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APPROXIMATION BY A-SPLINES ON THE CIRCLE 

T. N. T. GOODMAN, S. L. LEE AND A. SHARMA 

1. Introduction. Let A = {\0 , . . . , Xn } denote a set of distinct integers 
and let 11(A) denote the set of all generalized polynomials of the form 

n 

2 a A a, e c. 
0 

For any given f on the unit circle U with 

0 g larg S\ S ^ , 
k 

we consider the set Zk of points 1, J, f2,.. . , Çk~] where 

k > max \\ — Xj\. 

We shall denote by ^ (A, Zk) or y the class of A-splines S(z) which satisfy 
the following conditions: 

(i)S(z) e C - ^ I / ) 
(ii) S(z) |̂ ^ G n(A) where 

Av = arc(r, r + 1 ) , (^ = 0, 1, . . . , * - 2) and 

Ak_x = a r c ^ " 1 , 1). 

A-splines were introduced in [8] where their interpolation properties 
were studied. Although in [8], A is comprised of non-negative integers, 
there are no difficulties in allowing A to contain any integers. When 
A = {0, 1 , . . . , n), A-splines reduce to polynomial splines on the circle 
studied in [1], [11]. 

Our object here is to study approximation theoretic properties of 
A-splines and to obtain their trigonometric analogues. As in [11] and [8], a 
basic tool to this end will be the i?-spline MA(z) G y which for k â n + 2 
has support on the arc(l, fw+ ), (in fact the minimal support possible). We 
shall be concerned mainly with the case Çk = 1 when the 5-splines 
MA(zf ~"), v = 0, 1 , . . . , k - 1 will form a basis for & 

In Section 2 we introduce the preliminaries and some definitions and in 
Section 3 we study the properties of the 2?-splines i n l a n d the analogue of 

Received February 23, 1984. The first author was partially supported by NSERC 3094. 

1085 

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-059-9


1086 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA 

Marsden's identity [7]. We then examine approximation operators of the 
form 

k-\ 

(i.i) muz) = 2 Tv(g)MA(zry 
v=0 

M( In Section 4, we take Tv(g) to be a linear combination of gK \ T V ) , 
r = 0, 1 , . . . , n for some prescribed points T„ on the arc(f", f+/7 + ). It is 
shown that there is a unique such operator which reproduces «9? This is the 
analogue of the quasi-interpolant (see [2] ), a special case of which is due 
to Chen [3] when A = {0, 1,. . . , n }. The order of approximation by this 
operator is the subject of Section 5 and generalizes the work in [3]. 

In Section 6 we consider (1.1) when Tv(g) is a constant multiple of g(ov) 
for some ov. We show that there is a unique such operator which 
reproduces z ° and z '. This is the analogue of the Bernstein-Schoenberg 
operator (B-S operator) (see [9] ). Similar results for the case of generalized 
real polynomials are due to Hirschman and Widder [5]. Section 6 also 
deals with the order of approximation of this operator and in Section 7 we 
obtain an asymptotic formula which is reminiscent of a result of 
Voronovskaja [6] for Bernstein polynomials, thus generalizing the results 
in [4] for the case A = {0, 1 , . . . , n}. 

Results of Sections 6 and 7 are analogous to the work of Marsden [7] for 
the B-S operator. However, unlike Marsden we keep n fixed ^ k — 2, but 
our results as k —» oo are somewhat stronger in so far as we get 
convergence for all derivatives up to order n — 1 at all points. 

By taking the Ay's in A to be symmetric about 0, we can get 
corresponding results for trigonometric A-splines which is the subject of 
Section 8. 

2. Preliminaries. For given distinct integers A0, Ab . . . , Xn we denote by 
Apq the set {A^, . . . , A^}, but for simplicity we shall use A^ instead of A0p. 
In order to study the A-splines, it will be useful to consider the function 
<|>A (z) e U(An) satisfying the conditions 

(2-1) *X(D ( " ) / • 
(0,v = 0, 1, 
I 1, *.= /!. 

1 

It is easy to see that <j>A (z) is uniquely given by 

(2.2) 4>A(z) = (-\)" 
1 

, n - l 

Z 

1 

xr 

Z " 

1 

K V(X0,...,Xn) 

where K(X0 , . . . ,X„) denotes the Vandermondian. It follows from (2.1) 
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and (2.2) that 

(2.3) (X„ - \o)<t>A(z) = <j>AJz) - 4>An_{(z) 

since the coefficients of z n on both sides are equal and all the derivatives 
up to order AÏ — 1 at 1 vanish on both sides. 

For any /? e U we introduce the analogue of the truncated power 
function by setting 

(2.4) \ M ) = ( ^ ( z / ! - . ) 9 Z G a r c [ f t l ) i 

We shall prove the following 

PROPOSITION 1. The dimension of the space Sf(Aw, Zk) = k. 

Proof. If S(z) e £? then 5"(z) can be written in the form 

k-\ 

(2.5) S(z) = P(z) 4- 2 a*A (z, n P(z) e n ( A J , 
7-0 

re S'(z) on the arc 
that 
where S(z) on the arc(f* ], 1) is given by P(z). Then it is easy to see 

k-\ 

(2.6) 2 afrK(zrj) = 0. 
7=0 

Moreover any S(z) satisfying (2.5) and (2.6) belongs to5^ Equating to zero 
the coefficients of z J, we see that (2.6) is equivalent to the system of n -f 1 
equations: 

2 «,rA = o, ^ = o,i,...,n. 
7=0 

Since /: > maxlX^ — \ J and |arg f | ^ 27r//c, it follows that the rank of the 
matrix of this system is « + 1, so that from (2.5) the dimension of ^ i s 
k - (n 4- 1) + (n + 1) = k. 

We shall now derive an analogue of Taylor's formula. To this end we 
set 

Djf{z) = zA, + l ^ - ( z - V ) , j = 0, 1 , . . . , n. 
J dz 

Observe that if g(z) = f(az), then 

Djg(z) = (DjfXaz), 

for any constant a. Since 

Dfa e n(A7_.) 
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and since it is easily seen from (2.1) that 

5?<CA»J z=\ 
0,1 y 

1, 

it follows that 

(2.7) Dj*Aj(z) = * V | ( r ) . 

For y = 1, 2 , . . . , n + 1, we define the differential operators Ly by 

(2.8) LJ = Dj_lDJ_2...D0, L0 = I. 

This enables us to get the following analogue of the Taylor's formula 
where / e C"+](U): 

f(z) =/(a)<#.Ao(za-') + (LjXa^iza-*) + . . . 

+ ( L j X f l ^ r z a - 1 ) + R„, (2.9) 

*« = / ! *A(zv > \Ln+J)(v)dv, a,z <E U. 

Formula (2.9) can be easily verified by integrating by parts and is perhaps 
known. 

It is of interest to introduce the operators Z, by 

(2.10) Lj = Dn_j+1Dn_j+2 ...£>„, \ ^ j ^ n + \;L0 = 1. 

In this case, we get an analogue of (2.9). Indeed we have 

if(z) = f(aM>AJza-{) + ( L . / X a ^ J z a - ' ) + . . . 

(2-11) J ^ + (Lj)(a)<j>A(za-]) + R„. 

[R = fZ
a<t>A(zv~])v~\Ln + J)(v)dv. 

In order to define 5-splines in S? we introduce the A-divided difference 
of a function/on a subset of Zk by the symbol [1, f,..., f " + ' ] A /defined 
by the expression 

(2.12) 
J*° rA 

1 / ( I ) 

no + va\..., è\ 
^«+l)Ao gn+])\t ^"+1)A„ / ( f + l ) 

where K(f \ . . . , £ " ) is a Vandermondian. More generally, we set 

(2.i3) [r, r + 1 , . . . , r+ r t + 1]A /(*) = n, r, . . . , r + , ] A /(*n. 
From (2.12) we can see that 

K + i 

(2.i4) [ i , f , . . . , r + , ] A / = 2 ( - i r + 1 ~ ^ + , - , ( A j / ( r ) 
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where S„(An) is the *Mh elementary symmetric function of the numbers 
f\ f \ . . . , fA«. From (2.14), it follows that 

(2.15) [ l , f , . . . , r + l ] A „ / = [ ^ ^ - - - , r + l ] A „ _ 1 / 

Remark. If Aw = {0, 1,. . . , «}, then our A-divided difference differs 
from the usual divided difference on the same points by a constant factor. 
More precisely, in this case 

[i,£,..., r + I u / = n (r+1 - son, ?,.. •, r + 1 i / 

where the right hand divided difference is the usual one. 

3. 5-splines and their properties. Here and in the sequel we shall assume 
that k ^ n 4- 2. We now define the 5-spline MA (z) to be an element of £f 
given by 

O.I) MA(Z) = [i,r\...,rn~\<>A(z,y-1). 
Forz e arc(r+1, 1), 

MA(Z) = [i,r],...,r"~\<t>Apy) 
because of (2.4) and so vanishes since 

<!>A(zy) e ri(A„). 

We shall show that MA (z) is the spline of minimal support in Sf. 
n 

PROPOSITION 2. If S(z) G y has support strictly contained in the arc 
(1, T + 1), thenS(z) = 0. 

Proo/. Suppose the support of S(z) lies in (1, fw). Then S( z) lies in the 
space of all A-splines with knots 1, f,. . . , J" which by Proposition 1 has 
dimension « + 1 and thus equals n(A„). So S(z) G II(AW) and since S(z) 
vanishes on an arc, S(z) = 0. 

We shall now prove 

LEMMA 1. The B-splines satisfy the following recurrence relations: 

and 

(3.3) DnMA(z) = M A / i | ( z r ' ) - f"A-MA (z). 
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Proof. Using (2.3) we see from (3.1) that 

(\„ - \0)MK(Z) = t u - 1 r"1]A,(*A1>)'"1) 
-4>K_x(z,y-')). 

Next we use (2.15) which yields 

(\„ - x0)MAn(Z) = t r 1 , r 2 , . . . , r " - x * A i ( z , y - ] ) 

-[r\r\...,rn-\_<>K_i(z,y-') 
+ rAn,r1,...,r\_lvl(^"1). 

We now get (3.2) from (2.13) and (3.1). 
Formula (3.3) follows on applying D- to (3.1) and on using (2.7), (2.13) 

and (2.15). 

As a simple application of the fi-splines, we show that 

(3.4) [\,r\...,r"~\f= fv Mj^y-^v-^L^fKvW. 

In order to see this we use (2.4) and observe that for a = 1 in (2.9) we 
have 

We now apply the difference operator [1, f_1, . . . , f ~n]]\ to both sides 
of (2.9) and using (3.1), we get (3.4). 

In the sequel we shall suppose that f is a primitive k{ root of unity, 
i.e., 

£ = elm,\ k ^ n + 2. 

We then have 

PROPOSITION 3. If f is a primitive kx root of unity, then the B-splines 
MA (zÇ~v), v = 0, 1, . . . , k — 1 form a basis for the space Sf of 
A-splines. 

Proof Since the dimension of ^ i s k (Proposition 1), it is enough to show 
that {MA (zf ~v) Jo ] are linearly independent. We shall show that if there 
exists a relation 

k-\ 

S(z):= 2 c^izr") - 0 

then all the c„'s are zero. 
Consider the function T(z) given by 
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0 2 e a r c f U * " " " 1 ) 

(Z)~ 2 cA>n, : 6 ar^-""1, 1). 
v=k—n—1 

Since MA (z) vanishes outside the arc(l, fw ) it follows that 

T(z) = S(z) = 0, forz G arctf*"1, 1). 

Thus 7(z) G ^ a n d has support in the àTc^k~n~\ ^ _ 1 ) and hence by 
Proposition 2, vanishes identically. 

Observe that for z G a rc (^~" _ 1 , $k~% 

T(z) = ck_n_xMK(zrk^X) = 0 

which implies ck_n_] = 0. Proceeding in this manner we see that 

cv = 0, v = k — n — 1,. . . , fc — 1. 

Hence 

A - / 1 - 2 

and by the same argument as above, we see that cjs are all zero. 

We shall now prove the analogue of Marsden's identity. 

THEOREM \.If$is a primitive k-th root of unity and if\pA(y) G n(A,7) 
satisfies the conditions 

a ç\ i YA vs / — v> J — 1? 2, . . . , n 
V-3-5) 1 j. \y-n-\\ J 

hA(rJ) = o, 
UA\rn-]) = 

then we have the identity 

k-\ 

(3.6) <j>A (zy) = 2 ^A aJy)MA (zrJ). 
n • r\ n n 

7=0 

Proof. We prove the identity by induction on n. For n = 0, we have 

</>A0(2) = **° 

while MA (z) = — z^f ~ ° on arc(l, f) and is 0 elsewhere. Also by (3.5), 

From this we can easily see that for z G arc(f, f^+1), we have 

2 ^Ao(^)MAo(zr7) = ^Ajuryw^zr9) = c^)"0 = ^fey). 
7=0 
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We shall now suppose that (3.6) is true for any A-set containing n 
elements. Then using (2.3) and the inductive hypothesis, we obtain 

k-\ k-\ 

0.7) = 2 xpA]a
jy)MA](zrJ) - 2 ^_ i(^)MA_ i(zr7). 

We recall formula (3.2) Lemma 1 to obtain 

k-\ 

( \ , -Ao)2 *K(gy)MK{zrj) 

A: — 1 

— 2 tA(?y)[MAi(zrJ~l) - rX°MAi(zCJ) 

- MA x(zrJ~x) + rKMA (ZrJ)i 
which after elementary manipulation gives 

k-\ 

0.8) 2 ^A (rly){MA (zrJ) - MA (Zrj)} 
j=0 n , 'n " ' 

k-\ 

+ 2 ^A(^){-rx°MA (ZrJ) + rx"MA /zr7)} . 
7=0 " 

In order to prove (3.6) it is sufficient to show that the right side of (3.7) is 
equal to (3.8). This will be so if the following relations hold: 

*AJ&) = *A.(T V) " f " \ ^ ) .y = o . 1 A: - 1 

or equivalently, 

(3.9) 4,Ajy) = *Aii(T
ly) - rS>AjLy) 

(3.10) 4>K_{(y) = tx<S~'y) - rHK(y)-
Obviously both sides of (3.9) belong to the class I^A, „) and by (3.5) they 
agree for y = Ç~\j = 1, 2 , . . . , n). This shows that (3.9) is valid. In a 
similar way, we can show that (3.10) is true. 

Remark. From (3.5) we can get an explicit representation for \pA (y)-
Thus 

(3-11) <j>A(y) 
/ jyi- l^Xo + î 

v(r\. • •, rK) 

yK y 

rX| 

rnX° r n\i 

... y 

... r 
.. r 

~n\„ 
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whence we see that 

(3.12) ^ ( 1 ) = ( - i ) " - i ^ + - + \ 

4. The quasi-interpolant. It is known that for polynomial splines the 
quasi-interpolant plays a very useful role. An analogue of the quasi-
interpolant for polynomial splines on the circle has recently been given 
in [3]. 

In order to obtain the quasi-interpolant for A-splines, we choose points 
TV e arc(£", f+w + 1), i> = 0, l , . . . , f c — 1 where f is a primitive kth root of 
unity. Consider an operator S(\C^n\U) —>^of the following form: 

k-\ 

(4.1) (J^g)(z) = 2 TXg)MA(zrv) 
v = 0 

where 

n 

(4.2) Tv(g) = 2 ^,, r(^g)(r,) 

and a^r's are constants depending on T„, but independent of g. We shall 
show that there is a unique operator & oi the form (4.1), (4.2) which 
reproduces splines in Sf. We shall call such an operator the quasi-
interpolant. We can now prove. 

THEOREM 2. For an operator ££of the form (4.1), (4.2) we have 

(4.3) (J23)(z) = S(z) for all S(z) e ^ 

(4.4) av, = (Ln_r^A)(r;]n v = 0, 1 , . . . , k - 1; r = 0, 1,. . . , n. 

Proof We shall first show that (4.3) implies (4.4). Note that (4.3) is 
equivalent to 

(4.5) Tv(MA(zrJ) ) = «,,-, hv = 0, 1,. . . , k - 1. 

Applying the operator L- to the identity (3.6) with respect to the variable^ 
and using (2.7) successively, we obtain 

A: — 1 

(4.6) <j>A _(zy) = 2 ( I > A )(60MA (zr'). 
n j / = Q 

Now applying the operator Tv to both sides of (4.6) with respect to z and 
recalling (4.5), we have 

n 

(4.7) 2 fl,M,Jv) = (£/M&)-
r = 0 

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-059-9


1094 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA 

From (2.7) we see that 

and from (2.1) we note that 

<t>A (1) = Kn-j 
r,n—j ' J 

so that putting y = r~ in (4.7) we have 

«,„_,. = ( L / A ^ r - ' n , 7 = 0, 1 « 

which is equivalent to (4.4). 
We shall now show that (4.4) implies (4.3), which is equivalent to (4.5). 

Applying the operator Tv to both sides of (3.1) after replacing z by zf ~J we 
have 

(4.8) Tv(MK(zrj)) = [i, r \ . . . , r n - \m A ( z r J , y~ ] ) y 
In order to simplify the right side above we observe that (4.2) yields 

n n 

(4.9) T£4>A(zy)) = 2 a (Lr<t>A )<f>A (r„y) = 2 a 4>A (rvy). 

We claim that 
n 

(4.10) TJ6K(zy)) = 2 a,^AjT,y) = ^ D -
r = 0 

Since both sides belong to U(An), it is sufficient to show that 

(4.1D [L7(± a^pj))]^;^ = c^^rr'n, 
To see this, we observe that on using (2.1) and (2.7) the left side in (4.11) 
becomes 

n 

2 a <j>A (\) = a j 
r = 0 ' J 

which by (4.4) equals the right side of (4.11). This proves the assertion 
(4.10). 

In order to find TV{MA (zf J) ), we examine Tv(<j>A (zf *, y l) ) in the 
light of (4.8). We observe "that from (4.10), 

(4.12) 7 > A ^ ^ ) ) = ^ A ^ r - 7 X o t h e r w i s e . 

Thus from (4.8) and (4.12) on using (2.13), we obtain 
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(4.i3) Tp(MK(zrj)) = irj, rJ~\...,rJ~n~\ny), 
where we set 

14>AjiyF)> otherwise. 

We now consider three cases: 
(a) j < v. In this case, take any /, 0 â / =i n + 1. If 

r 7 _ / e a r c ( T ; ' , r y ) , 

then 

T-' G arccr^'.r7) 
and so 

^r;_/) = *Aïrj-'+'). 
On the other hand, if 

r ^ - ' e a r c t r " - " " 1 , ^ 1 ] , 

then —n— 1 < v — j — I < 0 and so by (3.5), 

Hence 

(4.i4) *#-;- ' ) = o = tK{rj-'). 
Thus we have 

(4.i5) [rJ,rJ~\...,rJ~n~\%(y) 
= irj, rj~\..., rJ-"~\tA(yO = o. 

(b) j > *». Again, as in case (a) we take any /, 0 2= / â n + 1. If 

r 7 ' " ' e a r d r - ' . r 7 ' ] , 

then - n - l < j ' - y ' - / < 0 s o that by (3.5), we have (4.14). If 

r J ' " ' e a r c i r ^ " " ' . ^ - 1 ) , 

then this implies that 

T;] e arci r 7 ' " ' , r 7 ' ) 

and so 

nrj-') = o. 
Hence 
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(c)j = v. In this case we observe that from (3.5). 

*K<£~j~'+v) = ^A,(r') = o, / = i, 2 , . . . , «. 
Hence 

%(rJ~l) = o, / = i , 2 , . . . , / i . 

Since 

T;' 6aK<r'"""l.n. 
it follows that 

%(rJ'"~l) = o. 
Moreover 

%a~j) = ^A„(i) = ( - i ) " - l ^ + - + A -

by (3.12). Thus when j = v, we see from (2.13) and (2.12) that 

[rJ,rj-\...,rJ-"-\%(y) 
= [hr\...,rn-\*jLyrJ) = i. 

Combining the results of (a), (b) and (c) above, we see from (4.13) that 
(4.5) holds, which completes the proof. 

5. Approximation by quasi-interpolants. We shall now examine the 
quasi-interpolant «£?as a tool for approximating functions of class Cn(U). 
In order to do so, we recall the definition of the modulus of continuity for 
a function/ e C(U). We set 

*>(/; h) = sup{ | / (z ,) - / ( z 2 ) \:zl9 z2 e £/, |z, - z2| ^ h). 

We are interested in the approximating property of J^ for fixed An as 
/: —» oo. We shall prove 

THEOREM 3. i w any f G Cn(U) and z e [/, we /zave the following 
estimates'. 

(5.1) | (*?/)<*)(z) - /*>(z) | g ^ - c o ( g ; 1 ) , * = 0, 1 , . . . , n 

where g(y) = y~ nLnf(y) and K is independent off and k. 

It may be observed that <o( g; - I vanishes whenever/(z) = z J,j = 0, 

For the proof of Theorem 3, we shall need two lemmas. In what follows 
for any / G U, we set 

11/11 = sup|/(z) |. 
zGU 
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LEMMA 2. For j = 0, 1 , . . . , n, we have 

(5.2) \\LjMA\\ = 0(kJ-"). 

Proof. Using (2.9) with a = 1, n = 0, and replacing A0 by Ann, we see 
that 

MA(z) = f\ 4>A (zv~')v-]DnMA(v)dv. 

Since MA (z) has support in the arc(l, ^ + 1), we get 

\\MA\\ = o{^)\\DnMA\\ = o(^)\\MKJ 

on using (3.3). Hence 

(5.3) ||MAJ| = 0(k-")\\MAo\\ = 0(k~"), 

since 

MAO{Z) = - z x ° r \ 

Again applying (3.3) successively, we obtain 

\\LMA || =i V\\MA_ || = 0(kJ~n), j = 0,l,...,n 

on observing that A „ = {A-,. . . , Xn] and on using (5.3). 

LEMMA 3. For j = 0, 1 , . . . ,« , we have 

(5.4) sup{ | ^ ( z ) \:z e a r e a - " ' 1 , 1) } = W ) . 

Proof. From (3.11) it can be seen that 

^ ( - i ) ^ - i ^ V , 

j = 0 n 

n (rx> - rxo 

whence we easily obtain 

(5.5) H^ l l = 0(kn\ v = 09 l , . . . , / i . 

Furthermore, it is known that for any z e £/, we have 

(5.6) [2,r',...,r"wA.(^) 

= - /jv/(wk r1,..., r " ^ ' ^ 

where the divided difference on the left is the usual divided difference and 
the i?-spline on the right in the integral is the usual 2?-spline on the circle. 
If z e arc(f -"~\ 1), then by (5.6) and (3.5), we see that 

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-059-9


1098 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA 

(5.7) *A (z) = -
ni 

where 

F(z, o>W(io)do> («)/ 

F(Z, co) = n (z - rJw(u\z, r\...,s ")• 
7 = 1 

- n - 1 For any «, £ e (f " , 1), we define the truncated power function 

) " ~ \ if « G a r c ( r " " ' 
0 , if a G arc(£, 1). 

( | _ w)»+-i = ( « - <°)"~'' i f w G a r c ( r " " ' , & 

Since the 5-spline is the divided difference of the truncated power 
function, we see that 

1 

rt+1 
F(Z, W) = (z - «yr1 - 2 (r 7 - «ov1 

X 

r¥>l 

From the above it is easy to see that 

(5.8) 
dJ C 

1F^^\ =T^r y = o , i , . . . , / i - l dz 
-n-\ for all z, co e arc(f w , 1 ) , where C is a constant independent of k. 

Differentiating (5.7) j times and using (5.5) and (5.8) we obtain (5.4). 

LEMMA 4. IfG(t) e Cn(U) and if for some z e U, 

G{v\z) = 0, v = 0, l , . . . , / i - 1, 

then for co e (7, we /z^ve 

(5.9) |L rG(«)| Si C,|« - z |"- r sup |L„G(0l 
rearc(u,z) 

ybr r = 0, 1 , . . . , « — 1, where Cx is independent of G, w and z. 

Proof. Using (2.9) with / replaced by LrG, we get for r = 0, 1 , . . . , 
it - 1, 

(5.10) L,G(«) = / " 4>Ar.„_,("v- V ' ^ C v ) ^ . 

Now from (2.1), we know that 

" r è l - .O) = 0 for y = 0, 1 , . . . , » - 2 - r, and 

<;i: r )(D = i. 
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So by the classical Taylor's formula with remainder, 

*Ar„_,(o = -—;—r. /', 0 - vr2-r<;l7r)(v)*. 

Hence we get 

(5.ii) toA^wi ^ c,i/-ir1- r 

which combined with (5.10), yields (5.9). 

Proof of Theorem 3. In order to prove (5.1) it is enough to show that 

(5.12) \Ls(2>f)(z) - Lj{z) | =i ^ 7 « ( g ; £ ) , 5 = 0, 1 , . . . . ii. 

Set 

G ( / ) = / ( / ) - P z ( 0 

where 

Pz{t) e n(A„) and 

(/<"> - P^Xz) = 0, (̂  = 0, 1,. . . , « ) . 

Then 

Ls(J?f)(z) - Lj(z) = L5(J^/)(z) - V>z(z) 

(5.13) = Lsm\z) - L&ePz\z\ by (4.3) 

= L5(i^)(z). 

From (4.1), we see that 

k-\ 

(5.14) Ls(J#G)(z) = 2 TJiOL^^zr9) 

where from (4.2), we have 

n 

(5.15) T,(G) = 2 avr(LrG)(Tv). 
r = 0 

By Lemma 4, we can see that for r = 0, 1,...,«— 1 

(5.16) | (LrG)(T„) | â C,|T, - z|w~r sup \LnG{t) |. 
rearc(T„,z) 

From the definition of Pz(/) it follows that 

LnP2(v) = C2v
x» 

(C2 a constant) and 

L„Pz(z) = L„f(z), 
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SO that 

L„G(v) = L„/(v) - L„Pz(v) 

(5.17) = L„/(v) - (vz-]Hj(z) 

= v\g(v) - g(z) ). 

where 

g(v) = v"X»L„/(v). 

From (5.16) and (5.17), we obtain 

\L,G(T,) | S C , |T , - 2r-rco(g;|T, - z\ ), r = 0, 1,. . . , n 

which from (5.15) yields 

n 

(5.18) \TV{G) | ^ C, 2 |fl,rl |T„ - z|,,"''«(g;|Tl, - z| ). 

Since T„ e arc(r, r + " + l), i.c, T , - , r G a r c ( r " ~ ' , 1), it follows from 
(4.4) and (5.4) that 

(5.19) \aj = 0 ( * " - r ) , r = 0, 1 , . . . , » . 

Observe that MA (zÇ~") is non-zero only if z e arc(f, f+"+ ) and since T„ 
also lies in this arc, we have 

|T, - z\ = 0 ( ^ - ' ) , 

so that (5.18) and (5.19) give 

| r , (G) | ^ C 2 « ( g ; ^ ) . 

Hence from (5.14), we obtain 

M^?Xz)|g^w(g;l), 

which is equivalent to (5.12) because of (5.13). 

6. Bernstein-Schoenberg type operator. While the quasi-interpolant 
requires information about the value of the function and its derivative up 
to order n at k points, the B-S operator needs only function-values at k 
points. In view of this, it is of some interest to define the B-S type operator 
for A-splines. 

Using (2.2) and (3.11) and comparing coefficients of y •> on both sides in 
(3.6), we obtain 
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k-\ 

(6.1) zX> = C.(A„) 2 ^MA (zr'), j = 0, 1 , . . . , n 
J' , - o 

where 

(6.2) ^ H - i ^ n ^ x . 

We shall show that there is a unique linear operator 

k-\ 

(6.3) (S/)(z) = 2 bvf(ov)MA(zrv) 

which reproduces z ° and z '. This requirement gives, in view of (6.1) 

v > = c0(A„)r\ b„o)\ = c,(A„)rX|. 
It is easy to see that 

*„ = {C0(AJ}A ' / ( X ' -Ao ){C1(AJ}xo /(\)-^) =:b(An) 

and 

j(^i-Ao)" 

From (6.2) it follows by elementary computation that 

a„ = /tfi/2(»+l) + ' 

where 

* / \ k 

We now renormalize our J5-splines MA (z) and set 

(6.5) NK(z) = b(A„)MAJiz). 

From (6.2) and Lemma 2, we get 

(6.6) NAp) = 0(1). 

Our operator (Sf)(z) now takes the form 

(6.7) (Sf)(z) = E / ( 0 ^ A ( z r " ) , a, = ^ 1 / 2 ( " + , ) + ". 
»-=o 

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-059-9


1102 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA 

When X0 = 0, we note that (6.7) shows that the normalized 5-splines 
TVA (zf ~v), (P = 0, 1, . . . , k — 1) form a partition of unity. 

For a study of the convergence of this operator, we shall prove 

LEMMA 5. For r = 0, 1, . . . , n — 1 we have the identity 

k-\ 

(6.8) ir(sf){z) = b(An) 2 n, r\..•,r\_r+ln 

X i{ovy)MK_(zrv). 
Proof. We shall prove (6.8) by induction on r. For r = 0, (6.8) reduces to 

(6.7). We assume then that (6.8) is true for some r < n — 1. Then 

L f + 1(S/)(z) = Dn_rLr(Sf)(z). 

Applying our inductive hypothesis and observing that by (3.3), 

Dn-rMK_(zrv) = MK_r_s(zrv~x) - rK-'MAm_r_i(zr') 
we have after elementary rearrangement 

k-\ 

= MA„)2 [i,r',...,rr\K_r+,/j<y)MK_r_(,zr') 
where 

Fv(y) =f(*,_ly) - rK~f(°,y). 
We note that ov_x = ovÇ~l and apply (2.13) and (2.15) to derive (6.8) with 
r replaced by r + 1 which completes the proof. 

We shall now prove 

THEOREM 4. Let f(z) be defined on some annulus {z:p] = \z\ = p2} for 
some pj < 1 < p2. Suppose that for any TJ, pj = 7] = p2, the function f(i)z) 
lies in Cr(U), zG Ufor some r, 0 ^ r = n—\. Moreover let 

Hr(Vz):= (T,z)-\L,./(7,z) 

be continuous for z e U, Pj = i) = p2. Then 

(6.9) \Lr(Sf)(z) - L,f(z) | ^ C<*(H,\ ^ ) 

where C is independent off and k. 

Proof. Since the operator S reproduces z \ it follows from (6.7) that 

k-\ 

(6.10) zX*= 2 (a,(AA7_r))Xo7VA_(zrO-

Then from (6.8) we obtain 
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(6.11) Lr(Sf)(z) - Lrf(z) = - ^ - 2 (\f)NA Jzr") 
b(Kn_r) v=o " r 

where 

(6.i2) (\f) = [ i, r ' , . . . , r \ , _ r + l „ / ( a „ ( A » 

From (3.4) it follows that 

(6.i3) [ir1 n v , + , ;= X^^jv-y-'o;/)^. 
In particular for/(z) = z \ this yields (from (6.2) ), 

(6.14) [uMA ( V - ' ) A - I ^ fi ^ ^ = ^ - i 

Hence from (6.12), (6.13) and (6.14) after some simplification, we get 

(6.15) \f= X^A._,.H>~,)^~WA,))^{tfJ.(a,(A,,)v) 
- Hr(z) }dv. 

For a fixed z e ( / , w e shall estimate A,,/in (6.11) for those values of v for 
which 

NK_r(zrv) * o, 
i.e., for z e arc(^, çv+n~r+xy Moreover, the integrand in (6.15) is 
non-zero only for values of v in the arc(f_r_1 , 1). Recalling that 

ov(K) = R?,2{n + X) + V and 1 - R = 0(k~\ 

we see that 

K(A„) - z\ = 0(k~{) 
so that using (5.2) of Lemma 2 in (6.15) we obtain 

I V I = 0(AT>(// f; ^ ) . 

Since 

\b(An)/b(An_r) | = 0(kT) and \NK_(z) \ = O(l), 

the result follows from (6.11). 

Remark. The B-S operator (6.7) is defined only for functions/which are 
defined on some annulus {z:pj ^ \z\ ë p2}, P\ < 1 < p2. However, any 
function / e C(£/) can be extended to / which is continuous on an 
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annulus in a number of ways. Perhaps the simplest way is to set 

f(Vz) = f(z\ z e U,ri>0. 

Using this extension we can easily derive from Theorem 4, the following 

COROLLARY. For f e C(U), set 

(6.16) (Sf)(z) = 2 / ( f 1 / 2 , " + 1)+>A(zr"). 

Iff G Cr(U)for some r, 0 ^ r ̂  n - 1, then for z e [/, 

|Lr(5/)(z) - lrf(z)\tk C,{^ ||Lr/H + u(r r/; 1 

w//£re Cj /s independent off and k. 

In particular 

(Sff\z)^fi%), (P = 0,h....,r) 
uniformly on U as k —> oo. 

7. An asymptotic formula. If we suppose the function/(z) to be analytic 
in a neighbourhood of U, then it is possible to get a more precise result for 
the error of approximation t o / b y the B-S type operator. We shall indeed 
prove 

THEOREM 5. If f is holomorphic in a neighbourhood 2 of U, then we 
have 

(7.1) lim k2{(Sf)(z) -f(z)} = -Un + \)^L2f(z). 

The proof of Theorem 5 will be based on 

LEMMA 6. If E2k(z) is given by 

k-\ 

(7.2) E2k(z) = 2 <S>A(ovz-x)NK(zrv) 
v = 0 

then 

(7.3) E^z) = -r- + 0{-4). 

Proof From (2.2) we see that 

(7.4) V(X0, A„ \2)E2^z) 

) 
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k-\ 

>.=o 

•h\> 

1 1 

IA io,z-*f* 

v0 'M 

From (6.1) and (6.5) we have 

£ - 1 

NA2(zr'). 

2(a / -
| ) \ ( z r0= KJ=Ji1' 

where 

y = 0 

K = 
(C0(A„) ^ ' " " ^ ^ ' " H c ^ A J ^-^/ (Ao-A.) 

C2(AJ 

Using (6.2), elementary calculation shows that 

(7.5) K=l-<n+lfV(*»X»V+o(\). 
6A:2(X, - X0) U 4 / 

The result now follows from (7.4) and (7.5). 

Proof of Theorem 5. Since/is holomorphic in a domain % formula (2.9) 
is valid for any points z, a in 2. Thus for z e U, w e Sd, we have 

(7.6) / ( « ) =/(z)<#»Ao(Wz-') + ( L , / ) ^ ^ " 1 ) 

+ ( ^ / X z ^ w z - 1 ) + 0 ( | « - z | 3 ) . 

Using (7.6) with us = av, v = 0, 1,. . . , k — 1 we have 

k-\ 

(7.7) (Sf)(z)= 2 f(ar)NA (zrv) 

= f(z)E0M(z) + (Lj)(z)Elk(z) 

+ (L2f)(z)E2J((z) + 0(\a- z|3). 

where 

Ehk(z) = 2 <M<V ')^A (*? "), y = o, l, 2. 

From (2.2), 

ly\> </>Ao(a„z ') = (o„z T and 

</>A|(<V~') = [(<V~')X ' - {ovz~x)\l{\x - \ \ 

so that using the reproducing property of the B-S operator we have 

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-059-9


1106 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA 

(7.8) E^k(z) = 1 and EXJk(z) = 0. 

The result then follows from (7.7), (7.8) and (7.3). 

Remark. We observe that 

L2f(z) = z2f'\z) + (1 " \ ) - W ( * ) + V i / ( * ) . 

which shows that the asymptotic formula depends upon X0 and \x and not 
on À2, . . . , Xn. 

8. Trigonometric A-spIines. We shall consider the special case when the 
numbers X- in A are symmetric about the origin, or equivalently, when 

(ZU A = / { ^ l - ' - ^ m } > n = 2m-\ 
(*A) A« 1 ( 0 ^ / 1 , , . . . ^ ^ } , n = 2m. 

In this case U(An) is related to the class of trigonometric polynomials 
T(An) spanned by 

{cos /i-0, sin pu}™ when n = 2m — 1 

or by 

{1, cos /x-0, sin [ij0}™ when « = 2m. 

Indeed, p(z) e II(AW) if and only if p{ée) <E T(An) when Aw is given by 
(8.1). 

For a positive integer k > 2 max|/i-| we shall denote by ^ ( A w ) the class 
of trigonometric splines /(#) which satisfy 

i) t(0 + 2T7) = /(fl), t(0) e C" _ 1 (#) , 
ii) ^(^)l(77,j/2+/ï) G 7XA„), for all integers j , where /i = 2TT//:. 

It follows that taking 

Zk = {1, el\...,el{k-])h}, 

S(z) e ^(A„, Z*) if and only if 

S(ei6) e ^ ( A „ ) . 

From Proposition 1, we see that 

d i m ^ ( A „ ) = k. 

Let ^ ( 0 ) e r(AJ b e s u c h t h a t 

</;>«))= (o. » - o , i , . . . , « - i 
A« 1 1 , v = n. 

It is easy to see from (2.1) that 

(8.2) qK{6) = T > A n ( A 

It is now possible to define the trigonometric 2?-splines QA (6) as a 
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trigonometric A-divided difference of qA (0 — y)(0 — y) + . However for 
the sake of brevity, we set 

(8.3) QA(8) = -i"MA(eie). 

It follows immediately from Proposition 3 that {QA (0 — vh) } Q _ 1 form 
a basis for the space ^(An). 

We shall use the symbol Ap
n to denote the set AW \{±JU, / 7}. Using (8.3) 

and Lemma 1, we shall prove 

LEMMA 6. The B-splines QA (0) satisfying the following recurrence 
relations'. 

(8.4) (ti2
m - ii])QK(6) = QK(0 - 2h) 

- 2 cos iimhQK(0 - h) + QK{0) 

- {£Ai(0 -2h)-2 cos ^hQ^O - h) 

+ QK(8) } , n ^ 3 

and for n even 

(8.5) Q'A(0) = QK_X(0) - QA_x(e - h). 

Proof. In order to prove (8.4), we use (3.2) with f = elh, X0 = jLtj, 
\n = jLtm, and obtain 

Qim ~ lix)MA{z) = MA(ze~lh) - e~^hMA(z) 

- MB(ze~ih) + e~l^hMB(z). 

where A = A „ \ { M I } and B = A„\j/xw}. 
We again apply (3.2) to MA(ze lh) and MA(z) with X0 = —jitj and 

\? = Mm- Also w e u s e (3-2) for MB(ze~lh) and MB(z) with X0 = /x, 
and Xn = — \xm. After simplification, we get 

(/£ - A)MK(z) = M^{ze-m) 

- 2 cos iixhMk\n{ze~ih) + AfAi(z) 

- {MK(ze~m) - 2 cos \imhMK(ze~ih) 

+ MK{z) }. 

Formula (8.4) follows now on using (8.3). 
In order to prove (8.5) we use (8.3) and (3.3). 

Remark. As an application of (8.4) and (8.5) we show that QA (0) is real. 
When n = 1, 

QA (0) = s m ^°9 for 0 < 0 < h and 
Mi 
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= rinMl(2ft-g) f o v h < e < 2 h 

1 /* 

It follows from (8.4) that QA (0) is real for all odd n. From this and from 
(8.5) we see that Q'A (0) is real for n even. But from (3.1) and (8.3) we 
observe that for 0 < 0 < h, 

QAS») = <7A„(0)> 

whence it follows that for n even, QA (6) is real. 

Putting z = ei$, y = e~ia in (3.6) we can deduce from Theorem 1 an 
analogue of Marsden's identity. We state without proof 

THEOREM 6. If VA (6) e 7\A„) and satisfies the conditions 

(8.6) / VA (0) = 1 
\vA"(Jh) = 0, j = 1 , 2 , . . . , H 

then we have the identity 

k-\ 
(8.7) qA(0 - a)= 2 VA (a - jh)QA (0 - jh). 

j = 0 

We note from (3.11) and (3.12) that 

VA(0) = (-\)"-^A(e-
ie). 

In order to define the quasi-interpolant for trigonometric A-splines, we 
need to introduce some differential operators. We shall denote in the 
sequel dld0 by D. If n = 2m — 1 and A„ = {±/*i, . . . , ± / A W } , we set 

r 

(8.8) 0O = /, &2r = I E (D2 + /»?), e 2 , + 1 = DS2r. 

Similarly if n = 2m and A„ = {0, ± j U ] , . . . , ±Mm}, we set 
r-\ 

(8.9) 0O = / , 0 2 r _ , = D I I (D2 + ixj), @2r = Z>02r_,. 
y - i 

For n even (or odd) we set 

m 

©o = i, ©2r = n (D2 + ii2), s 2 r + 1 = z>s2r. 
j' = m — r + 1 

We now choose points rv(v = 0, 1, . . . , k — 1) with rv G (vh,(v + n + 
\)h) and consider a linear operator 

<?*:C"2(R)^yk(An) 
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of the following form: 

k-\ 

(8.11) (JS?*/X*) = 2 Tv*(f)QA(6 - vh) 

where 

n 

(8.12) 7^(7) = 2 bv/&J)(rp) 
r = 0 

and />„,. are constants depending on TV but not on / . 
We can then prove 

THEOREM 7. v4/t operator J?* of the form given by (8.11) and (8.12) 

(8.13) (^*S)(0) = S(9), forallS(ff) e ^ ( A „ ) 

/ / and only if 

(8.14) bvr = (-\)"-r(&n_rVA)(Tv - vh), v = 0, 1, . . . , k - 1. 

where VA is given by (8.6). 

F o r ^ * of the form (8.11) and (8.12), define an operator 

by 

J?g(eie) = J?*f(0), when g(el°) = f(0). 

It is easily seen thatoSfis of the form (4.1) and (4.2). Moreover.^* satisfies 
(8.13) if and only if -^satisfies (4.3); a l s o ^ * satisfies (8.14), if and only if 
«^satisfies (4.4). Theorem 7 then follows from Theorem 2. 

From Theorem 3 we can deduce 

THEOREM 8. Iff(0) e C^iR), then the following estimate holds: 

(8.15) | (2>*ff\8) - fs\B) | 

â A V - X g , ; h) + o>(g2; h) } (s = 0, 1 , . . . , n) 

where 

(8.16) g,(0) + ig2(6) = e2i^eD(e-^e)@n_J. 

If n = 2m, the right hand side 0/(8.15) can be replaced by 

Kh"-''«(©„/; A). 

It may be observed that <o(gj; /z) and u(g2', h) both vanish when 
/ e r(A„). 

We now consider the B-S operator (6.7) where A„ is given by (8.1) and 

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-059-9


1110 T N T . GOODMAN, S. L. LEE AND A. SHARMA 

so that 
jLtj, X, = — JUJ. It is easily seen from (6.4) that in this case R = 1 

(8.17) (Sg)(z)= 2g(?1 / 2 ( t t + 1 ) + >A(zrO. 

Thus in this case S coincides with S given by (6.16). We now define an 
operator 

S*:C2„(R)-*yk(A„) 

by 

(8.18) (S*f)(6) = ( S g ) ( A g(ei$)=f($). 

It follows from (8.17) and (8.16) that S* reproduces cos JU,# and sin JH,0. 
An explicit formula for 5*/can be derived from (8.18), (8.17), (6.5) and 
(8.3). Indeed we have 

* - i / i \ 
(8.19) (S*/)(0) = 2 / ( - ( « + \)h + vh)Ax(A„)QA(0 - vh) 

where 

MK) = 

/*i n 
G*)2 - {\*Y 

sin /ijA y =2 . 2 1 ; • 2 1 , 
sin -ii]h — sin -u;/z 

2 ] 2J 

, A = 2m — 1, 

1 (^)2 g (^)2 " (^T 
1 / • 2 1 / 7=2 . 2 1 ; • 2 1 , 

cos —/Xj/z sin -/ij/z sin —/XJ/I — sin -fijh 

n = 2m. 

From Corollary to Theorem 4, we can deduce 

THEOREM 9. Iff(0) e Cr
lm{R)for some r, 0 ^ r ^ n - 1, f/œ/i 

(8.20) | (S*/) ( r )W - / ( r ) ( » ) | â C ( / * 2 H/^ll + <o(/(r); /* ) ) , 

where C is independent of f and h. 

Finally we consider an analogue of the asymptotic formula (7.1), which 
was proved under the assumption t h a t / i s holomorphic in a neighbour
hood of U. However if the number R occurring in the definition of Sf is 1, 
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then we can prove (7.1) even f o r / G C (U), because then we require 
formula (7.6) only when w, z G U. Thus from Theorem 5 we can 
deduce 

THEOREM 10. / / / <= C3
27T(R), then 

lim h~2{ (S*fX8) ~ f(9) } = ±-(n + l)(/"(0) + /i?/(*) ). 
h-M) 24 

For A = {0, 1 , . . . , « } it is shown in [4] that the B-S operator S* is 
variation-diminishing, i.e., the number of times which S*f changes sign 
in [0, 277] is no greater than the number of times which / changes sign in 
[0, 277]. It would seem plausible that S* is also variation-diminishing for 
more general A, possibly under a restriction on the size of h. 
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