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Abstract

We prove a contact non-squeezing phenomenon on homotopy spheres that are fillable by
Liouville domains with large symplectic homology: there exists a smoothly embedded
ball in such a sphere that cannot be made arbitrarily small by a contact isotopy. These
homotopy spheres include examples that are diffeomorphic to standard spheres and
whose contact structures are homotopic to standard contact structures. As the main
tool, we construct a new version of symplectic homology, called selective symplectic
homology, that is associated to a Liouville domain and an open subset of its boundary.
The selective symplectic homology is obtained as the direct limit of Floer homology
groups for Hamiltonians whose slopes tend to +∞ on the open subset but remain close
to 0 and positive on the rest of the boundary.

1. Introduction

One of the driving questions in contact geometry is how much it differs from smooth topology.
How far does it go beyond topology? Does it, for instance, remember not only the shape but
also the size of an object? In the absence of a natural measure, the size in contact geometry can
conveniently be addressed via contact (non-)squeezing. We say that a subset Ωa of a contact
manifold Σ can be contactly squeezed into a subset Ωb ⊂ Σ if, and only if, there exists a contact
isotopy ϕt : Σ → Σ, t ∈ [0, 1] such that ϕ0 = id and such that ϕ1(Ωa) ⊂ Ωb. The most basic
examples of contact manifolds are pessimistic as far as contact geometry and size are concerned.
Namely, every bounded subset of the standard R2n+1 (considered with the contact form dz +∑n

j=1(xjdyj − yjdxj)) can be contactly squeezed into an arbitrarily small ball. This is because
the map

R2n+1 → R2n+1 : (x, y, z) �→ (k · x, k · y, k2 · z)
is a contactomorphism for all k ∈ R+. Consequently, every subset of a contact manifold whose
closure is contained in a contact Darboux chart can be contactly squeezed into any non-empty
open subset. In other words, contact geometry does not remember the size on a small scale.
Somewhat surprisingly, this is not true on a large scale in general. In the next theorem, B(R)
denotes the ball of radius R.

Received 21 November 2022, accepted in final form 12 June 2023, published online 18 September 2023.
2020 Mathematics Subject Classification 53D10, 37J55, 57R58, 53D35, 57R17 (primary), 53D22 (secondary).
Keywords: symplectic homology, contact Floer homology, contact non-squeezing.
© 2023 The Author(s). This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is
© Foundation Compositio Mathematica.

https://doi.org/10.1112/S0010437X23007480 Published online by Cambridge University Press

http://www.compositio.nl/
https://orcid.org/0000-0002-9405-1903
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X23007480


Selective symplectic homology with applications to contact non-squeezing

Theorem 1.1 (Eliashberg–Kim–Polterovich and Chiu). The subset B̂(R) := B(R) × S1 of Cn ×
S1 can be contactly squeezed into itself via a compactly supported contact isotopy if, and only
if, R < 1.

This remarkable phenomenon, that may be seen as a manifestation of the Heisenberg uncer-
tainty principle, was first observed by Eliashberg, Kim, and Polterovich [EKP06]. They proved
the case where either R < 1 or R ∈ N. Chiu [Chi17] extended their result to radii that are not
necessarily integer. Fraser [Fra16] presented an alternative proof of the case of non-integer radii
that is more in line with the techniques used in [EKP06]. (Fraser actually proved the following
formally stronger statement: there does not exist a compactly supported contactomorphism of
Cn × S1 that maps the closure of B̂(R) into B̂(R) if R � 1. It seems not to be known whether
the group of compactly supported contactomorphisms of Cn × S1 is connected.) Using generating
functions, Sandon reproved the case of integer radii [San11].

The contact non-squeezing results are rare. Apart from Theorem 1.1, there are only few
results about contact non-squeezing [EKP06, AM18, All21, DeG19], and they are all concerning
the subsets of the form U × S1 in the prequantization of a Liouville manifold. The present paper
provides examples of contact manifolds that are diffeomorphic to standard spheres and that
exhibit non-trivial contact non-squeezing phenomena. The following theorem is the first example
of contact non-squeezing for a contractible subset, namely an embedded standard smooth ball.

Theorem 1.2. Let Σ be an Ustilovsky sphere. Then, there exist two embedded closed balls
B1, B2 ⊂ Σ of dimension equal to dim Σ such that B1 cannot be contactly squeezed into B2.

An Ustilovky sphere is the (4m+ 1)-dimensional Brieskorn manifold

{z = (z0, . . . , z2m+1) ∈ C2m+2 | zp0 + z2
1 + · · · + z2

2m+1 = 0 and |z| = 1}
associated with natural numbers m, p ∈ N with p ≡ ±1 (mod 8). The Ustilovsky sphere is
endowed with the contact structure given by the contact from

αp :=
ip

8
· (z0dz0 − z0dz0) +

i

4
·
2m+1∑
j=1

(zjdzj − zjdzj).

These Brieskorn manifolds were used by Ustilovsky [Ust99] to prove the existence of infinitely
many exotic contact structures on the standard sphere that have the same homotopy type as the
standard contact structure. The strength of Theorem 1.2 lies in the topological simplicity of the
objects used. A closed ball embedded in a smooth manifold can always be smoothly squeezed into
an arbitrarily small (non-empty) open subset. Moreover, the obstruction to contact squeezing in
Theorem 1.2 does not lie in the homotopy properties of the contact distribution. Namely, the
contact distribution of an Ustilovsky sphere for p ≡ 1 (mod 2(2m)!) is homotopic to the standard
contact distribution on the sphere and the contact non-squeezing on the standard contact sphere
is trivial. A consequence of Theorem 1.2 is a contact non-squeezing on R4m+1 endowed with a
non-standard contact structure.

Corollary 1.3. Let m ∈ N. Then, there exist a contact structure ξ on R4m+1 and an embedded
(4m+ 1)-dimensional closed ball B ⊂ R4m+1 such that B cannot be squeezed into an arbitrary
open non-empty subset by a compactly supported contact isotopy of (R4m+1, ξ).

The exotic R4m+1 in Corollary 1.3 is obtained by removing a point from an Ustilovsky sphere.
In fact, the contact non-squeezing implies that (R4m+1, ξ) constructed in this way (although
tight) is not contactomorphic to the standard R4m+1. A more general result was proven by
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Fauteux-Chapleau and Helfer [FH21] using a variant of contact homology: there exist infinitely
many pairwise non-contactomorphic tight contact structures on R2n+1 if n > 1.

Theorem 1.2 is a consequence of the following theorem about homotopy spheres that bound
Liouville domains with large symplectic homology.

Theorem 1.4. Let n > 2 be a natural number and let W be a 2n-dimensional Liouville domain
such that dimSH∗(W ) >

∑2n
j=1 dimHj(W ; Z2) and such that ∂W is a homotopy sphere. Then,

there exist two embedded closed balls B1, B2 ⊂ ∂W of dimension 2n− 1 such that B1 cannot be
contactly squeezed into B2.

The smooth non-squeezing problem for a homotopy sphere is trivial: every non-dense subset
of a homotopy sphere can be smoothly squeezed into an arbitrary non-empty open subset. This
is due to the existence of Morse functions with precisely two critical points on the homotopy
spheres. A smooth squeezing can be realized by the gradient flow of such a Morse function. Plenty
of examples of Liouville domains that satisfy the conditions of Theorem 1.4 can be found among
Brieskorn varieties. The Brieskorn variety V (a0, . . . , am) is a Stein domain whose boundary is
contactomorphic to the Brieskorn manifold Σ(a0, . . . , am). Brieskorn [Bri66, Satz 1] proved a
simple sufficient and necessary condition (conjectured by Milnor) for a Brieskorn manifold to
be homeomorphic to a sphere (see also [KvK16, Proposition 3.6]). Many of the corresponding
Brieskorn varieties have infinite-dimensional symplectic homology, for instance V (3, 2, 2, . . . , 2).
Thus, Theorem 1.4 also implies that there exists a non-trivial contact non-squeezing on the
Kervaire spheres, i.e. on Σ(3, 2, . . . , 2) for an odd number of twos.

Our non-squeezing results are obtained using a novel version of symplectic homology, called
selective symplectic homology, that is introduced in the present paper. It resembles the relative
symplectic cohomology by Varolgunes [Var21], although the relative symplectic (co)homology
and the selective symplectic homology are not quite the same. The selective symplectic homology,
SHΩ∗ (W ), is associated to a Liouville domain W and an open subset Ω ⊂ ∂W of its boundary.
Informally, SHΩ∗ (W ) is defined as the Floer homology for a Hamiltonian on W that is equal
to +∞ on Ω and to 0 on ∂W \ Ω (whereas, in this simplified view, the symplectic homology
corresponds to a Hamiltonian that is equal to +∞ everywhere on ∂W ). The precise definition
of the selective symplectic homology is given in § 3 below.

The selective symplectic homology is related to the symplectic (co)homology of a Liouville
sector that was introduced in [GPS20] by Ganatra, Pardon, and Shende. As described in detail
in [GPS20], every Liouville sector can be obtained from a Liouville manifold X by removing the
image of a stop. The notion of a stop on a Liouville manifold X was defined by Sylvan [Syl19] as
a proper, codimension-0 embedding σ : F × CRe<0 → X, where F is a Liouville manifold, such
that σ∗λX = λF + λC + df , for a compactly supported f . Here, λX , λF , λC are the Liouville forms
on X, F , and CRe<0, respectively. We now compare the selective symplectic homology SHΩ∗ (W )
and the symplectic homology SH∗(X, ∂X), where X = Ŵ \ imσ is the Liouville sector obtained
by removing a stop σ from the completion Ŵ , and Ω is the interior of the set ∂W \ imσ. Both
SHΩ∗ (W ) and SH∗(X, ∂X) are, informally speaking, Floer homologies for a Hamiltonian whose
slope tends to infinity over Ω. However, as opposed to SH∗(X, ∂X), the selective symplectic
homology SHΩ∗ (W ) takes into account imσ ∩W , i.e. the part of the stop that lies outside of the
conical end ∂W × (1,+∞). In addition, in the selective symplectic homology theory, there are
no restrictions on Ω: it can be any open subset, not necessarily the one obtained by removing a
stop. On the technical side, SH∗(X, ∂X) and SHΩ∗ (W ) differ in the way the compactness issue
is resolved. The symplectic homology of a Liouville sector is based on compactness arguments by
Groman [Gro15], whereas the selective symplectic homology relies on a version of the Alexandrov
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maximum principle [GT77, Theorem 9.1], [AS09, Appendix A], [MU19]. It is an interesting
question under what conditions SHΩ∗ (W ) and SH∗(X, ∂X) actually coincide.

In simple terms, the non-squeezing results of the present paper are obtained by proving
that a set Ωb ⊂ ∂W with big selective symplectic homology cannot be contactly squeezed into
a subset Ωa ⊂ ∂W with SHΩa∗ (W ) small (see Theorem 1.8). The computation of the selective
symplectic homology is somewhat challenging even in the simplest non-trivial cases. The key
computations in the paper are that of SHD∗ (W ) where D ⊂ ∂W is a contact Darboux chart,
and that of SH∂W\D

∗ (W ). We prove that SHD∗ (W ) is isomorphic to SH∅∗ (W ) by analysing the
dynamics of a specific suitably chosen family of contact Hamiltonians that are supported in
D (see Theorem 6.1). On the other hand, by utilizing the existence of a contractible loop of
contactomorphisms that is positive over D, one can prove that SH∂W\D

∗ (W ) is big if SH∗(W ) is
big itself (see § 7). The proof is indirect and not quite straightforward. This proof also requires a
feature of Floer homology for contact Hamiltonians that could be of interest in its own right and
that has not appeared in the literature so far. Namely, there exists a collection of isomorphisms
B(σ) : HF∗(h) → HF∗(h#f) (one isomorphism for each admissible h) furnished by a family σ
of contactomorphisms of ∂W that is indexed by a disc. In the formula above, f is the contact
Hamiltonian that generates the ‘boundary loop’ of σ, and h#f is the contact Hamiltonian of
the contact isotopy ϕht ◦ ϕft . In addition, the isomorphisms B(σ) give rise to an automorphism
of the symplectic homology SH∗(W ).

Remark 1.5. For the sake of simplicity, this paper defines the selective symplectic homol-
ogy SHΩ∗ (W ) in the framework of Liouville domains. The theory can actually be developed
whenever W is a symplectic manifold with contact type boundary such that the symplectic
homology SH∗(W ) is well defined. This is the case, for instance, if W is weakly+ monotone
[HS95] symplectic manifold with convex end. Theorems 1.4 and 1.8 are valid in this more general
setting.

What follows is a brief description of the main properties of the selective symplectic homology.

1.1 Empty set
The selective symplectic homology of the empty set is isomorphic, up to a shift in grading, to
the singular homology of the Liouville domain relative its boundary:

SH∅
∗ (W ) ∼= H∗+n(W,∂W ; Z2),

where 2n = dimW . This is a straightforward consequence of the formal definition of the selective
symplectic homology (Definition 3.4). Namely, it follows directly that SH∅∗ (W ) is isomorphic
to the Floer homology HF∗(H) for a Hamiltonian Ht : Ŵ → R whose slope ε > 0 is sufficiently
small (smaller than any positive period of a closed Reeb orbit on ∂W ). For such a HamiltonianH,
it is known (by a standard argument involving isomorphism of the Floer and Morse homologies
for a C2 small Morse function) that HF∗(H) recovers H∗+n(W,∂W ; Z2).

1.2 Canonical identification
Although not reflected in the notation, the group SHΩ∗ (W ) depends only on the completion Ŵ
and an open subset of the ideal contact boundary of Ŵ (defined in [EKP06, p. 1643]). More
precisely, SHΩ∗ (W ) = SH

Ωf∗ (W f ), whenever the pairs (W,Ω) and (W f ,Ωf ) are λ-related in the
sense of the following definition.

Definition 1.6. Let (M,λ) be a Liouville manifold. Let Σ1,Σ2 ⊂M be two hypersurfaces in
M that are transverse to the Liouville vector field. The subsets Ω1 ⊂ Σ1 and Ω2 ⊂ Σ2 are said
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to be λ-related if each trajectory of the Liouville vector field either intersects both Ω1 and Ω2 or
neither of them.

1.3 Continuation maps
To a pair Ωa ⊂ Ωb of open subsets of ∂W , one can associate a morphism

Φ = ΦΩb
Ωa

: SHΩa∗ (W ) → SHΩb∗ (W ),

called continuation map. The groups SHΩ∗ (W ) together with the continuation maps form a
directed system of groups indexed by open subsets of ∂W . In other words, ΦΩ

Ω is equal to the
identity and ΦΩc

Ωb
◦ ΦΩb

Ωa
= ΦΩc

Ωa
.

1.4 Behaviour under direct limits
Let Ωk ⊂ ∂W , k ∈ N be an increasing sequence of open subsets, i.e. Ωk ⊂ Ωk+1 for all k ∈ N.
Denote Ω :=

⋃∞
k=1 Ωk. Then, the map

lim−→
k

SHΩk∗ (W ) → SHΩ
∗ (W ),

furnished by continuation maps is an isomorphism. The direct limit is taken with respect to
continuation maps.

1.5 Conjugation isomorphisms
The conjugation isomorphism

C(ψ) : SHΩa∗ (W ) → SHΩb∗ (W )

is associated with a symplectomorphism ψ : Ŵ → Ŵ , defined on the completion of W , that
preserves the Liouville form outside of a compact set. With any such symplectomorphism
ψ, one can associate a unique contactomorphism ϕ : ∂W → ∂W , called ideal restriction, such
that

ψ(x, r) = (ϕ(x), f(x) · r)
for r ∈ R+ large enough and for a certain positive function f : ∂W → R+. The set Ωb is the image
of Ωa under the contactomorphism ϕ−1 : ∂W → ∂W . That is, the conjugation isomorphism has
the following form

C(ψ) : SHΩ
∗ (W ) → SH

ϕ−1(Ω)
∗ (W ),

where ϕ is the ideal restriction of ψ. As a consequence, the groups SHΩ∗ (W ) and SH
ϕ(Ω)
∗ (W )

are isomorphic whenever the contactomorphism ϕ is the ideal restriction of some symplec-
tomorphism ψ : Ŵ → Ŵ (that preserves the Liouville form outside of a compact set). If a
contactomorphism of ∂W is contact isotopic to the identity, then it is equal to the ideal
restriction of some symplectomorphism of Ŵ . Hence, if Ωa,Ωb ⊂ ∂W are two contact isotopic
open subsets (i.e. there exists a contact isotopy ϕt : ∂W → ∂W such that ϕ0 = id and such
that ϕ1(Ωa) = Ωb), then the groups SHΩa∗ (W ) and SHΩb∗ (W ) are isomorphic. The conjuga-
tion isomorphisms behave well with respect to the continuation maps, as asserted by the next
theorem.

Theorem 1.7. Let W be a Liouville domain, let ψ : Ŵ → Ŵ be a symplectomorphism that pre-
serves the Liouville form outside of a compact set, and let ϕ : ∂W → ∂W be the ideal restriction
of ψ. Let Ωa ⊂ Ωb ⊂ ∂W be open subsets. Then, the following diagram, consisting of conjugation
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isomorphisms and continuation maps, commutes.

SHΩa∗ (W )
C(ψ)−−−−→ SH

ϕ−1(Ωa)
∗ (W )⏐⏐�Φ

⏐⏐�Φ

SHΩb∗ (W )
C(ψ)−−−−→ SH

ϕ−1(Ωb)∗ (W )

Applications
The selective symplectic homology is envisioned as a tool for studying contact geometry and
dynamics of Liouville fillable contact manifolds. The present paper shows how it can be used
to prove contact non-squeezing type of results. This is illustrated by the following abstract
observation.

Theorem 1.8. Let W be a Liouville domain and let Ωa,Ωb ⊂ ∂W be open subsets. If the
rank of the continuation map SHΩb∗ (W ) → SH∗(W ) is (strictly) greater than the rank of the
continuation map SHΩa∗ (W ) → SH∗(W ), then Ωb cannot be contactly squeezed into Ωa.

The theory of selective symplectic homology has rich algebraic structure that is beyond the
scope of the present paper. For instance:

1. one can construct a persistent module associated to an open subset of a contact manifold;
2. topological quantum field theory operations are well defined on SHΩ∗ (W );
3. it is possible to define transfer morphisms for selective symplectic homology in analogy to

Viterbo’s transfer morphisms for symplectic homology;
4. there exist positive selective symplectic homology, S1-equivariant selective symplectic homol-

ogy, positive S1-equivariant selective symplectic homology, etc.

The structure of the paper
The paper is organized as follows. Section 2 recalls the definition of Liouville domains
and construction of the Hamiltonian-loop Floer homology. Sections 3–5 define the selective
symplectic homology and derive its properties. Sections 6–8 contain proofs of the appli-
cations to the contact non-squeezing and necessary computations. Section 9 discusses iso-
morphisms of contact Floer homology induced by families of contactomorphisms indexed by
a disc.

2. Preliminaries

2.1 Liouville manifolds
This section recalls the notions of a Liouville domain and a Liouville manifold of finite
type. Liouville manifolds (of finite type) play the role of an ambient space in this paper.
The selective symplectic homology is built from objects on a Liouville manifold of finite
type.

Definition 2.1. A Liouville manifold of finite type is an open manifold M together with a
1-form λ on it such that the following conditions hold.

1. The 2-form dλ is a symplectic form on M.
2. There exist a contact manifold Σ with a contact form α and a codimension-0 embedding

ι : Σ × R+ →M such that M \ ι(Σ × R+) is a compact set, and such that ι∗λ = r · α, where
r stands for the R+ coordinate.
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We will refer to the map ι as a conical end of the Liouville manifold M . With slight abuse
of terminology, the set ι(Σ × R+) will also be called conical end. A conical end is not unique.

The Liouville vector field, Xλ, of the Liouville manifold (M,λ) of finite type is the complete
vector field defined by dλ(Xλ, ·) = λ. If Σ ⊂M is a closed hypersurface that is transverse to the
Liouville vector field Xλ, then λ|Σ is a contact form on Σ and there exists a unique codimension-0
embedding ιΣ : Σ × R+ →M such that ιΣ(x, 1) = x and such that ι∗Σλ = r · λ|Σ.

The notion of a Liouville manifold of finite type is closely related to that of a Liouville
domain.

Definition 2.2. A Liouville domain is a compact manifold W (with boundary) together with
a 1-form λ such that:

1. dλ is a symplectic form on W ;
2. the Liouville vector field Xλ points transversely outwards at the boundary.

The Liouville vector field on a Liouville domain (W,λ) is not complete. The completion of
the Liouville domain is the Liouville manifold (Ŵ , λ̂) of finite type obtained by extending the
integral curves of the vector field Xλ towards +∞. Explicitly, as a topological space,

Ŵ := W
⋃
∂

(∂W ) × [1,+∞).

The manifolds (∂W ) × [1,+∞) and W are glued along the boundary via the map

∂W × {1} → ∂W : (x, 1) �→ x.

The completion Ŵ is endowed with the unique smooth structure such that the natural inclusions
W ↪→ Ŵ and ∂W × [1,+∞) ↪→ Ŵ are smooth embeddings, and such that the vector field Xλ

extends smoothly to ∂W × [1,+∞) by the vector field r∂r. (Here, we tacitly identified ∂W ×
[1,+∞) and W with their images under the natural inclusions.) The 1-form λ̂ is obtained by
extending the 1-form λ to ∂W × [1,+∞) by r · λ|∂W. The completion of a Liouville domain is a
Liouville manifold of finite type. And, the other way around, every Liouville manifold of finite
type is the completion of some Liouville domain.

Let M be a Liouville manifold of finite type, let W ⊂M be a codimension-0 Liouville
subdomain, and let f : ∂W → R+ be a smooth function. The completion Ŵ can be seen as
a subset of M . Throughout the paper, W f denotes the subset of M defined by

W f := Ŵ \ ι∂W ({f(x) · r > 1}).
Here, {f(x) · r > 1} stands for {(x, r) ∈ ∂W × R+ | f(x) · r > 1}. The set W f is a codimension-0
Liouville subdomain in its own right, and the completions of W and W f can be identified.

2.2 Floer theory
In this section, we recall the definition of the Floer homology for a contact Hamiltonian,
HF∗(W,h). A contact Hamiltonian is called admissible if it does not have any 1-periodic orbits
and if it is 1-periodic in the time variable. The group HF∗(W,h) is associated to a Liouville
domain (W,λ) and to an admissible contact Hamiltonian ht : ∂W → R that is defined on the
boundary of W .

The Floer homology for contact Hamiltonians was introduced in [MU19] by Merry and the
author. It relies heavily on the Hamiltonian loop Floer homology [Flo89] and symplectic homology
[FH94, FHW94, CFH95, CFHW96, Vit99, Vit18], especially the version of symplectic homology
by Viterbo [Vit99].
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2.2.1 Auxiliary data. Let (W,λ) be a Liouville domain, and let ht : ∂W → R be an admissible
contact Hamiltonian. The group HF∗(W,h) is defined as the Hamiltonian loop Floer homology,
HF∗(H, J), associated to a Hamiltonian H and an almost complex structure J . Both H and J

are objects on the completion Ŵ =: M of the Liouville domain W . Before stating the precise
conditions that H and J are assumed to satisfy, we define the set J (Σ, α) of almost complex
structures of SFT type. Let Σ be a contact manifold with a contact form α. The set J (Σ, α)
(or simply J (Σ) when it is clear from the context what the contact form is equal to) is the set
of almost complex structures J on the symplectization Σ × R+ such that:

• J is invariant under the R+ action on Σ × R+;
• J(r∂r) = Rα, where Rα is the Reeb vector field on Σ with respect to the contact form α;
• the contact distribution ξ := kerα is invariant under J and J |ξ is a compatible complex

structure on the symplectic vector bundle (ξ, dα) → Σ.

The list of the conditions for (H, J) follows.

1. (Conditions on the conical end.) There exist a positive number a ∈ R+ and a constant c ∈ R
such that

Ht ◦ ι∂W (x, r) = r · h(x) + c,

for all t ∈ R and (x, r) ∈ ∂W × [a,+∞), and such that ι∗∂WJt coincides with an element of
J (∂W ) on ∂W × [a,+∞) for all t ∈ R. Here, ι∂W : ∂W × R+ →M is the conical end of M
associated to ∂W.

2. (One-periodicity.) For all t ∈ R, Ht+1 = Ht and Jt+1 = Jt.
3. (dλ̂-compatibility.) The tensor dλ̂(·, Jt·) is a Riemannian metric on M for all t ∈ R.

The pair (H, J) that satisfies the conditions above is called Floer data (for the contact
Hamiltonian h and the Liouville domain (W,λ)). Floer data (H, J) is called regular if,
additionally, the following two conditions hold.

4. (Non-degeneracy.) The linear map

dφH1 (x) − id : TxM → TxM

is invertible for all fixed points x of φH1 .
5. (Regularity.) The linearized operator of the Floer equation

u : R×(R /Z) →M, ∂su+ Jt(u)(∂tu−XHt(u)) = 0

is surjective.

2.2.2 Floer complex. Let (H, J) be regular Floer data. The Floer complex, CF∗(H, J), is
built up on the contractible 1-periodic orbits of the Hamiltonian H. For every 1-periodic orbit
γ of the Hamiltonian H, there exists a fixed point x of φH1 such that γ(t) = φHt (x). The degree,
deg γ = degH γ, of a contractible 1-periodic orbit γ = φH· (x) of the Hamiltonian H is defined
to be the negative Conley–Zehnder index of the path of symplectic matrices that is obtained
from dφHt (x) by trivializing TM along a disc that is bounded by γ (see [Sal99] for details
concerning the Conley–Zehnder index). Different choices of the capping disc can lead to dif-
ferent values of the degree, however they all differ by an even multiple of the minimal Chern
number

N := min{c1(u) > 0 |u : S2 →M}.
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Therefore, deg γ is well defined as an element of Z2N (but not as an element of Z, in general).
The Floer chain complex as a group is defined by

CFk(H, J) :=
⊕

deg γ=k

Z2〈γ〉.

Since the Floer data (H, J) is regular, the set M(H, J, γ−, γ+) of the solutions u : R×(R /Z) →
M of the Floer equation

∂su+ Jt(u)(∂tu−XHt(u)) = 0

that join two 1-periodic orbits γ− and γ+ of H (i.e. lims �→±∞ u(s, t) = γ±(t)) is a finite-
dimensional manifold (components of which might have different dimensions). There is a natural
R-action on M(H, J, γ−, γ+) given by

R×M(H, J, γ−, γ+) �→ M(H, J, γ−, γ+) : (a, u) �→ u(· + a, ·).
The quotient

M̃(H, J, γ−, γ+) := M(H, J, γ−, γ+)/R

of M(H, J, γ−, γ+) by this action is also a finite-dimensional manifold. Denote by n(γ−, γ+) =
n(H, J, γ−, γ+) ∈ Z2 the parity of the number of 0-dimensional components of M̃(H, J, γ−, γ+).
The boundary map

∂ : CFk+1(H, J) → CFk(H, J)

is defined on the generators by

∂〈γ〉 :=
∑
γ̃

n(γ, γ̃)〈γ̃〉. (2.1)

If deg γ = deg γ̃ + 1, there are no 0-dimensional components of M̃(H, J, γ−, γ+) and, therefore,
n(γ, γ̃) = 0. Hence, the sum in (2.1) can be taken only over γ̃ that satisfy deg γ̃ = deg γ − 1. The
homology of the chain complex CF∗(H, J) is denoted by HF∗(H, J).

2.2.3 Continuation maps. Continuation maps compare Floer homologies for different choices
of Floer data. They are associated to generic monotone homotopies of Floer data that join two
given instances of Floer data. We refer to these homotopies as continuation data.

Let (H−, J−) and (H+, J+) be regular Floer data. The continuation data from (H−, J−)
to (H+, J+) is a pair ({Hs,t}, {Js,t}) that consists of an s-dependent Hamiltonian Hs,t : M →
R and a family Js,t of almost complex structures on M such that the following conditions
hold.

1. (Homotopy of Floer data.) For all s ∈ R, the pair (Hs,·, Js,·) is Floer data (not necessarily
regular) for some contact Hamiltonian.

2. (Monotonicity.) There exists a ∈ R+ such that ∂sHs,t(x) � 0, for all s, t ∈ R and x ∈
ι∂W (∂W × [a,+∞)).

3. (s-independence at the ends.) There exists b ∈ R+ such that Hs,t(x) = H±t (x), for all t ∈ R
and x ∈M , if ±s ∈ [b,+∞).

Continuation data ({Hs,t}, {Js,t}) is called regular if the linearized operator of the
s-dependent Floer equation

u : R×(R /Z) →M, ∂su+ Js,t(u)(∂tu−XHs,t(u)) = 0

is surjective.
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Given regular continuation data ({Hs,t}, {Js,t}) from (H−, J−) to (H+, J+) and 1-periodic
orbits γ− and γ+ of H− and H+, respectively, the set of the solutions u : R×(R /Z) →M of the
problem

∂su+ Js,t(u)(∂tu−XHs,t(u)) = 0,

lim
s→±∞u(s, t) = γ±(t)

is a finite-dimensional manifold. Its 0-dimensional part is compact and, therefore, a finite set.
Denote by m(γ−, γ+) the number modulo 2 of the 0-dimensional components of this manifold.
The continuation map

Φ = Φ({Hs,t}, {Js,t}) : CF∗(H−, J−) → CF∗(H+, J+)

is the chain map defined on the generators by

Φ(γ−) :=
∑
γ+

m(γ−, γ+)〈γ+〉.

The map HF∗(H−, J−) → HF∗(H+, J+) induced by a continuation map on the homology level
(this map is also called continuation map) does not depend on the choice of continuation data
from (H−, J−) to (H+, J+).

The groups HF∗(H, J) together with the continuation maps form a directed system of
groups. As a consequence, the groups HF∗(H, J) and HF∗(H ′, J ′) are canonically isomorphic
whenever (H, J) and (H ′, J ′) are (regular) Floer data for the same admissible contact Hamilto-
nian. Therefore, the Floer homologyHF∗(h) = HF∗(W,h) for an admissible contact Hamiltonian
ht : ∂W → R is well defined. The continuation maps carry over to Floer homology for contact
Hamiltonians. Due to the ‘monotonicity’ condition for the continuation data, the continua-
tion map HF∗(h) → HF∗(h′) is not well defined unless ht, h′t : ∂W → R are admissible contact
Hamiltonians such that h � h′, pointwise.

For a positive smooth function f : ∂W → R+, the completions of the Liouville domains W
and W f can be naturally identified. If a Hamiltonian H : Ŵ = Ŵ f → R has the slope equal to
h with respect to the Liouville domain W f , then it has the slope equal to f · h with respect to
the Liouville domain W . Therefore, the groups HF∗(W f , h) and HF∗(W, f · h) are canonically
isomorphic. Here, we tacitly identified ∂W and ∂W f via the contactomorphism furnished by the
Liouville vector field, and regarded h as both the function on ∂W and ∂W f .

3. Selective symplectic homology

This section defines formally the selective symplectic homology SHΩ∗ (W ). To this end, two sets
of smooth functions on ∂W are introduced: HΩ(∂W ) and Π(h). The set HΩ(∂W ) consists of
certain non-negative smooth functions on ∂W , and Π(h) is a set associated to h ∈ HΩ(∂W ) that
can be thought of as the set of perturbations.

Definition 3.1. Let Σ be a closed contact manifold with a contact form α, and let Ω ⊂ Σ
be an open subset. Denote by HΩ(Σ) = HΩ(Σ, α) the set of smooth (C∞) autonomous contact
Hamiltonians h : Σ → [0,+∞) such that:

1. supph ⊂ Ω;
2. dY h(p) = 0 for all p ∈ Σ such that h(p) = 0;
3. the 1-periodic orbits of h are constant.
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In the definition above, Y h denotes the contact vector field of the contact Hamiltonian h.
More precisely, the vector field Y h is determined by the following relations

α(Y h) = −h,
dα(Y h, ·) = dh− dh(R) · α,

where R stands for the Reeb vector field with respect to α. The condition dY h(p) = 0 holds
for p ∈ h−1(0) if, for instance, the Hessian of h is equal to 0 at the point p. The set HΩ(Σ) is
non-empty.

Definition 3.2. Let Σ be a closed contact manifold with a contact form α, let Ω ⊂ Σ be an
open subset, and let h ∈ HΩ(Σ). Denote by Π(h) the set of smooth positive functions f : Σ → R+

such that the contact Hamiltonian h+ f has no 1-periodic orbits.

The next proposition implies that Π(h) is non-empty for h ∈ HΩ(Σ). It is also used in the
proof of Lemma 3.5.

Proposition 3.3. Let Σ be a closed contact manifold with a contact form. Let h : Σ → R be a
contact Hamiltonian such that h has no non-constant 1-periodic orbits, and such that dY h(p) = 0
for all p ∈ Σ at which the vector field Y h vanishes. Then, there exists a C2 neighbourhood of
h in C∞(Σ) such that the flow of g has no non-constant 1-periodic orbits for all g in that
neighbourhood.

Proof. Assume the contrary. Then, there exist a sequence of contact Hamiltonians hk and a
sequence xk ∈ Σ such that hk → h in C2 topology, such that xk → x0, and such that t �→ ϕhk

t (xk)
is a non-constant 1-periodic orbit of hk. This implies that t �→ ϕht (x0) is a 1-periodic orbit of
h and, therefore, has to be constant. By assumptions, dY h(x0) = 0. The map C∞(Σ) → X(Σ)
that assigns the contact vector field to a contact Hamiltonian is continuous with respect to C2

topology on C∞(Σ) and C1 topology on X(Σ). Consequently (since hk → h in C2 topology),
Y hk → Y h in C1 topology. Therefore, for each L > 0, there exists a neighbourhood U ⊂ Σ of
x0 and N ∈ N such that Y hk |U is Lipschitz with Lipschitz constant L for all k � N . For k big
enough, the loop t �→ ϕhk

t (xk) is contained in the neighbourhood U . This contradicts [Yor69]
because for L small enough there are no non-constant 1-periodic orbits of hk in U . �

The following definition introduces the selective symplectic homology.

Definition 3.4. Let W be a Liouville domain, and let Ω ⊂ ∂W be an open subset of the
boundary Σ := ∂W . The selective symplectic homology with respect to Ω is defined as

SHΩ
∗ (W ) := lim−→

h∈HΩ(Σ)

lim←−
f∈Π(h)

HF∗(h+ f).

The limits are taken with respect to the continuation maps.

Given h ∈ HΩ(Σ), Proposition 3.3 implies that for f : Σ → R+ smooth and small enough
(with respect to the C2 topology), the contact Hamiltonian h+ f has no 1-periodic orbits. As
a consequence, the groups HF∗(h+ f1) and HF∗(h+ f2) are canonically isomorphic for f1 and
f2 sufficiently small. In other words, the inverse limit

lim←−
f∈Π(h)

HF∗(h+ f)

stabilizes for h ∈ HΩ(W ). This is proven in the next lemma.
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Lemma 3.5. Let W be a Liouville domain, let Ω ⊂ ∂W be an open subset, and let h ∈ HΩ(W ).
Then, there exists an open convex neighbourhood U of 0 (seen as a constant function on ∂W )
in C2 topology such that the natural map

lim←−
f∈Π(h)

HF∗(h+ f) → HF∗(h+ g)

is an isomorphism for all g ∈ C∞(∂W,R+) ∩ U .

Proof. Proposition 3.3 implies that there exists a convex C2 neighbourhood U of the constant
function ∂W → R : p �→ 0 such that h+ f has no non-constant 1-periodic orbits if f ∈ U . Since
h+ f is positive for a positive function f ∈ U , it does not have any constant orbits either (the
corresponding vector field is nowhere 0). Hence, h+ f has no 1-periodic orbits for all positive
functions f : ∂W → R+ from U . This, in particular, implies O := C∞(∂W,R+) ∩ U ⊂ Π(h). The
set O is also convex. Therefore, (1 − s) · fa + s · fb ∈ O for all fa, fb ∈ O and s ∈ [0, 1]. If, in
addition, fa � fb, then h+ (1 − s) · fa + s · fb is an increasing family (in s-variable) of admissible
contact Hamiltonians. Theorem 1.3 from [UZ22] asserts that the continuation map HF∗(h+
fa) → HF∗(h+ fb) is an isomorphism in this case. This implies the claim of the lemma. �

The set U from Lemma 3.5 is not unique. For technical reasons, it is useful to choose one
specific such set (we will denote it by U(h)) for a given contact Hamiltonian h ∈ HΩ(∂W ). The
construction of U(h) follows. Let ψj : Vj → ∂W be charts on ∂W and let Kj ⊂ ψ(Vj) be compact
subsets, j ∈ {1, . . . ,m}, such that

⋃m
j=1Kj = ∂W . Denote by ‖·‖C2 the norm on C∞(∂W,R)

defined by
‖f‖C2 := max

j∈{1,...,m}
i∈{0,1,2}

max
Kj

‖Di(f ◦ ψj)‖.

The norm ‖·‖C2 induces the C2 topology on C∞(∂W,R). Denote by B(�) ⊂ C∞(∂W,R) the open
ball with respect to ‖·‖C2 centered at 0 of radius �. Define U(h) as the union of the balls B(�)
that have the following property: the contact Hamiltonian h+ f has no non-constant 1-periodic
orbits for all f ∈ B(�). The set U(h) is open as the union of open subsets. It is convex as the
union of nested convex sets. In addition, it is non-empty by Proposition 3.3. The subset of U(h)
consisting of strictly positive functions is denoted by O(h), i.e. O(h) := U(h) ∩ C∞(∂W,R+).

4. Behaviour under direct limits

The next theorem claims that the selective symplectic homology behaves well with respect to
direct limits.

Theorem 4.1. Let (W,λ) be a Liouville domain, and let Ω1,Ω2, . . . be a sequence of open
subsets of ∂W such that Ωk ⊂ Ωk+1 for all k ∈ N. Denote Ω :=

⋃
k Ωk. Then, the map

P : lim
k→+∞

SHΩk∗ (W ) → SHΩ
∗ (W ),

furnished by continuation maps, is an isomorphism.

Proof. Let h be an arbitrary contact Hamiltonian in HΩ(∂W ). Since supph is a compact subset
of Ω, and since

⋃
Ωk = Ω, there exists k ∈ N such that supph ⊂ Ωk. For such a k, we have

h ∈ HΩk
(∂W ). In other words,

⋃
kHΩk

(∂W ) = HΩ(∂W ). The theorem now follows from the
next abstract lemma. �

The following lemma was used in the proof of Theorem 4.1.
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Lemma 4.2. Let (P,�) be a directed set and let P1 ⊂ P2 ⊂ · · · ⊂ P be subsets of P such that
(Pj ,�) is a directed set for all j ∈ N, and such that

⋃
j Pj = P . Let {Ga}a∈P be a directed system

over P . Then, there exists a canonical isomorphism

lim−→
j

lim−→
a∈Pj

Ga → lim−→
a∈P

Ga.

Proof. Denote by f ba : Ga → Gb, a � b the morphisms of the directed system {Ga}. Denote by

φja : Ga → lim−→
b∈Pj

Gb

the canonical map, defined if a ∈ Pj . Since φjb ◦ f ba = φja whenever a � b and a, b ∈ Pj , the
morphisms {φja}a∈Pi induce a morphism

F ji : lim−→
a∈Pi

Ga → lim−→
a∈Pj

Ga

for positive integers i � j. The morphisms {F ji }i�j make
{
lim−→

a∈Pj

Ga
}
j∈N

into a directed system

indexed by (N,�). Denote by

Φj : lim−→
a∈Pj

Ga → lim−→
j∈N

lim−→
a∈Pj

Ga

the canonical map.
We will prove the lemma by showing that lim−→

j∈N

lim−→
a∈Pj

Ga together with the maps Φj ◦ φja,
a ∈ P satisfies the universal property of the direct limit. Let (Y, {ψa}a∈P ) be a target, i.e. {ψa :
Ga → Y }a is a collection of morphisms that satisfy ψb ◦ f ba = ψa for all a, b ∈ P such that a � b.
Since (Y, {ψa}a∈Pj ) is a target for the directed system {Ga}a∈Pj , the universal property of the
direct limit implies that there exists a unique morphism

Ψj : lim−→
a∈Pj

Ga → Y

such that Ψj ◦ φja = ψa for all positive integers i � j. By applying the universal property again,
we conclude that there exists a unique morphism

Ψ : lim−→
j

lim−→
a∈Pj

Ga → Y

such that Ψ ◦ Φj = Ψj . Since

Ψ ◦ Φj ◦ φja = Ψj ◦ φja = ψa,

this finishes the proof. �

5. Conjugation isomorphisms

Let (M,λ) be a Liouville domain of finite type. The group of symplectomorphisms ψ : M →M
that preserve the Liouville form outside of a compact subset is denoted by Symp∗(M,λ).
If M = Ŵ is the completion of a Liouville domain (W,λ), then for ψ ∈ Symp∗(M,λ)
there exist a contactomorphism ϕ : ∂W → ∂W and a positive smooth function f : ∂W → R+
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such that
ψ(x, r) = (ϕ(x), r · f(x)),

for x ∈ ∂W and r ∈ R+ large enough. The contactomorphism ϕ is called the ideal restric-
tion of ψ. To an element ψ ∈ Symp∗(M,λ), one can associate isomorphisms, called conjugation
isomorphisms,

C(ψ) : HF∗(H, J) → HF∗(ψ∗H,ψ∗J),

where (H, J) is regular Floer data. The isomorphisms C(ψ) are defined on the generators by

γ �→ ψ∗γ = ψ−1 ◦ γ.
They are isomorphisms already on the chain level, and already on the chain level, they commute
with the continuation maps.

Proposition 5.1. Let (M,λ) be the completion of a Liouville domain (W,λ), let ψ ∈
Symp∗(M,λ), and let ϕ : ∂W → ∂W be the ideal restriction of ψ. Then, the conjugation
isomorphisms with respect to ψ give rise to isomorphisms (called the same)

C(ψ) : SHΩ
∗ (W ) → SH

ϕ−1(Ω)
∗ (W ),

for every open subset Ω ⊂ ∂W .

Proof. Let h ∈ HΩ(∂W ), let f ∈ Π(h), and let (H, J) be Floer data for W and for the con-
tact Hamiltonian h+ f . The Floer data (ψ∗H,ψ∗J) corresponds to the contact Hamiltonian
g · (h+ f) ◦ ϕ, where g : ∂W → R+ is a certain positive smooth function. Moreover, g · h ◦ ϕ ∈
Hϕ−1(Ω)(W ) and g · f ◦ ϕ ∈ Π(g · h ◦ ϕ). Since the conjugation isomorphisms commute with the
continuation maps and since the relations above hold, the conjugation isomorphisms give rise to
an isomorphism

C(ψ) : SHΩ
∗ (W ) → SH

ϕ−1(Ω)
∗ (W ).

�
Now, the proof of Theorem 1.7 from the introduction follows directly.

Theorem 1.7. Let W be a Liouville domain, let ψ : Ŵ → Ŵ be a symplectomorphism that pre-
serves the Liouville form outside of a compact set, and let ϕ : ∂W → ∂W be the ideal restriction
of ψ. Let Ωa ⊂ Ωb ⊂ ∂W be open subsets. Then, the following diagram, consisting of conjugation
isomorphisms and continuation maps, commutes.

SHΩa∗ (W )
C(ψ)−−−−→ SH

ϕ−1(Ωa)
∗ (W )⏐⏐� ⏐⏐�

SHΩb∗ (W )
C(ψ)−−−−→ SH

ϕ−1(Ωb)∗ (W )

Proof. The proof follows directly from the commutativity of the conjugation isomorphisms and
the continuation maps on the level of HF∗(H, J). �

6. Selective symplectic homology for a Darboux chart

This section proves that sufficiently small open subsets on the boundary of a Liouville domain
have finite-dimensional selective symplectic homology. Let a1, . . . , an, b ∈ R+. The contact poly-
disc P = P (a1, . . . , an, b) is a subset of the standard contact R2n+1 (endowed with the contact
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form dz +
∑n

j=1(xjdyj − yjdxj)) that is given by

P := {(x, y, z) ∈ Rn×Rn×R | z2 � b2 and (∀j ∈ {1, . . . , n}) x2
j + y2

j � a2
j}.

Theorem 6.1. LetW be a Liouville domain and let P ⊂ ∂W be a contact polydisc in a Darboux
chart. Then, the continuation map

SH∅
∗ (W ) → SH intP

∗ (W )

is an isomorphism.

The next lemma is used in the proof of Theorem 6.1.

Lemma 6.2. Let α := dz +
∑n

j=1(xjdyj − yjdxj) be the standard contact form on R2n+1. Denote

by (rj , θj) polar coordinates in the (xj , yj)-plane, j = 1, . . . , n. Let h : R2n+1 → [0,+∞) be a
contact Hamiltonian of the form

h(r, θ, z) := ε+ g(z) ·
n∏
j=1

fj(rj),

where ε ∈ R+, g : R → [0,+∞) is a smooth function, and fj : [0,+∞) → [0,+∞) is a (not neces-
sarily strictly) decreasing smooth function, j = 1, . . . , n. Then, the z-coordinate strictly decreases
along the trajectories of the contact Hamiltonian h (with respect to the contact form α).

Proof. Let Y h be the vector field of the contact Hamiltonian h, i.e. the vector field that satisfies
α(Y h) = −h and dα(Y h, ·) = dh− dh(∂z) · α. Then,

dz(Y h) = −ε+ g(z) ·
(
−

n∏
k=1

fk(rk) +
1
2
·
n∑
j=1

(
rj · f ′j(rj) ·

∏
k 	=j

fk(rk)
))

.

In particular, dz(Y h(p)) � −ε for all p ∈ R2n+1. Let γ : I → R2n+1 be a trajectory of the contact
Hamiltonian h. Then,

d

dt
(z(γ(t))) = dz(Y h(γ(t))) � −ε.

Consequently, the function t �→ z(γ(t)) is strictly decreasing. �
Proof of Theorem 6.1. By assumptions, there exists a Darboux chart ψ : O → R2n+1, O ⊂ ∂W ,
such that ψ(P ) = P (a1, . . . , an, b) for some a1, . . . , an, b ∈ R+. Since P (a1, . . . , an, b) is compact
and ψ(O) open, there exist b′, a′1, . . . , a′n ∈ R+ such that

P (a1, . . . , an, b) ⊂ intP (a′1, . . . , a
′
n, b
′) ⊂ ψ(O).

In particular, b < b′. Denote ε1 := b′ − b
Let h ∈ HintP (∂W ) be such that

h ◦ ψ−1(r, θ, z) = g(z) ·
n∏
j=1

fj(rj) (6.1)

for some smooth function g : R → [0,+∞) and some smooth decreasing functions fj : [0,+∞) →
[0,+∞), j = 1, . . . , n such that supp g ⊂ (0, b) and supp fj ⊂ (0, aj). Let ε0 ∈ R+ be such that
there are no closed Reeb orbits on ∂W of period less than or equal to ε0.

Now, we show that the contact Hamiltonian h+ ε has no 1-periodic orbits if 0 < ε <
min{ε0, ε1}. This implies ε ∈ O(h) if 0 < ε < min{ε0, ε1}. Let γ : R → ∂W be a trajectory of
the contact Hamiltonian h+ ε. If γ does not intersect P , then γ is also a trajectory of the
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reparametrized Reeb flow t �→ ϕ−ε·t. Since ε < ε0, this implies that γ is not 1-periodic. Assume,
now, that γ does intersect P . If γ is entirely contained in O, then Lemma 6.2 implies that
γ is not 1-periodic. If γ is not entirely contained in O, then (by Lemma 6.2) γ intersects
ψ−1(R2n×[b, b′]). On ψ−1(R2n×[b, b′]), the contact Hamiltonian h+ ε is equal to ε and γ(t) is
equal to ψ−1(x, y, z − εt) for some (x, y, z) ∈ R2n+1. In particular, γ ‘spends’ at least (b′ − b)/ε
time passing through ψ−1(R2n×[b, b′]). Since

b′ − b

ε
>
b′ − b

ε1
= 1,

γ cannot be 1-periodic.
The same argument shows that the contact Hamiltonian hs := s · h+ ε has no 1-periodic

orbits for all s ∈ [0, 1]. In addition, ∂shs � 0. Therefore, the continuation map

HF∗(ε) = HF∗(h0) → HF∗(h1) = HF∗(h+ ε)

is an isomorphism [UZ22, Theorem 1.3]. Since for every h̃ ∈ HintP (∂W ) there exists h ∈
HintP (∂W ) of the form (6.1) such that h̃ � h, the theorem follows. �

7. Immaterial transverse circles and selective symplectic homology of their
complements

This section provides non-trivial examples where the selective symplectic homology is ‘large’.
We start by defining immaterial subsets of contact manifolds.

Definition 7.1. A subset A of a contact manifold Σ is called immaterial if there exists a
contractible loop ϕt : Σ → Σ of contactomorphisms such that its contact Hamiltonian ht : Σ → R
(with respect to some contact form on Σ) is positive on A, i.e. such that it satisfies

(∀x ∈ A)(∀t ∈ R) ht(x) > 0.

If a compact subset A of a contact manifold Σ is immaterial, then there exists a contractible
loop of contactomorphisms on Σ whose contact Hamiltonian is arbitrarily large on A. In fact,
this property of a compact subset A is equivalent to A being immaterial.

Lemma 7.2. A compact subset A of a contact manifold Σ is immaterial if, and only if, for
every a ∈ R+ there exists a contractible loop of contactomorphisms on Σ such that its contact
Hamiltonian ht : Σ → R satisfies

(∀x ∈ A)(∀t ∈ R) ht(x) � a.

Proof. Let a ∈ R+ be an arbitrarily large positive number and let A be a compact imma-
terial subset of a contact manifold Σ. Then, there exists a contractible loop ϕ : Σ → Σ of
contactomorphisms such that its contact Hamiltonian ht : Σ → R satisfies

(∀x ∈ A)(∀t ∈ R) ht(x) > 0.

Denote m := minx∈A,t∈R ht(x) > 0. Let k ∈ N be such that k ·m > a. Denote by hkt : Σ → R the
contact Hamiltonian defined by hkt (x) := k · hkt(x). The contact Hamiltonian hk furnishes a loop
of contactomorphisms that is obtained by concatenating ϕ to itself k times. In particular, hk

generates a contractible loop of contactomorphisms. By construction

(∀x ∈ A)(∀t ∈ R) hkt (x) � k ·m > a.

This proves one direction of the lemma. The other direction is obvious. �
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The next lemma implies that a singleton (i.e. a set consisting of a single point) is immaterial
in every contact manifold of dimension greater than 3. By continuity, every point in a contact
manifold of dimension greater than 3 has an immaterial neighbourhood.

Lemma 7.3. Let Σ be a contact manifold of dimension 2n+ 1 > 3. Then, there exists a con-
tractible loop ϕt : Σ → Σ of contactomorphisms such that its contact Hamiltonian is positive at
some point (for all times t).

Proof. Let S2n+1 be the standard contact sphere seen as the unit sphere in Cn+1 centered at the
origin. The unitary matrices act on S2n+1 as contactomorphisms. Let ψt : S2n+1 → S2n+1 be the
contact circle action given by

ψt(z) := (z1, . . . , zn−1, e
2πitzn, e

−2πitzn+1).

The loop

t �→
[
e2πit 0

0 e−2πit

]

is contractible in the unitary group U(2). Hence, there exists a smooth s-family As, s ∈ [0, 1], of
loops in U(2) such that

A1(t) =
[
e2πit 0

0 e−2πit

]

and such that A0(t) =
[

1 0
0 1

]
for all t. Denote ψst (z) :=

[ 1n−1

As(t)

]
z. For all s ∈ [0, 1], ψs is

a loop of contactomorphisms of S2n+1 and ψ0
t = id, ψ1

t = ψt. Therefore, ψt is a contractible
loop of contactomorphisms. Denote by hst : S2n+1 → R the contact Hamiltonian of ψst and
h := h1. Explicitly, h(z1, . . . , zn+1) = 2π · (|zn+1|2 − |zn|2). In particular, h is positive at the point
(0, . . . , 0, 1). Denote V (r) := {z ∈ S2n+1 | |z1| > 1 − r} and let ε ∈ (0, 1). Let μ : S2n+1 → [0, 1] be
a smooth cut-off function such that μ(x) = 0 for x in a neighbourhood of p := (1, 0, . . . , 0) and
such that μ(x) = 1 for x ∈ S2n+1 \ V (ε/2). Let fst (x) := μ(x) · hst (x). By the construction of μ and
since V (r) is invariant under ψst for all r, s, and t, the contactomorphism ϕf

s

1 is compactly sup-
ported in V (ε) for all s. Let gst : S2n+1 → R, s ∈ [0, 1] be the contact Hamiltonian that generates
t �→ ϕf

t·s
1 , i.e. ϕg

s

t = ϕf
t·s

1 . Denote g := g1.
The map ϕf

1

t ◦ (ϕgt )
−1 is a loop of contactomorphisms. Its contact Hamiltonian et : S2n+1 →

R is equal to 0 in a neighbourhood of p and coincides with f1 in S2n+1 \ V (ε). Consequently (since
f1 and h coincide in S2n+1 \ V (ε)), the contact Hamiltonians e and h coincide in S2n+1 \ V (ε).
This implies that ϕf

1

t ◦ (ϕgt )
−1 is a loop of contactomorphisms of S2n+1 that are compactly

supported in the complement of a neighbourhood of p. In addition, this implies that there exists
q ∈ S2n+1 \ V (ε) such that et(q) = h(q) > 0 for all t. The loop ϕet = ϕf

1

t ◦ (ϕgt )
−1 is contractible

via the homotopy {ϕfs

t ◦ (ϕg
s

t )−1}s∈[0,1] that is also compactly supported in the complement of a
neighbourhood of p. Since S2n+1 \ {p} is contactomorphic to the standard R2n+1 and since every
contact manifold has a contact Darboux chart around each of its points, the lemma follows. �

The following theorem implies that the complement of an immaterial circle has infinite-
dimensional selective symplectic homology under some additional assumptions.

Theorem 7.4. Let W be a Liouville domain and let Γ ⊂ ∂W be an immaterial embedded
circle that is transverse to the contact distribution. Denote Ω := ∂W \ Γ. Then, the rank of the
continuation map SHΩ∗ (W ) → SH∗(W ) is equal to dimSH∗(W ).

2474

https://doi.org/10.1112/S0010437X23007480 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007480


Selective symplectic homology with applications to contact non-squeezing

Proof. This proof assumes results of § 9. For an admissible contact Hamiltonian ht : ∂W → R,
denote by r(h) = r(W,h) the rank of the canonical mapHF∗(h) → SH∗(W ). It is enough to prove
that for every admissible � ∈ R there exists h ∈ HΩ(∂W ) and ε ∈ O(h) such that r(�) � r(h+ ε).
Denote by α the contact form on ∂W (the restriction of the Liouville form). Without loss
of generality (see Theorem 2.5.15 and Example 2.5.16 in [Gei08]), we may assume that there
exists an open neighbourhood U ⊂ ∂W of Γ and an embedding ψ : U → Cn × S1 such that
ψ(Γ) = {0} × S1 and such that

α = ψ∗
(
dθ +

i

2

n∑
j=1

(zj dzj − zj dzj)
)
.

Here, z = (z1, . . . , zn) ∈ Cn and θ ∈ S1. Let � ∈ R be an arbitrary admissible (constant) slope.
Since Γ is immaterial, there exists a contractible loop of contactomorphisms ϕft : ∂W → ∂W
(which we see as a 1-periodic R-family of contactomorphisms) such that its contact Hamiltonian
ft : ∂W → R satisfies minx∈Γ,t∈R ft(x) � 2�. Denote m := minx∈∂W,t∈R ft(x). Let h ∈ HΩ(∂W )
be a strict contact Hamiltonian (i.e. its flow preserves the contact form α ) such that h(x) � �−m
for x in the set {x ∈ ∂W | mint∈R ft(x) � �}. The contact Hamiltonian h can be constructed as
follows. Since the function x �→ mint∈R ft(x) is continuous, the set S := {x ∈ ∂W | mint∈R ft(x) �
�} is closed. Therefore, there exists a ball B(r) ⊂ Cn centered at the origin with sufficiently small
radius r such that B(r) × S1 ⊂ ψ(∂W \ S). Now, we choose h to be equal to a constant greater
than �−m on ∂W \ ψ−1(B(r) × S1) and such that h ◦ ψ−1(z, θ) = h(z2

1 + · · · + z2
n) for |z| < r

and for some smooth function h : [0,+∞) → [0,+∞) that is equal to 0 near 0. Generically, h
has no non-constant 1-periodic orbits.

Let ε ∈ R+ be a sufficiently small positive number such that ε ∈ O(h) and denote hε := h+ ε.
Let g := hε#f be the contact Hamiltonian that generates the contact isotopy ϕh

ε

t ◦ ϕft , i.e.

gt(x) := hε(x) + ft ◦ (ϕh
ε

t )−1(x).

(In the last formula, we used that hε is a strict contact Hamiltonian.) If hε(x) < �−m, then
(since hε is autonomous and strict) hε ◦ (ϕh

ε

t )−1(x) < �−m for all t. Consequently (by the choice
of h), mins∈R fs ◦ (ϕh

ε

t )−1(x) > �. This implies gt(x) � � for all x ∈ ∂W and t ∈ R.
Since ϕf is a contractible loop of contactomorphisms, there exists a smooth homotopy σ

from the constant loop t �→ id to ϕf . By § 9, there exist isomorphisms B(ϕf , σ) : HF∗(hε) →
HF∗(hε#f) and B(ϕf , σ) : SH∗(W ) → SH∗(W ) such that the following diagram , whose vertical
arrows represent the continuation maps, commutes.

SH∗(W )
B(ϕf ,σ)−−−−−→ SH∗(W )�⏐⏐ �⏐⏐

HF∗(hε)
B(ϕf ,σ)−−−−−→ HF∗(hε#f)

Consequently, r(hε) = r(hε#f) = r(g). Since g � �, we have r(g) � r(�). This further implies
r(h+ ε) = r(hε) � r(�) and the proof is finished. �

8. Applications to contact non-squeezing

We start with a proof of Theorem 1.8 from the introduction.

2475

https://doi.org/10.1112/S0010437X23007480 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007480


I. Uljarević

Theorem 1.8. Let W be a Liouville domain and let Ωa,Ωb ⊂ ∂W be open subsets. If the
rank of the continuation map SHΩb∗ (W ) → SH∗(W ) is (strictly) greater than the rank of the
continuation map SHΩa∗ (W ) → SH∗(W ), then Ωb cannot be contactly squeezed into Ωa.

Proof. Denote by r(Ω) ∈ N ∪ {0,∞} the rank of the continuation map SHΩ∗ (W ) → SH∗(W ).
Assume the contrary, i.e. that there exist open subsets Ωa,Ωb ⊂ ∂W with r(Ωa) < r(Ωb) and
a contact isotopy ϕt : ∂W → ∂W , t ∈ [0, 1] such that ϕ0 = id and such that ϕ1(Ωb) ⊂ Ωa. By
§ 1.5 (and § 5), r(ϕ1(Ωb)) = r(Ωb). Since ϕ1(Ωb) ⊂ Ωa, the continuation map SH

ϕ1(Ωb)∗ (W ) →
SH∗(W ) factors through the continuation map SHΩa∗ (W ) → SH∗(W ). Hence, r(Ωb) =
r(ϕ1(Ωb)) � r(Ωa). This contradicts the assumption r(Ωa) < r(Ωb). �
Theorem 1.4. Let n > 2 be a natural number and let W be a 2n-dimensional Liouville domain
such that dimSH∗(W ) >

∑2n
j=0 dimHj(W ; Z2) and such that ∂W is a homotopy sphere. Then,

there exist two embedded closed balls B1, B2 ⊂ ∂W of dimension 2n− 1 such that B1 cannot be
contactly squeezed into B2.

Proof. Denote Σ := ∂W , and denote by r(Ω) ∈ N ∪ {0,∞} the rank of the continuation map
SHΩ∗ (W ) → SH∗(W ) for an open subset Ω ⊂ Σ.

Step 1: a subset with a small rank. Since SH∅∗ (W ) is isomorphic to H∗(W,∂W ; Z2),
Theorem 6.1 implies that there exists a non-empty open subset Ω ⊂ Σ such that r(Ω) �∑2n

j=1Hj(W,∂W ; Z2) =
∑2n

j=0Hj(W ; Z2).

Step 2: a subset with a large rank. This step proves that for every c ∈ R with c � dimSH∗(W ),
there exists an open non-dense subset U ⊂ Σ such that r(U) � c. Assume the contrary, i.e.
that there exists c ∈ R such that r(U) < c for every open non-dense subset U ⊂ Σ. By Lemma 7.3,
there exists a sufficiently small contact Darboux chart on Σ that is immaterial. Let Γ be an
embedded circle in that chart that is transverse to the contact distribution. Then, Γ is immate-
rial as well. Consequently (by Theorem 7.4), the continuation map Φ : SHΣ\Γ

∗ (W ) → SH∗(W )
has rank equal to dimSH∗(W ), i.e. r(Σ \ Γ) = dimSH∗(W ). Hence, there exist a1, . . . , ak ∈
SH

Σ\Γ
∗ (W ), with k � c, such that Φ(a1), . . . ,Φ(ak) are linearly independent. Let U1, U2, . . .

be an increasing family of open non-dense subsets of Σ such that
⋃∞
j=1 Uj = Σ \ Γ. Since, by

Theorem 4.1, continuation maps furnish an isomorphism

lim−→
j

SH
Uj∗ (W ) → SH

Σ\Γ
∗ (W ),

there exist m ∈ N and b1, . . . , bk ∈ SHUm∗ (W ) such that b1, . . . , bk are mapped to a1, . . . , ak

via the continuation map SHUm∗ (W ) → SH
Σ\Γ
∗ (W ). The images of b1, . . . , bk under the con-

tinuation map SHUm∗ (W ) → SH∗(W ) are equal to Φ(a1), . . . ,Φ(ak) and, therefore, are linearly
independent. Hence, r(Um) � k � c. This contradicts the assumption and finishes step 2.

Step 3: the final details. This step finishes the proof. Let Ω, U ⊂ Σ be open non-empty subsets
such that U is non-dense, and such that r(Ω) < r(U). Steps 1 and 2 prove the existence of such
sets Ω and U . Let a ∈ Ω and b ∈ Σ \ {a} \ U be two points. Since Σ is a homotopy sphere, there
exists a Morse function f : Σ → R that attains its minimum at a and its maximum at b and that
has no other critical points. The existence of such a function f is guaranteed by the results of
Smale [Sma56, Sma62b, Sma62a] and Cerf [Cer68] (see also [Sae06, Proposition 2.2]). The Morse
theory implies that Σt := f−1((−∞, t]) is the standard (2n− 1)-dimensional closed ball smoothly
embedded into Σ for all t ∈ (f(a), f(b)) (see, for instance, [BH04]). For s ∈ (f(a), f(b)) suffi-
ciently close to f(a), Σs ⊂ Ω. Similarly, for � ∈ (f(a), f(b)) sufficiently close to f(b), int Σ� ⊃ U .
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Since r(Ω) < r(U), by Theorem 1.8, U cannot be contactly squeezed into Ω. Hence, Σ� cannot be
contactly squeezed into Σs and the proof is finished (one can take B2 := Σs and B1 := Σ�). �

Now, we prove the contact non-squeezing for the Ustilovsky spheres.

Theorem 1.2. Let Σ be an Ustilovsky sphere. Then, there exist two embedded closed balls
B1, B2 ⊂ Σ of dimension equal to dim Σ such that B1 cannot be contactly squeezed into B2.

Proof. In the view of Theorem 1.4, it is enough to show that the symplectic homology of the
Brieskorn variety

W := {z = (z0, . . . , z2m+1) ∈ C2m+2 | zp0 + z2
1 + · · · + z2

2m+1 = ε and |z| � 1}
is infinite-dimensional. Here, m, p ∈ N are natural numbers with p ≡ ±1 (mod 8) and ε ∈ R+

is sufficiently small. The Brieskorn variety W is a Liouville domain whose boundary is contac-
tomorphic to an Ustilovsky sphere, and every Ustilovsky sphere is contactomorphic to ∂W for
some choice of m and p.

Let Σk be the sequence of manifolds such that Σk = ∂W if p | k (we use this notation for ‘k
is divisible by p’) and such that

Σk := {z = (z1, . . . , z2m+1) ∈ C2m+1 | z2
1 + · · · z2

2m+1 = 0 and |z| = 1}
if p � k. Denote

sk :=
k

p
· ((4m− 2) · p+ 4) − 2m

if p | k, and

sk := (4m− 2) · k + 2 ·
⌊

2k
p

⌋
− 2m+ 2

otherwise. Theorem B.11 from [KvK16] implies that there exists a spectral sequence Erk,� that
converges to SH∗(W ) such that its first page is given by

E1
k,� =

⎧⎪⎨
⎪⎩
Hk+�−sk

(Σk; Z2) if k > 0,
H�+2m+1(W,∂W ; Z2) if k = 0,
0 if k < 0.

The terms of E1 can be explicitly computed. If p � k, then Σk is diffeomorphic to the unit
cotangent bundle S∗S2m of the sphere. Otherwise, Σk is diffeomorphic to S4m+1, because p ≡ ±1
(mod 8) (see [Bri66]). Therefore,

Hj(Σk; Z2) ∼=
{

Z2 if j ∈ {0, 2m− 1, 2m, 4m− 1},
0 otherwise,

if p � k, and

Hj(Σk; Z2) ∼=
{

Z2 if j ∈ {0, 4m+ 1},
0 otherwise,

if p | k. The Brieskorn variety W is homotopy equivalent to the bouquet of p− 1 spheres of
dimension 2m+ 1 (see [Mil68, Theorem 6.5]). Therefore,

Hj(W,∂W ; Z2) ∼=
⎧⎨
⎩

Z2 if j = 4m+ 2,
Zp−1

2 if j = 2m+ 1,
0 otherwise.
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Figure 1. The first page of the spectral sequence from the proof of Theorem 1.2 for p = 7 and
m = 1. The number in the field (k, �) represents dimE1

k,�. Empty fields are assumed to contain
zeros.

Figure 1 shows the page E1
k,� for p = 7 and m = 1. For k ∈ N ∪ {0}, denote by Q(k) the unique

number in Z such that E1
k,Q(k) = 0 and such that E1

k,� = 0 for all � > Q(k). Similarly, for k ∈
N ∪ {0}, denote by q(k) the unique number in Z such that E1

k,q(k) = 0 and such that E1
k,� = 0 for

all � < q(k). Explicitly,

Q(k) =

⎧⎨
⎩

2m+ 1 if k = 0,
4m− 1 + sk − k if p � k,
4m+ 1 + sk − k if p | k,

q(k) =
{

0 if k = 0,
sk − k for k ∈ N.

We will show that the element in E1
ap−1,Q(ap−1) ‘survives’ in SH∗(W ) for a ∈ N. (In figure 1, the

fields (ap− 1, Q(ap− 1)), a = 1, 2 are emphasized by thicker edges.) Both sequences Q(k) and
q(k) are strictly increasing in k. Since Q(k) is strictly increasing, the element in E1

ap−1,Q(ap−1)
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cannot be ‘killed’ by an element from E1
k,� if k � ap− 1. Since

q(ap+ 1) −Q(ap− 1) = 4m− 3 � 1,

the element in E1
ap−1,Q(ap−1) cannot be ‘killed’ by an element from E1

k,� if k � ap+ 1. Finally,
since Q(ap− 1) − q(ap) = 2, the non-zero groups E1

ap,� are those for � = Q(ap− 1) − 2 and � =
Q(ap− 1) + 4m− 1. In particular, E1

ap,Q(ap−1) = 0. Therefore, E∞ap−1,Q(ap−1) = 0 for all a ∈ N.
This implies dimSH∗(W ) = ∞ and the proof is finished. �

Finally, we prove Corollary 1.3.

Corollary 1.3. Let m ∈ N. Then, there exist a contact structure ξ on R4m+1 and an embedded
closed ball B ⊂ R4m+1 of dimension 4m+ 1 such that B cannot be contactly squeezed into an
arbitrary non-empty open subset by a compactly supported contact isotopy of (R4m+1, ξ).

Proof. Let S be a (4m+ 1)-dimensional Ustilovsky sphere and let B1, B2 ⊂ S be two embedded
closed balls such that B1 ∪B2 = S and such that B2 cannot be contactly squeezed into B1. Let
p ∈ S \ (B1 ∪B2). The Ustilovsky sphere S is diffeomorphic to the standard sphere. Hence, there
exists a diffeomorphism ψ : R4m+1 → S \ {p}. Let ξ be the pull back of the contact structure on S
via ψ. Now, we prove that ξ and B := ψ−1(B2) satisfy the conditions of the corollary. Assume the
contrary. Then, there exists a compactly supported contact isotopy ϕt : R4m+1 → R4m+1 such
that ϕ0 = id and such that ϕ1(B) ⊂ int(ψ−1(B1)). Since ϕ is a compactly supported isotopy,
ψ ◦ ϕt ◦ ψ−1 extends to a contact isotopy on S. This contact isotopy squeezes B2 into B1. This
is a contradiction that finishes the proof. �

9. Isomorphisms furnished by paths of admissible contact Hamiltonians

In this section, we construct an isomorphism

B({ha}) : HF∗(h0) → HF∗(h1)

associated with a smooth family hat : ∂W → R, a ∈ [0, 1] of admissible contact Hamiltonians on
the boundary of a Liouville domain W . As a particular instance of this construction, we associate
an isomorphism

B(ϕf , σ) : HF∗(h) → HF∗(h#f)

with a contractible loop ϕft : ∂W → ∂W of contactomorphisms and a homotopy σ from the
constant loop t �→ id to ϕf .

Denote by S the set of admissible contact Hamiltonians ht : ∂W → R on the boundary ∂W
of a Liouville domain W . The set S is open in the space of the smooth functions ∂W × S1 → R
with respect to the C2 topology. Let ‖·‖C2 be a norm inducing the C2-topology. Denote by F the
family of open balls BR(η) with respect to ‖·‖C2 that satisfy B9R(η) ⊂ S. For O = BR(η) ∈ F ,
denote Õ := B3R(η).

Definition 9.1. Let ha, a ∈ [0, 1] be a smooth family of admissible contact Hamiltonians on
the boundary of a Liouville domain. The isomorphism

B({ha}) : HF∗(h0) → HF∗(h1)

is defined in the following way.

1. Choose finitely many sets O1, . . . ,Om ∈ F such that ha ∈ ⋃m
j=1 Oj for all a ∈ [0, 1].

2. Choose 0 = a0 < a1 < · · · < ak = 1 such that for each j = 0, . . . , k − 1 there exists �j ∈
{1, . . .m} such that ha ∈ O�j for all a ∈ [aj , aj+1].
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3. Choose g0, . . . gk−1 ∈ S such that gj ∈ Õ�j and gj � haj , haj+1 for j = 0, . . . , k − 1.
4. Denote by

Φj : HF∗(gj) → HF∗(haj )

Ψj : HF∗(gj) → HF∗(haj+1)

the continuation maps (they are isomorphisms because the contact Hamiltonians (1 − s) · gj +
s · haj and (1 − s) · gj + s · haj+1 are admissible and increasing with respect to the s-variable,
see [UZ22, Theorem 1.3]), j = 0, . . . , k − 1.

5. Define

B(h) := Ψk−1 ◦ (Φk−1)−1 ◦ · · · ◦ Ψ1 ◦ (Φ1)−1 ◦ Ψ0 ◦ (Φ0)−1.

The isomorphism B({ha}) does not depend on the additional choices. Moreover, if {ha} and
{fa}, a ∈ [0, 1] are two smooth families of admissible contact Hamiltonians such that ha � fa

for all a ∈ [0, 1], then the following diagram commutes.

HF∗(h0)
B({ha})−−−−−→ HF∗(h1)⏐⏐� ⏐⏐�

HF∗(f0)
B({fa})−−−−−→ HF∗(f1)

In the diagram, the vertical arrows represent the continuation maps. Now, we associate an
isomorphism B(ϕf , σ) : HF∗(h) → HF∗(h#f) with a contractible (smooth) loop ϕft : ∂W → ∂W
of contactomorphisms and a smooth homotopy σat : ∂W → ∂W from the constant loop based at
the identity to ϕf . We see the homotopy σat as a smooth R×[0, 1]-family of contactomorphisms
that is 1-periodic in the t ∈ R variable and such that the following hold:

1. σ0
t = id for all t ∈ R;

2. σa0 = σa1 = id for all a ∈ [0, 1];
3. σ1

t = ϕft for all t ∈ R.

For every admissible contact Hamiltonian h ∈ S, the homotopy σ furnishes a smooth fam-
ily ηa := h#fa of admissible contact Hamiltonians. Here, fa denotes the contact Hamiltonian
of the contact isotopy t �→ σat . Define B(ϕf , σ) := B({ηa}). Now we show that σ also induces
an isomorphism SH∗(W ) → SH∗(W ) that behaves well with respect to the canonical maps
HF∗(h) → SH∗(W ). For a contact Hamiltonian h, denote osc(h) := maxx,t ht(x) − minx,t ht(x)
and denote by κht the smooth function determined by (ϕht )

∗α = κht · α, where α is the contact
form. If h, g are admissible contact Hamiltonians such that

g − h � max
a∈[0,1]

osc(fa · κh),

then g#fa � h#fa for all a ∈ [0, 1]. Consequently, the following diagram commutes.

HF∗(h)
B(ϕf ,σ)−−−−−→ HF∗(h#f)⏐⏐� ⏐⏐�

HF∗(g)
B(ϕf ,σ)−−−−−→ HF∗(g#f)

In the diagram, the vertical arrows represent the continuation maps. Hence, there exists an
isomorphism B(ϕf , σ) : SH∗(W ) → SH∗(W ) such that the following diagram, whose vertical
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arrows are canonical morphisms, commutes for every admissible contact Hamiltonian h.

SH∗(W )
B(ϕf ,σ)−−−−−→ SH∗(W )�⏐⏐ �⏐⏐

HF∗(h)
B(ϕf ,σ)−−−−−→ HF∗(h#f)
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