their absorption inhibitors and enhancers, and that both Zn indices and Fe indices are correlated in premenopausal women with normal Fe status or low Fe status without anaemia.

Circumstantial evidence favours the commonality hypothesis. Zn and Fe are most bioavailable from many of the same foods and their absorption is inhibited by many of the same dietary substances6. Consistent with this relationship, a preliminary study10 found accelerated Zn disappearance and increased Zn turnover rate in eighteen young women from Galveston, TX, USA with serum ferritin concentrations <20 µg/l, a criterion to detect low Fe stores11–13. More recently, inadequate dietary intakes of Zn and Fe that failed to meet the high physiological demands of adolescent girls in Australia and New Zealand were shown related to food choices14. Relevant to these findings is the observation in fifty-two non-pregnant premenopausal women from Seattle, Washington, USA, whose diets provided similar amounts of Fe, that consumption of red meat five times/week was more efficacious for body Fe stores than consumption of lacto-ovo-vegetarian foods, or the flesh of chicken and fish15. Mean serum ferritin concentrations associated with the three diets were 30·5, 19·1 and 15·6 µg/l, respectively.

The Fe intake and red meat consumption of the British population has decreased during the past three decades according to the National Food Survey. Groups at particular risk of low Fe stores are females aged 11–64 years (18–21 %) with serum ferritin <15 µg/l16. The continued high prevalence of Fe deficiency among premenopausal women in the USA is evident from findings of the United States National Health and Nutrition Examination Survey 2 (NHANES-II), which...
found a 25th percentile for serum ferritin of 14 µg/l in premenopausal women17, and NHANES-IV (1999–2000) which found a 19–22 % prevalence of Fe deficiency (measured by ‘two out of three’ abnormal indicators: serum ferritin, transferrin saturation, and free erythrocyte protoporphyrin) in non-Hispanic black and Mexican American women, a level about twice that in non-Hispanic white women18.

If, as suggested above, Fe and Zn nutriture are associated, then it is likely that Fe-deficient women in these surveys were also Zn deficient. While the worldwide prevalence of Fe deficiency with or without anaemia is uncertain, a conservative estimate is about 30 %19. Knowledge of the prevalence of Zn deficiency is more limited. A conservative estimate by the International Zinc Nutrition Consultative Group (IZiNCG), based on the food-balance sheets of the FAO and estimates of the average physiological requirements for absorbed Zn, suggests that about 20 % of the world’s population is affected20.

The above findings suggest that Fe-deficient premenopausal women without anaemia are likely to be Zn deficient. To test this hypothesis we used stable-isotope technology to measure Zn kinetics6,21,22, and determined correlations between Zn nutriture (plasma Zn and Zn pool sizes) and Fe nutriture (serum Fe and serum ferritin), and of Zn and Fe indices with the frequencies of consumption of common foods.

Subjects and methods

Setting

The present study was accomplished in out-patient and in-patient settings. Initially respondents to advertisements were interviewed by telephone, then selected potential subjects were interviewed face to face in an office of the Division of Human Nutrition and laboratory specimens were collected using a treatment room in the Division of Human Nutrition, then the subjects were admitted to the General Clinical Research Center for about 48 h while Zn kinetics were measured. The Institutional Review Board of the University reviewed and approved the project. Each participant was informed verbally and using printed forms; each indicated her consent by signature, and each was given a copy of her signed consent form.

Participants

The participants were thirty-three apparently healthy premenopausal women, aged 19–39 years, from Galveston (TX, USA) and nearby communities. They were selected from 708 respondents of various ethnic backgrounds who responded to advertisements and were interviewed by telephone to exclude individuals with exclusion factors. This process identified 323 potential subjects who were screened in more detail. Inclusion criteria included: informed consent, a history consistent with good health, regular menses with a 24–34 d cycle, completion of twelve grades of school, income >2 × poverty, and normal physical examination and laboratory screening tests. Exclusion criteria included: anaemia (Hb <110 g/l), chronic or recurrent illnesses, eating disorders, chronic medication, consumption of nutritional supplements that contained Fe and/or Zn within 60 d, skipped menstrual periods in the preceding month, alcohol consumption >2 ounces (57 g) daily, smoking > ten cigarettes daily, and use of controlled substances. After informed consent, a structured interview obtained socio-demographic and medical history data, and a food frequency history. A physical examination was done, and specimens of blood and urine were collected for a laboratory evaluation by the Hospital Clinical Pathology Laboratory.

Blood analytes included: serum concentrations of ferritin as a measure of Fe stores23,24, Fe, electrolytes (Na, Cl, Ca, inorganic phosphate, bicarbonate and anion gap), liver enzymes, cholesterol, creatinine, and urea N. Haematological examination included Hb concentration, erythrocyte indices, leucocyte differential count and erythrocyte sedimentation rate. Urinalysis included specific gravity, protein, glucose, and microscopic examination of sediment.

Individuals (n 129) who met all selection criteria were enrolled in the randomised controlled trial of Zn treatment or Fe treatment in the context of adequate intakes of other micronutrients on neuropsychological performance. Results will be reported elsewhere; a preliminary evaluation suggested Zn was efficacious for several tasks and Fe was efficacious for one task25. The findings concerning Zn were consistent with previous observations on 740 Chinese children aged 6–9 years of age26.

Zn kinetics were measured in the first fifty subjects after they had been administered the oral micronutrient supplement without Zn or Fe for at least 7 d. The micronutrient supplement was given to replenish latent deficiencies that might suppress the efficacious effect of Zn26–28. The micronutrient supplement provided all micronutrients that in 1989 were designated an RDA or estimated safe and adequate daily dietary intake (ESADDI) by the Food and Nutrition Board, National Academy of Sciences, USA, in an amount that was 50 % of the RDA or ESADDI for women this age. Based on the self-reported questionnaire, the thirty-three subjects who were not taking oral contraceptives were selected from the fifty subjects for the present report.

Outcomes

The main baseline outcomes relevant to the present report were food frequency, menstrual history, and indices of Fe and Zn status. Of the latter, Zn kinetics were measured on days 8–12 of the menstrual cycle.

Zinc tracer

The procedures for Zn kinetics have been reported6,10,29. Subjects were admitted to the University of Texas Medical Branch General Clinical Research Center (Galveston, TX, USA). Meals provided <6 mg Zn/24 h. On the first night, subjects were fasted for at least 8 h. The next morning blood samples were collected, using trace metal-free syringes and tubes, for indices of Fe and Zn status, and the 67Zn chloride tracer was administered as follows.

The 67Zn chloride tracer was prepared from 67Zn oxide (67Zn natural abundance 411 %; enrichment, 93–11 %; Oak Ridge National Laboratories, Oak Ridge, TN, USA). The 67Zn chloride solution was tested for sterility (Department of Clinical Microbiology and Immunology, University of Texas Medical Branch) and pyrogenicity (Scientific Associates Inc., St Louis, MO, USA). Short Teflon catheters were
placed in both antecubital veins. After a baseline blood sample was taken, 2 mg ^{67}Zn as the chloride dissolved in normal saline was administered over 3 min through the catheter in one arm. Samples of at least 10 ml were taken from the other arm at 5, 15, 30, 40, 50, 60 and 90 min, and at 2, 6, 12 and 24 h after the administration of ^{67}Zn. Zn pool sizes were determined from the data over the 24 h observation period after intravenous administration of ^{67}Zn.

Body composition measurement

The following morning, after an overnight 12 h fast, fat-free mass (FFM) was measured, with the bladder empty, by bioelectrical impedance analysis using a BIA-101A analyser (RJL Systems, Clinton Twp., MI, USA). Height (nearest cm) and weight (nearest 0.1 kg) were measured. Subjects were positioned supine with their arms and legs abducted. Signal-introducing electrodes were applied to the dorsal surface of the proximal phalanx of the right middle finger and just proximal to the middle toes of the dorsal surface of the right foot. Detecting electrodes were applied to the dorsal surface of the right wrist between the prominences of radius and ulna and on the dorsal side of the right ankle between the malleoli. FFM (nearest 0.1 kg) was calculated using the software (Weight Manager version 2.05a; RJL Systems) provided by the manufacturer.

Chemical analyses

The plasma samples were digested with H_2O_2 (30 %) and dissolved in 1 % nitric acid. Plasma Zn was measured by flame atomic absorption spectrophotometry. ^{67}Zn and ^{68}Zn ratios in plasma were measured by inductively coupled plasma-mass spectrometer VG PlasmaQuad-1, upgraded to a PlasmaQuad-2 plus status (VG Instruments, Winsford, Cheshire, UK). The CV of the isotopic ratio measurement was 0.2 to 0.6 %. Each sample was analysed with ten replicate runs to obtain optimal precision.

Zinc kinetics

Zn kinetic parameters including Zn pool sizes (Fig. 1), i.e. central Zn pool (Q_1), lesser peripheral Zn pool (Q_2), greater peripheral Zn pool (Q_3) and rapidly exchangeable Zn pool (EZP) as a sum of Q_1, Q_2 and Q_3, were calculated based on a closed mammillary model as reported. Zn pools Q_1, Q_2 and EZP were divided by FFM to obtain Q_1/FFM, Q_2/FFM and EZP/FFM, because Zn pools except for Q_2 were almost proportional to FFM. The lesser peripheral Zn pool Q_2 that presumably represents a certain proportion of liver Zn did not correlate with FFM. Therefore, Q_2 was not corrected by FFM.

Food-frequency questionnaire

Intake frequency of foods was assessed with a self-administered FFQ established by Willett et al. The study participants completed the questionnaire during their visits. The participants were instructed as follows: ‘Please indicate how often you usually eat certain foods. Think about your usual diet over the past month. How often do you usually eat these foods per day, per week, or per month? If you never ate them tick the never box and if you do not know how much you ate tick the DK (do not know) box.’ Participants reported therefore their average intake frequency only (not portion sizes) over the past month. To facilitate understanding by subjects, examples of dishes that contain the specified food item were shown.

Statistical tests

Simple and multiple regressions and non-linear regression with the broken-line equation were used to analyse the relationships between Fe and Zn indices and those between food frequencies and Fe and Zn indices. If non-linearity was observed by the inspection of plots, the data were fitted to the broken-line equation. In regression analyses, food frequencies (number of consumptions per week) were used as independent variables, as were biochemical and anthropometric parameters and the index of excessive menstrual blood loss. As an objective index of excessive menstrual blood loss, a history of ‘bleeding through menstrual pads’ was used. If the subjects answered ‘yes’ to the question ‘bleeding through menstrual pads’, 1 was given to the bivalent variable. When the subjects answered ‘no’, 0 was given.

The variables included in the initial independent variable set for stepwise multiple regression analysis of Zn indices and Fe parameters were body height, Hb, serum ferritin, serum Fe and bleeding through menstrual pads. For Q_2, FFM was also added to the initial set.

The variables included in the initial independent variable set for stepwise multiple regression analysis of the relationship between Fe and Zn indices (serum ferritin, serum Fe, plasma Zn, Zn pool sizes) and food frequencies were consumption (times/week) of beef, vitamin C-fortified drinks, orange juice, eggs, yoghurt, milk, coffee, tea, beans and bran breakfast cereals, and body height and bleeding through menstrual pads. FFM was also added to the initial variable set for the analysis of serum ferritin, serum Fe, plasma Zn and Q_2.

The independent variables were selected from the initial independent variable set by the backward variable selection with $P=0.10$ as an inclusion criterion and $P>0.10$ as an exclusion criterion. Outliers were serially detected when the P values for the Studentised residual were less than 0.05 with Bonferroni’s correction in regression analyses. All statistical tests including simple linear regression, stepwise multiple linear regression, non-linear regression and Fisher’s exact probability test were done using the SYSTAT software version 10.2 (Systat Software, Inc., San Jose, CA, USA). P values < 0.05 were considered significant.
Results

Characteristics of subjects

The characteristics of the thirty-three subjects are shown in Table 1. Ethnicity designated by the subjects included twenty-one non-Hispanic whites, four African-Americans, one Asian and seven with Spanish surnames. Since anaemia was an exclusion factor, Hb concentrations were >110 g/l. Twenty-one subjects had serum ferritin concentration <20 μg/l, a criterion to detect low Fe stores. Three subjects had Fe-deficient erythrocytes and serum ferritin concentration are shown in Table 3. Plasma Zn positively correlated with serum Zn, serum Fe concentration, and serum ferritin concentration of all subjects with Fe-deficient erythropoiesis (erythrocyte protoporphyrin > 1000 μg/l). Consistently, a significant inverse relationship (P<0·005) was found between serum ferritin and erythrocyte protoporphyrin (Fig. 2). When the data were limited within serum ferritin less than 20 μg/l, no correlation was observed (P=0·897). Serum ferritin concentration of all subjects with Fe-deficient erythropoiesis was <20 μg/l. Seventeen subjects had plasma Zn concentration <10·7 μmol/l (700 μg/l). Food frequencies (times/week) of the subjects are shown in Table 2. Five subjects out of thirty-three reported a history of bleeding through menstrual pads.

Relationship between iron parameters and zinc pool sizes

The correlation coefficients between Zn pool sizes and plasma Zn concentration, serum Fe concentration, and serum ferritin concentration are shown in Table 3. Plasma Zn positively and significantly correlated with Q2/FFM and Q2. Serum Fe positively and significantly correlated with plasma Zn and Q2. Serum ferritin positively and significantly correlated with plasma Zn, Q2/FFM, Q2, Q2/FFM and EZP/FFM.

The relationship between Fe parameters and Zn pool sizes was further analysed by stepwise regression analysis as shown in Table 4. Simple and multiple regression analysis found serum ferritin positively correlated with Q2/FFM. The effect of excessive menstrual bleeding exemplified by bleeding through menstrual pads on Q2/FFM was marginal (0·05 < P<0·10). Simple and multiple regression analysis also found serum ferritin and serum Fe as positively correlated with Q2. Simple and multiple regression analysis found serum ferritin to be positively correlated with Q2/FFM. Similar to Q2/FFM, both simple and multiple regression analysis found serum ferritin positively correlated with EZP/FFM. For plasma Zn, only serum Fe was significantly associated by stepwise regression analysis.

Because non-linearity was found by inspection of the plot of serum ferritin v. Q2, the relationship between serum ferritin and Q2 was analysed by non-linear regression with the broken-line equation. After serial removal of outliers when the P values for the Studentised residual were <0·05 with Bonferroni’s correction in each step of non-linear regression, the final values of the coefficients of the broken-line equation were obtained. Fig. 3 indicates the plot of the included subjects, outliers and the regression line. The broken line fitted to the data was described by the following equation:

\[Q_2 (\mu mol) = \alpha (SF (\mu g/l) - \beta) + \alpha |SF (\mu g/l) - \beta| + \gamma, \]

where SF denotes serum ferritin, \(\alpha\) denotes a half value of the slope of the broken line above the breakpoint, \(\beta\) denotes serum

![Image](https://www.cambridge.org/core/terms)

Table 1. Characteristics of women who did not take oral contraceptives and iron or zinc nutritional supplements (n 33)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>30·2</td>
<td>5·2</td>
<td>30·0</td>
<td>19·0</td>
<td>39·0</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>64·8</td>
<td>14·4</td>
<td>60·0</td>
<td>45·8</td>
<td>108·4</td>
</tr>
<tr>
<td>Body height (m)</td>
<td>1·62</td>
<td>0·07</td>
<td>1·61</td>
<td>1·49</td>
<td>1·78</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>24·7</td>
<td>5·5</td>
<td>22·7</td>
<td>18·1</td>
<td>34·5</td>
</tr>
<tr>
<td>Fat-free mass (kg)*</td>
<td>45·0</td>
<td>6·4</td>
<td>43·6</td>
<td>34·0</td>
<td>65·2</td>
</tr>
<tr>
<td>Serum ferritin (μg/l)</td>
<td>19†</td>
<td>21</td>
<td>18</td>
<td>6</td>
<td>78</td>
</tr>
<tr>
<td>Serum Fe (μmol/l)*</td>
<td>11·6†</td>
<td>0·29†</td>
<td>11·4</td>
<td>5·1</td>
<td>32·2</td>
</tr>
<tr>
<td>Erythrocyte protoporphrin (μg/l)</td>
<td>499‡</td>
<td>16‡</td>
<td>460</td>
<td>200</td>
<td>1310</td>
</tr>
<tr>
<td>Haemoglobin (g/l)</td>
<td>131</td>
<td>8</td>
<td>131</td>
<td>114</td>
<td>155</td>
</tr>
<tr>
<td>Plasma Zn (μmol/l)</td>
<td>10·7</td>
<td>1·6</td>
<td>10·5</td>
<td>7·5</td>
<td>14·4</td>
</tr>
</tbody>
</table>

* n 32.
† Geometric mean.
‡ Antilog of standard deviation of the logarithmically transformed data.
ferritin at the breakpoint, and γ denotes the value of Q_2 at the horizontal section of the broken line. The estimate of serum ferritin at the breakpoint (b) was 21.0 (asymptotic SE 2.9) mg/l. The estimate of Q_2 at the horizontal section of the broken line (g) was 73.1 (asymptotic SE 4.3) mmol. The estimate of the slope above the breakpoint ($2a$) was 4.02 (asymptotic SE 0.41) mmol/mg per l.

Outliers were serially detected when the P values for the Studentised residual in non-linear regression were <0.05 with Bonferroni’s correction. By this procedure, five outliers were detected. In subject nos. 104, 114 and 159, Q_2 was higher than the estimate from serum ferritin concentration. In subject nos. 156 and 312, Q_2 was lower than the estimate from serum ferritin concentration. No outlier reported bleeding through menstrual pads.

The outliers found were classified into three groups

Group 1 included subjects 156 and 312 and was characterised by a high frequency of intake of vitamin C-rich foods (Zn absorption inhibitors and Fe absorption enhancers) consistent with a negative deviation of Q_2 compared with serum ferritin. Subject no. 156 had a frequency of intake of orange juice of five times/week and a frequency of intake of vitamin C-fortified drinks of 0.5 times/week.

Group 2 included subjects 104 and 159 and was characterised by a low frequency of intake of vitamin C-rich foods (Zn absorption inhibitors and Fe absorption enhancers) consistent with a positive deviation of Q_2 compared with serum ferritin. Subject no. 104 had a frequency of intake of orange juice of 0.5 times/week and a frequency of intake of vitamin C-fortified drinks of zero.

Group 3 included subject 114 and was characterised by a low Zn loss consistent with a positive deviation of Q_2 compared with serum ferritin. Subject no. 114 had an extremely low urinary Zn excretion rate constant (0.0645/d) compared with hypozincaemic subjects (average excretion rate constant, 0.175/d) and normozincaemic subjects (0.344/d).

Because these outliers had conspicuous food frequencies as shown above, we tried to explain the association between Fe parameters and Zn pool sizes based on the common factors

Table 2. Food frequencies (times/week) of women who did not take oral contraceptives and iron or zinc nutritional supplements ($n = 33$)

<table>
<thead>
<tr>
<th>Food item</th>
<th>Mean</th>
<th>std</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>2.1</td>
<td>2.0</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Vitamin C-fortified drinks</td>
<td>0.3</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Orange juice</td>
<td>3.8</td>
<td>5.2</td>
<td>1</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Egg dishes</td>
<td>1.7</td>
<td>1.9</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Yoghurt</td>
<td>1.2</td>
<td>1.7</td>
<td>0.5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Milk</td>
<td>3.1</td>
<td>5.5</td>
<td>0.5</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Coffee</td>
<td>6.6</td>
<td>6.8</td>
<td>5</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Tea</td>
<td>2.2</td>
<td>4.4</td>
<td>0.5</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Beans</td>
<td>1.8</td>
<td>1.9</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Bran breakfast cereals*</td>
<td>0.6</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

* $n = 32$.

Table 3. Associations between zinc pool sizes and plasma zinc concentration, serum iron concentration, and serum ferritin concentration†

<table>
<thead>
<tr>
<th>Plasma Zn (n = 32)</th>
<th>Serum Fe (n = 31)</th>
<th>Serum ferritin (n = 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>P</td>
<td>r</td>
</tr>
<tr>
<td>Plasma Zn</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Q_1/FFM</td>
<td>0.383</td>
<td>0.030*</td>
</tr>
<tr>
<td>Q_2</td>
<td>0.675‡</td>
<td>0.001*</td>
</tr>
<tr>
<td>Q_2/FFM</td>
<td>0.204</td>
<td>0.263</td>
</tr>
<tr>
<td>EZP/FFM</td>
<td>0.307</td>
<td>0.087</td>
</tr>
<tr>
<td>TR/FFM</td>
<td>0.110</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Q_1, size of the central Zn pool (compartment 1 in Fig. 1); FFM, fat-free mass; Q_2, size of the lesser peripheral Zn pool (compartment 2 in Fig. 1); Q_3, size of the greater peripheral Zn pool (compartment 3 in Fig. 1); EZP, rapidly exchangeable Zn pool size, a sum of Q_1, Q_2, and Q_3; TR, plasma Zn turnover rate.

* Correlation was significant ($P < 0.05$).
† P values were determined by F test.
‡ $n = 33$.
§ $n = 32$.

K. Yokoi et al.
Table 4. Iron parameters affecting zinc pool sizes examined by stepwise multiple regression analysis*
(Simple and multiple regression coefficients)

<table>
<thead>
<tr>
<th></th>
<th>Simple regression</th>
<th>Multiple regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regression coefficient</td>
<td>P</td>
</tr>
<tr>
<td>(Q_1/FFM) ((\mu)mol/kg) (n 30; (R^2 0.450; SE of estimate 0.122; P<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.00851</td>
<td>0.001</td>
</tr>
<tr>
<td>Serum ferritin ((\mu)g/l)</td>
<td>0.147</td>
<td>0.056</td>
</tr>
<tr>
<td>(Q_2) ((\mu)mol) (n 30; (R^2 0.569; SE of estimate 0.123; P<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-</td>
<td>0.001</td>
</tr>
<tr>
<td>Serum ferritin ((\mu)g/l)</td>
<td>2.16</td>
<td>0.001</td>
</tr>
<tr>
<td>Serum Fe ((\mu)mol/l)</td>
<td>0.916</td>
<td>0.001</td>
</tr>
<tr>
<td>(Q_2/FFM) ((\mu)mol/kg) (n 31; (R^2 0.377; SE of estimate 0.16; P<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.016</td>
<td>0.039</td>
</tr>
<tr>
<td>Body height (m)</td>
<td>0.256</td>
<td>0.006</td>
</tr>
<tr>
<td>Serum ferritin ((\mu)g/l)</td>
<td>0.147</td>
<td>0.095</td>
</tr>
<tr>
<td>(E2P/FFM) ((\mu)mol/kg) (n 32; (R^2 0.31; SE of estimate 0.17; P<0.004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-</td>
<td>0.001</td>
</tr>
<tr>
<td>Body height (m)</td>
<td>-</td>
<td>0.080</td>
</tr>
<tr>
<td>Serum ferritin ((\mu)g/l)</td>
<td>0.271</td>
<td>0.009</td>
</tr>
</tbody>
</table>

\(Q_1\), size of the central Zn pool (compartment 1 in Fig. 1); FFM, fat-free mass; BTMP, bleeding through menstrual pads (yes or no: 1 was given for ‘yes’; 0 was given for ‘no’); \(Q_2\), size of the lesser peripheral Zn pool (compartment 2 in Fig. 1); \(Q_3\), size of the greater peripheral Zn pool (compartment 3 in Fig. 1); EZP, rapidly exchangeable Zn pool size.

* The potential variables included in the initial variable set were body height, Hb, serum ferritin, serum Fe and BTMP for \(Q_1/FFM\), \(Q_2/FFM\) and EZP/FFM. For \(Q_3\), FFM was also included in the potential variables. P values were determined by F test.

Association between subjects' food intake histories and serum ferritin and zinc pool sizes

The association of serum ferritin with food frequencies and bleeding through menstrual pads is shown in Table 5. The frequency of beef consumption correlated positively with serum ferritin. Bleeding through menstrual pads correlated negatively with serum ferritin. The negative association between bran breakfast cereal consumption and serum ferritin was marginal. For serum Fe, only the frequency of consumption of orange juice was a negative predictor while the frequency of consumption of coffee was found to be a positive predictor. The frequencies of yoghurt, coffee and beef consumption were positively correlated with EZP/FFM. Body height and bleeding through menstrual pads were negatively correlated with EZP/FFM.

Association between subjects' food intake histories and serum ferritin and zinc pool sizes

including food frequencies, anthropometric parameters and menstrual blood loss.

Fig. 3. Non-linear relationship between serum ferritin and the lesser peripheral Zn pool size (\(Q_2\)). The broken line fitted to the data was described by the following equation: \(Q_2 (\mu\text{mol}) = 2.007 (\text{SF} (\mu\text{g/l}) - 21) + 2.007 [\text{SF} (\mu\text{g/l}) - 21] + 73.1\), where \(\text{SF}\) denotes serum ferritin (n 28; \(R^2 0.891; P<0.001; F\) test). (●), data included in the broken-line model; (▲), outliers with a subject identification (ID) number. Outliers were classified into three groups. Group 1 includes subject nos. 156 and 312 who had a high frequency of consumption of vitamin C-rich foods (Zn absorption inhibitors and Fe absorption enhancers) consistent with a negative deviation of \(Q_2\) compared with serum ferritin. Group 2 includes subject nos. 104 and 159 who had a low frequency of intake of vitamin C-rich foods (Zn absorption inhibitors and Fe absorption enhancers) consistent with a positive deviation of \(Q_2\) compared with serum ferritin. Group 3 includes subject no. 114 who had a low urinary Zn loss consistent with a positive deviation of \(Q_2\) compared with serum ferritin.
Dietary and host factors that affect iron stores

The critical role of food choice in Fe nutriture was confirmed again. The positive correlation between frequency of beef consumption and serum ferritin was consistent with previous reports. There were some outliers from the regression line of serum ferritin vs. Zn pool size. The outliers were explainable based on their extreme characteristics for food frequencies and Zn kinetics, consistent with the following discussion obtained from the analysis of the relationship between dietary and host factors and indices of Zn and Fe.

Dietary and host factors that affect iron stores

The inverse association between menstrual blood loss and Fe stores was confirmed. A history of ‘bleeding through menstrual pads’ corresponded to an average 12 μg/l decrease in serum ferritin concentration in the present study. In our previous study, a history of ‘bleeding through menstrual pads’ corresponded to an average 14 μg/l decrease in serum ferritin concentration. Thus a history of ‘bleeding through menstrual pads’ can be considered a probable indicator of Fe depletion.

Dietary and host factors that affect zinc pool sizes

Beef and other red meats are sources of highly bioavailable Zn. Therefore it was not surprising that we found a significant positive association between the frequency of beef consumption and Zn pool sizes, which was consistent with our previous finding of a significant inverse correlation between frequency of red meat consumption and plasma Zn disappearance.

Bran cereals contain phytate, dietary fibres and products of non-enzymic Maillard browning that inhibit Fe absorption. The inverse association between menstrual blood loss and Fe stores was confirmed. A history of ‘bleeding through menstrual pads’ corresponded to an average 12 μg/l decrease in serum ferritin concentration in the present study. In our previous study, a history of ‘bleeding through menstrual pads’ corresponded to an average 14 μg/l decrease in serum ferritin concentration. Thus a history of ‘bleeding through menstrual pads’ can be considered a probable indicator of Fe depletion.

Discussion

Association between iron and zinc indices

Consistent with our hypothesis, simple and multiple regression analyses and non-linear regression found strong associations between Zn (plasma Zn and Zn pool sizes) and Fe parameters (serum Fe and serum ferritin). There were some outliers from the regression line of serum ferritin vs. Zn pool size. The outliers were explainable based on their extreme characteristics for food frequencies and Zn kinetics, consistent with the following discussion obtained from the analysis of the relationship between dietary and host factors and indices of Zn and Fe.

Table 5. Associations of serum ferritin (μg/l) with food frequencies (times/week) and bleeding through menstrual pads (BTMP) examined by stepwise multiple regression analysis (n 29)*

(Regression coefficients and partial correlation coefficients)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Regression coefficient</th>
<th>SE</th>
<th>Partial correlation coefficient</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>14·8</td>
<td>2·2</td>
<td>–</td>
<td><0·001</td>
</tr>
<tr>
<td>Bran breakfast cereals</td>
<td>–2·14</td>
<td>1·05</td>
<td>–0·376</td>
<td>0·053</td>
</tr>
<tr>
<td>Beef</td>
<td>3·48</td>
<td>0·82</td>
<td>0·645</td>
<td><0·001</td>
</tr>
<tr>
<td>BTMP†</td>
<td>–12·2</td>
<td>4·4</td>
<td>–0·481</td>
<td>0·011</td>
</tr>
</tbody>
</table>

* The dependent variable entered was serum ferritin (μg/l). The independent variables included in the model explain 44% of the variation in serum ferritin (R² 0·443; se of estimate 8·20; P<0·002; F test). The potential variables included in the initial variable set were consumption (times/week) of beef, vitamin C-fortified drinks, orange juice, eggs, yoghurt, milk, coffee, tea, beans and bran breakfast cereals, and body height, fat-free mass and BTMP.

† Yes or no: 1 was given for ‘yes’; 0 was given for ‘no’.

Table 6. Associations of plasma zinc (μmol/l) with food frequencies (times/week) examined by stepwise multiple regression analysis (n 31)*

(Regression coefficients and partial correlation coefficients)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Regression coefficient</th>
<th>SE</th>
<th>Partial correlation coefficient</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>10·3</td>
<td>0·3</td>
<td>–</td>
<td><0·001</td>
</tr>
<tr>
<td>Coffee</td>
<td>0·0927</td>
<td>0·0335</td>
<td>0·463</td>
<td>0·010</td>
</tr>
<tr>
<td>Orange juice</td>
<td>–0·0999</td>
<td>0·0427</td>
<td>–0·369</td>
<td>0·045</td>
</tr>
</tbody>
</table>

* The dependent variable entered was plasma Zn. The independent variables included in the model explain 25% of the variation in plasma Zn (R² 0·252; se of estimate 1·2; P=0·017; F test). The potential variables included in the initial variable set were consumption (times/week) of beef, vitamin C-fortified drinks, orange juice, eggs, yoghurt, milk, coffee, tea, beans and bran breakfast cereals, and body height, fat-free mass and bleeding through menstrual pads.
serum ferritin concentrations by the broken-line regression (Fig. 3), reported a higher frequency of consumption of vitamin C-rich foods. In contrast, subjects nos. 159 and 104 reported a lower frequency of consumption of vitamin C-rich foods and had higher \(Q_2 \) than expected from serum ferritin (Fig. 3). These findings are consistent with the findings of Kies et al.\(^\text{61} \) from balance studies of lower Zn retention in subjects supplemented with vitamin C. On the other hand Solomon et al.\(^\text{52} \) and Sandström & Cederblad\(^\text{53} \) did not find that vitamin C decreased Zn absorption. The higher frequency of yoghurt consumption was associated with larger \(Q_2 \). Subject no. 159, whose \(Q_2 \) was higher than the predicted value from her serum ferritin concentration by the broken-line regression (Fig. 3), reported extremely high frequency of consumption of yoghurt (seven times/week). Lactic acid in the yoghurt increased Zn solubility and thus enhanced intestinal Zn absorption.

Stepwise multiple regression analysis using food frequencies and menstrual bleeding selected excessive menstrual blood loss as a negative predictor of Zn pool sizes. This finding suggests that the loss of Zn in erythrocytes was sufficient to impair Zn nutriture.

Table 7. Associations of zinc pool sizes with food frequencies (times/week) examined by stepwise multiple regression analysis* (Regression coefficients and partial correlation coefficients)

| Regression coefficient | SE | Partial correlation coefficient | \(P \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{1}/FFM) ((\mu \text{mol/kg})) (n 30; (R^2 0.317;) se of estimate 0.132; (P=0.018))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Constant | 0.680 | 0.036 | – | \(< 0.001 \)
| Bran breakfast cereals | –0.0406 | 0.0169 | –0.425 | 0.024
| Beef | 0.0281 | 0.0132 | 0.387 | 0.042
| BTMP | –0.198 | 0.071 | –0.481 | 0.010
| \(Q_{2} \) (\(\mu \text{mol} \)) (n 30; \(R^2 0.595; \) se of estimate 46.4; \(P=0.002 \)) | | |
| Constant | 82.2 | 17.6 | – | \(< 0.001 \)
| Bran breakfast cereals | –22.8 | 6.3 | –0.611 | 0.002
| Yogurt | 16.1 | 5.6 | 0.525 | 0.008
| Coffee | 4.03 | 1.46 | 0.507 | 0.011
| Beef | 12.6 | 5.1 | 0.467 | 0.021
| Orange juice | –4.28 | 1.80 | –0.451 | 0.027
| Eggs | –8.26 | 4.72 | –0.350 | 0.084
| BTMP | –56.2 | 26.2 | –0.415 | 0.044
| \(Q_{2}/FFM \) (\(\mu \text{mol/kg} \)) (n 31; \(R^2 0.381; \) se of estimate 6.64; \(P=0.004 \)) | | |
| Constant | 98.9 | 29.7 | – | 0.003
| Body height (m) | –35.3 | 18.2 | –0.356 | 0.063
| Beef | 1.85 | 0.65 | 0.488 | 0.008
| BTMP | –8.96 | 3.47 | –0.451 | 0.016
| EZP/FFM (\(\mu \text{mol/kg} \)) (n 31; \(R^2 0.489; \) se of estimate 6.51; \(P=0.001 \)) | | |
| Constant | 99.2 | 29.2 | – | 0.002
| Body height (m) | –34.9 | 17.8 | –0.358 | 0.001
| Coffee | 0.377 | 0.181 | 0.377 | 0.048
| Beef | 1.83 | 0.64 | 0.489 | 0.008
| BTMP | –11.5 | 3.5 | –0.547 | 0.003

\(Q_1 \), size of the central Zn pool (compartment 1 in Fig. 1); FFM, fat-free mass; BTMP, bleeding through menstrual pads (yes or no: 1 was given for ‘yes’; 0 was given for ‘no’); \(Q_2 \), size of the lesser peripheral Zn pool (compartment 2 in Fig. 1); \(Q_3 \), size of the greater peripheral Zn pool (compartment 3 in Fig. 1); EZP, rapidly exchangeable Zn pool size.

* The potential variables included in the initial variable set were consumption (times/week) of beef, vitamin C-fortified drinks, eggs, yoghurt, milk, coffee, tea, beans and bran breakfast cereals, body height, and BTMP for \(Q_{1}/FFM \), \(Q_{2}/FFM \) and EZP/FFM. For \(Q_{2} \), FFM was also included in the potential variables. \(P \) values were determined by \(F \) test.

In conclusion, we found high associations between indices of Zn nutriture (plasma Zn and Zn pool sizes) and Fe nutriture (serum Fe and serum ferritin) in premenopausal women with normal Fe status or low Fe status without anaemia. Both low serum ferritin, and in seven of sixteen subjects with normal plasma Zn or normal serum ferritin (OR 20.6; \(P=0.002 \)) were evident in nineteen of twenty-one subjects with serum ferritin \(< 20 \mu \text{g}/\text{l} \) and in four of twelve subjects with serum ferritin \(\geq 20 \mu \text{g}/\text{l} \) (OR 19.0; \(P=0.001 \); Fisher’s exact probability test). The sensitivity was 74.1 % and specificity was 50.0 %. Low \(Q_2 \) (<112 \(\mu \text{mol} \) or 7.3 mg) was evident in twenty of twenty-three subjects with plasma Zn \(< 11.5 \mu \text{mol/l} \) (750 \(\mu \text{g/l} \)) and in three of ten subjects with plasma Zn \(\geq 11.5 \mu \text{mol/l} \) (OR 15.6; \(P=0.002 \); Fisher’s exact probability test). The sensitivity was 74.1 % and specificity was 50.0 %. When co-occurrence of low plasma Zn (<11.5 \(\mu \text{mol/l} \)) and low serum ferritin (<20 \(\mu \text{g}/\text{l} \)) was used as a criterion for detecting low \(Q_2 \) (<112 \(\mu \text{mol} \) or 7.3 mg), low \(Q_2 \) was present in sixteen of seventeen subjects with both low plasma Zn and low serum ferritin, and in seven of sixteen subjects with normal plasma Zn or normal serum ferritin (OR 20.6; \(P=0.002 \)). The sensitivity was 64.0 % and specificity was 87.5 %. The combination of plasma Zn and serum ferritin improved specificity while sensitivity was slightly decreased. We propose that serum ferritin or the combination of serum ferritin and plasma Zn might be useful as a screening test for low Zn nutriture, and a basis for confirmatory studies.

In conclusion, we found high associations between indices of Zn nutriture (plasma Zn and Zn pool sizes) and Fe nutriture (serum Fe and serum ferritin) in premenopausal women with normal Fe status or low Fe status without anaemia. Both low Fe stores and low Zn pool sizes were likely to be derived from common dietary and host factors. For both Zn pool sizes and serum ferritin, beef was a positive predictor, and bran breakfast cereals and bleeding through menstrual pads were
negative predictors. Premenopausal women who (a) infrequently consume sources of bioavailable Zn and Fe, or (b) infrequently consume rich sources of enhancers of Zn and Fe absorption and (c) frequently consume rich sources of inhibitors of Zn and Fe absorption and/or (d) have excessive menstrual bleeding are likely to be at risk of simultaneous deficiencies of Zn and Fe.

Acknowledgements

The present study was supported in part by US Department of Defense Army grant DAMD 17-95-C-5112, and grant M01 RR 00 073 from the National Center for Research Resources, National Institutes of Health, United States Public Health Service, that funded the General Clinical Research Center at the University of Texas Medical Branch at Galveston.

References

