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1. Introduction. It is well known that the number Ak(m) of representations of a
positive integer m as the sum of k squares of integers can be expressed in the form

Ak(m) = Pk(m) + Rk(m), (1)

where Pk(m) is a divisor function, and Rk(m) is a remainder term of smaller order. (1) is a
consequence of the fact that

is a modular form for a certain congruence subgroup of the modular group, and

with
oo oo

Ek(z)=l + X Pk{m)e"imz, Et(z)= £ Rk(m)e-im\ (2)

where Ek(z) is an Eisenstein series and Ek(z) is a cusp form (as was first pointed out by
Mordell [9]). The result (1) remains true if m is taken to be a totally positive integer from
a totally real number field K and Ak(m) is the number of representations of m as the sum
of fe squares of integers from K (at least for 2 | k, k>2, and for those cases with 2+fc
which have been investigated). •&, Ek, Ek then are replaced by modular forms for a
subgroup of the Hilbert modular group with Fourier expansions of the form (10) (see
section 2).

For 2|fc, k = 2r,

Pk(m) = Krar(m), (3)

where ar(m) is a simple finite sum (see sections 5 and 6) (e.g.

ar(m) = (-ir I (-lVd'-1

d|m,d£M

for 41 r) and Kr does not depend on m (*<r stems from normalizing to 1 the constant term
in the Fourier expansion (2) of Ek). For 2\k, Pk(m) is, in general, more complicated,
the evaluation of Pk(m) involving the calculation of a value of an L-series, depending on m.

Ek(z) is an element of a vector space of functions of dimension [(fc -1)/8] over C, a
basis of which has been given by Mordell [9] (see section 4). In particular, [(k -1)18] = 0

Glasgow Math. J. 19 (1978) 173-197.

https://doi.org/10.1017/S0017089500003608 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003608


174 KARL-BERNHARD GUNDLACH

for fe^8, hence E£ is identically zero for fc<8. Rankin [14] has shown that, if k>^9, E£
does not vanish identically. For 9sfc<16, E£ is, up to a constant factor, the basis
element given by Mordell; for fe > 17, E~£ is a linear combination of those basis elements.
Rankin [12] has pointed out that, from the point of view of calculating the Rk(m), i.e. of
calculating the Fourier coefficients of the basis elements, it is not clear whether, for
fc>17, the basis elements given by Mordell and others are the most suitable ones. It
seemed to be a good idea to look for basis elements whose Fourier coefficients have
multiplicative properties (for a detailed discussion see [12], [13]). But, even for such
functions, it remains desirable to find simple expressions for the Fourier coefficients, at
least for coefficients b(p), p a prime (if the coefficients b(m), m not a prime, can be
calculated from the b(p), p prime, with the help of the multiplicative properties). The
object of this paper is to show how such expressions can be obtained by using Eisenstein
series for suitable Hilbert modular groups.

If a modular form of weight r for a Hilbert modular group of a totally real number
field K, [K:Q]=n, defined on a product Hi*.. .xHi of n upper half-planes H1 =
{z | z e C, Im z > 0}, is restricted to the diagonal, one gets a modular form of weight nr for
the (rational) modular group (see section 3, Theorem 4). This has been used to calculate
values of zeta functions and L-functions of K, which occur as constant terms in the
Fourier expansions of Eisenstein series (see e.g. [5, p. 112, p. 134; 6]). It can also be used
to obtain modular forms for certain congruence subgroups of the modular group [6]. To
give a typical example of the procedure, let

m = l d | m

be the normalized Eisenstein series of weight 12 for the modular group (see e.g. [15, (7),
p. 55]). Take the normalized Eisenstein series of weight 6 for Hilbert's modular group of
the field Q(>/2), defined on the product H1xH1 of two upper half-planes (see [5]). The
restriction to the diagonal is given by (see [5] (p. 134, using the value of K6 on p. 135))

G_6(z, z) = 1 S ^ - I Y I
1 " m = 1 »V/2V2= m (|i)|(v)

I/V2>0

24 32 5 7

i+2-y-v-*+
Here v is an integer from K, w/2>0 stands for v4l totally positive, Sf denotes the trace,
.>V the norm, and the summation for the inner sum is over the integral ideals (pt). G12 and
G_6 are modular forms of weight 12, and their difference is a cusp form, hence a multiple
of the discriminant

( l -e2 i r i m 2 ) 2 4= X
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REPRESENTATION AS A SUM OF SQUARES 175

Comparing the coefficients of e2™ one finds that

192 . 691(G12(z)- G_6(z, z)) = - 2 8 . 34 . 5 . 7 . A(z).

Comparing the coefficients of e27rimz, one gets that

2 4 .3 2 .5 .< r (m)=-5 .13 .19 2 £ d " + 691 T
dim 9ty2V2"=dim 9ty2V2"=m(|i)|(i/)

/

for Ramanujan's function r(n). In (4), the second term on the right-hand side too is a
divisor function, this time in the quadratic number field Q(>/2). The integers v from Q(V2)
with SPvl2y/2 = m, vV2>0, of course, are the numbers v = a + m-j2, a el, a2<2m2.

In order to obtain expressions similar to (4) for Rk(m), we shall use Eisenstein series
of weight r for certain subgroups of a Hilbert modular group of a field K, [K:Q]=n.
Taking Eisenstein series, the Fourier expansions of which have non-zero constant terms
only in cusps not equivalent to cusps on the diagonal (such groups usually have cusps of
this kind), by restriction to the diagonal one immediately gets cusp forms of weight nr for
a subgroup of the (rational) modular group (see section 3, Theorem 5). From Eisenstein
series of integral weight r for Q(v2), we obtain the necessary cusp forms of weight
2r = 6, 8, 10, 12 (see section 7), i.e. Et and Rk(m) for k = 12, 16, 20, 24. For k = 28, 32,
Q(V2) does not supply sufficiently many cusp forms from Eisenstein series whose restric-
tions are cusp forms. But additional cusp forms, and with them E£8, £32, can be
constructed by this method from Eisenstein series for Q(V5). To reach, for instance,
k = 18 with Eisenstein series from a quadratic number field, one would have to take series
of half integral weight § (£^8 is a modular form of weight 9 = 2.§). The series of half
integral weight are not very pleasant [10]. We therefore used Eisenstein series of weight 3
for a cubic number field (see section 8) to construct £^g. For the resulting formula for
A18(m), see section 9.

The paper is organized as follows. Section 2 presents general information about
Hilbert modular groups and Eisenstein series. We use non-normalized Eisenstein series
having the simpler Fourier coefficients ar(m) instead of Krar{m) in the case of (3) and are
not concerned with the exact value of the constant term in the Fourier expansion, since
this term, for modular forms of positive weight, is uniquely determined by the remaining
coefficients and, therefore, not needed for proving linear relations between modular
forms. In section 3 the restriction to the diagonal is discussed. Section 4 brings the
necessary background about theta functions. Then, starting from some Eisenstein series
for subgroups of Hilbert's modular groups for various fields K, sufficiently many modular
forms are constructed to find linear combinations of them equal to certain powers of •d(z),
and the Fourier coefficients of these functions are calculated. The functions for K = Q are
treated in sections 5 and 6, the functions for Q(%/2) in section 7, and the functions for the
cubic field of discriminant 72 in section 8. In section 9 the resulting values of Ak(m) for
certain k are given.

The method, developed in this paper, for calculating Ak(m) is, of course, not
confined to the case of rational integers m but can also be applied to the case of integers
m of a totally real number field.
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2. Hilbert's modular groups and Eisenstein series. Let

(i) K be a totally real number field with class number 1, [K:Q] = n,
(ii) (v), for v e K, denote the ideal generated by v,

(iii) dK be the discriminant of K, (5) the different,
(iv) p € K be an algebraic integer,
(v) reN with JfKjQ(e)r = 1 for every unit e = 1 mod(p).

Hilbert's modular group for K is the group

r K = IL | L = (° \a, b, c, d integers from K, det L = 11;

the principal congruence subgroup of level (p) is defined by

rK(p) = {L|LerK,L-(J J)mod(p)}.
The n different injections of K into R map K onto the conjugate fields Km,..., KM. To
each K0) one assigns a complex variable r0), the /th conjugate of T = (T(1), . . . , T(n)). The
canonical isomorphisms of K(T) onto KU)(TQ)) (with T ^ T 0 ) ) , for / = l , . . . , n , map a
rational function 1?(T)EK(T) onto its conjugates i?0)(T0)). Calculations with elements
from K(T) always stand for simultaneous calculations with the conjugates in
( l < / < n ) . For R(r)eK(T), trace and norm are defined by

X )), Jf(R(r)) = f l

To each matrix LeTK one assigns a transformation

T~L(T) = (aT + b)(cT + d)-1 (fbrL = (c
fl *)), (5)

i.e. a simultaneous transformation

= (ao)T«) + 6(O)(c(/)To> + dO))-i (1 < / < n).

By (5), FK acts as a group of analytic automorphisms on a product H = Ht x . . . x Hx of n
upper half-planes Hj = {z | z e C, Im z > 0}. LeTK acts as a linear operator on the space
of functions / holomorphic on H by

/(T) IL = /(T) IL = M{CT + d)-'f(L(r)). (6)
r

The set Mr(TK(p), v) of entire modular forms of weight r with a multiplier system v
of modulus 1 for FK(p) consists of those functions f on H that satisfy the following
conditions:

(7) / is holomorphic on H;
(8) f\r L = v(L)f, \v(L)\ = 1, for L e TK(p);
(9) The Fourier expansions of / at the cusps of TK(p) (see (10)) contain only terms

with v/8p>0.
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If n > l , (9) is a consequence of (7), (8) (see [1], p. 323). Mr(TK(p), v) is a finite-
dimensional vector space over C. The cusps of FK(p) are the points (£( 1 ) , . . . , £(n)) of the
boundary of H for £eJ£U{<»}. Since K is supposed to have class number 1, for each
f e.KU{<»} there exists an LeTK with £ = L(o°) (if the class number is greater than 1, one
has to take LeSL(2, K)). If feMr(TK(p), 1) (for simplicity, we assume that v = 1), f\ L
has a Fourier expansion

(10)

the Fourier expansion of / at the cusp £ = L(°°). The number a(0;f,L) depends only on
the cusp £ and not on the special choice of L. / is called a cusp form if a(0; /, L) = 0 for
every fe/CU{<»}.

To define the Eisenstein series (for details see [8]), let pu p2eKbe algebraic integers
with (p, Pi, p2) = (1), T e H, s e C, and

G?(T,s;(p),Pl,p2;K)= £ Jf(KlT + K2)-' \Jf(KlT +K2)\~
S. (11)

Here KU K2 are integers from K; (KU K2)P indicates that, from each equivalence class mod
the units = 1 mod(p)((K1, K2)~(MI> M2) iff there exists a unit e^lmod(p) with KS =
efij mod(p), 7 = 1,2), only one element is to be taken and (0,0) is to be omitted. The
series is convergent for r + Res>2. The Fourier series

Gf(r, s; (p), pu p2; K) = £ af(vlpS; s, Im r; (p), P l , p2; K)e2^"'^
(l)|v

is used for analytic continuation as a function of s into a region containing s = 0. Except
for n = l, r = 2, v = 0,

af(vlpS; 0, Im T; (p), pu p2; X) is j .

Put

independent of Im T for v/pS s 0.

Gr(r; (p), P l , p2; K) = kj\p, K)Gf(r, 0; (p), P l , p2; K),

iir{p, K) = (-2m)nrl[(r-l)\]ndrKm l-^Cp)!'"1-

Then we have [8]

THEOREM 1. Except for n = 1, r = 2, Gr(r; (p), pu p2; K)eJH(TK(p), 1), and

Gr(T;(p), pj, p2; X) = 5,(0;^), p1; p2; /(L)+ £ dr(vlp8;(p), pu p2; K
v/pS>0
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178 KARL-BERNHARD GUNDLACH

The summation is over the integers veK. For v^O, one has

dr(vlp8; (p), P l , p2; K)= £ sgn Jf(K)'
K-p1mod(p)

/ / r > 1, ar(0; (p), P l , p2; K) = 0 for p-TPl.

The set Mf(FK(p), 1) of linear combinations of the Eisenstein series (for n = 1, r = 1
the set of holomorphic linear combinations) is a subspace of Mr(FK(p), 1), orthogonal with
respect to the Petersson scalar product to the subspace M?(TK(p), 1) of cusp forms. If
it = 1, Mf(rK(p), 1) is the full orthogonal complement of M?(TK(p, 1)) (for n > 1, see [3]).

By (6) every L e T acts as a linear operator on Mr(rK(p), 1). We shall need the
following lemma, which easily follows from (11).

LEMMA 1. Put

(Pi, P2) = (Pi, P2)i- = (Pifl + P2c, Pib + p2d)

(a b\
forL = ( , e r K . Then

\c a/

Gr(r; (p), P l , p2; X) | L = Gr(r; (p), pu p2, X).

/ / e is a unit,

Gr(r; (p), ep1; ep2; K) = Jf(e)rGr(T; (p), p1; p2; K).

Suppose that every residue class prime to (p) contains a unit. Then, according to
Lemma 1, if pt is prime to (p), one may assume that P! = l. If K ^ P I ^ I mod(p),

no longer depends on r or K. If (p) = (y)2, (p, pt) = (y), one may assume that pt = y. If
K = 7 mod(y)2, then y \ K; it follows that

dr(vlpS;(y)2,y,p2;K) = O

for y-fv. If 7 | v, put v = vty, K = EK^. Then, summing over K with

K = y mod(y)2, K | V, (K)P

is equivalent to summing over Kt and e with

KX = 1 mod(7)2, «! | vu e a unit, e mod(y)2, e = 1 mod(7).

Hence we have

THEOREM 2. Suppose that every residue class prime to (p) contains a unit. For integers
from K, define

cr(v;p;K)=
K —lmod(p)

Jf(-
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and

Then

ar(vlp8;{p), 1, p2; K) = w(v/p8; p2; K)cr(v, p; K).

; y, p2; K) =
e"lniod(-y)

e mod(7)2,e unit

depends on r only mod(2), and

dr(vly28; (y)2, y, p2; K) = {

lwr(v/725;7, p2;*T)crI//7;72;*:) /or 7 | v.

Suppose peN, p>2 . Then

K = 1 mod(p) => ^"(K) = 1 mod(p).
If, under the assumption that every residue class prime to (p) contains a unit, 7 is a prime
in K, y*p, there is a unit e in K with £7 = lmod(p). Since |-V(7)| = p', a power of a
rational prime p, one deduces that

p' if p' = lmod(p),
p' = ±lmod(p), - v ^ - ^ p , if p . ^ _ l m o d ( p ) .

Now cr(v; p; K) can easily be calculated.

THEOREM 3. Suppose that every residue class prime to (p) contains a unit. Then
cr(v; p; K) is a multiplicative function of v, i.e.

Suppose further that peU, p>2 , that y is a prime in K, that \N(y)\ = pl with p a rational
prime, and that m is a positive integer. If -y-f p, then p' = ± 1 mod(p), and

I m + l for pl = 1 mod(p),
0 /orp' = - lmod(p), 2-fw,

1 for p' = - 1 mod(p), 2 | m.
Ifyfp, r>l,

I P"""" = P ' ( m,r- i71 )r1 f°r Pl s l m o d(P) or 2 I r'
k=O P X

// 7 I p, fhcn

£ ( i ) p = r_ ^ ^ / o r p ' ^ - 1 mod(p) and 2H-r.
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If 2|r or 2|yu for every integer veK, these results remain valid for p = 2 if the
congruences are taken mod 4.

3. The restriction to the diagonal. In accordance with [4, §5] (with £ = 1), for a
function / on H, and z e Ht = {z \ z e C, Im z > 0}, we define

yi/(2) = /(T)U...._Too... (13)

Since r o c rK, and every L e TQ transforms the diagonal T(1) = . . . = T(tl) of H into itself, we
have (see (6))

L for LerQ. (14)
r nr

THEOREM 4. Suppose that peN, feMr(TK(p), 1). Then

and the coefficients of the Fourier expansion

yi/(z)|L = a(0;^1/,L)+ £ a(m/p; ^ / , L
m = l

o / 5 ^ i / a ( a cusp L ( ° ° ) , L G r o , are obtained from the expansion ( 1 0 ) of f \ L by

a(mlp; Sfj, L) = X a("IP8'f'L)-
Wp6>0

Proof. (7) obviously remains valid for SfJ. (8) for 5^/ follows from (8), (14). The
Fourier expansion of 5^/1 L is obtained from (10) by putting

Sf{vl8) = m, 9>{VIP8)T1^.^TM=Z = (m/P)z.

THEOREM 5. Suppose that peN, n > 1. Put (pu p2) = (pi, p2)I- for L e FQ. TTien

( ^ ( ^ ( p ) , P l ) p2; X)) IL = ^G r (z ; (p) , pl5 p2; K) forLeTQ.

If there is an automorphism of K, taking p, to OJ (7 = 1,2), tfien

^ G . U ; (p), o-i, o-2; Jf) = ^(5 r (z ; (p), P l , p2; K). (15)

For euery reN we have

y,Gr(z; (p), P l ) p2; K) = Gr(r; (p), P l , p2; JOU)-....^.-, € Mnr(To(p), 1).

J / r > 1, and pls p2 are linearly independent mod(p) ouer 2, ^ G ^ z ; (p), pu p2; K") is a cusp
form.

Proof. The transformation formula is obvious from (14) and Lemma 1. An auto-
morphism of K only permutes the conjugates. Since peN, from (11) it is clear that
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SftGriziip), pi,p2;K) remains unaltered by such a permutation. That # \G r e
Mnr(rQ(p), 1) follows from Theorems 1, 4. If pu p2 are linearly independent mod(p) over
Z, then p-f pt for (pu p2) = (pu p2)L, L e FQ, and by Theorem 4 and Theorem 1 for r> 1,

a(0; ^ G r ( ; (p), P l , p2; K), L) = ar(0; (p), p\, p2; K) = 0

for every LeTQ, i.e., S^,Gr(z; (p), pl5 p2; K) is a cusp form.

4. Theta functions. In this section, r is a positive integer, /1 L always stands for
f\rL (see (6)). In the usual notation, for zeH1 = {z \ zeC, Im z>0}, write

X X (16)
TO == —oo TO — 1

00 OO

•&2(z) = 2 X cwi(m+1/2)2z- i?4(z) = l + 2 X (-lye77""'1, (17)

For MeIR, zeHu we have the well-known transformation formula
oo oo

£ ( 2 . M \ _ V e-m(m+u)2z _ g - m / 4 ^ - l V e-7rim=(-

m=—°° m=—oo

(0<argVz<Tr/2). From (16), (17), (19) we deduce that

#2r | U = &?, d?\U= i'til', *%\U= d2r, (20)

d2r\T = (-i)rd2r, $lT\T={-i)'dlr, ^ 2 r | T = (-J)r^2r, (21)

#2r | U2 = #2r, &2r\T = (- i)r^2r. (22)

U2 and T generate a subgroup Fa of index 3 in rQ (see e.g. [15]). If peN, 2 | p, then
rQ(p) is a normal subgroup of IV Td has two (inequivalent) cusps, oo = £(<») and
1 = t/T(oo). By (20) and (21) we have that

( - 0 r ^ r ( z ) = ( - i ) r 2 2 r e 2 ' r i ( r / 4 ) 2 + . . . . (23)

LEMMA 2. Let rbe a positive integer. Then /&2r e Mr(ra, v
2'); the multiplier system v2r is

given by

1 = {/T(oo). We have Mr(T#, u2r)cMXrQ(4), 1). / / 21 r,

Proo/. The conditions (7), (8), (9) of section 2 for #2r (and To instead of TK(p)) are
derived as follows: the condition (7) is a consequence of (16); the condition (8) and the
values given for v2r are a consequence of (22) and the fact that U2, T generate Fd; the
condition (9) follows from (16), (23) and the fact that » = £(») and 1 = UT(«>) are the
(inequivalent) cusps of IV By (23), the constant term in the Fourier expansion of •d2' at
LTT(oo) is zero.
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rQ(2) is a normal subgroup of Y#, U2erQ(2), TfcerQ(2) iff 2 | He. Moreover v\U2) =
u4(T2) = 1. Hence Mr(T^, v2r)^Mr(YQ(2), 1) for 2 | r. The group

rg(2) = IL\L = (U ^\eTQ,a = d = l mod(4), b m c s 0 mod(2)|

is a normal subgroup of Y*, and TQ(4)crS(2). We have U*erS(2), TfcerS(2) iff 41 it
Moreover v2(U*) = v2(T>) = 1. Hence Mr(Y^, v2r)c Mr(Y*(2), 1)c Mr(rQ(4), 1).

LEMMA 3. Suppose that feMr(YQ(2), 1). Tlien

/ 6 Mr(r^, u2r) O /1 T = ( - l)r /2/ for 2 \ r.

Suppose thatfeMr(Yo(4), 1). Then

v2r)Of\lP^f, f\T=-i'f forHr.

Proof. If /eMr(rQ(2), 1) or /eMr(ro(4), 1), then the conditions (7), (9) of section 2
for elements of Mr{T^, v2r) are satisfied. Since Te is generated by U2, T, we have that
feMr(T^,v2r) mf\U2 = f,f\ T = (-i)'f But f\ U* = f for /eMr(rQ(2), 1).

From (18) we easily deduce that

UTUTUT= -E=T1, UTU= T3IJ-2UT.

Suppose feMr(Te, v2r)^Mr(TQ(4), 1). Then (see Lemma 2)
(f(z) | UT) \U = f(z) | UTU = f(z) | r t / - 2 t 7 T = (-/)3 '/(2) | UT.

This is impossible if the Fourier expansion of / at 1 = LTT(°°) ((10) with L = UT, p = 4,
5 = 1, v = m) contains a non-vanishing term with m^ r mod(4). Hence

fe Mr(r#, v2r) 4> a(m/4; f,UT) = 0 for m^ r mod(4). (24)

LEMMA 4. Lef r i e a positive integer. Then

V2' = hr + K, KeMfiY^v2'), K€M:{Y^,v2% (25)

If 2\r, then ^ is, up to a constant factor, uniquely determined by

MM?(rQ(2),l) and r 1 , V , / N 7 ' (26)

[hr\T=hr, hr vanishes at UT(<*>) for A\r.

If 2 -f r, then hr is, up to a constant factor, uniquely determined by

hreM?(YQ(4),l) and hr\U
2=hn hr\T=-i%. (27)

Proof. Put p = 2 for 2 | r, p = 4 for 2 -f r. It is easily seen (compare Lemma 2) that
Mf(r^, v2r) = Mf(YQ(p), l)nMr(Td, u2r). If 4-fr, then, according to (24), every function
from Mr(r<>, v2r) vanishes at the cusp 1 = UT(<x>), and dimc Mf (Fo, v

2r) = 1. The conditions
given for 4-f r are those of Lemma 3. If 41 r, then dime Mf(Y#, v2r) = 2, but #2r vanishes
at 1 = LTT(<») (Lemma 2), hence /ir must vanish at I/T(<»).

https://doi.org/10.1017/S0017089500003608 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003608


REPRESENTATION AS A SUM OF SQUARES 183

It is well-known and easy to show that

{0 for r < 4,
1 for 5 < r < 8 ,
2 for 9 < r < 1 2 .

Suppose we are given a basis gr (5<r<8) , or gn fr (9<r<12) of AC(I\,, v2r). In
order to calculate the coefficients in

K = Hgr)gr (5sr<8) or K = b(gr)gr + b(fr)fr (9<r<12), (28)
we need only know the coefficients for one (5<r<8) or two (9<r<12) suitably chosen
exponents in the Fourier expansions of these functions at some cusp. We can, e.g., take

a(l/2;/ ,E) (5<r<8) , a( l /2 ; / ,£) and a(l;f,E) (9<r<12). (29)
Suppose further that we are given a function hr, satisfying the conditions given in

Lemma 4 for hr. Then (provided hr&§),

hr = Hfoh,. (30)
In order to calculate &(&,) and h+ at the same time, we need the Fourier coefficients for
one more exponent, in addition to (29). Since

a(m/4;#2r, UT) = 0 for m<4, r > 5 (31)
(see (23)), we take (compare (24))

a(mol4;f,UT) with m0=rmod(4), U m o < 4 . (32)

TABLE 1. FOURIER COEFFICIENTS (29), (32) FOR CERTAIN POWERS •d2' OF d2.

f J&12 _Q 16 i ^ l ^ i *^^^ i*^^^ i * ) ' ^ i)̂ ^

a(l/2;/,E) 23.3 25 2 2 . 3 2 2 3 . 5 2 4 . 3 2 3 . 7 26

a( l ; / ,E) 2 3 .3 .11 2 s . 3 .5 22 .32 .17 23 .5 .19 2 4 .3 .23 2 3 .3 3 .7 26.31
a(mo/4;/, UT) 0 0 0 0 0 0 0

5. Eisenstein series for rQ(2) for 21 r. We have dimcMf(TQ(2), 1) = 3 for 21 r, r > 2,
and 3 Eisenstein series, corresponding to

(Pi, Pi) = U,0), (0,1), (1,1).

We have to look for eigenf unctions of T with eigenvalues ±1 (see Lemma 4). Using the
transformation formulae of Lemma 1 we see that, for eigenvalue 1, T has eigenf unctions

Gr(z; (2), 1,0; Q) + Gr(z; (2), 0,l ;Q), G,(z; (2), 1, l;Q),

and, for eigenvalue - 1 , T has eigenf unction

Gr(z;(2), l ,0;Q)-Gr(z;(2),0,l ;Q).

Now, according to Theorem 1, G r(z; (2), 1,1; Q) (for r> 2) vanishes at the cusp oo = £(<»),
and, of course, at 0=T(«>). Being an Eisenstein series ̂ 0 , it is not a cusp form and
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cannot, therefore, vanish at 1 = £/T(<»), as is required in (26) of Lemma 4. Put

h,(z) =G,(z; (2), l,0;Q) + (-l)"2Gr(z; (2), O,1;Q). (33)

Then

hr(z) | UT= Gr(z; (2), 1, l,Q) + (-l)"2Gr(z; (2), 1, 0;Q), (34)

showing that h\ vanishes at the cusp 1 = f/T(°o). Hence

THEOREM 6. Suppose that reN, 2 | r. Define hr by (33). Then hr is a function satisfying
the conditions (26) of Lemma 4 for hr Consequently, hr is, up to a constant factor, equal to

K
The coefficients of the Fourier expansion of hr at the cusp °o = fj(°°) can be calculated

directly from Theorem 1. Since

(K + l ) ^ I m o d ( 2 ) for 2 | K , (K + 1 ) ^ 0 , K = —mod(2) for 2-TK
2 2 2 K

we get (note that the second sum only occurs for 21 m, i.e. for ( - l ) m = 1)

a(ml2k E) = (-l)m\ Y (•-;n<'<+W2+m/K _ , y f_n(,+iW2+m/K m\

V|m,2-I-K K|m,2|K

Thus

(-l)m I (-\)d+mid+*dr-1 for 4-fr.
|

for 41 r,
( 3 5 )

d | m

Using w(m/2;p2;O) = (- l)m p J (Theorem 2), from (34) and Theorem 2 we find that the
coefficients of the Fourier expansion of hT at 1 = LTT(°°) are given by

i.e.

f 2( - l)mcr(m; 2, Q) for m H | mod(2),

(36)

0 for m+^mod(2).
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TABLE 2. FOURIER COEFFICIENTS (29), (32) FOR dr (m0 = r/2 mod(2), l s m o s 2 ) .

r

a(m,,/2; \ ,

)

UT)

6

1
3.11
-2

8

1
127
28

10

1
33.19

-2

12

1
23.89

212

14

1
3.2731

-2

16

1
7.31.151

6. Eisenstein series for rQ(4) for 2-T r. We have dimcMf(rQ(4), 1) = 6 for r > 2 and
6 Eisenstein series, corresponding to

(Pl, p2) = (1,0), (1,1), (1, -1 ) , (1,2), (2,1), (0,1).

We have to look for simultaneous eigenfunctions of T with eigenvalues ±i and of U2 with
eigenvalue 1 (see Lemma 4). Using the transformation formulae of Lemma 1 we see that
eigenf unctions of T with eigenvalue ±i are

Gr(z; (4), l ,0;Q)±iGr(z; (4), 0,l ;Q), Gr(z;(4), 1,2;Q)± iGr(z; (4), 2, l;Q),

and

Checking the action of the transformation C/2 on these functions, we have

THEOREM 7. Suppose reN, 2-fr. Then

hr(z) = G,(z;(4), l,0;Q) + Gr(z;(4), l ,2 ;Q)-r(Gr(z ; (4) ,0 , l ;Q) + Gr(z;(4),2, l;

is a function satisfying the conditions of (27) (JLemma 4) for h,. Consequently, hr is, up to a
constant factor, equal to h\.

In order to calculate the coefficients of the Fourier expansion of hr at °o = £(<»), put
m =2'm1, 2-Tmi. From Theorem 1 we find that, for 2-fr,

( m \ r — 1

(«

i.e.,

and

,(m/4;(4),2,l;O>.{0
2l""C-<m';4;Q) * I ; } ; (37)

ar(m/4; (4), 0,1; Q) = ^ sgn " i ( ^ - T ^ " 1 ^ " ' " 1 " r"/a>-')
K,-lmod(4) \ 2 ! < /

*1
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i.e.,
/ iA IA\ n 1 m |2J'n.cr(m1;4;Q) for t>2,

ar(m/4;(4),0,l;Q) = | 0 ^ {<2 (38)

Suppose 2 | m. Put m = 2'^!!, 2-Tmu t>l. Since (Theorem 2)

w(m/4;p2;Q) = jmp*=l for 2 | m, 2 | p2,

and 2 | (r+mj) for 2-T mlt 2-fr, from (37), (38) and Theorem 2, we deduce that

a(m/4;/^£) = cr(m;4,Q)-2(-l)( r+m' ) /2cr( '"i;4,Q) for 21 m. (39)

Since hr\U
2 = hr, we have

a(m/4;hr,E) = 0 for 2-fm. (40)

The transformation formulae of Lemma i show that

hr(z)\ UT=Gr(z;(4), 1, -1 ;Q)-Gr(z ; (4) , 1,1;Q) '
5 5

Using Theorem 2, we find that the coefficients of the Fourier expansion of hT at 1 = LTT(°°)
are given by

for

TABLE 3. FOURIER COEFFICIENTS (29), (32) FOR hr (m0 = r mod(4), l s m o < 4 ) .

r 5 7 9 11 15

o(l/2; fi^B) 2.17 2 .3 2 . 7 2.257 2 .3 .11 .31 2 .3 .43 .127
a ( l ; h r E ) 2.257 2 . 3 2 . 5 .7 .13 2.65537 2 . 3 . 52 . 1 1 . 31. 41 2 .3 .5 .29 .43 .113 .127
a(mo/4; h,, UT) -4i -4i

7. Eisenstein series for rK(2) for K=Q(-J2). In this section K=Q(>/2), p = 2,
S = 272, 5(1)> 0, 5(2)< 0 (see section 2). The class number of Kt is 1, a fundamental unit is
e0 = 1 + V2, residues mod(2) are

0, l ,eo ,^2-

Every residue class prime to (2) contains a unit (this we need for Theorems 2 and 3). Since
^"(e) = 1 for every unit e = 1 mod(2), r can be any positive integer (see section 2). We
have 6 Eisenstein series, corresponding to

(pu P2) = (l>0)> (0,1), (1,1) and (1, e0), (1, V2), (V2,1).

The last three pairs have pu p2 independent mod(2) over 1; in these cases, according to
Theorem 5, the functions yiGr(z;(2),pltp2;K) for r > l are cusp forms from
A^2r(rQ(2), 1). From Lemma 1 and Theorem 5 we deduce that the functions

gT(T;K) = Gr(r;(2),l,e0;K), (42)

/r(r; JSO = Gr(r; (2), 1, V2; K) + (- l)'Gr(r; (2), V5,1; K) (43)
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and their restrictions to the diagonal (S^g, and &J,) are eigenfunctions of T with
eigenvalue ( — l)r. Hence, according to Lemma 3, we have

&>,gr(z; K), SfJr(z; K) e M ^ , u4'). (44)

From Lemma 1 we get

gr(r; K) | UT=G,(T; (2), 72,1;*),

/r(r; K) | UT = (-lYGr(r; (2), 1, e0; K) + Gr(r; (2), 1,72; /«:),

and, from Theorem 5,

(<7lgr) | UT= <?Jgr(*; K) | UT), (STJ,) | UT=SrJfr<*; K) \ uA (45)
IT \ r / 2r \ r /

In order to calculate the Fourier coefficients, put v = a + i>V2. Then, from Theorem 2,
we have

+ by/2 \ f ( - l)a f o r P2 = A

( l ) - for

and, for \/2 | v, i.e. 2 | a,

/a + b4l ,- \J -^-;V2, l;K-J=(-l)r(-

TO for
-(2(- ip+a>/2 f o r 2\(b-r). -.

Theorem 2 (with -y = V2) now gives the following values for the coefficients of the Fourier
expansions at oo = £(<») and 1 = UT(<x>):

by/2 \ r) l ; 2 ; *° '
la + b-Jl r / T \ ( ° f o r 2-fa or

) \ ;K) for 21 a and 2 | (b-r),
la + b-Jl r / T \_ ( °
\ 4^2 > g" ) ~ \.2{-\)i2r+

and

/ /;K) for 2^a or 2\{b-r),
; /„£) = •

icr(a +W2;2; K) + 2(-l)w^cr((a + ftV2)/V2;

for 2 | a and 2 | (b - r),

for
Ja + bJ2

\ 4^2 " 7 i 2 ( l ) a ( + tV22A:) for 21 (&-/•).
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If / is a modular form for FK(2), Theorem 4 gives the Fourier coefficients of SfJ in
terms of the Fourier coefficients of /. Put v = a + b-Jl. Then

= b, v/2.2y/2>0<*a2<2b2, b>0.

For the coefficients of S^gr and ZfJ, at the cusp oo = £(«>) we find

X cr
a2<2b*
2|a,aeZ

;2;K)- X
2-ra.aeZ

cr(a + bJ2;2;K)- X cr
2 2

; 2; K)\,
I

; 2; K) for 2+(b-r),

2|a.aeZ

asZ

2-ra,ae2

2|a,asZ

for2|(b-r).

From (44), and (24) of section 4, we have

a(b/2;9'1gnUT) = a(bl2;9'Jr,UT) = 0 for

From (45) and Theorem 5 we deduce that, for 2 | (b - r),

(
\ 4|a,aeZ

X cr(a +
a2<2bJ

2|aoeZ

2|o,4-ro,o6Z

; 2;

2-ra,a€Z2|a,oeZ

In order to calculate the coefficients (29), (32) of section 4 (with 2r instead of r
because of (44)) for these functions, let -y7 stand for an integer from K with
For 2*r we find that

o(l/2); = 2cr(l; 2; K)-cr{sf2; 2; K), o(l/2; S ^ E) = cr(%/2; 2; K),

For 21 r we get that

0(1/2; y i g r JS) = - 0(1/2; STJn E) = 2cr(l; 2; X ) - cr(V2; 2; K),

o(l; y i g n £) = cr(272; 2; tf) + 2cr(2; 2; ^ ) -2c r ( 7 7 ; 2; K),

o(l; ^ ^ E) = o(l; ^lgr> £) + 2cr(2; 2; X)-4cr(V2; 2; X),

0(1; ^Z,, UT) = 2c,(2J2; 2; X) + 4cr(2; 2; tf)-4cr(y7; 2; K).
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Inserting the values cr(v; 2; K) from Theorem 3 we obtain

;^ l g r , UT)=-2 for 2*r, a(l/2; #>lgr, UT) = 2-2r~1 * 0 for 2\r, r>2.

If 2-Tr, r > 5 , we find that

a(W;5flgr,E) a(l/2; SP^E) \ / 2 0\
(l/2;yigr,LT) a(ll2;<?Jr,UT)) \-2 4) K h

If 21 r, r s 6, we have

gE) a(l/2;y1fE)\(2-2'-1 - 2 + 2'-*\ 6

0 - ( r - )

Taking into account (44) and the dimension of M2r(rV u4r) (see section 4) we get

THEOREM 8. Define gr(T;Q(v/2)) fey (42), /r(r;Q(>/2)) fey (43). Then

(i) Selgr(*;Q(>/2)), 9>Jr(*;Q(>/2~))eMUT«,v*') for r > l ,
(«0 yigr(*;Q(V2))^0 /or r#2, »>1,

(iri) 5^,gr(*;Q(72)), 5^1/r(*;Q(>/2)) are /mear/y independent for r > 5 .
Further, M^(rd, o4r) K generafed fcy 5^lgr(*; Q(>/2)) /or r = 3, 4, and by 5^lgr(*; Q(V2)) and

TABLE 4.

r

FOURIER COEFFICIENTS (29)

3 4

,(32)

5

r mod(2),

6

l s m 0 <2).

7 8

a(l;Sr1/r(»;Q(^)),E)
«(mo/2;SVr(*;Q(>/2)), UT)

- 2
0

- 2
22

0
2 2

- 2 . 3
- 2 " . 3

25.3
2 . 3

24.3
- 2 5 . 3

- 2 .
- 2 6

- 2
2 4

- 2 6

2 2 .

7
.3

.3
7

2

- 2
2 4 .
27

2 .
* 3
2s.

.3
3 .

. 3 .
3 .

i . 5
3 .

.5
52

.5
5
.13
52

25

25

-2 .31
. 3 . 5 .

- 2
2 6

. 3 . 5 .
22.31

73

73

2"

24

2 5

- 2 .
. 3 2

2 9 .
2 .
.32

. 3 2

,32 .7
. 7.479
32.7
32.7
.72.73
.7.479

8. The Eisenstein series for TK(4) for [/f :Q] = 3 and dK = 72. In this section 1C is
the totally real cubic number field of smallest discriminant, namely the subfield K =
Q(^7 + ̂ 7 1 ) c Q(^) of the field of 7-th roots of unity. We have dK = 72. Since we shall be
interested only in odd values of r (especially r = 3), we assume that 2-T r. For k = 1,2,3 we
define

1k = 2 -&, (46)

£, = &, 17, = % for jel, ;sfcmod(3). (47)

We shall need the following facts about K.

LEMMA 5. For ye2, let $t, TJ, fee defined fey (47). Then X = Q(§). The automorphism
group of K is generated by § •-»• §+1. A/so, § is a unit, the characteristic polynomial of £ is
x3 + x 2 - 2 x - l , and hence
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An integral basis of K is 1, TJ2, TJ3. The rational prime 1 is completely ramified in K,
(7) = (TJ,)3, and (T/J = (T)2) = (TJ3). Put S = T)2T]3. Then S is totally positive and (S) is the
different of K. We have

Proof. Since the automorphism group of Q(f7) is generated by £7 •-» g, we see that
the automorphism group of K is generated by § •-» fi+1. It is easily verified that & is a
root of x3 + x 2 - 2 x - 1 . Since £7, £

2 , . . . , £ is an integral basis of Q(£7), &, £2, £3 is an
integral basis of K which is easily modified to 1, TJ2, I?3- We find JV(T),) = 7. Also, Th, TJ2, TJ3

are conjugate to each other and, of course (from (46)), totally positive. Since if is a cyclic
field, dK = 72, the prime 7 is completely ramified and hence (i^) = (T)2) = (TJ3). The
remaining statements of Lemma 5 are obvious.

LEMMA 6. For jel, let § be defined by (47). The multiplicative group of residue classes
prime to (4) in K is the direct product of a cyclic group of order 14 and two groups of order
2. A set of generators is given by

§ of order 14, £/+1 and - 1 of order 2 mod(4).

Every residue class prime to (4) contains a unit.

Proof. The characteristic polynomial of § (Lemma 5) is irreducible over Z/(2). Hence
§ generates the field of residue classes mod(2) in K. The residue classes mod(2) are given
by 0,1, § , . . . , |f. To calculate £/ mod(4) we use a multiple of the characteristic polyno-
mial of £,,

(x4 + x3 + x2 - 2x + l)(x3 + x2 - 2x -1) a x7 - 2x6 - 1 mod(4),

and deduce that

From (46) we get £? = 2 + £2, hence

«? = 2 + §+1, # = $+1mod(2). (48)

Consequently,

£J+1 s l + 2tf+1 s 1 + 2tf 0 £J mod(4).

Since

a a /3 mod(4) ^ Jf(a) = ^V(/3) mod(4), (49)

there are two types of residue classes prime to (4), those with Jf(a) = l, and those with
J{(a)= -1 mod(4). We have that §, | /+ 1 generate classes with Jf(a) = l mod(4), Jf(-1) =
-1 mod(4). The rest is obvious.

By (49), jV(e) = l for every unit e = l mod(4). Hence, for p = 4, 2-fr is admissible
(see section 2). From now on, we shall assume that p = 4 and r is a positive integer with
2-Tr.
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We have 72 Eisenstein series for FK(4) (corresponding to the 72 cusps). Of these, 54
correspond to pairs (1, p2) with p2 a unit and 1, p2 linearly independent mod(4) over 2.
According to Theorem 5, the restriction to the diagonal of such an Eisenstein series yields
a cusp form from M3r(ra(4), 1), if r> 1. We are interested in simultaneous eigenfunctions
of U2, with eigenvalue 1, and T, with eigenvalue ±i (compare Lemma 3). Put

From Lemma 1, for a unit p2, we deduce that (for 2-fr)

G r ( l , p 2 ) |T=G r (p 2 , - l ) = sgn^(p2)Gr(l,-p2) P l p 2 = l mod(4). (50)

Eigenfunctions of T with eigenvalue ±i are

l ,£ ) + i(5r(l,-£), ±<5r(l,-«?£) +i<5r(

The result (50) shows that

Gr(l, -p2) | T= -sgn jV(p2)Gr(l, p2) (for 2-Tr).

From the eigenfunctions of T with eigenvalue ±i, given in (51), by-p2»-*-p2 we
therefore obtain eigenfunctions with eigenvalue Ti. From each of these eigenfunctions of
T, by applying the two non-trivial automorphisms of K to the values p2, we get two other
eigenfunctions which, however, according to (15) of Theorem 5, have the same restric-
tions to the diagonal as the original functions. At this point we have used up 48 of the
above-mentioned 54 Eisenstein series. Simultaneous eigenfunctions of U1 with eigenvalue
1 and T with eigenvalue - i are (i) the sum of the 4 eigenfunctions of T with eigenvalue
—i, given in (51), viz.

f,(r, K) = Gr(i, &)+(5r(i, £?)-Gr(i, -£&)-Gr{\, - £ g )
+«(Gr(l, -£ 3 ) + Gr(l, - £ ) + Gr(l, £*£) + Gr(l, £&)), (52)

(ii) the sum of the 4 eigenfunctions of T with eigenvalue i, given in (51), modified by
substituting - p 2 for p2 in each of the Eisenstein series, viz.

gr(T; K) = -G r ( l , - & ) - <5r(l, - £ ) + Gr(l, f x © + Gr(l, «?fl)

+«(Gr(l, | H + Gr(l, «$) + Gr(l, -?}3f2) + Gr(l, -«$«5)), (53)

and (iii) the 4 functions, obtained from /r(r; K), gr(r; AT) by applying to the values of p2

the two non-trivial automorphisms of K (as already mentioned, these functions have the
same restrictions to the diagonal as /r(r; K) and gr(*r; K)). The simultaneous eigenfunc-
tions of U1 with eigenvalue 1 and T with eigenvalue i are obtained from the eigenfunc-
tions of U2 with eigenvalue 1 and T with eigenvalue - i by substituting - p 2 for p2 in the
Eisenstein series.

The functions Gr(l, £ ) , Gr(l, -Q (as well as the "conjugates" Gr(l, &), Gr(l, -Q and
Gr(l, £l), Gr(l, -^3) by the non-trivial automorphisms of K) generate a simultaneous
eigenspaceof IT2 and T, containing no simultaneous eigenf unction & Oof U2, with eigenvalue
1, and T, with eigenvalue i or - i . This accounts for the 6 remaining Eisenstein series.
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In order to calculate the Fourier coefficients at» = £(oo), we first observe that we need only
calculate the coefficients of /„ since Theorem 1 and the definitions of fr and gr show that

a(v/48;gr,E)=-a(Vl4S;fr,E). (54)

From

and fr | U
2 = fn we deduce that

a(v/48;fn E) = 0 for Sf (ul 8) &0mod(2). (55)
From Lemma 5 (SP($) = - 1 , 9>{ZJl) = -2 ) and (48) we find that

) = 0 mod(2)0 v/S m 0, f?, ̂ , ̂  mod(2). (56)

Put (see Theorem 2)

w(i//45; /„ E) = X (factor of Gr(l, p2) in (52)) w(v/45; p2; If).

Then

a(^/48; /„ E) = w(v/4S; /„ £)cr(v; 4; If). (57)

Now w(v/45;/n£) depends on vmod(4) and has to be calculated from Theorem 2 and
(52) for vl8 = 0, g, & £mod(2) (see (55), (56)). We find that

w(v/48 ; / , ,£ ) =

8 tor vl8—g&-£2?2,

-8 for vlS^-tl-tf,

4i for V/5 a -««, - ^ 3 , - £ & - ^ l 3 ^ , 0,2,2fi, 2«?,

-4i for iV£ ̂  & & £ & f l3^ 2^ 2& 2^32f f

0 for all other values of v/8 mod(4).

In order to calculate the Fourier coefficients at 1 = LTT(°o), we first note that

/,(T; K) I UT= -Gr(l, £?&) + Gr(l, -£)-<5r(l, -f^l)+Gr(h &)

-fifi)-Gr(l,£)). (58)

We then observe that

gr(r; K)\UT = fr(-f;K)\UT,

hence

; gn UT) = a{vlA8;fn UT). (59)
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Again, we need only calculate the coefficients of fr(r;K). From UTU=T3U~2UT we
find (compare section 4)

(f,(r; K)\UT)\ U = (-i)3fr(r; K) \ UT.

Consequently (compare (55))

a(v/48;fnUT) = 0 for Sf>(vl8) & 1 mod(4). (60)

Put

w(v/48; /„ UT) = X (factor of 6,(1, p2) in (58)) w(v/4S; p2; K).

Then, by Theorem 2, we have

a(vl48;fn UT)=w(v/48;fr, UT)cr(v;4;K). (61)

Since w(v/46;/r, UT) depends on vmod(4), it has to be calculated from Theorem 2 and
(58) for v with Sfv/8 = 1 mod(4) (see (60); for those v, from (56), we have y /«s l ,

). We find that

f -8 for vlS^tu £ \

8 for vl8 = ~mi, -Hi1*;!,
-8i for v/8 = -l,-fu

0 for all other values of v/8 mod(4).

By Theorem 4, the Fourier coefficients of &J, at oo = £(<») can be calculated from the
coefficients in (57) (2 | m because of (55)), and the coefficients at 1 = LTT(<») from the
coefficients in (61) (m = 1 mod(4) because of (60)), as follows:

a(ml4;SflfnE)= £ w d ^ a j ^ E K d ^ ; * ) for 21 m, (62)

= I w(vl48;fn UT)cr(i>; 4; K) for 4 | (m- l ) . (63)

Now, for given mel\l, we have to find the totally positive integers v from K with
Sfv/8 = m. We fix the conjugates vm, v(2\ v(3) of

v = a + bi\2 + CTJ3

by putting (see (46))

Ik = 2 - &, & = &w = 2 cos 2irfc/7 (fc = 1,2,3).

As coordinates in the plane m = Sfv/8 = a + 2(b + c) (see Lemma 5), we use b, c. The
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region v(1)>0, v(2)>0, v(3)>0 of this plane is the interior of the triangle the vertices of
which are

{bp c,) = m((ij,+1/Tfc) -1, (v,-ih,) ~ 1) 0" = 1, 2, 3).

The latter are given, approximately, by

(/>!, Cl) = m(2-25,4-05), (b2, c2) = m(0-55, -0-69), (b3, c3) = m(-0-80, -0-36).

We find that
f

v>0, m = lOv = |

1
and we have the following table.

TABLE 5. THE TOTALLY POSITIVE INTEGERS V = a + ln\2 + crj3 WITH VvIS = 2,vlS mod(4).

a
b
c
Jf(v)
vIS-

4
. - 1

0
1

(\°

4
0

- 1
1

£l2

2
1

- 1
1

- 6
1
3
1

- 1 2
3
4
1

(1°

- 2 0
4
7
1

2
0
0
8

2«?

0
0
l
7

0
1
0
7

- 2
1
1

13
<J3

- 4
1
2

13

- 6
2
2
8

- 8
. 2

3
13

£ 1 ?2

- 1 0
2

• 4

8
ft

-14
3
5
7

-ft

Let y7 stand for an integer of K with •^'(y1) — 7, and 713 for an integer with
13) = 13. Then, for m = 1, from (63) and (59) we find that

= -8cr(l;4;K) = -8,

a(l/4;Srign

From (62), (54) and Table 5 we get (writing cr([i) = cr(ti;4;K))

a(2/4; SfJn E) = -8cr(yi) - 4i(cr(y13) - cr(y7) + cr(2) + 2cr(l)),

a(2/4; S^lgr, £ ) = -c(2/4; $rjn E).

For r > l , we have (see Theorem 3) that

cr(y7) > 0, c-(y13) - c,(y7) + cr(2) + 2cr(l) > 0.

Hence, yjn ^gr are linearly independent for r > l . Thus we have

THEOREM 9. Suppose that reN with 2-Tr, and define /r(r; K) by (52) and gr(r; K) by
(53). For r>\, ifxfT and yxgr are linearly independent cusp forms from M3r(T#,v) with
v{lP) = 1, v(T) = -i. Further, <fxf3, ^g3 are a basis of Mg(T^, v18).

By Theorem 9, h% from (25) of Lemma 4 is a linear combination of 5^>
1/3(*; K) and

^ig3(*,^). The coefficients b(SfJ3(*; K)) and &(S?,g3(*; 10) (see (28), section 4) can
easily be calculated if h9 is known. In order to calculate h9 and hg at the same time, we
need one more coefficient of the Fourier expansions, namely a(l;*, E). I shall not
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reproduce a table of the 54 totally positive integers v with S/'vl8 = 4. One finds the
following values (the values of the already calculated coefficients for r = 3 included):

a(l/4; STJ3, UT) = - 8 , a(l/4; SPlg3, UT) = - 8 ,

a ( l /2 ;^ 1 / 3 ) E )=-2 7 .3 -2 4 .47f ) a ( l /4 ;^ l g 3 , E) = 27 . 3 - 2 4 . 47i,

a ( l ; ^ / 3 l £) = - 2 9 . 3 2 -2 6 .149/, a( l ; 9>lg3, E) = 29 . 3 2 -2 6 .149i.

9. Identities for modular forms and representation numbers. As a typical example,
let us calculate the number of representations of a positive integer as a sum of 18 squares.
By (25) of Lemma 4 we have that

Theorem 7 states that

for some constant b(h9). From Theorem 9 we get that

K = biSfJJSfM*; K) + b(yig3)S'lg3(*; K),

where K is the totally real cubic number field of discriminant 72. Hence

XR K). (64)

Using the values of the Fourier coefficients a(l/2;*, E), a(l;*, £), a(l/4;*, UT), given for
#18 in Table 1, for h9 in Table 3, and for SfJ3(*; K) and ^g 3 (* ; K) at the end of section
8, we get 3 equations for the 3 coefficients in (64). We find that

24 .5 .277#18 = 25h"9-1033(Sf1/3(*; K)-Sflg3(*; K))-i23(SfJ3(*; K) + SPlg3(*; K)). (65)

The values of the Fourier coefficients at the cusp °° = -E(°°) are given in (39) of section
6, and (62), (54) of section 8. Suppose that 2\m, m = 2'm1; 2H'm1. Then, from (65), we
obtain that

= 22c9(m;4;Q)-22(-l)(m.+1) /2c9(mi;4;Q)

-1033 X lw(vl48;f3,E)c3(v;4;K)
w(v/48;/3,E)=±8

-i X w(vl48;f3,E)c3(v;4;K). (66)
>0#VS

Here w(v/48;f3, E) depends on v mod(4) (a table for the values is given is section 8). For
the divisor function cr(*; *; *), see Theorem 3.
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Using Theorems 6 and 8 we find d2r (r = 6,8,10,12) to be as follows:

t>12 = 23/J6-23^1g3(*;Q(V2))) (67)

3 .17#16 = 25. 3fc~8 + 28ylg4(*;Q(V2)), (68)

32 . 31tf20 = 23 . 32fc10-23 .107yig5(*;Q(V2))-23 . 7S^/S(*;Q(V2)), (69)

33 . 5 . 691#24 = 24 . 33 . 5h12-2
6 . 3917^lg6(*; Q(V2)) + 28 . 7693\/6(*; Q(>/2)). (70)

From these results, formulae for the representation numbers can easily be obtained; e.g.
from (67) we have that

X £ ), (71)
d|m O3<2m2.aez

and, from (68),

3.17A16(m) = 2 s . 3 . ( - i r £ (-l)dd7 + 28(-l)m I (-l)ac4(a + mV2;2;Q(V2)).
d|m a2<2m2,aeZ

(72)

Rankin's functions Vt, V* (see [12]) can easily be represented as linear combinations
of S^1g5(*;Q(^)) and ^i/5(*;Q(72)) (Theorem 8). By comparing the coefficients
a(l/2;*, JB), a(l;*,E) we find that

-2 .3 . SV^Sr&frQiy/iyi-SrMt-Myfi)), (73)

22 . 3^f = -2^lgs(*;Qfc/2))-STJ5(*;Q(J2)). (74)

For Rankin's function ^ 0 we need an eigenfunction of T with eigenvalue 1. We find that
(compare (43), section 7)

23. 3¥0 = ^iG5(*; (2), 1, ̂ © ( V ^ + S ^ * ; (2), 41,1;Q(V2)). (75)

For Dedekind's function TJ(Z) we find that

2V
l2 = -<flg3(*;Q(yf2)), (76)

25. 33 . 5T,24 = <7lg6(*; Qiy/lft + Srjti*; Q(>/2)). (77)

In order to represent #28 and #32 we need 3 linearly independent cusp forms, since

dime MUT», v28) = dime M ^ I V t>32) = 3.

From Theorem 8 of section 7 we have 2 independent cusp forms,

ylgr(*; Q(>/2)), yjr(*; Q(^) ) (r = 7,8).

Another cusp form can be obtained by the method of section 7, if we use Q(-J3)
instead of Q(-J2). Define (compare (43), section 7)

/r(r;Q(73)) = Gr(T;(2), 1, l + V
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Then SfJri*; Q(>/3)) is a cusp form from M2r(X«, vAr) for r> 1. Comparing the coefficients
given below and the coefficients for Sf&i*; Q(V2)) and &&{*; Q(>/2)) given in Table 4 of
section 7, for r = 7,8, one easily finds that these functions are linearly independent for
r = 7 and for r = 8. Consequently, for r = 7,8, #4r can be represented as a linear combina-
tion of h2r and these 3 functions. Further, we have that

a(l/2; &>xf,(*; Q(73), JS)) = - 2 3 . 3 . 52 a(l/2; S ^ * ; Q(V3),E)) = - 2 2 . 3 .7 .23,
; Q(73), E)) = - 2 9 . 32 . 52, a ( l ; ^ / 8 ( * ; Q(V3), E)) = 2s . 3 . 72 . II2 .

& = 2 4 . 3 . 52, a(l;S>V8(*; Q(>/3), UT)) = 26 . 3 . 7 .1583.

REFERENCES

1. K.-B. Gundlach, Uber die Darstellung der ganzen Spitzenformen zu den Idealstufen der
Hilbertschen Modulgruppe und die Abschatzung ihrer Fourierkoeffizienten, Ada Math. 92 (1954),
309-345.

2. K.-B. Gundlach, Poincaresche und Eisensteinsche Reihen zur Hilbertschen Modulgruppe,
Math. Z. 64 (1956), 339-352.

3. K.-B. Gundlach, Ganze Nichtspitzenformen der Dimension —1 zu den Hilbertschen
Modulgruppen reell-quadratischer Zahlkorper, Arch. Math. (Basel) 7 (1956), 453-456.

4. K.-B. Gundlach, Zusammenhange zwischen Modulformen in einer und in zwei Variablen,
Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II (1965), 47-88.

5. K.-B. Gundlach, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen,
/. Reine Angew. Math. 220 (1965), 109-153.

6. K.-B. Gundlach, Die Berechnung von Zetafunktionen mit Vorzeichencharakter an der
Stelle 1, Ada Arith. 24 (1973), 201-221.

7. E. Hecke, Theorie der Eisensteinschen Reihen hoherer Stufe und ihre Anwendung auf
Funktionentheorie und Arithmetik, Abh. Math. Sent. Univ. Hamburg 5 (1927), 199-224.

8. H. D. Kloosterman, Theorie der Eisensteinschen Reihen von mehreren Veranderlichen,
Abh. Math. Sem. Univ. Hamburg 6 (1928), 163-188.

9. L. J. Mordell, On the representation of numbers as a sum of 2r squares, Quart. J. Math. 48
(1917), 93-104.

10. H. MaaB, Konstruktion ganzer Modulformen halbzahliger Dimension mit •d-Multipli-
katoren in zwei Variablen, Math. Z. 43 (1938), 709-738.

11. R. A. Rankin, A certain class of multiplicative functions, Duke Math. J. 13 (1946),
281-306.

12. R. A. Rankin, On the representation of a number as the sum of any number of squares,
and in particular of twenty, Ada Arith. 7 (1962), 399-407.

13. R. A. Rankin, Hecke operators on congruence subgroups of the modular group, Math.
Ann. 168 (1967), 40-58.

14. R. A. Rankin, Sums of squares and cusp forms, Amer. J. Math. 87 (1965), 857-860.
15. B. Schoeneberg, Elliptic modular functions (Springer-Verlag, 1974).

FACHBEREICH MATHEMATIK

DER UNIVERSITAT MARBURG

LAHNBERGE

3550 MARBURG/LAHN

GERMANY

https://doi.org/10.1017/S0017089500003608 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003608

