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PRESENTING CYCLOTOMIC ¢-SCHUR ALGEBRAS

KENTARO WADA

Abstract. We give a presentation of cyclotomic g-Schur algebras by generators
and defining relations. As an application, we give an algorithm for computing
decomposition numbers of cyclotomic g-Schur algebras.
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§0. Introduction

Let 7, , be the Ariki-Koike algebra associated to a complex reflection
group &,, X (Z/rZ)"™ introduced by Ariki and Koike in [AK]. The cyclotomic
g-Schur algebra .7}, , associated to J¢, ., introduced in [DJM], is defined as
the endomorphism algebra of a certain %, ,-module. The main aim of this
article is to give a presentation of cyclotomic g-Schur algebras by generators
and defining relations.

Received October 6, 2009. Revised February 14, 2010. Accepted March 6, 2010.

2000 Mathematics Subject Classification. Primary 17B37; Secondary 20C08, 20G42.

This research was supported by a Japan Society for the Promotion of Science Research
Fellowship for Young Scientists.

© 2011 by The Editorial Board of the Nagoya Mathematical Journal

https://doi.org/10.1215/00277630-2010-017 Published online by Cambridge University Press


http://dx.doi.org/10.1215/00277630-2010-017
http://www.ams.org/msc/
https://doi.org/10.1215/00277630-2010-017

46 K. WADA

In the case where r =1, J7, 1 is the Iwahori-Hecke algebra of the symmet-
ric group &, and %}, 1 is the g-Schur algebra of type A. In this case, /), 1
can be realized as a quotient algebra of the quantum group U, = U,(gl,,)
via the Schur-Weyl duality between /7, 1 and U, given in [J]. We note that
the Schur-Weyl duality holds not only over Q(q) but also over Z[q, ¢~ !] (see
[Du]). By using the surjection from U, to %, 1, Doty and Giaquinto [DG]
gave a presentation of .#, 1 by generators and defining relations. They also
gave a presentation of .}, ;1 which is compatible with Lusztig’s modified
form of U,. After that, Doty [Do] realized the generalized g-Schur algebra
(in the sense of Donkin) as a quotient algebra of a quantum group (also
Lusztig’s modified form) associated to any Cartan matrix of finite type.

In the case where r > 1, a Schur-Weyl duality between .77, , and U,(g)
over K =Q(q,7,...,7 ) was obtained by Sakamoto and Shoji [SakS], where
g=gl,, ® - ®gl,, isa Levi subalgebra of a parabolic subalgebra of gl,,.
However, this Schur-Weyl duality does not hold over Z[q, ¢~ !, v1,...,7]. In
fact, Sakamoto-Shoji’s Schur-Weyl duality should be understood as a Schur-
Weyl duality between the modified Ariki-Koike algebra f%’jlor, introduced
n [S1], and Uy(g), rather than the duality between J,, and Uy(g). The
image of U,(g) in the Schur—Weyl duality is isomorphic to the modified
cyclotomic ¢-Schur algebra 7" o associated to s, introduced in [Saws$].

%”0 and ym,
satlsfylng certain conditions. In particular, we have J7,, = ,%”0 over K

though Ym, ¥ S (Note that 4, , % A, mﬂ over R in general.) Some

relations between .7, , and 7 n Were studied in [SawS] and [Saw]. They

are defined over any integral domain R with parameters

: —0
showed that 7. n,r burns out to be a subquotient algebra of ., ;, and .7, | =
D winn Fn1 @ @Sy, 1, where each component .7, 1 is a ¢-Schur

algebra of type A which is a quotient algebra of the corresponding Levi
component Uy(gl,,, ) of Uy(gl,,).

In [SW], we have generalized the results in [SawS] and [Saw] as follows. Let
p=(ri,...,rg) € Z2, be such that ry +- - - +ry = r. We define a subquotient
algebra ?p of ./, » with respect to p by using a cellular basis of .7}, , given

n [DJM]. Then we have Y =D ong T @0 @ Sy, The
ni+--+tng=n
case of p=(1,...,1) is the one discussed in [Saw$|, and ?ffl (the case of

p = (1)) is just .}, ». These structures suggest to us that ?E,r is a quotient
algebra of a certain algebra U,(gP) with respect to the Levi subalgebra
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gP = g[mlerJmT1 DD g[mrl+~~+7‘g,1+1+'“+mr of gl,,,. In particular, .7, ,
should be a quotient algebra of a certain algebra ﬁq(g[m). (Note that ﬁq( gl,,)
(also (7q (gP)) is not a quantum group.) This is a motivation for this article.

On the other hand, in [DR2] Du and Rui defined (upper and lower) Borel
subalgebras YE? and YEQ of S, and they showed that .7, , = yn%? .
5”,?,9 Moreover, they showed that the Borel subalgebra 5’%@ (resp., Yngﬁ) )
is isomorphic to the Borel subalgebra Y;% (resp., yﬁ%) of a g-Schur algebra
“m,1 of type A with an appropriate rank. In fact, the Borel subalgebra 5”5%
(resp., 5”52) of /.1 is a quotient algebra of an upper (resp., lower) Borel
subalgebra of Ug(gl,,). These structures imply that .7, , is presented by
generators of Uy (gl,,,) with certain defining relations which are different from
the defining relations of U,(gl,,). A main idea here is to find presentations
of ./, by generators and relations.

This article is organized as follows. In Section 1, we introduce a certain
algebra ﬁq = ﬁq(g[m) associated to the Cartan data of gl,,. The quantum
group Uy,(gl,,) turns out to be a quotient algebra of ﬁq. We also prepare
several notions for representations of ﬁq similar to the case of quantum
groups, for example, weight modules, highest-weight modules, and Verma
modules. In Section 2, we define various finite-dimensional quotient algebras
S, of ﬁq which are constructions inspired by the generalized ¢-Schur algebras
defined in [Do]. In fact, both the ¢g-Schur algebra .7}, 1 of type A and the
cyclotomic g-Schur algebra .7, , are examples of these finite-dimensional
quotient algebras of ﬁq. We also give a method to study representations of
S, analogous to the theory of cellular algebras in [GL]. In some cases, S,
turns out to be a quasi-hereditary cellular algebra. In Section 3, we develop
an argument of specialization of S, to an arbitrary ring and parameters by
taking divided powers. We note that the arguments in Sections 1-3 can be
applied to any Cartan matrix of finite type (see Remarks 3.16(ii)).

After recalling some known results on ¢-Schur algebras and cyclotomic
g-Schur algebras in Sections 4 and 5, we define a surjective homomorphism
p from ﬁq to .7 in Section 6. By using the surjection p combined with
the results in Sections 1-3, we give two presentations of .7, , in Section 7
(see Theorem 7.16).

Finally, we give an algorithm to compute the decomposition numbers of
cyclotomic ¢g-Schur algebras in Section 8.

https://doi.org/10.1215/00277630-2010-017 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-2010-017

48 K. WADA

81. The algebra ﬁq

In this section, we introduce a new algebra (~fq = ﬁq(g[m) associated to
the Cartan data of gl,,. Then we study some representations of ffq. The
definition of ﬁq is motivated by some structures of the cyclotomic g-Schur
algebras .7, » given in [SW] and [DR2] (see the introduction). Then ﬁq will
be used to obtain a presentation of .7, , in Sections 6 and 7.

1.1.

Let P =@, Ze; be the weight lattice of gl,,, and let P¥ =", Zh;
be the dual-weight lattice with the natural pairing (, ): P x PY — Z such
that (€;,hj) =d;j. Set oy =¢; —egiqq for i=1,...,m —1; then I ={o; | 1 <
i <m — 1} is the set of simple roots, and Q = @;1—11 Zcy; is the root lattice
of gl,,. Put Q1 = EB?;I Z>oc;. We define a partial order > on P by A > p
ifA—pe@™.

1.2.

The quantum group U, = U,(gl,,) is the associative algebra over Q(q),

where ¢ is an indeterminate, with 1 generated by e;, f; (1 <i<m —1) and
K Zi (1 <4 <m) with the following defining relations (we denote K;" by K;

simply):
(1.2.1) KK;=K;K;, KK =K; K;=1,
(1.2.2) Kie; K, = ql%hie,
(1.2.3) KifjK; =g ‘hi g,

KK, —K K
(1.2.4) eifj = fiei =6y ——"————,

q-q

(1.2.5) eiﬂe? — (q+q*1)ei6ii1€¢ +e?eii1 =0,

eiej =eje; (|i—jl>2),
(1.2.6) firrf2—(q+a ) fifirfi+ 2 fim1 =0,
fifi=fifi (li—3l=2).

Let U[f (resp., U, ) be the subalgebra of U, generated by e; (resp., fi)
fori=1,...,m—1, and let Ug be the subalgebra of U, generated by KZjE
for i =1,...,m. It is well known that U, has the triangular decomposition

Us=U; ® Ug ® Uq+ as vector spaces.
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Let Uq20 (resp., Uqgo) be the subalgebra of U, generated by e; (resp., fi)
for 1<i<m-—1 and Kf for 1 <i<m. We call Uq20 (resp., U(;O) a Borel
subalgebra of U,. The following lemma is well known.

LEMMA 1.3. We have the following.

(i) U/ (resp., U, ) is isomorphic to the algebra defined by generators
ei (resp., fi) (1 <i<m—1) with a defining relation (1.2.5) (resp.,
(1.2.6)).

(i) UY is isomorphic to Q(q) [KT,..., KX

(iii) quo is isomorphic to the algebra defined by generators e; (1 <i <
m—1) and K (1 <i<m) with defining relations (1.2.1), (1.2.2),
and (1.2.5).

(iv) UqSO is isomorphic to the algebra defined by generators f; (1 <i<
m—1) and KX (1 <i<m) with defining relations (1.2.1), (1.2.3),

and (1.2.6).
1.4.
Put Z = Z[q,q~']. We define the Z-form of U, as follows. For any integer
k € Z, put
(o
q—q!

For any positive integer ¢ € Zo, put [¢t]! = [t][t — 1]---[1] and set [0]! = 1.
For any integer k and any positive integer ¢, put

K| k=1 k—t+1 [k
L} {11 k-

For k€eZ>pand t=1,...,m—1, put

e I
TR T TR

Fort€Z>p, c€Z,and i =1,...,m, put

Ki;c _ f[ Kiqcfs+1 _ Ki—quchsfl
t qs _ qfs :

s=1

Let zU, be the Z-subalgebra of U, generated by all egk),fi(k),Kii, and
[K;fo]. We also define the Z-subalgebra ZUqZO (resp., qufo) of U, generated

by all ef) (vesp., £*), K, and 53],
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1.5.
Let A= Z[y1,...,7] be the polynomial ring over Z with indeterminate
elements 71, ...,7,, where r is an arbitrary nonnegative integer (put A= 2

when r =0), and let K = Q(q,71,...,7%) be the quotient field of A. We
define the associative algebra ﬁq = ﬁq (gl,,) over KC with the unit element 1
by the following generators and defining relations.
Generators ¢;, f; (1<i<m—1), KX (1<i<m), 7 (1<i<m-—1).
Defining relations

(1.5.1) K,K;=K;K;, KK, =K; K;=1,
(1.5.2) KiejK; = gl®hie;

(1.5.3) Kifj K, =q ‘ol g,

(1.5.4) KK =1,

(1.5.5) eifj — fiei = 0i;Ti,

(1.5.6) eix1€; — (¢ +q "eieiziei + € eir =0,

eiej =ejei ([i—jl>2),
(1.5.7) fixrf7 = (q+q ) fifisr fi + f7 fix1 =0,
fifi=fifi (li—3jl>2).
Set dege; = «;, deg fi = —ay, degKijE =0, and deg7; = 0. Since all the

defining relations of (?q are homogeneous under this degree, (7,1 is a Q-graded
algebra, and U, has the following root space decomposition:

ﬁq = @(ﬁQ)m

a€eqQ

where (ﬁq)a ={ue ﬁq | KjuK; = ¢'®hiy for 1 <i <m}. For u € ﬁq, we

denote by deg(u) = a if u € (Uy)q-
The following proposition is clear from definitions.
PROPOSITION 1.6. Let I be the two-sided ideal of ﬁq generated by
B KK | — K Ki1
q—q!

Then we have the following isomorphism of algebras:

T fori=1,...,m—1.

ﬁq/I~g K ®q(g) Ug-
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REMARK 1.7. We note that the parameters vi,...,7, do not appear in
the definition of U,. However, we will use these parameters later when we
consider some representations of U, or some quotient algebras of Uj.

1.8.

Let (,7;“ (resp., ﬁq_ ) be the subalgebra of ﬁq generated by e; (resp., f;)
fori=1,...,m—1, and let (7,9 be the subalgebra of ﬁq generated by KZjE
for i =1,...,m. We also define a Borel subalgebra of U, as follows. Let UqZO
(resp., UCISO) be the subalgebra of U, generated by U; (resp., U, ) and U(?.
Lemma 1.3 and Proposition 1.6 imply the following corollary.

COROLLARY 1.9. The following isomorphisms of algebras exist:
Tt~ + r70 ~v 0
Uy =K g Ug s Ug =K ®q(q) Ug
7720 ~u >0 77<0 ~u <0
U =Koyl , Uy =K&qq U

Proof. We show only the isomorphism for the Borel subalgebra U qZO. The
other isomorphisms can be shown in a similar way. By Lemma 1.3, we
have a surjective homomorphism of algebras K ®q(q) Uq20 — UqZO. On the
other hand, by restricting the surjection ﬁq — K ®g(q) Uq in Proposition 1.6
to ﬁqu’ we have a surjection ﬁqzo — K ®q(q) quo_ Thus, we have ﬁqzo =
K @q(q) qu °. 0

1.10.

For n= (N1, ,Mm-1) such~that n; € (7;(78(7? with deg(n;) = 0, let O7
be the category consisting of U,-modules satisfying the following conditions
(a) and (b).

(a) Me O" has the weight-space decomposition

M= M,,

nePr

where M, = {v € M | K; -v =gy for 1 <i<m}.
(b) For M € O" and i=1,...,m — 1, it holds that (r; — ;) - M =0.
Let @gﬁ be the full subcategory of on satisfying the following additional
condition.
(c) For each ue [7,1, there exists an element = € ﬁq_ ﬁgﬁlj such that
(u—x)-M=0 for any M € O

tri-
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By this definition, in @gri the action of ﬁq has a triangular decomposition.
Finally, let O"7 be the full subcategory of O" satisfying the following
additional conditions.

(d) For any M € O", the dimension of M is finite.
(e) For any M € O", we have

M, =0 unless € P>,

where P>0 = @:n 1 Z>0€i

As is shown later, O" is a full subcategory of o Moreover, we will con-

tri- =
struct all simple objects of O" through some quotient algebras of U, (see

Theorem 2.20).

REMARKS 1.11. (i) If n; € (70 forall i =1,. — 1, we have O" = 011;71“1

(ii) Let I" be the two-sided ideal of Uq generated by (7 — ), and put
U77 U, /I . Then, we can regard a U -module as a U -module through
the natural surjection. Clearly, any Uq -module equipped with the weight-
space decomposmon is contained in O". On the other hand, a U -module
M contained in O" is regarded as a Uq module since we have I M =0 by
condition (b). Thus, the category O" coincides with the category consisting
of (7;7—modules which have weight-space decompositions.

(iii) When K = Q(q) and n; = (K; K,y — K; Ki+1)/(q— ¢ ') for any i =
1,...,m—1, O" coincides with the category of Uz-modules having weight-
space decompositions.

1.12.

Next, we introduce a notion of highest-weight modules. Let 1 be as in
Section 1.10. We say that a ﬁq—module M" () is a highest-weight module of
highest weight A € P associated to 7 if there exists an element vy € M"7()\)
satisfying the following conditions:

(1.12.1) w-vy=0 for anyueﬁq such that
m—1
deg(u Z d;a; with d; > 0 for some 1,
i=1

(1.12.2) K; - vy = ¢Mhidy, fori=1,...,m,
(1.12.3) U, vy = M"(N),
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(1.124) (1 —m) - M"(A\)=0 fori=1,...,m—1.

We call the above element vy a highest-weight vector of M"(\).

REMARKS 1.13. (i) Note that, since we take n; € ﬁq_ﬁgﬁj such that
deg(n;) =0, then (1.12.1), (1.12.2), and (1.12.4) imply that 7, - vy € K- vy.

(ii) Each highest-weight module M"(\) is contained in on.

(iii) If a highest-weight module M"(\) is contained in @fﬁ, we can replace
(1.12.1) with

(1.13.1) ei-vN=0 fori=1,...,m—1.

(iv) For a ﬁg—module M, if there exists an element vy € M for some
A € P satisfying conditions (1.12.1)—(1.12.3), M is a highest-weight module
of highest weight A € P associated to 7. In particular, if 7; = (K;K; | —
K; Kit1)/(g—q ') foranyi=1,...,m—1 (ie., ﬁg = U,), the definition of
a highest-weight module in Section 1.12 coincides with the usual definition
of a highest-weight module of Uy(gl,,).

LEMMA 1.14. If a highest-weight module M"(X) is contained in 0", we

tri’

have the following.

(i) The dimension of the weight space M"(X)x with highest weight \ is
equal to 1.
(ii) M"(X) has a unique mazimal submodule.

Proof. Ttem (i) is clear from definitions. By (i) and (1.12.3), a proper
ﬁq—submodule of M"(\) does not have a weight X. Thus, the sum of all
proper ﬁq—submodules of M"(\) does not have the weight A, and this is the
unique maximal submodule of M"(\). 0

REMARK 1.15. When a highest-weight module M7(\) with a highest-
weight vector vy is not contained in Ogri, it may occur that u- vy ¢ Kvy and

that u - vy has the weight A for some u € U, such that deg(u) = 0.

1.16.
Let J"7(\) be the left ideal of ﬁq generated by

m—1

ue U, such that deg(u) = Z d;a; with d; > 0 for some 1,
i=1

K; —q<’\’hi>1 fori=1,...,m,
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(i —m5) - u forizl,...,m—landueﬁq.

Put V(X)) = ﬁq/J”()\); then one sees that V() is a highest-weight module
of highest weight A\ associated to n with highest-weight vector 1+ J7(\).
We call V(X)) a Verma module of U,. We have the following lemma.

LEMMA 1.17. Any highest-weight module M"(\) of highest weight X asso-
ciated to n is a homomorphic image of V().

Proof. Let M"(\) be a highest-weight module of a highest weight \ asso-
ciated to n with a highest-weight vector vy. We regard ﬁq as a ﬁq—module
by left multiplications. Then, we have a natural surjective homomorphism
of ﬁq—modules ﬁq — M"()) such that 1+ vy. Moreover, one can check that
J"()) is included in the kernel of this homomorphism. Thus, this homomor-
phism induces the surjective homomorphism from V7(\) to M"7(X). [

1.18.

Finally, we define an A-fozm of ﬁq as follows. We use the same nota-
tions as in Section 1.4. Let 4U, be the A-subalgebra of U, generated by all
egk),fi(k),Kf,n, and [K;fo]. We also define the A-subalgebra Aﬁqzo (resp.,
Aﬁfo) of ﬁq generated by all egk) (resp., fi(k)), Kii, and [Kyo]. Then, an
isomorphism Aﬁqzo = A®z quZO (resp., Aﬁqgo ARz qugo) follows from
Corollary 1.9.

§2. The algebra S,

In this section, we define various finite-dimensional quotient algebras &,
of [7(1. This definition is inspired by the presentation of generalized g-Schur
algebras given in [Do]. Then we study the representation theory of S; which
has properties similar to those of the theory of cellular algebras and of
standardly based algebras introduced by [GL] and [DR1], respectively. The
results in this section will be applied to obtain a presentation of cyclotomic
g-Schur algebras in Section 7.

2.1.
Recall that P =@D;" | Ze; is the weight lattice of gl,,,. We can identify P
with a set of m-tuple of integers Z"* by the correspondence

PB)\:Z)\iéi*—)()\l,...,Am)EZm.
=1
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Under this identification, we use the notation A = (A1,...,\,,) for A € P.
Let A be a finite subset of P>o =@ Z>o&;.

We define the associative algebra §q = gq(/l) over K with 1 by following
generators and defining relations.

Generators F;, F; (1<i<m—1),1y (A€ A), 7 (1<i<m—1, € A).

Defining relations

(2.1.1) 101, = dxuly, Z1A:1;
AeA
(2.1.2) My = 1,10 = 06T

1/\+a¢Ei ifA+aq; €A,

0 otherwise;

(2.1.3) Eih:{

L o F; ifA—a; €4,
(2.1'4) Fly, = A—a; L 1 0‘51
otherwise;
Ely_, iHA—a;€A,
(2'1'5) 1L\E; = il A—a; 1 0.42
0 otherwise;
Fly,, ifX , € A,
(2.1.6) 1,F; = A ta; 1 + 0‘51
otherwise;
(2.1.7) EiFj — FyE; = d;; (Z Ti/\);
AeA
(2.1.8) Ei1E? — (¢+q )E;EiE; + E?Eijq =0,
EiE; = EjE; (i —jl=2);
(2.1.9) Fi1FE— (q+ ¢ Y FF1 Fi + FFiq =0,

FiFj=FF (|i—jl>2).

We can prove the following proposition in a way similar to the proof in
[Do, Proposition 3.4].

PROPOSITION 2.2. There exists a surjective homomorphism of algebras
00,38,

such that W(e;) = E;, V(f;) = F, ‘I’(Kii) =3 ea 1y, U(r;) = > ren T
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Proof. In order to show that T is well defined, we should check the defin-
ing relations of U in the images of \II and we obtain them by direct cal-
culations. Note that 7 = peami)n= U(7;)1, by (2.1.2). Thus, in order

to prove that T is surjective, it is enough to show that, for all A€ A, 1) is
a linear combination of W(Kj;). This will be proved in Lemma 2.3. U

We define a partial order > on P>¢ by A > p if A # p and A\; > p; for any
i=1,...,m. For A\=(A1,...,\n) € A, put

o) K [K;lo] [K;QO] [K)\ZO]

Then we have the following lemma.

LEMMA 2.3.
(i) ¥ ([Ké;o]) (1 <i<m,te€Z>p) is a linear combination of elements in
{Ix | X € A} with coefficients in Z.
(ii) For A€ A, we have

Ix= ‘I’(KA) + Z Tu(IV’(Ku) (ru € 2).
peA
=X

Proof. In this proof, we denote ‘TJ(KZi) by Kf simply. Thus, we have
= Z/\eAqi)‘il,\. For 1 <i<m,te€Z>p and X € A, we have

t _
K; 0] Kig > — K ¢*
2.3.1 1y = g 1
(23.1) [ ¢ 3,1;[1 ¢ —q*®
t Ni—s+1 _ —(N\i—s+1)
1714 a 1
i qS — q S
t
[)\z — S+ 1]
- H SN
s=1 [S]

N ] =
a [1][2] - [¢]

Ai

0 if t >\

1\
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Since 1 =3",.,1\ and [%'] € Z, we have (i). By the definition of K and
(2.3.1), we have

(2.3.2) KA:KA(Z )_1A+Z(H{} )

peA reA 4=1
=X

Since A is a finite set, there exists a maximal element A € A with respect to
the order >. Thus, we have 1y = K when X is a maximal element of A by
(2.3.2). By induction on A together with (2.3.2), we have (ii). N

REMARK 2.4. For A= (A1,...,A\p) € P>g, set [A| =Y N If A={\ e
P=¢ | |A\] =n} for some n € Zq, we have p % X for any A, u € A since |p| > |A|
if > A. Thus, we have 1, = ¥(K) for any A € A by Lemma 2.3.

2.5.

Let :57; (resp., gq_ ) be the subalgebra of gq generated by E; (resp., F;) for
1<i<m-—1, and let go be the subalgebra of § generated by 1 for A € A.
By Lemma 2.3, it is clear that SO (resp Si) coincides with the image of
U, U0 (resp., U i) under the surjection ¥ in Proposition 2.2.

We consider the Q-grading on Sq arising from the grading on ﬁq; namely,
we set deg F; = a;,deg F; = —ay;,deg 1) =0, degTi)‘ =0.

For each Ae Aand i=1,...,m — 1, we take an element 77{\ of gq_g‘;r -1y
such that deg(n}) = 0. By the condition deg(n?) = 0 together with (2.1.3)-
(2.1.6), we have n* € 1) g(;g; - 1). Moreover, again by (2.1.3)—(2.1.6), we
have n € §;§g§q+, Put na={n}|1<i<m—1,A€ A}. Let 774 be the
two-sided ideal of gq generated by all 7} —n? (1<i<m—1,A€A). We
define the quotient algebra S, of gq by

Sy =81 =8,/1m.

Let S (resp Si) be the image of SO (resp., Si) under the natural sur-
jection S — 84. Under the map S — Sq, we denote the image of F; (resp ,
F;, 1)) by the same symbol E; (resp., Fj, 1)) again, and the image of 77 by
77@)‘. We denote the composition of ¥ and the natural surjection g — 84 by
v ﬁq — &, Thus, we have ¥(e;) = E;, U(f;) = F;, V(K] ) ZAeAq Aily,
and ¥(r;) = Z)\GA 771')\-
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PROPOSITION 2.6. The algebra Sy has a triangular decomposition
Sq=8;8)S;.
Moreover, the algebra Sy is finite-dimensional.
Proof. First, we show the following claim.

CLam A. For1<i,51,...,510<m—1, we have

m—1
EiFj1"'Fjl: (ZkEk+b,
k=1

where ap, € S; and b € Sq_Sg.
We prove this claim by induction on [. When [ =1, we have

B F, — Fj Ei+ EAeAni)\ if i = j1,
o F; E; otherwise.

Since 0 € S; 88}, we obtain the claim. When [ > 2, we have

EF. ...F. — FJ'IEisz"'FJ'l+(ZA6A771')\)FJ2"'FJ'1 if i = ji,
) -
M\ FyEF, - F, otherwise.

Note that 7' € S, SSS; and deg(n?') = 0. Applying the induction hypothesis
to the right-hand side of this formula, we obtain the claim.

For any u € Sy, we have u =u-1=),.,u- 1. Thus, in order to prove
the first assertion of the proposition, it suffices to show the following claim.

CLaim B. We haveu-l,\eSl;Sq*-lA for any ue Sy and X € A.

Indeed, this claim implies that u € S; SYS} for any u € S; by relation
(2.1.3). Hence, we show Claim B by backward induction on A with respect
to order >. By Claim A combined with relations (2.1.1) and (2.1.3)-(2.1.6),
for any u € §; and A € A, we have

m—1

(2.6.1) u-lA:ZakEklA—i—bJ)\ (akESq,bES;).
k=1

Clearly, b- 1, € S;S;r -1). On the other hand, we have a, E1) = aplyia, Ex
by (2.1.3), where we set 114, =0 if A+ oy ¢ A.
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First, we assume that A is a maximal element of A. Then, for any k =
1,...,m —1, we have A+ oy ¢ A since A + aj > A in P and A is maximal
in A. Thus, we have 1y,,, =0 for k=1,...,m — 1. In this case, we have
u-l)\:b~1)\68q_8;~1,\.

Next, we assume that A is not maximal in A and that A+ o € A. In
this case, by the induction hypothesis, we have aplyiq, € Sq*Sj “tay-
Thus, we have aglyio, Bx = apErly € S;S;‘ - 1. Combined with (2.6.1),
we obtain Claim B; thus, the first assertion of the proposition is proved.

Recall that S is the subalgebra of S, generated by {1, |\ e A} and
that {1y #0| X € A} is a set of pairwise orthogonal idempotents. Thus,
{1»#0| X € A} gives a K-basis of SJ.

On the other hand, the set {E;, Ei, -+~ Ej, |1 <iy,...,4 <m —1,1 >0}
gives a spanning set of S; over . Since

B - By = Z(Eu By 1))
AeA

= Z(1A+ai1 +tay, E;, - Eil)?
AeA

we have E;, --- E;, =0 if the integer [ is sufficient large. This implies that Sj
is finitely generated over K. Similarly, we see that S, is finitely generated
over K. Combined with the triangular decomposition, we conclude that S,
is finite-dimensional. []

The next result follows from the proof of Proposition 2.6.
COROLLARY 2.7. {1\ #0| € A} gives a K-basis of SO.

2.8.
For each A € A, we define the following subspaces of S:

Sq(>N) ={xluy|xeS; ,yeSS,ue Asuch that > A},

Sq(>)\):{xluy|x65q_,y68;,u€/lsuch that p > A}

By using the triangular decomposition and the defining relations of S;, one
can easily check the following lemma.

LEMMA 2.9. For A € A, both S;(> \) and Sq(> \) are two-sided ideals
of 8.
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2.10.

Thanks to Lemma 2.9, for A € A, S;(> A)/S,(> A) turns out to be an
(S¢, Sq)-bimodule by multiplications. In general, it happens that S;(> \) =
S4(> A). So, we take a subset AT ={Ae€ A|S;(>N) #S;(>A\)} of A It is
clear that

(2.10.1) Ae AT if and only if 1) ¢ S,(> N).
For A € AT, we define a subspace A(\) of §;(> \)/S,(> ) by
AN =8, -1y +84(> N).

Note that Eply = 1x40, Ex € Sg(> A) for k=1,...,m — 1. Together with
the triangular decomposition, A(A) turns out to be a left S;-submodule of
S;(> N\)/S,(> A). Similarly, we can define a right S,-submodule Af(\) of
Sq(=A)/Sq(>A) by

AN =158 +S,(> N).

For z € S,y €S/, we denote the coset of Sg(> \)/Sy(> A) containing 1y
by z1,y. Then, we denote an element of A(\) (resp., A(\)) by z1, (z € S;)
(resp., Thy (y € S;)). It is clear that A(X) =8, - Ty and A¥(A\) =1, -S,. We
can check the following lemma immediately from the definitions.

LEMMA 2.11. For X\ € A", there exists a surjective homomorphism of
(Sq,Sq)-bimodules

A(N) @k AF(N) = Sy(= N)/S4(> A)
such that £1y @ Tyy — xlyy for x € S,y € SF.

2.12.

As will be shown later, if the surjection in Lemma 2.11 gives an iso-
morphism for any A\ € AT and if S; has a certain involution ¢, S, turns
out to be a quasi-hereditary cellular algebra, and A(X) (A € A1) is a left
cell (standard) module of S;. In such a case, we can apply a general the-
ory of (quasi-hereditary) cellular algebras. However, in general, we do not
know whether A(A) ®x A¥()) is isomorphic to Sy(> A)/S,(> ). (In fact,
it happens that A(\) ®x A#(\) is not isomorphic to S;(> \)/S,(> \); see
Appendix C.) And we do not know whether S, has such an involution. Nev-
ertheless, we develop a certain representation theory of S; which is almost
similar to the theory of standardly based algebras in the sense of [DR1],
and also similar to the theory of cellular algebras (see, e.g., [GL], [M, Chap-
ter 2]).
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2.13.

Forye S,z €S, ,and A € A*, we have 1\yz1y = Iz1yyqye if deg(yx) =
a. Thus, we have 1yyxly =0 if deg(yx) = a # 0. On the other hand, if
deg(yzr) =0, we can write

(2.13.1) Lyyzly =roly+ > rxyIhXY1y  (ro,rxy €K)
YeSS . XeSy
deg(Y)=—deg(X)#0

by investigating the degrees through the triangular decomposition. These
imply, for y € Sf, x € S, and X € A%, that we have

Lyyzly =ry1y mod Sg(>A)  (ry, € K).

By using this formula, for A € AT, we can define a bilinear form (, ) :
Af(N) x A(X) — K such that

(213.2) (Tyy,zl)1y=1Lyely mod Se(>A) foryeSf,zes, .
For o € QT, put

Yo ={(i1,i2,...,0) | 1 <in,ia, ... i <m—1

such that o, + o, + -+ ), = O‘}‘

From the definition, for (i1,...,i) € Ya, (j1,---,5) € T (o, B € QT), we
have

(2133) (1)\E11E2k,F]1FJl1)\>:O 1fa7§ﬁ

We have the following lemma.

LEMMA 2.14. For A\ € AT, we have the following formulas.
(1) T u,T) = (Gu-7) forT€ AN), g€ A*(N),ueS,.

(i) (B - Fiy InEjy - Ej) - T = (I\Ej, - By D) Fyy - Fy 1y
forz e A(X) and Fy, --- F;, 1\Ej, --- Ej, € S;(> \).

Proof. (i) For z € S, y €S, and u € Sy, we have

(Tay - u,z1)) 1y = Lyyuxly

= (Lyy,u-21))1y mod S;(> \).
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(ii) For z € S and Fj, - Fj, 1\ Ej, - -- Ej, € S¢(> )), we have

(Fiy - Fy W\Ejy -+ Ej)) a1y = Fyy - Fy (1\Ej, -+ Ejaly)

= Fpy - By (LWEj, - Ejy, a1y 1y
=(L\Ej, - Ej, 2l Fy - F 1. [

2.15.
For A€ AT let

rad A(\) = {ZT € A(\) | (7,7) =0 for any € A*(\)},
rad A*(\) = {7 € A*(\) | (7,7) =0 for any T € A(N)}.

By Lemma 2.14(i), rad A()\) (resp., rad A¥()\)) is a left (resp., right) S,-
submodule of A(X) (resp., A*(\)). Put L(\) = A(\)/rad A(N), and put
LF(A\) = ARF(N)/rad A%(\) We have the following theorem. This theorem is
proven in a way similar to proofs in the general theory of standardly based
algebras or cellular algebras (see [DR1], [GL], [M, Chapter 2]).

THEOREM 2.16. We have the following.

(i) For A€ AT, rad A(\) (resp., rad A¥(\)) is a unique proper mazimal
S,-submodule of A(N\) (resp., A¥(N)). Thus, L(\) (resp., L¥(\)) is a
left (resp., right) absolutely simple Sy-module.

(ii) For \,u € A, if L(p) (resp., L*(u)) is a composition factor of A(N)
(resp., AR(N)), we have X\ > p. Thus, L(\) = L(u) (resp., LF()\) =
Li()) if and only if A= p. Moreover, the multiplicity of L(\) (resp.,
LE(N)) in A(N) (resp., AF(N)) is equal to 1.

(iii) {L(\) | A€ At} (resp., {L*(\) | A € AT}) gives a complete set of noniso-
morphic left (resp., right) simple Sq-modules.

(iv) S, is semisimple if and only if A(X) = L(\) and AH(N\) =2 LE(\) for any
Ae AT,

Proof. We prove only the assertions for left S;-modules. The proof is
similar for right S-modules. (i) It is clear that (I),1))=1. Thus, we have
A(X) 2rad A(A). For 7 € A(X) \rad A()), there exists an element 7 € A*()\)
such that (7,7) # 0. Since (, ) is a bilinear form over a field K, we can
suppose that (7,7) =1. Let

y= Z r(jl7~~~,jz)1>\EJ'1 By
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For t=F; ---F;, 1, € A(\), put

y{:Fil ...Fikl/\( Z T(jl,...,jl)Ejl ---Ejl) ESq.
(J15-551) €Y
acQt

Then, we have

Vi T=D Gy Fo By By - Bjy) T

= 1,0 (E, By ) F, - Fi, 1y (- Lemma 2.14(i))

= @,@Fil s 1y
=Fi, - F 1)

This implies that A()) is generated by T as an S;-module. Since this fact
holds for any Z € A(A) \ rad A()\), rad A(X) is the unique maximal proper
submodule of A(\).

(i) For A € AT, we have 1y - L()\) # 0 since 1 ¢ rad A(A\). On the other
hand, one sees easily that 1, - A(A) =0 for any p € A such that p £ A
Thus, if L(p) is a composition factor of A(X), we have 1, - A(X) # 0 and
p < X. Moreover, one sees that 1, -rad A(\) = 0. (Note that 1) ¢ rad A()).)
This implies that L(\) does not appear in rad A(\) as a composition factor.
Thus, we have (ii).

(iii) Let {)\ 1), @) Z>} be such that i < jif Ay > Agjy. Put Sq(>\<z‘)) =
> j<iSq 1 SF; then S ¢(A)) turns out to be a two-sided ideal of S;. Thus,

(3 74 ;
we have the following filtration of two-sided ideals:

(2.16.1) Sy = Sq()\<z>) D Sq()\<z_1>) DD Sq()\<1>) D Sq()\<0>) =0.

One sees easily that Sq(Aj))/Sg(Ai—1)) = Sg(= Aiy) /Sq(> Aiiy) as (Sy, Sy)-
bimodules for Ay € A. Moreover, one can check that

Sq(Aiy) # Sq(Ai—1y) if and only if 1, & Sg(> M)
if and only if Ay € AT,

Let AT ={A\¢),- -, Ay} such that 4 < j if ¢; <c¢;. Then, we have the
following ﬁltratlon of two-sided ideals:

(216.2)  S;=S;(Ae.y) 2Ss(A e, ) 2 280 (Nery) 2 Sq(Ne)) =0,
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such that S;(A(,))/Sq(A
les.

By the filtration of S; in (2.16.2) and the surjective homomorphism of
(S;,S,)-bimodules A(\) @ A*(N) — Sy(> N)/Sy(> A) for A € AT in
Lemma 2.11, any composition factor of S; is a composition factor of A(\)

1) = Sg(= Neny)/Sq(> Aey)) as (Sg, Sq)-bimodu-

Ci—1

for some A € AT. Thus, it is enough to show that any composition factor of
A(N) (A € AT) is isomorphic to L(u) for some pu € A*. We prove it by using
an induction on A™.

Let A € AT be a minimal element with respect to order >. We take T =
Zr(h,...,ik)Fh - F; 1y erad A(A). Put z = Zr(il,...,ik)Fil - Fy 1y € Sq(Z
A). For p€ AT such that A # p, we have (> p) -2 € Sy(> A\)NS,(>p) C
S4(> A) since both of S;(> A) and S;(> p) are two-sided ideals of S; and A
is a minimal element of A™. This implies that Sy(> u)-T =0 for any y € A
such that p# A. On the other hand, for any F, --- Fy, 1\Ey, --- By, € Sq(>
A), we have

(Fy, - FylzEy, - Ey,) T=(1\Ey, -+ Ey,, T)Fy, --- Fy, 1) =0,

where the first equation follows Lemma 2.14(ii), and the second equation
follows T € rad A(X). This implies that Sq(> A) - T = 0. Together with the
above arguments, we have S, -7 = 0. In particular, we have z =1 -7 = 0.
This means that rad A(\) =0, and we have A(\) = L(\).

Next, we suppose that A\ € AT is not minimal. Put

Sp(#£ N =D 8,185 and S (EN) =) 8, 1S,
pneA pneA
BEA BEX

One sees that Sy(£ A) and Sy(£ A) are two-sided ideals of S;. It is clear that
Sq(Z N) - A(X) = 0. Moreover, we see that Sy(> \) -rad A(X) =0 in a way
similar to the above arguments. Thus, we have Sy(£ A) -rad A(X) = 0. This
implies that the action of S; on rad A(\) induces the action of S;/Sq(£ A) on
rad A(X). Thus, any composition factor of rad A(\) is a composition factor
of 8;/Sq(£ X). Moreover, we can take a total order of A such that S;(£
A) = Sy(Apy) for some k and that \;y <A forany j=k+1,...,2. Thus, by
Lemma 2.11, any composition factor of S;/S,(#£ A) is a composition factor
of A(u) for some p € AT such that g < A. By the induction hypothesis, we
see that any composition factor of A(u) such that pu < A is isomorphic to
L(v) for some v € AT. Tt follows that any composition factor of rad A(\)
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is isomorphic to L(v) for some v € A*. Since A(N)/rad A(A\) = L(N), we
obtain (iii).

(iv) Suppose that S, is semisimple; then L(\) and L(u) (A # p e A1)
belong to different blocks of S;. On the other hand, A(X) is indecompos-
able since A(A) has a unique top. Thus, all the composition factors of A(\)
belong to the same block. This means that A(\) has only L()\) as a com-
position factor, and we have A(X) = L()) for any A € A" by (ii). We have
A¥(X\) = L¥()\) for any A € AT in a similar way.

Next, we suppose that A(A\) =2 L()\) and A¥(\) = LE()) for any A € AT,
Then, the surjective homomorphism of (S,, S,)-bimodules A(\) @x Af(N) —
S¢(>N)/Sy(> A) in Lemma 2.11 must be an isomorphism. Thus, the filtra-
tion (2.16.2) implies that

dime S, = Y (dime A(N))”.
AeAt

(dimg L()\) = dimg L#(\) will be proved in Lemma 3.8.) This implies that
S, is semisimple. 0

2.17.

Let SqZO (resp., 8(150) be the subalgebra of S, generated by S; (resp.,
S, ) and Sg. Thus, quo (resp., ngo) is generated by E; (resp., F;) for i =
1,...,m—1and 1y for A € A. For A € A such that 1 #0in S, let 0\ = Kv,

be the 1-dimensional vector space with a basis v). We define a left action
of SqZO on 0, by

1y -vn =0\, 0n, E;-vy=0 forpucAdandi=1,...,m—1.

One can check that this action is well defined for A € A such that 1, # 0.
Similarly, we define a right action of ngo on 0 by

vy - 1y = 0xuvn, vyn-F;=0 forpueAdandi=1,...,m—1.

We have the following theorem. (A similar theorem for cyclotomic g-Schur
algebras has been obtained by [DR2]. The proof given here is similar to the
proof given in [DR2].)

THEOREM 2.18. We have the following.

(i) {1n | A € A such that 1) # 0} is a complete set of primitive idempotents
m quo and ngo'
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(ii) {0 | A € A such that 15 # 0} is a complete set of nonisomorphic simple
left quo-modules and of nonisomorphic simple right ngo-modules.

(iii) For X\ € A such that 1) # 0, we have the following isomorphism of left
Sy-modules:

A(N) if Ae AT,

S, Qo0 0y =
4707 {0 otherwise.

(iv) For X € A such that 1) # 0, we have the following isomorphism of right
Sy-modules:

AHN) if A e AT,

0 otherwise.

0, ®ng0 5, = {

Proof. We show the theorem only for SqZO. The proof is similar for SqSO.
Note that

1)\Ei1 e E'llc]‘/\ = 1)\1>\+ai1+"'+aik Eil v Elk = O

for 1 <iy,...,ip <m — 1,k > 1. Thus, for A € A such that 1) # 0, we have
1,\8(1201>\ = K1,. This implies that 1, is a primitive idempotent of SqZO since
18701, = Endsqgo (87°1,), and dimg EndSqZO (87°1,) > 2 if 1, is not prim-
itive. Moreover, we have 1 =73, , 1y, and so {1, | A € A such that 1) # 0}
is the complete set, of primitive idempotents in SqZO. This proves (i). In addi-
tion, we deduce that, for A € A such that 1, #0, ©) = quob\ is a principal
indecomposable quo—module. By investigating the degrees, SqZO ~(zly) is a
proper quo—submodule of ©, for any x € S;“ such that x # 1. This implies
that @)\/Rad O, =0,.

Next, we prove (iii). If A ¢ AT, we can write 1) = D ves yest o Toym X
xl,y in §;. Thus, we have

1®9)\:ZL,®9)\:1/\®9)\: Z rm,y:ﬂx1#y®9>\:0'
veA T€ST WEST u>A
This implies that &, ®ngo 0y =S, (1®86y) =0. Hence, we suppose that
A € AT. Note that A()) is generated by an element 1) and that S, ®g20 0, is
generated by 1® vy as Sg-modules. We define a map fy : A(X) — S, ®qu0 0
by u-1y—u®wvy for u € S,. One can check that fy gives a well-defined
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S,-homomorphism. On the other hand, we define the map gy : S; x 0\ —
A(N) by (u,rvy) —ru-1) for u € S;,r € K. One can check that gy gives
a well-defined quo—balanced map. Thus, gy induces an S;-homomorphism
g Sy ® 520 0\ — A()) such that u ® vy — w - 1y. Thus, (iii) is proved. []

2.19.

Given that ng = {n} | 1 <i <m — 1,)A € A}, where 1} € §(1_§;1)\ is such
that deg(n}) =0, we take n; € ﬁ;ﬁgﬁj (1<i<m—1) such that ¥(n;) =
S aeamts and we put n=(11,...,Mm-1). o

On the other hand, given that n = (91,...,7m-1), where n; € Uy UYUS
is such that deg(n;) =0, and given that A C P, set n} = U(n)ly (1<i<
m—1,A€A),and put ny={n} [ 1<i<m—1,\e€A}.

Under this correspondence, we have the following theorem.

THEOREM 2.20. We have the following.

(i) Let S§*-mod be the category of finite-dimensional left S§*-modules.
Then Sg*-mod is a full subcategory of O". In particular, when we
regard a S;*-module as a ﬁq-module through the surjection W : ﬁq —
S, A(N) (A€ AT) is a highest-weight module, and L(\) (A€ AT ) is
a simple highest-weight module with a highest weight A associated to 7.

(ii) For each M € O", if the set of weights \ such that My # 0 is contained
in A, then we have M € Sg*-mod, where we regard the S*-mod as a
full subcategory of O by (i). In particular, any simple object of O
is obtained as in Theorem 2.16 through the quotient algebra Sg* for a
suitable A C P>q, where the choice of A depends on the simple object
of ON.

(iii) O" is a full subcategory of on

tri-

Proof. (i) is clear through the surjection ® : ﬁq — &g* and by the defin-
itions of A(\) and L(\).

We prove (ii). For M € O", put Ay = {\ € P>o | My # 0}. (Note that
My =0 unless A € P>g by condition (e) in the definition of O".) Since the
dimension of M is finite, A,/ is a finite set. We take a finite subset A of P>q
such that Ay C A. Then, we can define an action of Sg* on M as follows:

E,m=e-m forl<i<m-—1,meM,
Foom=fim forl<i<m-—1meM,

Iy-m=0dy\,m for Xe A,meM,.
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One can check that this action is well defined by using the defining relations
of ﬁq and the definition of O". We denote this Sg*-module by M*. When
we regard M as a ﬁq—module through the surjection ¥, M“ coincides with
M. This implies that M € §§*-mod. Now, the last assertion of (ii) is clear.

Since S7* has the triangular decomposition compatible with that of ﬁq,
(iii) follows from (ii). U

2.21.

We define an algebra antiautomorphism ¢ : gq — gq by «(E;) = F;, o(F;) =
E;, (1)) =1y, and o(7?) =7} fori=1,...,m — 1 and A\ € A. We can easily
check that ¢ is well defined. We consider the following conditions.

(C-1) W) =mn foranyi=1,...,m—1and )€ A

AN @k AFA) = 84(> N)Sy(> A)
(C-2)
as (Sy,Sy)-bimodules for any A € AT.

Thanks to condition (C-1), ¢ induces a well-defined algebra antiautomor-
phism on S;. In view of Lemma 2.11, condition (C-2) is equivalent to the
following condition:

Z TayZ1\y € Sg(> A)
z€S; yeST
(C'-2)
= > L eLy=0€A(\) @k Af()).
xESq_,yGS;'

It is clear that

u € Sy(> ) if and only if t(u) € Sy(> N),

uwe Sy(>A) if and only if t(u) € Sg(> ).

This implies that A(\) 37 — «(z) € A¥()\) gives an isomorphism of K-vector
spaces. We consider the filtration of S, in (2.16.2). Recall that

SQ()‘(CJ)/S(]()‘<CL71>) = S(I(Z A(Cz))/sq(> )\<CL>) as (S(b Sq)'bimOduleS'
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Under conditions (C-1) and (C-2), we have the following commutative dia-
gram:

Sq(Men))/Sqa(Ne,_1y)
l ¢ l ZRT—(y) 2 (z)

Sq()‘@i))/SQ(/\(ciA)) = A()‘(ci)) XK Aﬁ()‘(cz'))

AN ) @k A (Nie))

This implies that Sy(A(,))/Sg(Ae,_,)) is a cell ideal of S;/Sy(A,_,y) in
the sense of [KX]. Thus, S; turns out to be a cellular algebra (see [KX,
Definition 3.2]), and A(\) (A € A™) gives a cell module of S,. Moreover, we
already know that {L(\) |\ € AT} gives a complete set of nonisomorphic
simple S;-modules. Thus, we have the following theorem.

THEOREM 2.22. If S, satisfies conditions (C-1) and (C-2), then S, is a
quasi-hereditary cellular algebra.

83. Specialization to an arbitrary ring

In this section, we define an A-form 48, of S;, and we consider a spe-
cialization rS, of 48, to an arbitrary ring R. Recall that S, depends on
the choice of {n? |1 <i<m —1,\ € A}. In this section, we will assume
some conditions on this set so that, in the case where R is a field, we obtain
the properties of rS,; which are similar to those obtained in the preceding
section and are compatible with the case where R = IC.

3.1.

Put EX = EF/[k]1, F*) = FF/[k]!. Let 4S, be the A-subalgebra of S,
generated by Ei(k), Fl-(k) (1<i<m-—1,k>1), and 1, (A € A). Note that,
by Lemma 2.3, we have \I/(Aﬁq) =48,

Let AS; (resp., AS, ) be the A-subalgebra of 48, generated by Ez-(k)
(resp., Fi(k)) for 1<i<m-—1, k>0, and let AS(? be the A-subalgebra of
ASg generated by 1y for A € A. As shown in Section 2, S, has the triangular
decomposition §; =S, SgSj over K. However, it may happen that such
relations break over A. Hence, in order for the triangular decomposition to
hold over A, we impose the following condition:

((4-1)  EFEY € 48, 4804S for1<i<m—1,k1>1
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Indeed, under this assumption, we can prove the following proposition
by replacing E;, F; (1 <4,j <m — 1) with the divided powers Ei(k), Fj(l)
(1<i,j<m—1,k,l>1) in the proof of Proposition 2.6.

PROPOSITION 3.2. Suppose that condition (A-1) holds. Then 5S4 has a
triangular decomposition

AS, :AS;AS;)AS;.
Moreover, oS, is finitely generated over A.

In the rest of this section, we always assume condition (A-1).

3.3.

Let R be an arbitrary ring, and we take &y,&1,...,& € R, where & is
invertible in R. We regard R as an A-module by the homomorphism of
rings 7 : A — R such that ¢+ &o,v; — & (1 <i <r). Then, we obtain the
specialized algebra R ®4 4S; of 48, through the homomorphism 7. We
denote it by rS;, and we denote 1 ® x € R ®4 48, simply by z if it does
not cause any confusion. Let RS; (resp., RS, ) be the R-subalgebra of S,

generated by 1®EZ-(k) (resp., 1®Fi(k)) for1<i<m-—1,k>0,andlet RS((]) be
the R-subalgebra of rS, generated by 1 ® 1, for A € A. By Proposition 3.2,
we have the triangular decomposition

RSy = RS(J_RS((I)RS;-

Thanks to the triangular decomposition, we have the following results which
are similar to the case over K. For A € A, let

rSq(=\) = {21,y |z € gS,,y € RS, , 1w € A such that > A},
RS((>A) ={zly|r€rS, ,y € RSJ,M € A such that p > A}.

Then, pSy(> A) and rS,(> A) are two-sided ideals of rS,. Put
RAT={N€A| RS;(ZN) #rS; (>N} ={ e A|1x ¢ rS(>N)}.

For \ € A", we define a left (resp., right) rS;-submodule RA(X) (resp.,
RAF(N)) of RSy (= N)/RSq(> A) by

RA()\) = RSq_ Sy + RSq(> )\), RAﬁ()\) =1, RS;_ + RSq(> )\)
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Let quZO (resp., quﬁo) be the subalgebra of rS, generated by RS;L (resp.,
RSq_) and RSg. For A € A such that 1) # 0 in rSy, let 8y = Rvy be the free
R-module with a basis v). We define the left action of RSqZO on 6y by

Ly -vn =0\,0n, EZ-(k)-v,\:O forpeAi=1,....m—1and k> 1.

Similarly, we define a right action of RSqSO on 0y by

vy - 1, = 0xuvn, w-F}’“)zo forpeAyi=1,...,m—1and k>1.

We have the following theorem which is shown in a way similar to the
proof of Theorem 2.18.

THEOREM 3.4. We have the following.
(1) {1x| A€ A such that 1) # 0} is a complete set of primitive idempotents
mn Rquo and RSqSO.
(ii) {0 | A € A such that 15 # 0} is a complete set of nonisomorphic simple
left RSqZO-modules and of nonisomorphic simple right RSqSO-modules.
(iii) For A € A such that 1) # 0, we have the following isomorphism of left
(resp., right) rSy-modules:

RA(N)  if A€ pAT,

0 otherwise;

RSq ®R8qzo 0 = {

AN\ if e gAT,
9A®RSQSORng{R (\) ifrer

0 otherwise.
3.5.
For A € RA", we can define a bilinear form (, ) : gA*(\) x pA(\) — R
such that

(Tay,zIx)1x = Lyyzrly mod rS,(>N) for x € gS, ,y € RS;.

Put rad RA(N) = {ZT € gA(N) | (7,T) = 0 for any § € rA%(N\)}, and put
rL(\) = RA(N)/rad gA(N). Similarly, put rad gRA*(\) = {7 € rA*(N) | (7,
7) = 0 for any T € gpA(N)}, and put zLF(N\) = RA¥(\)/rad gAF(N). Then,
one can prove the following theorem by replacing E;, F; (1<4,j <m —1)
with the divided powers Ei(k), Fj(l) (1<i,j<m—1,k,0>1) in the proof of
Theorem 2.16.
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THEOREM 3.6. Suppose that R is a field. Then we have the following.

(1) For A € rAT, rad pA(N), (resp., rad RAY(N)) is a unique proper mawi-
mal submodule of RA(N) (resp., RAYN) ). Thus, rL()\) (resp., rRL*(\))
is an absolutely simple left (resp., right) rSy-module.

(ii) For \,u € rAT, if rRL(pn) (resp., rRLF(1)) is a composition factor of
RA(N) (resp., RAYN)), we have X > p. Thus, rRL(\) = gL(u) if and
only if X\ = p. Moreover, the multiplicity of rL(\) (resp., rRL}()\)) in
RA(N) (resp., RAY(N)) is equal to 1.

(iii) {RL(A) | A€ rATY} (resp., {RL*(N\) | A € rAT}) gives a complete set of
nonisomorphic left (resp., right) simple rS,-modules.

(iv) rS, is semisimple if and only if RA(N) = gL(\) and RAF(N) =2 RLF(N)
for any Ae AT,

3.7.

Throughout the rest of this section, we assume that R is a field. Since
rad RA¥(\) x rad RA()) is included in the kernel of the bilinear form (, ) :
RAY(N) x RA(N) — R, {,) induces a bilinear form on rL(A\) x pL(\).
Clearly, this bilinear form is nondegenerate on gL!()\) x gpL(\). We regard
Hompg(rLF(N), R) as a left gS,-module by the standard way. Thanks to the
associativity of the bilinear form (, ) (see Lemma 2.14(i)), the R-homomor-
phism G : RL(\) — Hompg(rL!(\), R) given by T — (—,T) turns out to be
an pS,-homomorphism. Since (,) is nondegenerate on gpL*(\) x pL(\),
the homomorphism G is nonzero. Hence, G is an isomorphism of left rS,-
modules since both of gL()\) and Homg(rLF()\), R) are simple. Thus, we
have the following lemma (a similar argument holds for zL())).

LEMMA 3.8. Suppose that R is a field. For A\ € rA™, we have the following
isomorphisms:
(i) rL(N\) = Hompg(rL}(N\), R) as left rS,-modules,
(ii) pL*(\) 2Hompg(rL(\),R) as right RS,-modules.
In particular, we have dimg RL()\) = dimpg gL*(\).

3.9.

For A € pA™, let gP(\) be the projective cover of gL(\). For A\, € AT,
we denote the multiplicity of rL(p) in the composition series of pP(\)
by [rRP(A) : rL(p)]. Similarly, we denote the multiplicity of rL(u) (resp.,
rL¥(11)) in the composition series of pA(N) (resp., rAH(N)) by [RA(N) :
rL(1)] (resp., [RAF(N) : RL#(N)]). We have the following relation concerning
these multiplicities.

https://doi.org/10.1215/00277630-2010-017 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-2010-017

PRESENTING CYCLOTOMIC ¢-SCHUR ALGEBRAS 73

LEMMA 3.10. Suppose that R is a field. For A\, € rAT, we have

(RPN : RL(W] S Y [RAW) : RL(W)][RAHv) : RLF(N)]-

verAt

Proof. In the proof, we omit the subscript R as we always consider the
objects over R. Let At ={X\py,..., Ay} be such that 7 < j if Ay > A(jy.

Then we have the following filtrations of two-sided ideals:
(3.10.1) Sg=S4(Az)) 2Sq(A 1)) 2 2S4(Ay) 2 Sa(Ae)) =0,

such that S;(Aiiy)/Sq(Ai—1)) = Se(= Asy) /Sq(> Aiiy) as Sy-bimodules. Since
P()) is a left projective Sg-module, the filtration (3.10.1) implies the exis-
tence of left S;-modules M; (0 < j < z) which give the following filtration:

P()\):MZDszlD"'DMlDM(]:O,

such that Mi/Mi—l = (Sq(z )\<l>)/8q(> A(z))) ®s, P(/\) This implies that

(3102) [PV : L] = 3 [(84(2 v)/8,(> ) ®s, P(N) : L{w)].

veAt

Since there exists a surjection A(v) @p A*(v) — Sy(>v)/Sy(> v) of Sy
bimodules, (3.10.2) implies that

[PV : L] = Y [Aw) ®r A (v) ®s, POV = L(w)].

veAT

Thus, it suffices to prove the following equality:
AW) ©r W) ©s, POV : L(w)] = [AW) : L] (A (0) : ).
Since
AW) ©r W) ©s, POV : L(w) = [A(v) : L) - dimp(AF () @5, P(Y)),

it is enough to show that dimp(A*(v) ®,s, P(N)) = [A¥(v) : LF(N)]. By the
general theory of finite-dimensional algebras over a field, we have

dimp (A% (v) ®s, P(N))
= dimR(HomR((Aﬁ(V) ®s, P()\), R>))

https://doi.org/10.1215/00277630-2010-017 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-2010-017

74 K. WADA

= dimp (Homs, (P(X), Homp(A*(v), R)))
= [Hompg(A*(v),R) : L(\)]
= [Homp (A*(v), R) : Homp(L*(\),R)] (Lemma 3.8)
= [A¥(w) : LF(V)].
The lemma is then proved. 0

3.11.

For X € pA™, pRA(N) is an indecomposable pS,-module since pA(A) has
a unique top. Thus, all the composition factors of RA(A) belong to the same
block of rS,.

For \,u € AT, we denote by A ~ p if there exists a sequence A = \g, A1,
sy e = (N € RAT) such that RA(N—1) and gA(N;) (1 <i<k) have a
common composition factor. Clearly, ~ gives an equivalent relation on gA™,
and rA(N) and rA(p) belong to the same block if A ~ p. If rS, satisfies
condition (C-1), one can prove that the converse is also true. To prove it,
we prepare the following lemma.

LEMMA 3.12. Suppose that R is a field. If rS, satisfies condition (C-1),
we have

[RA(N) 1 RL(1)] = [rRA*(N) : RL* ().

Proof. Thanks to (C-1), we can define an isomorphism of R-modules
L RA(N) = RANN) via T u(z). For y € rS; and x € gS,, we have

(ay, 21x)1x = Lyyely = 1y(@)(y) 1y = (Iae(z), t(y)1x)1n  mod rSe(> A).

Thus, we have (7,T) = (1(x),1(y)) for any Z € rA()\) and 7 € A¥(\). This
implies that rad RA*(\) = {1(z) | T € rad RA(\)}. Therefore, ¢: RA(N) —
rAF()) induces an R-isomorphism rL(X) — pL*(A). Let rA(X) = My 2
My 2 --- 2 My, 20 be a composition series of RA(N) such that M; 1/M; =
rL(p;). By investigating the action of rS,, we see that t(rA(N)) = t(Mp) 2
W(My) 2 -+ 2 (M) 20 gives a composition series of rA*(A) such that
t(M;_1)/t(M;) =2 RLF(u;). This implies the lemma. 0

We have the following theorem.

THEOREM 3.13. Suppose that R is a field. If rS, satisfies condition (C-1),
then X ~ p if and only if RA(N) and rA(p) belong to the same block of RSy
for A, € rAT.
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Proof. Because we have already seen the “only if” part, we prove the
“if” part. Assume that pA(X\) and rA(n) belong to the same block. Then
rP(\) and grP(u) belong to the same block. Thus, there exists a sequence
A= )\0,)\1,. . .,)\k = U ()\1 S R/l+) such that RP()\ifl) and RP()\Z) (1 <
i < k) have a common composition factor pL(u;). By Lemma 3.10, there
exists v, v, € RAT (1 <i < k) such that [rRA(v;): rRL(s)] # 0, [RAH ;)
RLﬁ()\i_l)] 75 0, [RA(VZ/) : RL(/LZ')] 75 0, and [RAﬁ(VZ{) . RLﬂ(/\i)] 7é 0. Com-
bined with Lemma 3.12, we have

Nic1 ~ Vi~ Ly ~ U~ A

for each 1 <i < k. Thus, we have \ ~ p. 0

3.14.
Finally, we consider the following condition:

(A-2) For any A € 4A™, 4A()) is a free A-module, and
AAN) @4 AAFN) = 4S8 (= N)/4S4(> A)

as (48Sg, 4Sq)-bimodules.

We have the following theorem.

THEOREM 3.14. Suppose that conditions (A-1), (A-2), and (C-1) hold.
Then, for an arbitrary ring R and parameters &o,&1,...,&6 € R, rSq 15 a
cellular algebra with respect to the poset AY. In particular, when R is a
field, rSy is a quasi-hereditary cellular algebra.

Proof. Thanks to (C-1), the map 4A(X) 3T — u(z) € 4A¥()\) gives an
isomorphism of A-modules. Thus, (A-2) implies that 4A%()\) is a free A-
module. Now, we can prove that 48, is a cellular algebra with respect to the
poset 4A™ in a way similar to that of the case over K (see Theorem 2.22),
and that 4A(N\) (A€ 447T) is a (left) cell module of 48,. Thus, for any ring
R, rS, is a cellular algebra with respect to the poset 4A™, and R®4 4A(N)
(A € 4A4™) is a cell module of rS,.

From now on, we assume that R is a field. It is clear that 1®1) € rSy(> A)
if 1y € 48,(> A). This implies that gAT C 4AT. Since R ® 4 4A()\) has
an element 1 ® 1y, we have that rad(R ®4 4A(N)) # R ®4 4A(N) for any
A € AT, This implies that S, is quasi-hereditary and that the number of
isomorphism classes of simple rS;,-modules is equal to 4A™1 by the general
theory of cellular algebras. On the other hand, we know that the number
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of isomorphism classes of simple pS;,-modules is equal to rAT by Theo-
rem 3.6. Thus, we have gA+T = 4A™". In particular, we have 44T = AT when
R=K. O

REMARKS 3.16. (i) Let quh = quh(/l) be the A-subalgebra of g’q gener-
ated by E;, Fj, 1/\77}')\ for 1 <i<m—1,)€ A. Clearly, quh is isomorphic to
the associative algebra over A defined by generators E;, F;, 15, ’7' and defin-
ing relations (2.1.1)—(2.1.9). Moreover, 4S5, S# is a homomorphic image of AUq,

where AUq is the A-subalgebra of Uq generated by all e;, f;, 7, K; * [K ] 0]

For Ath, we can take 7174, and we can define the quotient algebra AS =
Ang as the case of S¢*. (In this case, condition (A-1) for ASS to have
the triangular decomposition is unnecessary since we do not take a divided
power.) For an arbitrary ring R and parameters &p,&1,...,&,, we take the
specialized algebra RSh =R®4 A5¢5~ Then, for R357 one can apply similar
arguments as in the case of gS,. In particular, results similar to those of
Theorems 3.4, 3.6, 3.13, and 3.15 hold for RS,E. However, RS,E is different
from rS, in general.

(ii) For any Cartan matrix of finite type, one can define the algebra
ﬁq and its quotient algebra S, associated to a given Cartan matrix in a
similar way. Namely, for the given Cartan data, we define (~fq by replacing
the “commutative relations between e; and f;” in the defining relations
of the corresponding quantum group with “formal generators 7;” which
commute with Cartan parts. Then we specialize 7; to various elements 77{\
to define finite-dimensional quotient algebras S, as in Section 2. In this
case, we should take a weight lattice P whose rank is equal to the rank of
the root lattice, and we take a finite subset A of P to define the quotient
algebra §q without taking a subset of P such as P>o. We should use an
argument similar to that in the proof of [Do, Lemma 3.2] instead of Lemma
2.3 in order to prove a statement similar to that in Proposition 2.2. We also
remove condition (e) from the definition of O". Then, we have all statements
in Sections 2 and 3 corresponding to the given Cartan matrix.

84. Review of ¢g-Schur algebras of type A

In this section, we recall the definition of the ¢g-Schur algebra .7, 1 of type
A and review some known results concerning the presentations of .#, 1 given
in [DG] and the Borel subalgebras of .7, 1. The Borel subalgebras will play
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an important role in Sections 6 and 7 to obtain presentations of cyclotomic
g-Schur algebras.

4.1.
Let n,m be positive integers, and let A, 1 be the set of compositions of
n with m parts, namely,

Aml:{’“’:(ul““’“m)ezgo}M1+"'+Mm=n}.

The set A, 1 depends on the choice of the integer m. However, we fix the
integer m for the set A, ; throughout this article. Hence, we omit m from
the notation of the set A, 1. We regard A, 1 as a subset of P by the injective
map from A, 1 to P given by = (p1,..., ftm) — > ey pici. Thus, for p=
(f1s- -y ptm) € Ay 1 and a; (1 <i<m —1), we have

pE o= (1, iy i £ 1 g1 F L fig2, - fim)-

For p € Ay, 1, the diagram of p is the set [u] = {(i,j) e NxN|1<j <
wi, 1 <i<m}, and a u-tableau is a bijection t: [u] — {1,2,...,n}. Let t* be
the p-tableau in which the integers 1,2,...,n, are attached in the order from
left to right and from top to bottom in [p]. The symmetric group &,, acts
on the set of u-tableaux from the right by permuting the integers attached
in [p]. For p,v € Ay 1, a p-tableau of type v is a map T': [u] — {1,...,m}
such that v; = #{x € [u| | T'(x) =1i}. For p,v and p-tableau t, let v(t) be a
p-tableau of type v obtained by replacing each entry ¢ in t by k if the ¢
appear in the kth row of t”.

For € Ap 1, let &, be the Young subgroup of &,, corresponding to p,
and let Z,, be the set of distinguished representatives of right &,-cosets.
For p,v € Ap1, Dy = 2, N 2,1 is the set of distinguished representatives
of 6,-6, double cosets.

4.2.

Let R be an integral domain, and let ¢ be an invertible element in R.
The Iwahori-Hecke algebra r.%, of the symmetric group &, is the associa-
tive algebra over R generated by T1,...,T,_1 with the following defining

relations:
(T-aq)(Titqh)  (1<i<n-—1),
LTinTi=TinTiTin (1<i<n-—2),
Ty =11, (li— j1 2 2).
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For w € &,,, we denote by ¢(w) the length of w, and we denote by Ty, the
standard basis of r.7%, corresponding to w. We define an antiautomorphism
*'Ra“f Sx—a*eptly by T =T, fori=1,...,n—1. Thus, we have T =

Ty for we &,. For pe A, 1, set x, = Zwee ¢"T,. and we define the
right r7,-module M* = x,, - r7,. The ¢- Schur algebra g.7, 1 associated
to p7,, is defined by

R =Fnd e, (€D M*).

/J“EAn 1

The following lemma is well known (see, e.g., [M, (4.6)]).

LEMMA 4.3. For ji,v € Ap1 and d € Dy, let T =v(t*-d), S = pu(t”-d1).
Then we have

Z qﬁ(y)T;xv = Z qg(w)Tw = Z qé(:c)qux.
yeEDy we6,dS, €D,
()= v(v-z)=T

Thanks to this lemma, for pu,v € A, and d € %, we can define an
r,-module homomorphism z/;l‘iy : MY — M*" by

oo m=( Y W) h

yED,
u(t-y)=5

(> D) h (et

€D,
v(th-x)=T

We extend this homomorphism to an element of r.%,1 by wiy(m.r) =0
for m, € M7 with 7 € A, such that 7 # v. It is known that {wi,, | u,v €
Ap1,d € Py} gives a free R-basis of 7,1 (see [M, Theorem 4.7]).

4.4.

Next, we define the Borel subalgebras of g.#,1 following [DR2]. Let
I(m,n)={i= (i1,...,in) | 1 <ix <mfor 1 <k <n}. &, acts on I(m,n)
from the right by i-w = (iya),.--,lwm)) for i=(i1,...,in) € I(m,n) and
w € &,,. We define a partial order > on I(m,n) by

"...’.n L .7---7.7’1/ sl - 900y
(41 in) = (J1 jn) if and only if iy > jp for all k=1 n
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For A€ A, 1, put

ix=(1,...,1,2,...,2,...,m,...,m).
——— ———

A1terms Ao terms Am terms

For € Ay 1, we set

Q% () ={(\,d) | A € Ap1,d € Dy, such that iy -d =i},
QF(n) ={(\,d) | A€ Ap1,d € Dy, such that i, -d <iy}.

Let RYE’? be the free R-submodule of r.7;, 1 spanned by {@biu | (A, d) €
Q= (n), 1 € Apa}, and let RYE’? be the free R-submodule of r.#}, 1 spanned
by {wi)\ | (A\,d) € Q= (), € Ap1}. By [DR2, Theorem 2.3], RYE? (resp.,
Rynzf ) becomes a subalgebra of p.%), 1.

4.5.
We denote g(q)7n,1 (resp., @(q)Y§f,Q(Q)Y5§)) simply by . (resp., YRS’?,

n
5’7?? ). The following theorem comes from the works of several authors.

THEOREM 4.6. (see [J], [Du], [PW], [DR2], [DP])

(i) There exists a surjective homomorphism of algebras

p:U;— Sna.
(i) By restricting p to UZ® (resp., U="), we have the surjective homomor-
phisms
>0 >0 <0 <0
p\quo LU — S ,0|Uq§0 DU — S

(iii) By restricting p to zUy, we have the surjective homomorphism
plzu, : 2Uqg— 2501

(iv) By restricting p to ZUEO (resp., ZU[ISO), we have the surjective homo-
morphisms

. >0 =0 . <0 <0
Playzo: 2Us =250y, plygor 2Us =270y

We can describe precisely the image of the generators of U, under the
homomorphism p in Theorem 4.6 as follows.
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PROPOSITION 4.7. (see [S2])
(i) Fore; (1<i<m—1), we have

ple)=> a0,

)U“eAn,l

where if p+ a; ¢ Ay 1, we define w}H%M =0.
(ii) For f; (1 <i<m—1), we have

)= 2 "
MeAn,l
where if p— a; ¢ Ay, we define w!lk%u =0.
(iti) For K (1<i<m), we have

p(KF)= > ¢,

HEAR 1

Clearly, }ML is an identity map on MH.
Proof. See Appendix A. H

4.8.

By Theorem 4.6, the g-Schur algebra .#, ;1 is a quotient algebra of Uj,.
Thus, .71 is generated by the generators of U,. Doty and Giaquinto [DG]
described the kernel of the surjection p : U, — ., 1 precisely. Moreover, they
also gave a presentation of the g-Schur algebra z.7, 1 over Z.

THEOREM 4.9. ([DG, Theorems 3.1 and 3.3])

(i) The g-Schur algebra 7, 1 is isomorphic to the associative algebra over
Q(q) generated by e;, fi (1<i<m—1) and Ki (1<i<m) with the
defining relations (1.2.1)-(1.2.6) together with the following two rela-

tions:
(4.9.1) KlKQ“'Km:qn,
(4.9.2) (Ki = 1)(Ki — q)(K; — ¢%) -+ (K; — ¢") = 0.

1) z.%n1 18 the Z-subalgebra o n.l1 generate att e; ) =.an
(i) 271 is the Z-subalgebra of Sy generated by all e, [, K, and
(K30 for1<i<m-1,1<j<mk>1t>1.

In [DG], they gave an alternative presentation of .%, ; by generators and
relations as follows.
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THEOREM 4.10. ([DG, Theorem 3.4))

(i) The q-Schur algebra 7,1 is isomorphic to an associative algebra over
Q(q) generated by E;, F; (1<i<m—1) and 1\ (A€ A1) with the
following defining relations:

1n1, = dyuly, > =1
)\EAnJ
B, = g, B if A+ O-lz‘ €A,
0 otherwise;

P, {n_aiﬂ if A—ai € Any,

otherwise;

N Ely_o, ifA—a; €Ay,
otherwise;

otherwise;

1, F) = {Fil)\—i—ai Zf Ao, € An71,

EiF; - F;E;i=06;; Y [A— A1)l

AEA 1
Eis1E} — (q+q ")EiEix1Ei + E} Eix1 =0;
EiE; = E;E;  (li—jl>2);
Fi1FP = (q+ ¢ ") FiFiz Fi + FFiq =0;
FiFj=FiF; (|i—j|=2).

(ii) zSn,1 is the Z-subalgebra of 7,1 generated by all Ei(k),Fi(k) (1<i<
m—1,k>1), and 1y (A€ Ap1).

REMARK 4.11. For A€ A1 and i=1,...,m — 1, put 0} = [\; — \i1]1a,
and put 74, , = {77;\ |1<i<m—1,Ae A, 1}. It is clear that .7, ; is iso-
morphic to Sg “m1 defined in Section 2.5. Clearly, S;M"’l satisfies condition
(C-1). It is known that the ¢-Schur algebra z.7,1 over Z has a triangular
decomposition which coincides with the triangular decomposition of zS&,
in Proposition 3.2, and that z.7,; is a cellular algebra. Moreover, zA(\)
for A € /1:;1 coincides with a cell module of z.7, 1 thanks to Theorem 3.4.
In particular, /1:;1 coincides with the set of partitions of size n (see [DR2]
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and [M] for the results on g-Schur algebra z.%,1). Thus, .%,,1 (28] (An1))
satisfies conditions (A-1), (A-2), and (C-1).

In [DP], a presentation of Borel subalgebras yngj) and Ynzf was given as
follows.

THEOREM 4.12. ([DP, Theorem 8.1]) The Borel subalgebra Yngf (resp.,
5”5?) is isomorphic to the associative algebra generated by f; (resp., e;)
(1<i<m-—1) and KZjE (1 <i<m) with defining relations (1.2.1), (1.2.3),
(1.2.6), (4.9.1), and (4.9.2) (resp., (1.2.1), (1.2.2), (1.2.5), (4.9.1), and
(4.9.2)).

REMARK 4.13. The above presentation of Borel subalgebras is not exactly
the same as the one given in [DP, Theorem 8.1]. However, it is equivalent
to their presentation (see [DP, Remarks 4.4]).

85. Review of cyclotomic ¢-Schur algebras

In this section, we recall the definition of cyclotomic g-Schur algebras ., ,
introduced by [DJM], and we review some results on Borel subalgebras of
Zn.r obtained by [DR2] which have an important role in later arguments to
obtain presentations of .7}, .

5.1.

Let R be an integral domain, and take parameters ¢,Q1,...,Q, € R,
where ¢ is invertible in R. The Ariki-Koike algebra r.777, , associated to &,, x
(Z/rZ)" is the associative algebra with 1 over R generated by Ty, T1,...,
T,,—1 with the following defining relations:

(To — Q1)(To — Q2)--- (To — Q) =0,

(Ti—aq)(Ti+q ") =0 (I1<i<n-1),
TohToTy =TT T To,

LT T =T 1T 1 (1<i<n-2),
LT, =TT, (i - j1>2).

The subalgebra of r.77, , generated by T1,...,T,—1 is isomorphic to the
Iwahori-Hecke algebra gr.J%,. We define an algebra antiautomorphism
*: pilyydx = x* € gy, by T =T, for i=0,...,n —1.
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5.2.
Put

An,r = {M = (,u(l)) s ),U'(T))

n® = (i) e Zgo}
r n k '
D k1 Qi1 Mz(‘ '=n

Thus, A, , is the set of r-tuples of compositions with n parts whose size
is equal to n. Put m =rn, and put pr = (k — 1)n for k=1,...,r. Then,
there exists a bijection from A,, to A,; such that p+— [, where @ =

— _ . — k
(T1, Hgs - - 5 ) € Ap1 Obtained by [, ;= ME ),

5.3.
Fori=1,...,n,put Ly =Tp and L; =T;_1L; 1T;—1. For p€ A, ,, put

rooag

+ _ + _
uy, _HH(Li_Qk)’ my, = Ty, , MY =my, - R, ,,
k=1i=1

where aj = Zf;ll 19| with a; = 0. Note that (m,)* =m,, and we define
(M#*)* = gt} - my. The cyclotomic g-Schur algebra g.7},, associated to
RrIy, r is defined by

8Snr=End, 7, . ( D M“).
MEAp, ¢

The following properties are well known, and one can check them by
direct calculations by using the defining relations of r.J7, ;.

LEMMA 5.4. We have the following.
(i) L; and Lj commute with each other for any 1 <i,j <n.
(ii) T; and L; commute with each other if j #i,i+ 1.
(iii) T; commutes with both L;L;y1 and L; + Li41.
(iv) Fora€ Randi=1,...,n—1, T; commutes with H§:1(Lj —a) if k #i.
v) Lip1Ty=(q—q ") Lig1 + TiLi, TiLiy1 = (¢ — ¢ ') Liy1 + LiT;.
(vi) LiT;=(¢"" = q)Lit1 + TiLiy1, TiLi = (¢ " = q)Liy1 + Lin1 T;.
5.5.

For A\, € Ay, and d € %ﬁ such that iy - d = iy, we define gpgl\yu € RS nr
by

—~

@c){,u(ml/ : h) = 5uu( Z qg(w)Tw>U: -h (V € An,ra h e ijn,r)-
WEGXdGH
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This is well defined by Lemma 4.3, and we have ¢¢ , € Homy e, (MH, M )
by [DR2, Lemma 5.6].

For \,pe€ Ay, and d € @ﬁi such that iy = iy - d, we have iy - d-1 > iy
and d~! € Qxﬁ from definitions immediately. Thus, we can define goﬁ_; €
Hom,, s, , (M*, M?) as above. On the other hand, by [DJM, Corollary 5.17],
we have ¢ | (m,,) € (M*)* N M*; hence, (¢4, (m,))* € M# 0 (M*)*. Thus,
we define goif \ € RSy by

1 %
@ﬁA(my ~h) =0 (go‘iu (m#)) -h (veA,,, herit,,),

and we have go’d/\ € Hom,, s, , (M*, M").
Let R&”<O (resp., Rﬂ%ﬁ)) be the free R-submodule of r.”,, spanned
by {90/\# ‘ (Avd) € Qt(ﬁ)uu € An,r} (resp., {902{)\ | (Avd) € Qj (H),,u € /_1n,7"})‘
Then r.=0 (resp., r7)) is a subalgebra of .7, and {gaiu | (\,d) €
Q= (@), pu € Apr} (resp., {gpﬁ)\ | (\,d) € Q= (1), € Apy}) gives a free R-
basis of r.7=) (resp., 7)) by [DR2, Lemma 5.12, Theorem 5.13].
Moreover, Du and Rui [DR2] proved the following theorem.
THEOREM 5.6 ([DR2, Theorems 5.13 and 5.16]).
(i) There exists an algebm isomorphism F=<0 : RY<0 — RY " such that
F2UeS ) = v, for of € {98, | (X d) € Q= (), MGAM}

(ii) There exists an algebm zsomorphzsm F20: g2 — RS - such that
-7:20(90“,,\) = EX for @M,,\ € {SOM,)\ | (A d) € (7 )aM = An,r}-

(iii) pSnyr has a decomposition

<0 >0 <0 1 >0
RSy = Ryrfr : Ryn_,r = Z R‘yn_,'r TPANT Ryn_,r :
)\EAn,’r

86. The cyclotomic ¢-Schur algebra as a quotient algebra of ﬁq

In this section, we give a surjective homomorphism from ﬁq to S

6.1.

As in Section 5, let n,r be positive integers, and put m = nr. (We need
this condition to apply Theorem 5.6 later.) Let I'={1,...,n} x {1,...,7},
and let I" =1\ {(n,r)}. As a convention, we set (n+ 1,k) = (1,k + 1)
and (0,k+1) = (n,k) for k=1,...,r — 1. For (i,k) € I', put £; ) = €p, 1+,
where pr = (k — 1)n. Thus, we can rewrite the weight lattice P by P =
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@(i k)er Ze (i k), and we regard A, as a subset of P by the injective map
from A, , to P given by A, , 3 p+— Z(i’k)ep u,gk)s(i,k) € P. For (i,k) eI,
put hg gy = hp,+i; then the dual weight lattice PV can be rewritten as
PV = @(i,k)ef Zh; iy Moreover, for (i,k) € I'', put o k) = Qpy i = (k) —
E(i41,k)- Thus, for p € Ay, p= ) makes sense in P.

6.2.

For p€ Ay, and (i, k) € I, if pp+4 v ) € Apr then we have iy >'1u+a<zk>
from definitions. On the other hand, if u — () € Ay, then we have

Vimai 5y = ip- Then, for (i,k) € I'", we define elements goik) € pSnyr by

(k)
+ —piyq+1
S0(’L7k) - Z q i SOIU’J’_O‘ (4,k) M
HEATL,T

(k)
- = —p; +1 1
S0(’L,]€) - Z q SOM o4, k)?/'”
HEATL,T
where we set 90;}+a(i,k)7u =0 (resp., gpu iyl = 0) if p+ gy & Anyr (vesp.,

H—= O k) ¢Anr)
For (i,k) € I', we define /4:( k) € RS, by

o)
D P

NEAn,r

and we write IQ( k) by £ ;1) for simplicity.

For y € Any and (i,k) € I, put N = Y0 u® + 02 Y. By
Lemma 5.4, one sees that (Ly41+Lyyo+-- ‘+LN+u(k)) commutes Wlth My
Thus, we can define 0'( K € RS nr DY

Uéyk) (my -h) =0, (mu(LN+1 4+ 4 LN+“§k))) -h (vedp,herit,,),

where we set Ué7k) =0if u(-k)

;= 0. Moreover, we define

yn
Z T(i,k)
HEAn

6.3.
Recall that A= Z[v1,...,7,] is the polynomial ring over Z = Z[q,q™!]
with indeterminate elements ~1,...,7, and that K =Q(q,71,...,7) is the
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quotient field of A. We denote k.7, , simply by .7}, ., where we set Q; =;
(1 <i<r). Now, we can define a surjective homomorphism of C-algebras
from U, to ./, as in the following proposition.

PROPOSITION 6.4. There exists a surjective homomorphism p: Uy — Sy
such that, for (i,k) eI,

(6.4.1)  plepti) =9,
(64.2)  p(fpr+i) =P 1

K, k)R(1 k1) R (n, k) F(1,k+1)

—Vk+1 q—q-1
~ _ — 71 . L
(643) p(Tpk+i) = + H(n,k)’%(l’kJrl) (q O(nk) — qa(l,k+1)) if it=n,
K(i, ”_i —n_z. K(i41, .
GRT 1k~ k) TEHLE) otherwise
q—q ’

and that, for (i,k) € I,
(6.4.4) pKE )=kt

Moreover, by restricting p to Aﬁq, ﬁ|AU gives a surjective homomor-
q

phism from Aﬁq to AT nr

6.5.
The rest of this section is devoted to the proof of the proposition. The
following relations are clear from the definitions:

(6.5.1)  KamkGy =KGOEGR  BaRRG R = B ek = 1-

Since go,il, is the identity map on M" and O-Z;,k) € Hom s, , (M#", M*), we
have

O’é{;vk) 8013’1/ - Soi’ygéé:k) - 5/1,[/0-';;]{:)‘
This relation combined with (6.5.1) implies that

) (B B 1) (@ Oy — 90 (1k41))
(6.5.2)

= ("i(n,k)’%(_lk_,_l)(qila(n,k) - qa(l,kﬂ)))/‘&(g‘,l)-
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6.6.

By the definitions of gpik),/@ik), it is clear that the elements gpak) (resp.,
Lp&’k)) for (i,k) € I are in .7 (resp., .#/7), and that /i( ) for (i,k)erl
is included in both of 5”%79 and Yn%(,) Recall that, in the type A case, there
exists a surjective homomorphism p: U, — 5,1 (Theorem 4.6). Here, we
extend this homomorphism to a homomorphism over K. By using the iso-
morphism F=0 : 5”>0 ;QS” g (resp., F=0: 5”<0 K;&”Tf?) in Theorem 5.6,
we have the followmg proposition.

PROPOSITION 6.7. We have the following.
(i) yn%O is generated by <p( 5 ((i,k) e I'") and /1 (( i,k)yel).

(ii) 5”7;0 is generated by Plik) ((i,k) € I'") and Iﬁl(lk ((i,k)eT).

Proof. We show only (i) since (ii) is shown in a similar way. By the above
arguments, goz k) and H?; ) are elements of Ynzﬁ) On the other hand, by

Proposition 4.7 and Theorem 5.6, we have ((F=%)"1 o p)(ep,+i) = goa y and

(F20)~t )(K;*;H) = ni - Moreover, KYE}P is the image of UZ° under

p by Theorem 4.6(ii), and UqZO is generated by e; (1<i<m—1) and K;°

(1 <i<m). This implies (i). 0
6.8.

In the proof of Proposition 6.7, we have a surjection (F=%)"lop: Uq20 —
20, Under this surjection, relations (1.2.2) and (1.2.5) imply the following
relations (6.8.1) and (6.8.3). Similarly, the following relations (6.8.2) and
(6.8.4) follow from relations (1.2.3) and (1.2.6).

(6.8.1) K k)Pl kaR = q<a<j,l)vh(z',k>>¢al),

(6.8.2) K(i )P kin) =1 —legaam) g ©Ga»

(6.8.3) (P?;il,k)(‘p?; k))2 —(g+ q_l)go(i,k)(p(iil,k)go?;,k) + <90?;,k))290?;i1,k) =0,
CanPin = Phr  (r+9)—m—1)22),

(6:8:4) Yy 1y (Piny)” = @+ 070G 0 Plsrn Piiny) T Pl Pirrn =0,

Can®on =CanPar (@r+i)—m—75)]=2).
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6.9.
Fori=1,...,n—1,let s; =(i,i+ 1) € &,, be the adjacent transposition.
For pi,v € Ay, put X ={x € 25 | U(t* - 2) = (") }. One can check that

(6.9.1) Xﬁ_a(i,k) — {1, SN, (SNSN+1), ceey (SNSN+1 s 8N+M<-i)1*1)}’

(692) Xﬁ_a(i’k) = {1, SN—-1, (sN_lsN_g), ey (sN_lsN_g te SN—IJgk)‘H)}’
+ag

(693) X/lj aen = {LSN) (SNSNfl)a ceey (SNSNfl t 'SN_M{’C)_i_l)}a

(6.9.4) Xﬁ-i‘a(i,k) = {1, SN+1, (SN+1SN+2), ceuy (SN+1SN+2 s SN+u§i)l—1)}’

where N = Y57 [u® + 530, ul, and put p) = p{**Y if i =n. Then,
we have the following lemma.

LEMMA 6.10. For p€ Ay, and (i,k) € I'', we have the following.

(1)

(k)
+ TS | V4
Pl () = 41 mu+a<i,k>< ) q(y)Ty>
yexﬁ+a(¢k>

— ) )k
—q ui+1+1( R )Tx)hi(i,k)mm

mto
.’L'GXM (4,k)

where b, = L (i #n)
Hk) Lyi1—Qpia (i=n) (N=[pD|+-+|p®)]).
(i)
_ L .
Piip) (M) = a7 +1< > qf(y)Ty)m"

yGXZia(i’k)

_ ) 1 O(x

:q H; + mﬂ_a(i,k)hli(i,k)< Z q( )T$>,
xeXﬁ,au’k)
! (i #n),

where h" . . =
o {LN—QMJ (=n) (N =[p0] 4+ |u®]).

Proof. This is a direct consequence of the definitions and Lemma 4.3. []
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This lemma implies the following proposition.

PROPOSITION 6.11. For (i,k), (j,1) € I'', we have the following relations.
(i) If (i,k) # (4,1) then we have

+ - - Lt
Plak) PG ~ PPk =0

(i1) If (i,k) = (4,1) and i #n, then we have

(i, k) R (i 1,6) — i o) R G+LR)
qg—q! '

+ +
Plik)Plik) ~ Plik) Plik)

(iii) If (i,k) = (4,1) = (n, k), then we have

Pl P ) ~ Py ()

Rnk)F 1 k+1) = Fnk) F(LE+1)
q—qt

= —Vk+1
+ H(n,k)ff(_l,kﬂ)(q_la(n,k) — 4O (1 k+1))-

Proof. By Lemma 6.10, for u € A, , and (i, k), (j,1) € I"", we have

+ -
Plis) P (M)
)

— ot —py o+l # He)

= So(i,k) <q J m,u—a(j,z)hf(j,l) ( Z q (x Tm))
PE€X i)

D41 —(u—ag; )™ 1 L(y) 12

—q M g @G:0))it1 m#( Z q Ty) =G

(h=a(j1))
ye (b=a( p)ta( k)

XI»L
TEXu—a(j

On the other hand, we have

- At
PP i) (M)
_ )
= Plik) (q “’“Hmw%,m( >, qam)T”D
xeXﬁ_‘_a(i 5
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_ (k) _ X @ o
S | +oag ) +1 HT (4 k) £
g Mg (etedn); muh_(j,l) ( E q (y)Ty)

(H+Oé(i7k))
YER (uteu(s k) —as1)

zeXt

He (i k)

O] (k) (k) O]
One sees that ¢ * +1q_(“_a(jyl))i+1+l = q_“i+1+1q_(“+o‘(i,k))j 1 for any

case. Put
(X ) se(( T am)
S T P Xiag
C:( Z qe<y>Ty), D:( Z qax)Tz)

(nte(; ) zeX

n
pto
YER (uta(s k) =os.1) k)

Using this, one can prove the three assertions of the proposition as follows.
(i) First, we assume that (i,k) # (4,1). Then we have h* . = pHTam

(.]7l) _(Jvl) ’
and h’i(j j commutes with A If (pj +1) — (pr + %) # 1, then we have

(h—a) _ M (bta, k) v
(=agp)taar X“Jro‘(ivk) and X(N+Oé(i,k))—a<j,z) - Xﬂ*a(j,z)' Thus, we have
A =D and B = C. Moreover, one sees that A commutes with B. If (p; +1) —

(b—ov4,1)) _ yletagr) nd XH _
(h=agp)taur — = (ptagrn)=ag) pagy —
X;/era(i ., Hence, we have A= C and B = D. This implies (i).

(ii) Next, we assume that (i,k) = (4,1) and ¢ # n. Then we have hfi(j =
BT =1 Put N =S @]+ 30, pl?. Then by (6.9.4) and (6.9.2),
we have that

(pr+1) =1, then we have X

(h—a i, )
(6.11.1) X(N_O‘((i,:)))"'a(i,k) ={1,sn, (sNSN11) .-+ (SNSN41- SN

w )}

141

(o k)
(6.11.2) X(M"r@((z‘,:)))—a(i,k) == {1, SN, (SNSNfl), ey (8]\/8]\/71 te SN_,UEIC)_H)}.

Combined with (6.9.2) and (6.9.4), we have AB — CD = B — D. Note that
my Ty = qg(w)mu for w € §,,; then we have
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(@Z,k)so(,,k) - %,k)soak))(mu)

uﬁk)—l Ngljr)1_1
N ORN! “
— R (S @) - (X @2) )m,
a=0 b=0
Bk R T B k) R+ LE) (m,,)
_ )

q—q!
This implies (ii).
(iii) Finally, we assume that (i,k) = (j,1) = (n,k). Put N = Zle D

then, we have hli(n,k:) =Ly — Qpy1 and h’i?:%’” = Lyi1 — Qpy1. Hence,
we have
+ - -+
(@) Py ~ Pl )Pk (M)
k) _ (k)
(6.11.3) =gt M (A Ly -B—Lyy1-C- D)

— Quprg M ¥, (AB — CD).

In a way similar to the case of (ii), we have

K(nk) (1 k1) ~ Fn k) (1LE+1)

(k) ( )
my ).
g—q! .

(6.11.4) ¢ =m" i (AB - CD) =

By Lemma 5.4, we can prove the following formula by induction on c¢:

Ln(Tn-1TN-2---Tn—c)
C
(6.11.5) =(qg—q ") (Z Tn-1TN—2-Tn_¢ 'TN—cLN—erl)
=1

+ TN—ITN—2 ce TN—CLN—07

where TN_g means removing Tv_¢ from the product Ty _1Tn—2---Tn_e.
Combining this with (6.9.2), we have

p) —1
Ly-B=Ly+ Z (¢°LN(TNTN-1-+-Tn—c))

c=1

u%’“)—l

=Ln+ Y {qc(q —q ")

c=1
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C
X (Z Tn-1Tn—2 Ty 'TN—CLN—g+1)

e=1
(6.11.6) + chNflTN72 X 'TNchNfc}
FORERON
=Ly+ Z (Z DTN A Tn—g- T "'TNfc)
&=1 c=¢
X LN —¢41
a9

+ Z ¢ IN-1-TN-cLn-c

Similarly, we have

Lyy1-C=Lny

FOREN N

+ Z (Z “Ng—q¢ VINTN-1 - Tog---Tn- c)

£=0 o=t
(6.11.7)

X Ln-¢+1
o) —1

+ > ¢ TINTN Ty Ln e
c=0

by using the formula. We also have

Lyii(TnaiTN+2 - TNte)

(6.11.8) = (q—l_q)c+z(q—1_
=1

X ( > IN+iy TN iy "‘TN+i§)> “LNtet1,

(#15--58g) 8-t
1<y <ig<-<ig<c

which is proved by induction on ¢ thanks to Lemma 5.4. Relations (6.11.6)
and (6.11.7), by making use of (6.11.1) and (6.11.2), combined with
Lemma 5.4, imply that
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A-Ly-B—Lny1-C-D
(6.11.9) =Ly-B— (1 +alg—q )

49
+ Z “tl(q q_l)TN—lTN—Q"'TN—c>'LN+1'D-

Note that m,T', = qé(w)mu for we &, and so (6.11.6) implies that
(k) _
(6.11.10)  my - (Ly - B) =mug®# D (Ly 4+ Ly_1 +--- + Ly 09,0):

Similarly, (6.9.4) and (6.11.8) imply that

(1 +alg—q )+ Z “Ng—gq )TN Ty o ‘TNfc)
(6.11.11) -Lyny1-D
—m Q(M&k))(L + L 4+ 4+ L )
=muq N+1 N+2 N+Mgk+1) .

By (6.11.9)—(6.11.11), we have

(
q i = )+1mM(A'LN'B—LN+1°C‘D)
() (k41) ,
:muqlf‘n Hy (q 1(LN+LN_1+..._|_LN_M£LI€)+1)
(6.11.12)
—q(LNt1+ Lynta+ -+ Ly k+1>))
= Hn,k/‘i(_ljk_H)(qilU(n,k) - qa(l,k+1))(mu)'
Now (6.11.3), (6.11.4), and (6.11.12) imply (ii). 0

We can now prove Proposition 6.4.

Proof of Proposition 6.4. By relations (6.5.1), (6.5.2), and (6.8.1)—(6.8.4)
together with Proposition 6.11, one sees that the homomorphism p in Propo-
sition 6.4 is well defined. On the other hand, by Proposition 6.7, we have
ﬁ(ﬁqzo) 7Y and ,o(U<O) Yn%?. Moreover, we know that ., , = =" x
5”%9 by Theorem 5.6. Thus, we see that p is surjective.

By Theorem 4.6(iii),(iv) combined with Theorem 5.6, ﬁ|AL~,q gives a sur-

jection from Aﬁq to 4-~%n,r- The proposition is now proved. 0
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87. Presentations of cyclotomic ¢-Schur algebras

In this section, we give two presentations of cyclotomic ¢g-Schur algebras
by generators and defining relations (see Theorem 7.16(ii),(iii)).

Recall that ., , is the cyclotomic g-Schur algebra over K = Q(q,71,. ..,
~r) with parameters ¢,v1,...,%.

7.1.

For presenting cyclotomic ¢-Schur algebras by generators and relations,
we prepare some notations. Let K(z1,...,Z;,—1) be the noncommutative
polynomial ring over C with indeterminate elements x1, ..., x,;,—1. Note that
K{xi,...,xy,_1) is isomorphic to the free K-algebra generated by z1,...,
Tp—1. Put x = {z1,...,21}. For (i,k) € I, set x(; ) = Tp,+i, Where
pr = (k—1)n. Thus, we have x = {x(; 1y | (4,k) € I} and K(x1,...,2m-1) =
K(x) =Kz p | (i, k) € IT7).

For g(x) € K(x), let g(¢™) (resp., g(¢ ™)) be the element of .7, , obtained
by replacing z(; ;) with (pz;’k) (resp., cp&,k)) in g(x). Then, we have the
following lemma.

LEMMA 7.2. For A€ A, and (i,k) € I, there exists an element

Towy =D 1397 (X) @ g (x) € K(x) @x K(x) (rj €K, g5 (x), g7 (x) € K(x))
J

such that J()‘M) = Zj Tjgj_(@f)gj(@ﬂ@i,/\'

Proof. By Theorem 5.6(iii), we have .7, , = 5”,;,9 . Yn%?. On the other
hand, by Proposition 6.7, Yn%? (resp., 5’,?79) is generated by 90& k) (resp.,

‘pz;,k)) for (i,k) € I and by /@?;k) for (i,k) € I'. Recall that /i?;k) =
(

ZueAm qi“ik)cpb,u and that ‘ﬂiu is the identity map on M* and the zero
map on M7 (7 # p). Moreover, {¢}, , | 1 € A, } is a set of pairwise orthog-
onal idempotents. Combined with relations (6.8.1) and (6.8.2), we obtain
the lemma. 0

7.3.

In general, the element gz\i,k) € K(x) @ K(x) satisfying the condition in
Lemma 7.2 is not unique. Throughout the rest of this article, for (i,k) € I/
and A € A, ,, we fix gf\i,k) once and for all.

Let K(F1,...,Fpn_1,E1,...,Epn_1) be the noncommutative polynomial

ring over K with indeterminate elements Fi,...,F,_1,F1,...,Enh_1. Put
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F={F;|1<i<m-—1}, and put E={FE;|1<i<m—1}. For (i,k) eI,
set F; k) = Fp,+i, and set E(; ) = Ep, ;. For g(x) € K(x), let g(F) (resp.,
g(E)) be the element of K(F) (resp., K(E)) obtained by replacing x(; ) with
Fi gy (vesp., B 1)) in g(x). For gj} = 35,1595 (x) @ g5 (%) € K(x) @ L(x)
((i,k) e I',pp € Ay ) in Lemma 7.2, put

(7.3.1) Toxy(FE)=> rig; (F)- g} (E) € K(F,E).
J

7.4.

Let S, be the associative algebra over Q(q,71,...,7,) with 1 generated
by Eiry, Fr ((1,k) € I') and 1y (X € Ay,;) with the following defining
relations:

(7.4.1) 1n1, =0yl Z 1,=1;
AEATL,T

(74.2)  Egply= {1A+a(i,k>E<z‘,k> if A+ iy € Anr,

0 otherwise;

(743) F(’L k) 1)\ — A—a, k)L (4,k) 1 a(z,k) n,r
7 0 otherwise;

0 otherwise;

Firmybtauy HAFaur € Adny,

= E(ka) 1)‘*04(1',1@) if A— Q(i,k) € An,'r,
(7.4.4)  LEup

0 otherwise;

A .
(74.6)  EumFin —FunEar =06r.00 D Mk
AeAn,T

(7.4.7) Ez15)(Ein)* — (a+ ¢ ) EiwEix1 i Ein
+ (E(i k) E(iz1,5) = 0;
EanEGy = EgnEar (e +9) = (p+ )] 2 2);
(7.4.8) Fliz1,p) (F(i,k))2 —(q+a ) Fp FaspnFur
+ (Fi) Flizi g =0;
FimFon=FonFar  (ox+1)—+i)>2),
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where
(=1 AR = A{FY]
Mm=q + N g (F B~ agd ) (FED)LL ifi=n,
[)‘Ek) - Af’i)l]l)\ otherwise.
7.5.

It is clear that S, , is a homomorphic image of gq(/ln,r) defined in Sec-
tion 2. Thus, S, , is a homomorphic image of ﬁq. In fact, as the following
lemma shows, S, is isomorphic to SgA"’T, where 14, , = {nE\M) | (i,k) eI,
NE A}

LEMMA 7.6. For (i,k) € I'" and \ € Ay, we have 17()‘2. k) € g(;g';rl)\ and
NAp.r

deg(n&k)) =0. Thus, Sy, is isomorphic to Sy

Proof. FrOIil tEe definitions of gz\mk)(F, E) and gz\l’k +1)(F, E), it is clear
that 776\1. K € S; 8,715 Note that a()‘ K € Hom s, , (M*,M?). Lemma 7.2,

together with the definitions of go?;l), implies that deg(gz\i k)(F, E))=0.

Thus, we have deg(n()‘%)) =0. 0

From now on, under the isomorphism §,, , = S;M”’T, we apply to S, the

results in Sections 2 and 3 for SZA"”". Recall that p: ﬁq — Sprand U ﬁq —
Sp,r are surjective homomorphisms of algebras given in Proposition 6.4 and
Section 2.5, respectively. We have the following proposition.

PROPOSITION 7.7. There exists a surjective homomorphism of algebras
®:S,, — S, such that

(7.7.1) ®(Buw) =0l ®(Fin) =Car: 2 =@la

In particular, the surjection p: ﬁq — S factors through the algebra Sy, ,;
namely, we have p = ® o W. Moreover, by restricting ® to A4Sy, we have a
surjective homomorphism ® |A3m: ASnr — AT

Proof. First, we prove that ® gives a well-defined algebra homomorphism
from S, to .7, . One can easily check that relations (7.4.1)—(7.4.5) hold
in the images of ® for the corresponding generators. By (6.8.3) and (6.8.4),
relations (7.4.7) and (7.4.8) hold in the image of ®. Proposition 6.11 together
with the definition of nz\i,k) implies that (7.4.6) holds in the image of ®. Thus,
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® is well defined. By investigating the images of generators under each map,
we have p=® o ¥, and & is surjective. The last assertion follows from the
restriction of p=® o ¥ to 4U, together with Proposition 6.4. [l

Since Lp}\)\ #0in .7, , for A€ A, ,, and since ®(1,) = go}\’/\, we have the
following corollary.

COROLLARY 7.8. For A€ Ay, 1x#0 in S, .

7.9.

For A\ = ()\(1), .. .,/\(’”)) € A, ,, we say that X\ is an r-partition of size n
if all A(®¥) (1 <k <r) are partitions; namely, all A(*) are weakly decreasing
sequences. On the other hand, we have A}, ={A € A, |15 ¢ Spr(> A)} by
(2.10.1). Then, we obtain the parameterization of the isomorphism classes
of simple S, ,-modules as follows.

LEMMA 7.10. For 8, (2 8q™""), A = {N€ Any | 1n & Snr(> N} coin-
cides with the set of r-partitions of size n. In particular, the isomorphism
classes of simple Sy, r-modules are parameterized by A,“;r.

Proof. Let (i,k) € I'" be such that i #n. For a € Z~g and A € A,,,, we
can prove, by induction on a € Z~( together with (7.4.6), that

(7.10.1)  Ef ) F& 4 1x = [a]! (H[Ag’“ W —a+ j]) 1y mod S, (> \).
j=1

Assume that X € A,,, is not an r-partition. Then, there exists ¢,k such
that /\Ek) <A™ where 1<i<n—1and 1<k<r. Thus, by (7.10.1), we

i+1
have
(k) (k)
By Fo
(7.10.2)
AR g
=D+ T G- A8 - 1)1 mod (> ).
j=1

Since A — ()\gk) +1)a gy & An,r, the left-hand side of (7.10.2) is equal to 0 by

(k)

7.4.3). On the other hand, since AR A , we have AR L)) /\; -
7 i+1 ) 7=1

)\Z(-f_)l —1]) #0. Thus, (7.10.2) implies that 1 € S,,(> A) if A is not an
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r-partition. Hence, we have {\ € A,, | A : r-partition} D A} .. By Theo-
rem 2.16(iii), the isomorphism classes of simple S, ,-modules are parame-
terized by A} .. On the other hand, through the surjection ®:S,, — .7,
in Proposition 7.7, one can regard a simple ./}, ,-module as a simple S,, ,-
module. Moreover, it is known that the isomorphism classes of simple .77, ,.-
modules are parameterized by the set of r-partitions of size n by [DJM].
Thus, we obtain the lemma. 0

7.11.

Since Sy, is a quotient algebra of ﬁq, one can describe S, ,» by generators
and relations of ﬁq together with some additional relations. Here, we give
such additional relations precisely. For (i,k) € I"" and X € A,,,, we define
g(Ai,k)(f’ e) € ﬁq in a way similar to that in (7.3.1). Recall the bijection from
Ap r to Ay 1 such that g — 7z in Section 5.2. For A € A, ., put K = K5 € ﬁq,
where K7 is defined in (2.2.1). For (i,k) € I, put

9Gk) (fr€) = Z (Q(Ai,k)(fﬁ)KA),

AeAn,T‘
and put
KK -K K
(n,k) ™ (1,641 k)T (1,k+1)
(_’7k+1 qiq—l(n
_ -1 —1 e
Nik) = + Koy K (1 501y (@ 9y (fr€) —q9ak+1)(fr€)) ifi=n,
KimKo o —Ko K )
wh (ZH’;lqa(l’k) rh) otherwise.

Let fn,r be the two-sided ideal of (~fq generated by 7p, i — 1k ((4,k) €
F/), KlKQ e -Km - q”, and (Kz — 1)(KvZ — q)(KZ — q2) tee (Kz — q”) (1 < 1 <
m). Let Uy, = ﬁq/fn,r be a quotient algebra of [7,1. One sees that U, , is
isomorphic to the algebra generated by E;, F; (1<i<m—1) and K f (1<
i <m) with defining relations (1.5.1)-(1.5.3), (1.5.6), and (1.5.7) together
with the following relations:

(7.11.1) ek G — TG €r) = 0,k),G.0) M6 k)
(7.11.2) K1Ky- K=",
(7.11.3) (Ki — 1)(Ki — q)(Ki — ¢*) -+ (Ki — q") =0,

where we identify e xy < ep,+is f(ik) < [po+i and K(i,k) oK,
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PROPOSITION 7.12. fnm contains the kernel of the surjection W : ffq —
Sn,r. Thus, ¥ induces the surjection V' : U, , — Sy, . Moreover, U gives an
isomorphism of algebras.

Proof. From the definition, we have W(n; ) = ZAGAMW(/\Z‘ ky; thus, we

have W(7p, +i — 1(ik)) = 0. Note that W(K;) =5\, i1y we see easily
that U(K; -+ Kp) =¢" and U((K; —1)(K; —q) - -- (K; — ¢")) = 0. Thus, we
have fnm C Ker ¥, and ¥ induces the surjection ¥ : Uy, , — Sy, .

Let Uy, be the subalgebra of Uy, generated by K; (1 <i<m). In a way
similar to that in the proof of [DDPW, Lemma 13.39], the restriction of ¥ to
U2, gives an isomorphism U}, = 89 .. (Note that, in the proof of [DDPW,
Lemma 13.39], the authors use only the relations of K; which coincide with
the relations in Ugm.) Through the isomorphism Ugm = S%r, we have

(7.12.1) K\K, =6y, K), Y Ky=1
AEAR -

in Uy, ;. Moreover, for 1 <i <m and A € A,,,, we have K; K = quK)\; thus,
we have

(7.12.2) K:K( 3 KA): Y K.

AGATL’T AEAn,T

Let U':S,, . — U, be the homomorphism of algebras given by \I/T(E(z-,k)) =
€(i k) \I/T(F(Z-7k)) = f(ik), and UT(1,) = K. In order to see that UT is well
defined, we may check relations (7.4.1)(7.4.8) in the image of ¥ for the cor-
responding generators. Relation (7.4.1) follows from (7.12.1). We can check
relations (7.4.2)-(7.4.5) in a way similar to that in the proof of [DDPW,
Lemma 13.40]. Relation (7.4.6) follows from the definition of 7, ). Rela-
tions (7.4.7) and (7.4.8) are just (1.5.6) and (1.5.7), respectively. Thus, W'
is well defined. Moreover, by (7.12.2), we see that Ut is surjective and gives
the inverse map of ¥’; thus, we have U, , = S, []

7.13.
Our goal is to show that the surjection ® : S, , — .}, » in Proposition 7.7
is actually an isomorphism. Let

{esr| S, T €T (\) for some A€ A} }

be the cellular basis of .%,, constructed in [DJM], where 7 ()) is the set
of semistandard tableaux of shape A (see [DJM] for the definition). For
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Ae At let A (> N) (resp., S (> A)) be a subspace of .7, spanned by
{esr | S,T € T(u) for some p € A}, such that > A} (vesp., {@sr | S,T €
T (p) for some p € A}, such that g > A}); then both of 7, ,.(> ) and
Fnr(> A) are two-sided ideals of .7, .

It is known that ¢} y € (> A)\ S5 (> A) for A€ A (¢} is denoted
by @rapa in [DIM].) For A € A}, the left .#, ,-module W(A) of .7}, (the
Weyl module) is defined by

W) = (ynn" : ‘Pi,/\ + S (> )‘))/ymr(> A).

Note that W(A) is an .¥), ,-submodule of .7}, .(> \)/.%, (> A\). By [DR2,
Theorem 5.15] (and its proof), for S, T € 7 (u), we have

(7.13.1) @57 =51, pror,  Where psru € 775 and prur € 777,
One sees from this that
W\ =<0, (p}\7/\/(y§0 : cp}w\ N.Znr(>\)) as K-vector spaces.

It is known that {W(X) | A € A}, } gives a complete set of isomorphism
classes of (left) simple .7}, ,-modules. Similarly, we have a complete set of
isomorphism classes of (right) simple .7}, ,-modules {W*#()) | A € A}, } such
that

W) = 4,0%\9\ . QVZO/(@;,)\ : 5””279 NSpr(>A)) as K-vector spaces.

Recall that S50 (resp., S77) is a subalgebra of S, defined in Section 2.17.
Then we have the following lemma.

LEMMA 7.14. The restriction of the surjection ® (in Proposition 7.7) to
S=9 (resp., SZ9) gives an isomorphism ® |g<o: S50 — =0 (resp., @ |g>0:

870 — .720) of algebras.

Proof. By Proposition 6.7, the restriction of p (in Proposition 6.4) to ﬁqgo
gives a surjective homomorphism p | o ﬁqgo — Ynﬁf Since ® o U =p (see
Proposition 7.7) and \I,(ﬁqg()) = .75, we have a surjective homomorphism
) |S§2: 559 — 5””%9

On the other hand, thanks to Theorem 4.12, we can define a homo-
morphism ®'<0 of algebras from Yn%{) to Uy, by sending the elements f;

(1<i<m—1)and K (1<i<m) of Yngf to the corresponding elements
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of U,,. Combining this with isomorphisms Yi{) ~ 7= and U, , = S,

®'<0 induces a surjective homomorphism from Y;TD to S,fg. Thus, @ |s<o
) ) n,r
is an isomorphism. The case of Si 9 is similar. N

LEMMA 7.15. For \ € A,f,,, the restriction of ® to Sy, (> X) (resp., Sp,(>

A)) gives a surjective homomorphism of (Spr,Snr)-bimodules @ |s, (>x):
Snir(ZA) = Fnr(ZA) (resp., @ s, (52): Snr(>A) = Fnr(>N)).

Proof. Note that ®(1,) = gp}l’#, and note that go}w € Ipr(ZA)if p> A
We have ®(S,, (> \)) C S (> A) since .7, (> A) is a two-sided ideal of
-

On the other hand, one sees easily that

Snar(ZN) =D S301,870.
HEAT
H>A
Combining this with (7.13.1) and Lemma 7.14, we have pgr € ®(S, (>
A)) for any S,T € T(u) (u € A}, such that g > X). Thus, @ |g, (>y is a
surjection from S, (> A) to 7, (> A). The case of Sy, (> A) is similar. []

The following theorem is the main result of our article.

THEOREM 7.16. We have the following.
(i) ®: Sy — Sy gives an isomorphism of algebras. Moreover, by res-
tricting ® to 4Sn, ® | s, gives an isomorphism from 4Sp ., to A5 .
(ii) S, is presented by generators E py, Fipy ((i,k) € I'") and 1\ (X €
Ay, ) with the defining relations (7.4.1)-(7.4.8).
(iii) Z,, is also presented by generators e;, f; (1<i<m —1) and K;
(1 <i<m) with the defining relations (1.5.1)-(1.5.3), (1.5.6), (1.5.7),
and (7.11.1)~(7.11.3).

Proof. Through the surjection ® :S,,, — ., ,, we can regard the simple
Fnr-module W(X) (A€ Al ) as a simple S, ,-module, and {W () | X €
A} gives a complete set of isomorphism classes of simple S, --modules by

Lemma 7.10. As ﬁq—modules, both A(A) and W () are highest-weight mod-
ules with a highest weight A. Thus, by investigating the action on highest-
weight vectors of A(X) and W (), we have a surjective homomorphism

(7.16.1) A(X) = W(A)  as Sp,-modules.

We claim the following.
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CLAIM. For any A € /1 we have

AN) = W(A) as left Sy, r-modules,
A\ = WH(N) as right Sp-modules,
AN @k Aﬁ()\) Snr(ZN)/Snr(>A) as (Snr, Snr)-bimodules.

If we assume the claim, then we have

dimeSpy = Y (dime A(N)”

A,

= Y (dimeW(N)?

AEAT -
= dimy S

This implies that ® gives an isomorphism from S,,, to ., ,. Thus, it is
enough to show the claim.
We recall that

(7.16.2) AN =S5 1,/(S5) - NSnr(> ),
(7.16.3) W) = =0 ‘P%\,A/(ygo : SO%\,)\ NS (> )‘))

as IC-vector spaces. Lemma 7.14 implies the following isomorphism:

(7.16.4) o \Sgol S<01 = 5‘<Otp>\ A as K-vector spaces.

We prove the claim by backward induction on the partial order of AQLL’T

First, we suppose that A is maximal in A,tr. In this case, we have
Spr(>A) ={0} and ./, (> A\) = {0}. Thus, (7.16.1)—(7.16.4) imply that
AN) =W (N) as left S, ,~-modules. Similarly, we have Af(\) = W¥(\) as
right S,, ,-modules. Since A()) (resp., A¥()\)) is a simple left (resp., right)
Spr-module, the surjective homomorphism of S, ,-bimodules A(\) @k
AYN) = S, (> N)/Spr(> A) is an isomorphism.

Next, we suppose that A is not maximal in ATJ{J. The induction hypothesis
implies that the surjection @ [s, (>x): Snr(>A) = S (> A) in Lemma 7.15
is an isomorphism by comparing dimensions. Combined with (7.16.1)—
(7.16.4), this implies that A(X) = W(A) as left S, ,-modules. Similarly,
we have Af(\) = WH#(\) as right S, ,-modules. This implies that A(\) ®x
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A*(N) =S, (> N)/Snr(> A). Thus, we have the claim and (i) follows. The
remaining assertions (ii) and (iii) follow from Section 7.4 and Proposi-
tion 7.12. 0

REMARKS 7.17. (i) In the case where r = 1, generators and defining rela-
tions of Sy, , (resp., Uy ) in Section 7.4 (resp., 7.11) coincide with generators
and defining relations of ¢g-Schur algebras of type A in Theorem 4.10 (resp.,
Theorem 4.9).

(ii) By an argument similar to the case where r =1 (see Remark 4.11),
Snr (2 ,r) satisfies conditions (A-1), (A-2), and (C-1).

§8. An algorithm for computing decomposition numbers

In this section, we give an algorithm for computing the decomposition
numbers of S, , = .7}, » on an arbitrary field /' and parameters ¢,Q1, ...,
Q. € F. Throughout this section, we consider the objects over a fixed field F,
so we will omit the subscript F' (e.g., pSnr, FA(X),...) unless it causes some
confusion.

8.1.
Since Sy, satisfies condition (C-1), we can define a bilinear form (, ), :
A(X) x A(XN) — F by

(yIx,z1x) Ix=u(yly)zly mod Spr(>A) for z,yeS, .

Note that (, ), is symmetric. Put rad, A(\) ={Z € A(\) | (¥, 7), =0 for any
7 € A(N)}. One sees easily that (7,%), = (u(y),Z) for Z,7 € A(N); thus,
we have rad, A(A) =rad A(A). Hence, from now on we denote (, ), (resp.,
rad, A(\)) simply by (, ) (resp., rad A(N)).

8.2.
For an S, ,-module M, we have the weight-space decomposition

M= P M,

NeAn,r

where M, =1, - M. Since A(X) =S8, .- 1, we see that X > p if A(X), #0.
It is clear that A(\), is spanned by

= _ rpla)  p(e2) () 77

EA—p) = {F(i11,k1)F(i22,k2) o F(ill,kl) I lerag p)

- C20ig k) o ) = A~ p)-
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Note that Z(A — ) is a finite set. Then we can pick up a homogeneous basis
of A(XN), from Z(A — p). We take a homogeneous basis B(X), of A(X),, and
fix it.

For A€ A} € Ay, let

M)y = (v, b>)E,FeB(>\),L
be the Gram matrix of the weight space A(X),. Put rad A(X), =rad A(A\)N

A(N)y; then we have the following lemma.

LEMMA 8.3. We have
dimprad A(X), = corank M ().

Proof. For T € A(X),, ¥ € A(N),, we have (y,T) =0 unless u=v by
(2.13.3). Thus, T € rad A()\), if and only if (#/,Z) =0 for any ¥ € B()\),,.
This implies the lemma. U

Algorithm for computing decomposition numbers of S, ,

STEP 1. Compute the value of (b/,b) for all b,b' € B(\), (A€ Af, . pne
Any).

Note that by (2.13.1) and the definition of the bilinear form, we can com-
pute (V',b) by using the commutative relation (7.4.6) repeatedly.

STEP 2. Compute the corank of M(A), for all A€ A} pe Ay ;.
This is an elementary calculation of linear algebra.

SteP 3. Compute dimp(L(X),) for all A€ A} . p€ Ay,
Since L(A) = A(N)/rad A(X), we have

dimp (L(N),) =dimp(A(N),) — dimp (rad A(X),).

Thus, we can compute dimp(L(A),) by Lemma 8.3 and Step 2.

STEP 4. Compute the decomposition numbers dy, = [A(X) : L(p)] for A\, p €
A}, by the following inductive process.

By Theorem 3.6, we have dyy =1 for A € ATJ{,T. By induction, we may
assume that dy, is known for p € A}, such that A >y > v, and we compute
the decomposition number dy,,.

Note the following facts:
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rad A(A) is the unique maximal S,, ,-submodule of A(X).
dyy #0 (A # p) only if A > p.

L(p), #0 only if > wv.

dimp L(v), = 1.

These facts imply that

(8.3.1) dimp(rad AN),) = Y day - (dimp L(p),)
HeAL AN}

= Z d/\# . (dlmF L(,u)l,) +dy,.
HEAT, -
A>pu>v

By Lemma 8.3 and Step 2, we know that dimp(rad A()),). By the assump-
tion of the induction together with Step 3, we know that ZHEAL- dry -

A>p>v
(dimp L(p),). Thus, we can compute the decomposition number dy, from

equation (8.3.1).

REMARKS 8.4. (i) In fact, in order to compute the decomposition num-
bers, it is enough to consider the Gram matrix M (), only for X, pu € A},
since we have

dimp L(p), = dimp A(p), — Z dyr dimp L(7),.

TeAT .

In this case, we should skip Step 3 and add the following process of another
induction on A, in Step 4:

dyr is known for p,7 € A}, such that A > .

< dimp L(p), is known for u € A}, v € A, , such that A > p.

n,r

(ii) Thanks to Theorem 3.4 and [DR2, Theorem 5.16(f)] (or directly by
comparing the highest weights as [7q—modules), we have pA(N) = pW(A)
for X € A}, In particular, we have pA(X) = F ®4 4A(A) since it is known
that pW(A) = F @4 AW (N).

(iii) Our algorithm can be applied to an arbitrary field which is not nec-
essarily of characteristic 0.

(iv) In order to implement this algorithm, we need the following two
data. One is a homogeneous basis B(\), of A()),. Though we can pick up
a homogeneous basis B(\), of A(X), from the finite set Z(\ — 1), we do not
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know an algorithm to obtain such a basis. Another is a precise description
of 77()\1;,1!@) ((i,k) e I'", X € Ay,) in relation (7.4.6) by using the generators of
Sp,r- Actually, we can compute 77()\1‘ k) in ., , (see Lemma 7.2). However,
the calculations take too long, and there is no algorithm to give a precise
description of n()‘i’k) at this time. R

(v) There exists a surjective homomorphism AU, — 48, as algebras,

and we have Aﬁq* = 4U, . Thus, we have a surjective homomorphism of
AU -modules

AU, — AA(X) (=4S, -1)) such that 1+ T,

It may be useful that we take a homogeneous basis of 4A()\) from the image
of a certain homogeneous basis of 4U, (e.g., monomial basis, Poincaré-
Birkhoff-Witt (PBW) basis, canonical basis).

(vi) We can apply this algorithm to compute the decomposition num-
bers of pS; under the general setting in Section 3. Moreover, we can also
apply it to compute the decomposition numbers of ¢S, associated to any
Cartan matrix of finite type, which includes the generalized ¢-Schur algebra
constructed in [Do].

Appendix A. A proof of Proposition 4.7

In this section, we give a proof of Proposition 4.7.

A.l.
Let V' be a vector space over Q(q) with a basis {v1,...,v,}. Then, U, =
Uq(gl,,) acts on V from the left by

V-1 ifj =741,
€i " Vj = .
0 otherwise;

i Uj —

0 otherwise;

:l:l . . .

n gt vy if j =1,

K -vj= .
vj otherwise.
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This action is called the vector representation of U,. We extend this action
to a tensor space V®" by using the comultiplication A of U, defined by

A(ez) =¢® KzK;,_l +1® €,
A(fi)=fi®ol+ K, K11 ® fi,
AKF) =Ko K
We denote this action by p’: Uy(gl,,) — End(V®").
__ On the other hand, /7, acts on V" from the right as follows. We define
T € End(V ®@ V)P by
qu; @ vj if i =7,
(Uz®UJ)T: ’Uj@’l)i 1fZ<j,
v; QUi+ (¢ — g N v, ifi>j
where End(V ® V))°P means the opposite algebra of End(V ® V). For i =
1,...,n—1, we define T; € End(V®")°P by
~ L ®6=1) o7 o ®(n—1—0)
T; =id,, ®T ®idy, .

Then, we define an algebra homomorphism 6 : 5%, — End(V®")°P by
0(T;) =T;. By [J], it is known that the action of U, and the action of .77,
on V&" commute. Moreover, we have

§(Uy) = End g, (V).

A.2.

For pu= (p1,. .., ptm) € An 1, let V2" be the subspace of V& spanned
by {vi, @i, ® -+ @y, | pj=8{k|ir =7} for j=1,...,m}. One sees easily
that VM‘X’” is the weight space of V®" with weight u as a U,-module, and we
have the weight-space decomposition

dn _ Xn
ver= @ v
AU‘GAn,l
Since the action of 7], commutes with the action of U,, VH‘X’" is invariant

under the action of J#,. For € A, 1, put
U#:U1®®’U1®’U2®®U2®®Um®®11m
L N 2

v~

(1 terms 2 terms m terms

Then, we have Vf’” =y, - ;. Moreover, one can check that there exists an
isomorphism Vu®" — M*# of J¢,-modules such that v, — x,. Thus, we have
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the following isomorphism of algebras:

p'(Ug) = End g, (V")

= End s, ( @ Vf")

.u‘eAn,l

gEnd%< D M“).

HEAR 1

This isomorphism gives the surjection p : U, — .5, 1 in Theorem 4.6.

A.3.
For pe A, 1, put

A=101Q@ - QU - QR - QU;Q - Qu;,
—_———

(1 terms o terms ; terms

B=012® - ®j1200;43Q - ®Vj13Q - QUp ® -+ Q Up, .
N——

-~

pite terms 1it3 terms Hm terms

Then, we have

UM:A®Ui+1®"'®’Ui+1®B,

i1 terms

Vptay =AQU;QUiy1 ® - QViy1 QB.

pi+1—1terms

By the definitions, one can compute that

Hit+1
p'(ei)(vu) = Z g HHTDA@ Vi ® - ® Ui BV ® V41 @ @ Vi1 @B
J=1 j—1terms Wi+1—J terms
=q "t Y ogray T

T€X)
Under the isomorphism V,#™ 2 M*, this implies that p(e;)(m,,) = g~ i+ x

¢b+ai,u(mu)' Thus, we have Proposition 4.7(i). We can prove Proposi-
tion 4.7(ii),(iii) in a similar way.
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Appendix B. Example: Cyclotomic ¢g-Schur algebra of type G(2,1,2)

In this appendix, we consider a cyclotomic g-Schur algebra .#59 of type
G(2,1,2), namely, that associated to the complex reflection group Sy X
(Z/27)*. In this case, we will describe elements né’ y explicitly and compute
the Gram matrices M (\), and decomposition numbers of ¢.#2 2. Through-
out this appendix, we replace v; with Q; (i =1,2); thus, %32 is an algebra
over K = (q,Q1,Q2), where ¢,Q1,Q2 are indeterminate elements.

B.1.
The cyclotomic ¢-Schur algebra .#5 9 of type G(2,1,2) is generated by
the generators E(1,1)7 E(271)7E(1:2)’ F(l,l)a F(le), F(LQ)’ Ix(A € A), where

)‘<O> :((270)7(070))7 /\<1) :((1’1)7(070))7 )‘(2) :((170)7(170))7

A= )‘<3> :((1,0),(0,1)), >‘<4) :((072)7(0a0))7 )‘(5) :((0,1),(1,0)),
)‘<6> = ((Oa 1)> (07 1))7 )‘<7) = ((070)7 (2a0))7 )‘(8) = ((070)7 (17 1))> ’
A(9) = ((070>7 (072))

with the defining relations (7.4.1)—(7.4.8). By Lemma 7.10, we have
AT = A0 A Ay Ay Ay 1
By Lemma 7.2 and (7.3.1), we have
gz\ff)(F, E)= Ql((q - C]_l)F(1,1)E(1,1) + q_Q)»
g?éff)(lﬂ E)=Q1(¢* +1),
97 (F.E) = Q1
9% (F.E) = Q1
gz\f?ﬁ)(ﬂ E)=FonE@) + Q2
Q(Afz)(Fa E)=FunFonEenEa + Q2
92\1<,72>)(F7 E)=qFo1Eo1 + Q201+ @),
g?ff;))(F, E)=Fo1E@1) + Q2

gE\Zl)(F, E) (resp., 92\172)(}7’, E)), which does not appear in the above list, is
equal to 0.
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As an example, we compute only g(2 1)(F E). By the definitions, we have

G(A’;,ll)) (M)
=mx,, Lo
= (L1 = Q2)(L2 — Q2)Th 1Ty
=T1(L1 — Q2)L1(L2 — Q2)T1 (. Lemma 5.4(i),(iv))
=1 Ti(L1 — Q2)(L2 — Q2)Th
=Q1(L1 — Q2)(L2 — Q2)((q —

¢ T+1) (TE=(q—q )T +1)
=Q1((g—q ")ma o1 +Hmag, ),

where the fourth equality follows from Ly =Ty and Tj = (Q1 + Q2)Tp —
@1Q2. On the other hand, we have

(‘0(1,1)('0?_1,1) (m)\ ) =4q 1m/\<1 (1 + qu)
- WL)‘U)T1 + qilm)\u)'
A P _ C
Thus, we have 0'(2(711>) =Q@Q1((¢g—¢q 1)g0(1,1)<,0(+171) +q 2)90}\@’)%1). This implies
that
A — —
9(2<,11>)(Fv E)=Q:1((¢g—q I)F(I,I)E(l,l) +4q 2)-

P

Since 77(>‘271) = (—QQ[)\gl) — )\52)] —+ 1 (q_lg?27]_)(F7E) - qu\l,2)(Fa

E)))1x, we have

neth = (Qua — ¢ Fan By + (Qua2 — Q) 1ay,-
77?2@13 =—FonEieili,,

772\2<41>) = (Q1(¢* +q) — Qa2(q + q71))1/\<4>7

77()\2<51>) = (—eFunFenEenBay + Qg - Q2)) 1x 5,5
ﬁz\;ﬁf) =(Q1—Q2)1x,

n
1= ~FenLenli,,
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=—FonEeil,,
Aoy L A@y Moy
D ="y =Ty =0

B.2.
We can take a homogeneous basis of 4A()\) for A € AT as follows.
Basis of 4A(X(q))
Weight Basis
A¢0) 1)\<o>
)\<1) F(l,l)l)\<0> Basis Of AA()‘<1))
A R Wel ht Basis
A2) Flo,n b, &
A1 Ta,,
Ay | FanFenFanlg @ L
A Fia1y1a
2) (2) (2,1) 121y
Ala) F(1,1)1/\<o> _
- A(3) Fa2)Fenly,
A FonFi1Ih _—
© el an 2o A(s) FunFenly,
Aoy | FaaFe, 1>F(1 H1re ) FaFanFenli,
() FOF Ay | FeoFanFanFenly,
(2)
Moy | FaoFoh Fin
(2) 2 p@)
)‘<9) F(l 2)F(2 1)F(1 1)1)\<0)
Basis of 4A(M(2))
Weight Basis Basis of 44\ 7))
Weight Basis
A2) 1A<2> _
- A7) 1/\<7>
A3) Fa2)lag, N -
. (8) (1,2) * A7y
A(s) FrayIa g ——
_ A 9 F 1)\
>‘<6> F(172)F(1’1)1A<2> (9) (1,2)"7)
Ay FonFanl,, Basis of 4A(N\g))
Ay | FenFaFaniae, FuzFenFanli,, Weight Basis
A9) FazyFonFazFanly,, A®) M)
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B.3.
We can compute the Gram matrix of 4A(N), A, p € AT with respect to
the above basis. Here, as an example, we compute M (/\<0>) Note that

AA()\<0>)<2> has a basis {F(2,1)F(1,1)1)\<0>}- We have

A2y

Lo ZanBententanl
=Eq1(Qi(¢—a HFuEaq + (Qrg 2 — QQ))F(l,l)l)\(m
= (Qi(g— g HI2I+ (Qug % — @2)[2)) 1x,,
(o BanFanylag =211x,)
= [2](Q14* — Q2)1x,-

This implies that <F(2,1)F(171) 1>‘<O)7F(2»1)F(171)1>‘<0>> = [2](@1(]2 — QQ) Thus,

we have M()\(O)>/\(2) = ([2](@1(]2 — QQ))
In a similar way, we can compute the Gram matrix M (X), for A\, p € An .

and we have

A(Noy):
M (X)), = ([2])
M(Aoy)ag, = (21(¢°Q1 — Q2))
M(Aoy)re, = ((Q1 — Q2)(°Q1 — Q2))
M(Aoy)rg = ([21(Q1 — Q2)(¢*Q1 — Q2))
A(Amy)
M(A))re = ((g Q1 — Q2))
MAgy)ag = (@1 —Q2)(¢7°Q1 — Q1))
A(A)
M(A2y)ae, = (2g Q1 — Q2))
0w = (450, 0 it i0n~am)
(det M (X)) = (7°Q1 — Q2)(°Q1 — Q2))
A(Apy):

M(AU)))\@) = ([2])
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B.4.

Let A — C be a ring homomorphism, and we express the image of ¢, Q1,
@2 in C by the same symbol. We can compute the decomposition numbers
of c¥22=C®4 4522 by using the algorithm in Section 8, and we have

the following decomposition matrix of ¢.#3 2.

(% # £1,0, Q1 = Q2 #0) (g% #+£1,0, ¢72Q1 = Q2 #0)
INES RN PR VAP P VIR VIS S A S GO D - SED VNP PR VR !
As 1 A 1
A7 0 1 A7 0 1
A2 0 0 1 A2 0 1 1
Al 1 0 0 1 A1 0 0 1 1
Ao 0 1 0 0 1 Ao 0 0 0 1
(® #+£1,0, ¢?Q1 = Q2 #0) (> =—1, Q1 # Q2)
A(A)\L(“) Az A A2 A X A(,\)\L(“) As A7 A2 A1 X
)\8 1 >\8 1
A7 0 1 A7 1 1
A2 1 0 1 A2 0 0 1
A1 0 0 0 1 A1 0 0 0 1
Ao 0 0 1 1 Ao 0 0 0 1 1
(?=-1,Q1=Q2#0) (?=-1,-Q1=Q2#0)
FNES L S D RPN VREED VERD VNG S A il D VD VAN PREED PR V)
A8 1 As 1
A7 1 1 A7 1 1
Ao 0 0 1 A2 1 1 1
Al 1 0 0 1 A1 0 0 1 1
Ao 1 1 0 1 1 Ao 0 1 1 1 1
(*=1,Q1=Q2=0) (¢ #—-1,0, Q1 =Q2=0)
A(A)\Lm) A8 A7 A2 A1 Ao A(x)\L(”) As A7 A2 A1 Ao
)\8 1 >\8 1
A7 0 1 A7 0 1
A2 1 1 1 A2 1 1 1
A 1 0 1 1 A1 1 0 1 1
A0 0 1 1 1 Ao 0 1 1 0 1
(*=-1,Q1=Q2=0)
A\EH L As A X A X
A8 1
A7 1 1
A2 2 1 1
Al 1 0 1 1
Ao 1 1 1 1
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Appendix C. Example: The case of nf‘ =0

In this appendix, we give an extreme example of an S, which is not a
cyclotomic g-Schur algebra. In this example, we see that the isomorphism
classes of nonisomorphic simple S;-modules are indexed by 4 (i.e., AT = 4),
and all simple S;-modules are 1-dimensional. Moreover, this is an example
such that condition (C-2) does not hold. We also see that S, is not semi-
simple over any field and parameters.

We take K =Q(q). Put A={X=(A1,...,\n) €ZZ5 | A1+ + A\, =1},
and 77;\ =0foranyi=1,...,m—1and X € A. Then, S, = S7" is the algebra
generated by E;, F; (1 <i<m—1)and 1) (A € A) with the defining relations
(2.1.1)—(2.1.6), (2.1.8), and (2.1.9) together with the relation

(2.1.7) E;Fj — F,E; =0.

In this case, one sees easily that A = A". We denote a monomial of F;
(resp., E;) for i=1,...,m —1 by X(F) (resp., Y(E)). Then, one sees that

X(F)1) ¢ S,(> ) (resp., LY (E) ¢ Sy(> N)),

if A+ deg(X(F)) € A (resp., A —deg(Y(E)) € A). On the other hand, we
have

X(F)L,Y(E)

X(F)Y (E)1x—deg(v (E))
Y(E)X(F)1x_deg(v (E))
Y (E) 1) deg(v (B))+deg(x (7)) X (F)-

Thus, we have X (F)1,Y (E) =0if A —deg(Y (E)) +deg(X(F')) ¢ A. It hap-
pens that A + deg(X(F)) € A, A —deg(Y(E)) € A, and X\ — deg(Y(E)) +
deg(X (F)) ¢ A. This shows that the natural surjection A()\) @k Af(N\) —
S¢(> N)/S;(> A) is not an isomorphism in general. (Note that (C-2) <
(C'-2).)

For \,u € At (= A), one sees that

M(N),=0 unless A =p,

where 0 means the zero matrix. This implies that dimx L(A), =0 unless
A=, and that
[A(N) : L(p)] = dimyc A(X) .-
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