Can. J. Math., Vol. XXXVII, No. 6, 1985, pp. 1085-1111

APPROXIMATION BY Λ -SPLINES ON THE CIRCLE

T. N. T. GOODMAN, S. L. LEE AND A. SHARMA

1. Introduction. Let $\Lambda = {\lambda_0, ..., \lambda_n}$ denote a set of distinct integers and let $\Pi(\Lambda)$ denote the set of all generalized polynomials of the form

$$\sum_{0}^{n} a_{j} z^{\lambda_{j}}, \quad a_{j} \in \mathbf{C}.$$

For any given ζ on the unit circle U with

$$0 \leq |\arg \zeta| \leq \frac{2\pi}{k},$$

we consider the set Z_k of points 1, ζ , $\zeta^2, \ldots, \zeta^{k-1}$ where

$$k > \max_{i,j} |\lambda_i - \lambda_j|.$$

We shall denote by $\mathscr{S}(\Lambda, Z_k)$ or \mathscr{S} the class of Λ -splines S(z) which satisfy the following conditions:

(i)
$$S(z) \in C^{n-1}(U)$$

(ii) $S(z)|_{A_{\nu}} \in \Pi(\Lambda)$ where
 $A_{\nu} = \operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+1}), (\nu = 0, 1, ..., k - 2)$ and
 $A_{k-1} = \operatorname{arc}(\zeta^{k-1}, 1).$

A-splines were introduced in [8] where their interpolation properties were studied. Although in [8], Λ is comprised of non-negative integers, there are no difficulties in allowing Λ to contain any integers. When $\Lambda = \{0, 1, \ldots, n\}$, Λ -splines reduce to polynomial splines on the circle studied in [1], [11].

Our object here is to study approximation theoretic properties of Λ -splines and to obtain their trigonometric analogues. As in [11] and [8], a basic tool to this end will be the *B*-spline $M_{\Lambda}(z) \in \mathcal{S}$ which for $k \ge n+2$ has support on the arc $(1, \zeta^{n+1})$, (in fact the minimal support possible). We shall be concerned mainly with the case $\zeta^k = 1$ when the *B*-splines $M_{\Lambda}(z\zeta^{-\nu}), \nu = 0, 1, \ldots, k - 1$ will form a basis for \mathcal{S} .

In Section 2 we introduce the preliminaries and some definitions and in Section 3 we study the properties of the *B*-splines in \mathcal{S} and the analogue of

Received February 23, 1984. The first author was partially supported by NSERC 3094.

Marsden's identity [7]. We then examine approximation operators of the form

(1.1)
$$(\mathscr{L}g)(z) = \sum_{\nu=0}^{k-1} T_{\nu}(g) M_{\Lambda}(z\zeta^{-\nu}).$$

In Section 4, we take $T_{\nu}(g)$ to be a linear combination of $g^{(r)}(\tau_{\nu})$, $r = 0, 1, \ldots, n$ for some prescribed points τ_{ν} on the $\operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+n+1})$. It is shown that there is a unique such operator which reproduces \mathscr{S} . This is the analogue of the quasi-interpolant (see [2]), a special case of which is due to Chen [3] when $\Lambda = \{0, 1, \ldots, n\}$. The order of approximation by this operator is the subject of Section 5 and generalizes the work in [3].

In Section 6 we consider (1.1) when $T_{\nu}(g)$ is a constant multiple of $g(\sigma_{\nu})$ for some σ_{ν} . We show that there is a unique such operator which reproduces z^{λ_0} and z^{λ_1} . This is the analogue of the Bernstein-Schoenberg operator (B-S operator) (see [9]). Similar results for the case of generalized real polynomials are due to Hirschman and Widder [5]. Section 6 also deals with the order of approximation of this operator and in Section 7 we obtain an asymptotic formula which is reminiscent of a result of Voronovskaja [6] for Bernstein polynomials, thus generalizing the results in [4] for the case $\Lambda = \{0, 1, \ldots, n\}$.

Results of Sections 6 and 7 are analogous to the work of Marsden [7] for the B-S operator. However, unlike Marsden we keep n fixed $\leq k - 2$, but our results as $k \to \infty$ are somewhat stronger in so far as we get convergence for all derivatives up to order n - 1 at all points.

By taking the λ_j 's in Λ to be symmetric about 0, we can get corresponding results for trigonometric Λ -splines which is the subject of Section 8.

2. Preliminaries. For given distinct integers $\lambda_0, \lambda_1, \ldots, \lambda_n$ we denote by $\Lambda_{p,q}$ the set $\{\lambda_p, \ldots, \lambda_q\}$, but for simplicity we shall use Λ_p instead of $\Lambda_{0,p}$. In order to study the Λ -splines, it will be useful to consider the function $\phi_{\Lambda_n}(z) \in \Pi(\Lambda_n)$ satisfying the conditions

(2.1)
$$\phi_{\Lambda_n}^{(\nu)}(1) = \begin{cases} 0, \nu = 0, 1, \dots, n-1 \\ 1, \nu = n. \end{cases}$$

It is easy to see that $\phi_{\Lambda_n}(z)$ is uniquely given by

(2.2)
$$\phi_{\Lambda_n}(z) = (-1)^n \begin{vmatrix} z^{\lambda_0} & z^{\lambda_1} & \dots & z^{\lambda_n} \\ 1 & 1 & \dots & 1 \\ \lambda_0 & \lambda_1 & \dots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_0^{n-1} & \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix} \div V(\lambda_0, \dots, \lambda_n)$$

where $V(\lambda_0, \ldots, \lambda_n)$ denotes the Vandermondian. It follows from (2.1)

Mai

and (2.2) that

(2.3)
$$(\lambda_n - \lambda_0)\phi_{\Lambda_n}(z) = \phi_{\Lambda_{1,n}}(z) - \phi_{\Lambda_{n-1}}(z)$$

since the coefficients of z^{λ_n} on both sides are equal and all the derivatives up to order n - 1 at 1 vanish on both sides.

For any $\beta \in U$ we introduce the analogue of the truncated power function by setting

(2.4)
$$\phi_{\Lambda_n}(z, \beta) = \begin{cases} 0, z \in \operatorname{arc}[1, \beta] \\ \phi_{\Lambda_n}(z\beta^{-1}), z \in \operatorname{arc}[\beta, 1]. \end{cases}$$

We shall prove the following

PROPOSITION 1. The dimension of the space $\mathscr{S}(\Lambda_n, Z_k) = k$.

Proof. If $S(z) \in \mathcal{S}$, then S(z) can be written in the form

(2.5)
$$S(z) = P(z) + \sum_{j=0}^{k-1} a_j \phi_{\Lambda_n}(z, \xi^j), \quad P(z) \in \Pi(\Lambda_n),$$

where S(z) on the $\operatorname{arc}(\zeta^{k-1}, 1)$ is given by P(z). Then it is easy to see that

(2.6)
$$\sum_{j=0}^{k-1} a_j \phi_{\Lambda_n}(z \zeta^{-j}) = 0.$$

Moreover any S(z) satisfying (2.5) and (2.6) belongs to \mathscr{S} . Equating to zero the coefficients of z^{λ_j} , we see that (2.6) is equivalent to the system of n + 1 equations:

$$\sum_{j=0}^{k-1} a_j \zeta^{-j\lambda_{\nu}} = 0, \quad \nu = 0, \ 1, \ldots, n.$$

Since $k > \max|\lambda_{\mu} - \lambda_{\nu}|$ and $|\arg \zeta| \le 2\pi/k$, it follows that the rank of the matrix of this system is n + 1, so that from (2.5) the dimension of \mathscr{S} is k - (n + 1) + (n + 1) = k.

We shall now derive an analogue of Taylor's formula. To this end we set

$$D_jf(z) = z^{\lambda_j+1}\frac{d}{dz}(z^{-\lambda_j}f), \quad j = 0, 1, \ldots, n.$$

Observe that if g(z) = f(az), then

$$D_{i}g(z) = (D_{i}f)(az),$$

for any constant a. Since

$$D_j \phi_{\Lambda_j} \in \Pi(\Lambda_{j-1})$$

and since it is easily seen from (2.1) that

$$\frac{d^{\nu}}{dz^{\nu}}(D_{j}\phi_{\Lambda_{j}})\Big]_{z=1} = \begin{cases} 0, \ \nu = 0, \ 1, \dots, \ j-2\\ 1, \ \nu = j-1, \end{cases}$$

it follows that

(2.7)
$$D_j \phi_{\Lambda_j}(z) = \phi_{\Lambda_{j-1}}(z).$$

For j = 1, 2, ..., n + 1, we define the differential operators L_j by

(2.8)
$$L_j = D_{j-1}D_{j-2} \dots D_0, \quad L_0 = I.$$

This enables us to get the following analogue of the Taylor's formula where $f \in C^{n+1}(U)$:

(2.9)
$$\begin{cases} f(z) = f(a)\phi_{\Lambda_0}(za^{-1}) + (L_1f)(a)\phi_{\Lambda_1}(za^{-1}) + \dots \\ + (L_nf)(a)\phi_{\Lambda_n}(za^{-1}) + R_n, \\ R_n = \int_a^z \phi_{\Lambda_n}(zv^{-1})v^{-1}(L_{n+1}f)(v)dv, \quad a, z \in U. \end{cases}$$

Formula (2.9) can be easily verified by integrating by parts and is perhaps known.

It is of interest to introduce the operators \widetilde{L}_i by

(2.10)
$$\tilde{L}_j = D_{n-j+1}D_{n-j+2}\dots D_n, \quad 1 \leq j \leq n+1; \; \tilde{L}_0 = I.$$

In this case, we get an analogue of (2.9). Indeed we have

(2.11)
$$\begin{cases} f(z) = f(a)\phi_{\Lambda_{n,n}}(za^{-1}) + (\widetilde{L}_{1}f)(a)\phi_{\Lambda_{n-1,n}}(za^{-1}) + \dots \\ + (\widetilde{L}_{n}f)(a)\phi_{\Lambda_{n}}(za^{-1}) + \widetilde{R}_{n}. \\ \widetilde{R} = \int_{a}^{z} \phi_{\Lambda_{n}}(zv^{-1})v^{-1}(\widetilde{L}_{n+1}f)(v)dv. \end{cases}$$

In order to define *B*-splines in \mathscr{S} , we introduce the Λ -divided difference of a function f on a subset of Z_k by the symbol $[1, \zeta, \ldots, \zeta^{n+1}]_{\Lambda_n} f$ defined by the expression

(2.12)
$$\begin{vmatrix} 1 & 1 & \dots & 1 & f(1) \\ \zeta^{\lambda_0} & \zeta^{\lambda_1} & \dots & \zeta^{\lambda_n} & f(\zeta) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \zeta^{(n+1)\lambda_0} & \zeta^{(n+1)\lambda_1} & \dots & \zeta^{(n+1)\lambda_n} & f(\zeta^{n+1}) \end{vmatrix} \div V(\zeta^{\lambda_0}, \dots, \xi^{\lambda_n}),$$

where $V(\zeta^{\lambda_0}, \ldots, \zeta^{\lambda_n})$ is a Vandermondian. More generally, we set (2.13) $[\zeta^{\nu}, \zeta^{\nu+1}, \ldots, \zeta^{\nu+n+1}]_{\Lambda_n} f(z) = [1, \zeta, \ldots, \zeta^{n+1}]_{\Lambda_n} f(z\zeta^{\nu}).$ From (2.12) we can see that

(2.14) $[1, \zeta, \dots, \zeta^{n+1}]_{\Lambda_n} f = \sum_{\nu=0}^{n+1} (-1)^{n+1-\nu} S_{n+1-\nu}(\Lambda_n) f(\zeta^{\nu})$

where $S_{\nu}(\Lambda_n)$ is the ν -th elementary symmetric function of the numbers $\zeta^{\lambda_0}, \zeta^{\lambda_1}, \ldots, \zeta^{\lambda_n}$. From (2.14), it follows that

(2.15)
$$[1, \zeta, \dots, \zeta^{n+1}]_{\Lambda_n} f = [\zeta, \zeta^2, \dots, \zeta^{n+1}]_{\Lambda_{n-1}} f - \zeta^{\lambda_n} [1, \zeta, \dots, \zeta^n]_{\Lambda_{n-1}} f = [\zeta, \zeta^2, \dots, \zeta^{n+1}]_{\Lambda_{1,n}} f - \zeta^{\lambda_0} [1, \zeta, \dots, \zeta^n]_{\Lambda_1, n} f.$$

Remark. If $\Lambda_n = \{0, 1, ..., n\}$, then our Λ -divided difference differs from the usual divided difference on the same points by a constant factor. More precisely, in this case

$$[1, \zeta, \dots, \zeta^{n+1}]_{\Lambda_n} f = \prod_{j=0}^n (\zeta^{n+1} - \zeta^j)[1, \zeta, \dots, \zeta^{n+1}] f$$

where the right hand divided difference is the usual one.

3. B-splines and their properties. Here and in the sequel we shall assume that $k \ge n + 2$. We now define the B-spline $M_{\Lambda_n}(z)$ to be an element of \mathscr{S} given by

(3.1)
$$M_{\Lambda_n}(z) = [1, \zeta^{-1}, \dots, \zeta^{-n-1}]_{\Lambda_n} \phi_{\Lambda_n}(z, y^{-1}).$$

For $z \in \operatorname{arc}(\zeta^{n+1}, 1),$

$$M_{\Lambda_n}(z) = [1, \zeta^{-1}, \dots, \zeta^{-n-1}]_{\Lambda_n} \phi_{\Lambda_n}(zy)$$

because of (2.4) and so vanishes since

$$\phi_{\Lambda_n}(zy) \in \Pi(\Lambda_n).$$

We shall show that $M_{\Lambda_n}(z)$ is the spline of minimal support in \mathscr{S} .

PROPOSITION 2. If $S(z) \in \mathcal{S}$ has support strictly contained in the arc $(1, \zeta^{n+1})$, then $S(z) \equiv 0$.

Proof. Suppose the support of S(z) lies in $(1, \zeta^n)$. Then S(z) lies in the space of all Λ -splines with knots $1, \zeta, \ldots, \zeta^n$ which by Proposition 1 has dimension n + 1 and thus equals $\Pi(\Lambda_n)$. So $S(z) \in \Pi(\Lambda_n)$ and since S(z) vanishes on an arc, $S(z) \equiv 0$.

We shall now prove

LEMMA 1. The B-splines satisfy the following recurrence relations:

(3.2)
$$\begin{cases} (\lambda_n - \lambda_0) M_{\Lambda_n}(z) = M_{\Lambda_{1,n}}(z\zeta^{-1}) - \zeta^{-\Lambda_0} M_{\Lambda_{1,n}}(z) \\ - M_{\Lambda_{n-1}}(z\zeta^{-1}) + \zeta^{-\lambda_n} M_{\Lambda_{n-1}}(z) \end{cases}$$

and

(3.3)
$$D_n M_{\Lambda_n}(z) = M_{\Lambda_{n-1}}(z\zeta^{-1}) - \zeta^{-\lambda_n} M_{\Lambda_{n-1}}(z).$$

Proof. Using (2.3) we see from (3.1) that

$$(\lambda_n - \lambda_0) M_{\Lambda_n}(z) = [1, \zeta^{-1}, \dots, \zeta^{-n-1}]_{\Lambda_n}(\phi_{\Lambda_{1,n}}(z, y^{-1}) - \phi_{\Lambda_{n-1}}(z, y^{-1})).$$

Next we use (2.15) which yields

$$\begin{aligned} (\lambda_n - \lambda_0) M_{\Lambda_n}(z) &= [\xi^{-1}, \xi^{-2}, \dots, \xi^{-n-1}]_{\Lambda_{1,n}} \phi_{\Lambda_{1,n}}(z, y^{-1}) \\ &- \xi^{-\lambda_0} [1, \xi^{-1}, \dots, \xi^{-n}]_{\Lambda_{1,n}} \phi_{\Lambda_{1,n}}(z, y^{-1}) \\ &- [\xi^{-1}, \xi^{-2}, \dots, \xi^{-n-1}]_{\Lambda_{n-1}} \phi_{\Lambda_{n-1}}(z, y^{-1}) \\ &+ \xi^{-\lambda_n} [1, \xi^{-1}, \dots, \xi^{-n}]_{\Lambda_{n-1}} \phi_{\Lambda_{n-1}}(z, y^{-1}). \end{aligned}$$

We now get (3.2) from (2.13) and (3.1).

Formula (3.3) follows on applying D_j to (3.1) and on using (2.7), (2.13) and (2.15).

As a simple application of the B-splines, we show that

(3.4)
$$[1, \zeta^{-1}, \ldots, \zeta^{-n-1}]_{\Lambda_n} f = \int_U M_{\Lambda_n} (v^{-1}) v^{-1} (L_{n+1} f) (v) dv.$$

In order to see this we use (2.4) and observe that for a = 1 in (2.9) we have

$$R_n = \int_U \phi_{\Lambda_n}(v^{-1}, z^{-1})v^{-1}(L_{n+1}f)(v)dv.$$

We now apply the difference operator $[1, \zeta^{-1}, \ldots, \zeta^{-n-1}]_{\Lambda_n}$ to both sides of (2.9) and using (3.1), we get (3.4).

In the sequel we shall suppose that ζ is a primitive k^{th} root of unity, i.e.,

$$\zeta = e^{2\pi i/k}, \, k \ge n + 2.$$

We then have

PROPOSITION 3. If ζ is a primitive k^{th} root of unity, then the B-splines $M_{\Lambda_n}(z\zeta^{-\nu}), \nu = 0, 1, \ldots, k - 1$ form a basis for the space \mathscr{S} of Λ -splines.

Proof. Since the dimension of \mathscr{S} is k (Proposition 1), it is enough to show that $\{M_{\Lambda_n}(z\zeta^{-\nu})\}_0^{k-1}$ are linearly independent. We shall show that if there exists a relation

$$S(z) := \sum_{\nu=0}^{k-1} c_{\nu} M_{\Lambda_n}(z\zeta^{-\nu}) \equiv 0$$

then all the c_{ν} 's are zero.

Consider the function T(z) given by

$$T(z) = \sum_{\nu=k-n-1}^{k-1} c_{\nu} M_{\Lambda_n}(z\zeta^{-\nu}), \quad z \in \operatorname{arc}(\zeta^{k-n-1}, 1).$$

Since $M_{\Lambda_n}(z)$ vanishes outside the arc(1, ζ^{n+1}) it follows that

$$T(z) = S(z) = 0$$
, for $z \in arc(\zeta^{k-1}, 1)$.

Thus $T(z) \in \mathscr{S}$ and has support in the $\operatorname{arc}(\zeta^{k-n-1}, \zeta^{k-1})$ and hence by Proposition 2, vanishes identically. Observe that for $z \in \operatorname{arc}(\zeta^{k-n-1}, \zeta^{k-n})$,

$$T(z) = c_{k-n-1} M_{\Lambda_n}(z \zeta^{-k+n+1}) = 0$$

which implies $c_{k-n-1} = 0$. Proceeding in this manner we see that

$$c_{\nu} = 0, \quad \nu = k - n - 1, \dots, k - 1.$$

Hence

$$\sum_{\nu=0}^{k-n-2} c_{\nu} M_{\Lambda_n}(z \zeta^{-\nu}) \equiv 0$$

and by the same argument as above, we see that c_{ν} 's are all zero.

We shall now prove the analogue of Marsden's identity.

THEOREM 1. If ζ is a primitive k-th root of unity and if $\psi_{\Lambda_n}(y) \in \Pi(\Lambda_n)$ satisfies the conditions

(3.5)
$$\begin{cases} \psi_{\Lambda_n}(\zeta^{-j}) = 0, \quad j = 1, 2, \dots, n \\ \psi_{\Lambda_n}(\zeta^{-n-1}) = -1, \end{cases}$$

then we have the identity

(3.6)
$$\phi_{\Lambda_n}(zy) = \sum_{j=0}^{k-1} \psi_{\Lambda_n}(\zeta^j y) M_{\Lambda_n}(z\zeta^{-j}).$$

Proof. We prove the identity by induction on *n*. For n = 0, we have

$$\phi_{\Lambda_0}(z) = z^{\lambda_0}$$

while $M_{\Lambda_0}(z) = -z^{\lambda_0} \zeta^{-\lambda_0}$ on arc(1, ζ) and is 0 elsewhere. Also by (3.5), $\psi_{\Lambda_0}(y) = -\zeta^{\lambda_0} y^{\lambda_0}.$

From this we can easily see that for $z \in \operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+1})$, we have

$$\sum_{j=0}^{k-1} \psi_{\Lambda_0}(\zeta^j y) M_{\Lambda_0}(z\zeta^{-j}) = \phi_{\Lambda_0}(\zeta^{\nu} y) M_{\Lambda_0}(z\zeta^{-\nu}) = (zy)^{\lambda_0} = \phi_{\Lambda_0}(zy).$$

We shall now suppose that (3.6) is true for any Λ -set containing *n* elements. Then using (2.3) and the inductive hypothesis, we obtain

$$(\lambda_n - \lambda_0)\psi_{\Lambda_n}(zy) = \phi_{\Lambda_{1,n}}(zy) - \phi_{\Lambda_{n-1}}(zy)$$

$$(3.7) = \sum_{j=0}^{k-1} \psi_{\Lambda_{1,n}}(\zeta^j y) M_{\Lambda_{1,n}}(z\zeta^{-j}) - \sum_{j=0}^{k-1} \psi_{\Lambda_{n-1}}(\zeta^j y) M_{\Lambda_{n-1}}(z\zeta^{-j}).$$

We recall formula (3.2) Lemma 1 to obtain

$$\begin{aligned} &(\lambda_n - \lambda_0) \sum_{j=0}^{k-1} \psi_{\Lambda_n}(\xi^j y) M_{\Lambda_n}(z\xi^{-j}) \\ &= \sum_{j=0}^{k-1} \psi_{\Lambda_n}(\xi^j y) [M_{\Lambda_{1,n}}(z\xi^{-j-1}) - \xi^{-\lambda_0} M_{\Lambda_{1,n}}(z\xi^{-j}) \\ &- M_{\Lambda_{n-1}}(z\xi^{-j-1}) + \xi^{-\lambda_n} M_{\Lambda_{n-1}}(z\xi^{-j})], \end{aligned}$$

which after elementary manipulation gives

(3.8)
$$\sum_{j=0}^{k-1} \psi_{\Lambda_n}(\xi^{j-1}y) \{ M_{\Lambda_{1,n}}(z\xi^{-j}) - M_{\Lambda_{n-1}}(z\xi^{-j}) \} + \sum_{j=0}^{k-1} \psi_{\Lambda_n}(\xi^{j}y) \{ -\xi^{-\lambda_0} M_{\Lambda_{1,n}}(z\xi^{-j}) + \xi^{-\lambda_n} M_{\Lambda_{n-1}}(z\xi^{-j}) \}.$$

In order to prove (3.6) it is sufficient to show that the right side of (3.7) is equal to (3.8). This will be so if the following relations hold:

$$\begin{split} \psi_{\Lambda_{1,n}}(\xi^{j}y) &= \psi_{\Lambda_{n}}(\xi^{j-1}y) - \xi^{-\lambda_{0}}\psi_{\Lambda_{n}}(\xi^{j}y) \\ \psi_{\Lambda_{n-1}}(\xi^{j}y) &= \psi_{\Lambda_{n}}(\xi^{j-1}y) - \xi^{-\lambda_{n}}\psi_{\Lambda_{n}}(\xi^{j}y) \end{split} , j = 0, 1, \dots, k - 1 \end{split}$$

or equivalently,

(3.9)
$$\psi_{\Lambda_{1,n}}(y) = \phi_{\Lambda_n}(\zeta^{-1}y) - \zeta^{-\lambda_0}\psi_{\Lambda_n}(y)$$

(3.10) $\psi_{\Lambda_{n-1}}(y) = \psi_{\Lambda_n}(\zeta^{-1}y) - \zeta^{-\lambda_n}\psi_{\Lambda_n}(y).$

Obviously both sides of (3.9) belong to the class $\Pi(\Lambda_{1,n})$ and by (3.5) they agree for $y = \zeta^{-j}(j = 1, 2, ..., n)$. This shows that (3.9) is valid. In a similar way, we can show that (3.10) is true.

Remark. From (3.5) we can get an explicit representation for $\psi_{\Lambda_n}(y)$. Thus

(3.11)
$$\phi_{\Lambda_n}(y) = \frac{(-1)^{n-1} \zeta^{\lambda_0 + \lambda_1 + \ldots + \lambda_n}}{V(\zeta^{-\lambda_0}, \ldots, \zeta^{-\lambda_n})} \begin{vmatrix} y^{\Lambda_0} & y^{\Lambda_1} & \ldots & y^{\Lambda_n} \\ \zeta^{-\lambda_0} & \zeta^{-\lambda_1} & \ldots & \zeta^{-\lambda_n} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta^{-n\lambda_0} & \zeta^{-n\lambda_1} & \ldots & \zeta^{-n\lambda_n} \end{vmatrix} ,$$

1092

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

whence we see that

(3.12)
$$\psi_{\Lambda_n}(1) = (-1)^{n-1} \zeta^{\lambda_0 + \dots + \lambda_n}$$

4. The quasi-interpolant. It is known that for polynomial splines the quasi-interpolant plays a very useful role. An analogue of the quasi-interpolant for polynomial splines on the circle has recently been given in [3].

In order to obtain the quasi-interpolant for Λ -splines, we choose points $\tau_{\nu} \in \operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+n+1}), \nu = 0, 1, \dots, k-1$ where ζ is a primitive kth root of unity. Consider an operator $\mathscr{L}:C^{(n)}(U) \to \mathscr{S}$ of the following form:

(4.1)
$$(\mathscr{L}g)(z) = \sum_{\nu=0}^{k-1} T_{\nu}(g) M_{\Lambda_n}(z\zeta^{-\nu})$$

where

(4.2)
$$T_{\nu}(g) = \sum_{r=0}^{n} a_{\nu,r}(L_r g)(\tau_{\nu})$$

and $a_{\nu,r}$'s are constants depending on τ_{ν} , but independent of g. We shall show that there is a unique operator \mathscr{L} of the form (4.1), (4.2) which reproduces splines in \mathscr{S} . We shall call such an operator the quasiinterpolant. We can now prove.

THEOREM 2. For an operator \mathcal{L} of the form (4.1), (4.2) we have

(4.3)
$$(\mathscr{L}S)(z) = S(z)$$
 for all $S(z) \in \mathscr{S}$,

if and only if

(4.4)
$$a_{\nu,r} = (\tilde{L}_{n-r}\psi_{\Lambda_n})(\tau_{\nu}^{-1}\zeta^{\nu}), \nu = 0, 1, \ldots, k - 1; r = 0, 1, \ldots, n.$$

Proof. We shall first show that (4.3) implies (4.4). Note that (4.3) is equivalent to

(4.5)
$$T_{\nu}(M_{\Lambda_n}(z\zeta^{-j})) = \delta_{\nu j}, \quad j, \nu = 0, 1, \dots, k - 1.$$

Applying the operator \tilde{L}_j to the identity (3.6) with respect to the variable y and using (2.7) successively, we obtain

(4.6)
$$\phi_{\Lambda_{n-j}}(zy) = \sum_{l=0}^{k-1} (\widetilde{L}_{j}\psi_{\Lambda_{n}})(\zeta^{l}y)M_{\Lambda_{n}}(z\zeta^{-l}).$$

Now applying the operator T_{ν} to both sides of (4.6) with respect to z and recalling (4.5), we have

(4.7)
$$\sum_{r=0}^{n} a_{\nu,r}(L_r \phi_{\Lambda_n-j})(\tau_{\nu} y) = (\widetilde{L}_j \psi_{\Lambda_n})(\xi^j y).$$

From (2.7) we see that

$$L_r \phi_{\Lambda_{n-j}} = D_{r-1} D_{r-2} \dots D_0 \phi_{\Lambda_{n-j}} = \phi_{\Lambda_{r,n-j}},$$

and from (2.1) we note that

$$\phi_{\Lambda_{r,n-j}}(1) = \delta_{r,n-j}$$

so that putting $y = \tau_{\nu}^{-1}$ in (4.7) we have

$$a_{\nu,n-j} = (\widetilde{L}_{j}\psi_{\Lambda_{n}})(\tau_{\nu}^{-1}\zeta^{\nu}), \quad j = 0, 1, \ldots, n$$

which is equivalent to (4.4).

We shall now show that (4.4) implies (4.3), which is equivalent to (4.5). Applying the operator T_{ν} to both sides of (3.1) after replacing z by $z\xi^{-j}$ we have

(4.8)
$$T_{\nu}(M_{\Lambda_n}(z\zeta^{-j})) = [1, \zeta^{-1}, \dots, \zeta^{-n-1}]_{\Lambda_n}T_{\nu}(\phi_{\Lambda_n}(z\zeta^{-j}, y^{-1})).$$

In order to simplify the right side above we observe that (4.2) yields

(4.9)
$$T_{\nu}(\phi_{\Lambda_n}(zy)) = \sum_{r=0}^n a_{\nu,r}(L_r\phi_{\Lambda_n})\phi_{\Lambda_{r,n}}(\tau_{\nu}y) = \sum_{r=0}^n a_{\nu,r}\phi_{\Lambda_{r,n}}(\tau_{\nu}y).$$

We claim that

(4.10)
$$T_{\nu}(\phi_{\Lambda_n}(zy)) = \sum_{r=0}^n a_{\nu,r}\phi_{\Lambda_{r,n}}(\tau_{\nu}y) = \psi_{\Lambda_n}(y\zeta^{\nu}).$$

Since both sides belong to $\Pi(\Lambda_n)$, it is sufficient to show that

(4.11)
$$\left[\widetilde{L}_{j}\left(\sum_{r=0}^{n} a_{\nu,r}\phi_{\Lambda_{r,n}}(\tau_{\nu}y)\right)\right]_{(j=0,1,\ldots,n)}^{y=\tau_{r}^{-1}} = (\widetilde{L}_{j}\psi_{\Lambda_{n}})(\tau_{\nu}^{-1}\zeta^{\nu}),$$

To see this, we observe that on using (2.1) and (2.7) the left side in (4.11) becomes

$$\sum_{r=0}^{n} a_{\nu,r} \phi_{\Lambda_{r,n-j}}(1) = a_{\nu,n-j}$$

which by (4.4) equals the right side of (4.11). This proves the assertion (4.10).

In order to find $T_{\nu}(M_{\Lambda_n}(z\zeta^{-j}))$, we examine $T_{\nu}(\phi_{\Lambda_n}(z\zeta^{-j}, y^{-1}))$ in the light of (4.8). We observe that from (4.10),

(4.12)
$$T_{\nu}(\phi_{\Lambda_n}(z\zeta^{-j}, y^{-1})) = \begin{cases} 0, & \tau_{\nu} \in \operatorname{arc}[\zeta^j, \zeta^j y^{-1}) \\ \psi_{\Lambda_n}(y\zeta^{\nu-j}), & \text{otherwise.} \end{cases}$$

Thus from (4.8) and (4.12) on using (2.13), we obtain

(4.13)
$$T_{\nu}(M_{\Lambda_n}(z\zeta^{-j})) = [\zeta^{-j}, \zeta^{-j-1}, \dots, \zeta^{-j-n-1}]_{\Lambda_n}\Psi_{\nu}(y)$$

where we set

$$\Psi_{\nu}(y) = \begin{cases} 0, & \tau_{\nu}^{-1} \in \operatorname{arc}(y, \zeta^{-j}) \\ \psi_{\Lambda_{n}}(y\zeta^{\nu}), & \text{otherwise.} \end{cases}$$

We now consider three cases:

(a) $j < \nu$. In this case, take any $l, 0 \leq l \leq n + 1$. If

$$\zeta^{-j-l} \in \operatorname{arc}(\tau_{\nu}^{-1}, \zeta^{-j}),$$

then

$$\tau_{\nu}^{-1} \in \operatorname{arc}(\zeta^{-j-l}, \zeta^{-j})$$

and so

$$\Psi_{\nu}(\zeta^{-j-l}) = \psi_{\Lambda_n}(\zeta^{-j-l+\nu}).$$

On the other hand, if

$$\zeta^{-j-l} \in \operatorname{arc}[\zeta^{-\nu-n-1}, \tau_{\nu}^{-1}],$$

then $-n - 1 < \nu - j - l < 0$ and so by (3.5),

$$\psi_{\Lambda_n}(\zeta^{\nu-j-l}) = 0.$$

Hence

(4.14)
$$\Psi_{\nu}(\zeta^{-j-l}) = 0 = \psi_{\Lambda_n}(\zeta^{\nu-j-l}).$$

Thus we have

(4.15)
$$[\xi^{-j}, \xi^{-j-1}, \dots, \xi^{-j-n-1}]_{\Lambda_n} \Psi_{\nu}(y)$$

= $[\xi^{-j}, \xi^{-j-1}, \dots, \xi^{-j-n-1}]_{\Lambda_n} \psi_{\Lambda_n}(y\xi^{\nu}) = 0.$

(b) $j > \nu$. Again, as in case (a) we take any $l, 0 \leq l \leq n + 1$. If $\zeta^{-j-l} \in \operatorname{arc}[\tau_{\nu}^{-1}, \zeta^{-j}],$

then $-n - 1 < \nu - j - l < 0$ so that by (3.5), we have (4.14). If $\zeta^{-j-l} \in \operatorname{arc}[\zeta^{-j-n-1}, \tau_{\nu}^{-1}],$

then this implies that

 $\tau_{\nu}^{-1} \in \operatorname{arc}[\zeta^{-j-l}, \zeta^{-j})$

and so

$$\Psi_{\nu}(\zeta^{-j-l}) = 0.$$

Hence

$$[\zeta^{-j}, \zeta^{-j-1}, \ldots, \zeta^{-j-n-1}]_{\Lambda_n} \Psi_{\nu}(y) = 0.$$

(c) j = v. In this case we observe that from (3.5).

$$\psi_{\Lambda_{n}}(\zeta^{-j-l+\nu}) = \psi_{\Lambda_{n}}(\zeta^{-l}) = 0, \quad l = 1, 2, \dots, n.$$

Hence

$$\Psi_{\nu}(\zeta^{-j-l}) = 0, \quad l = 1, 2, \dots, n.$$

Since

$$\tau_{\nu}^{-1} \in \operatorname{arc}(\zeta^{-\nu-n-1}, \zeta^{-\nu}),$$

it follows that

$$\Psi_{\nu}(\zeta^{-j-n-1}) = 0.$$

Moreover

$$\Psi_{\nu}(\zeta^{-j}) = \psi_{\Lambda_{\nu}}(1) = (-1)^{n-1} \zeta^{\lambda_{0} + \dots + \lambda_{n}}$$

by (3.12). Thus when j = v, we see from (2.13) and (2.12) that

$$[\zeta^{-j}, \zeta^{-j-1}, \dots, \zeta^{-j-n-1}]_{\Lambda_n} \Psi_{\nu}(y)$$

= $[1, \zeta^{-1}, \dots, \zeta^{-n-1}]_{\Lambda_n} \Psi_{\nu}(y\zeta^{-j}) = 1$

Combining the results of (a), (b) and (c) above, we see from (4.13) that (4.5) holds, which completes the proof.

5. Approximation by quasi-interpolants. We shall now examine the quasi-interpolant \mathscr{L} as a tool for approximating functions of class $C^{n}(U)$. In order to do so, we recall the definition of the modulus of continuity for a function $f \in C(U)$. We set

$$\omega(f; h) = \sup\{ |f(z_1) - f(z_2)| : z_1, z_2 \in U, |z_1 - z_2| \le h \}.$$

We are interested in the approximating property of \mathcal{L} , for fixed Λ_n as $k \to \infty$. We shall prove

THEOREM 3. For any $f \in C^n(U)$ and $z \in U$, we have the following estimates:

(5.1)
$$|(\mathscr{L}f)^{(s)}(z) - f^{(s)}(z)| \leq \frac{K}{k^{n-s}}\omega\left(g;\frac{1}{k}\right), s = 0, 1, \dots, n$$

where $g(y) = y^{-\lambda_n} L_n f(y)$ and K is independent of f and k.

It may be observed that $\omega\left(g;\frac{1}{k}\right)$ vanishes whenever $f(z) = z^{\lambda_j}, j = 0$,

 $1,\ldots,n.$

For the proof of Theorem 3, we shall need two lemmas. In what follows for any $f \in U$, we set

$$||f|| = \sup_{z \in U} |f(z)|.$$

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

(5.2) $||L_j M_{\Lambda_n}|| = O(k^{j-n}).$

Proof. Using (2.9) with a = 1, n = 0, and replacing Λ_0 by $\Lambda_{n,n}$, we see that

$$M_{\Lambda_n}(z) = \int_{-1}^{z} \phi_{\Lambda_{n,n}}(zv^{-1})v^{-1}D_n M_{\Lambda_n}(v)dv.$$

Since $M_{\Lambda_n}(z)$ has support in the arc(1, ζ^{n+1}), we get

$$||M_{\Lambda_n}|| = O\left(\frac{1}{k}\right)||D_n M_{\Lambda_n}|| = O\left(\frac{1}{k}\right)||M_{\Lambda_{n-1}}||$$

on using (3.3). Hence

(5.3)
$$||M_{\Lambda_n}|| = O(k^{-n})||M_{\Lambda_0}|| = O(k^{-n})$$

since

$$M_{\Lambda_0}(z) = -z^{\lambda_0} \zeta^{-\lambda_0}$$

Again applying (3.3) successively, we obtain

$$||L_j M_{\Lambda_n}|| \leq 2^j ||M_{\Lambda_{j,n}}|| = O(k^{j-n}), \quad j = 0, 1, \dots, n$$

on observing that $\Lambda_{j,n} = \{\lambda_j, \dots, \lambda_n\}$ and on using (5.3).

LEMMA 3. For j = 0, 1, ..., n, we have (5.4) $\sup\{ |\psi_{\Lambda_n}^{(j)}(z)| : z \in \operatorname{arc}(\zeta^{-n-1}, 1) \} = O(k^j).$

Proof. From (3.11) it can be seen that

$$\psi_{\Lambda_n}(z) = \sum_{j=0}^n \frac{(-1)^{n-1+j} \zeta^{\lambda_{j_z} \lambda_j}}{\prod\limits_{\substack{\nu=0\\\nu\neq j}}^n (\zeta^{-\lambda_j} - \zeta^{-\lambda_\nu})}$$

whence we easily obtain

(5.5) $||\psi_{\Lambda_n}^{(\nu)}|| = O(k^n), \quad \nu = 0, 1, \ldots, n.$

Furthermore, it is known that for any $z \in U$, we have

(5.6)
$$[z, \zeta^{-1}, \dots, \zeta^{-n}]\psi_{\Lambda_n}(y)$$
$$= \frac{1}{n!} \int_U M(\omega|z, \zeta^{-1}, \dots, \zeta^{-n})\psi_{\Lambda_n}^{(n)}(\omega)d\omega$$

where the divided difference on the left is the usual divided difference and the *B*-spline on the right in the integral is the usual *B*-spline on the circle. If $z \in \operatorname{arc}(\zeta^{-n-1}, 1)$, then by (5.6) and (3.5), we see that

(5.7)
$$\psi_{\Lambda_n}(z) = \frac{1}{n!} \int_{\zeta^{-n-1}}^1 F(z, \omega) \psi_{\Lambda_n}^{(n)}(\omega) d\omega$$

where

$$F(z, \omega) = \prod_{j=1}^{n} (z - \zeta^{-j}) M(\omega|z, \zeta^{-1}, \ldots, \zeta^{-n}).$$

For any $\omega, \xi \in (\zeta^{-n-1}, 1)$, we define the truncated power function

$$(\xi - \omega)_+^{n-1} = \begin{cases} (\xi - \omega)^{n-1}, \text{ if } \omega \in \operatorname{arc}(\zeta^{-n-1}, \xi) \\ 0, \text{ if } \omega \in \operatorname{arc}(\xi, 1). \end{cases}$$

Since the *B*-spline is the divided difference of the truncated power function, we see that

$$\frac{1}{n+1}F(z,\,\omega) = (z-\omega)_+^{n-1} - \sum_{l=1}^n (\zeta^{-l}-\omega)_+^{n-1} \times \sum_{\substack{r=1\\r\neq l}}^n \left(\frac{z-\zeta^{-r}}{\zeta^{-l}-\zeta^{-r}}\right).$$

From the above it is easy to see that

(5.8)
$$\left|\frac{\partial^{j}}{\partial z^{j}}F(z,\omega)\right| \leq \frac{C}{k^{n-1-j}}, \quad j=0, 1, \ldots, n-1$$

for all $z, \omega \in \operatorname{arc}(\zeta^{-n-1}, 1)$, where C is a constant independent of k. Differentiating (5.7) j times and using (5.5) and (5.8) we obtain (5.4).

LEMMA 4. If $G(t) \in C^n(U)$ and if for some $z \in U$,

$$G^{(\nu)}(z) = 0, \quad \nu = 0, \ 1, \ldots, n - 1,$$

then for $\omega \in U$, we have

(5.9)
$$|L_r G(\omega)| \leq C_1 |\omega - z|^{n-r} \sup_{t \in \operatorname{arc}(\omega, z)} |L_n G(t)|$$

for r = 0, 1, ..., n - 1, where C_1 is independent of G, ω and z.

Proof. Using (2.9) with f replaced by L_rG , we get for r = 0, 1, ..., n - 1,

(5.10)
$$L_r G(\omega) = \int_{z}^{\omega} \phi_{\Lambda_{r,n-1}}(\omega v^{-1}) v^{-1} L_n G(v) dv.$$

Now from (2.1), we know that
 $\phi_{\Lambda_{r,n-1}}^{(p)}(1) = 0$ for $v = 0, 1, ..., n - 2 - r$, and
 $\phi_{\Lambda_{r,n-1}}^{(n-1-r)}(1) = 1.$

 Λ -SPLINES

So by the classical Taylor's formula with remainder,

$$\phi_{\Lambda_{r,n-1}}(t) = \frac{1}{(n-2-r)!} \int_{-1}^{t} (t-v)^{n-2-r} \phi_{\Lambda_{r,n-1}}^{(n-1-r)}(v) dv.$$

Hence we get

(5.11) $|\phi_{\Lambda_{r,n-1}}(t)| \leq C_1 |t-1|^{n-1-r}$

which combined with (5.10), yields (5.9).

Proof of Theorem 3. In order to prove (5.1) it is enough to show that

$$(5.12) |L_s(\mathscr{L}f)(z) - L_sf(z)| \leq \frac{K}{k^{n-s}}\omega\left(g;\frac{1}{k}\right), \quad s = 0, 1, \ldots, n.$$

Set

$$G(t) = f(t) - P_z(t)$$

where

$$P_z(t) \in \Pi(\Lambda_n)$$
 and
 $(f^{(\nu)} - P_z^{(\nu)})(z) = 0, \quad (\nu = 0, 1, ..., n).$

Then

$$L_{s}(\mathscr{L}f)(z) - L_{s}f(z) = L_{s}(\mathscr{L}f)(z) - L_{s}P_{z}(z)$$
(5.13)
$$= L_{s}(\mathscr{L}f)(z) - L_{s}(\mathscr{L}P_{z})(z), \text{ by (4.3)}$$

$$= L_{s}(\mathscr{L}G)(z).$$

From (4.1), we see that

(5.14)
$$L_s(\mathscr{L}G)(z) = \sum_{\nu=0}^{k-1} T_{\nu}(G) L_s M_{\Lambda_n}(z\zeta^{-\nu})$$

where from (4.2), we have

(5.15)
$$T_{\nu}(G) = \sum_{r=0}^{n} a_{\nu,r}(L_{r}G)(\tau_{\nu}).$$

By Lemma 4, we can see that for r = 0, 1, ..., n - 1(5.16) $|(L_rG)(\tau_{\nu})| \leq C_1 |\tau_{\nu} - z|^{n-r} \sup_{t \in \operatorname{arc}(\tau_{\nu}z)} |L_nG(t)|.$

From the definition of $P_z(t)$ it follows that

$$L_n P_z(v) = C_2 v^{\lambda_n}$$

 $(C_2 \text{ a constant})$ and

$$L_n P_z(z) = L_n f(z)$$

so that

(5.17)
$$L_n G(v) = L_n f(v) - L_n P_z(v)$$
$$= L_n f(v) - (vz^{-1})^{\lambda_n} L_n f(z)$$
$$= v^{\lambda_n} (g(v) - g(z)).$$

where

$$g(v) = v^{-\lambda_n} L_n f(v).$$

From (5.16) and (5.17), we obtain

$$|L_r G(\tau_{\nu})| \leq C_1 |\tau_{\nu} - z|^{n-r} \omega(g; |\tau_{\nu} - z|), \quad r = 0, 1, \dots, n$$

which from (5.15) yields

(5.18)
$$|T_{\nu}(G)| \leq C_1 \sum_{r=0}^n |a_{\nu,r}| |\tau_{\nu} - z|^{n-r} \omega(g; |\tau_{\nu} - z|).$$

Since $\tau_{\nu} \in \operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+n+1})$, i.e., $\tau_{\nu}^{-1}\zeta^{\nu} \in \operatorname{arc}(\zeta^{-n-1}, 1)$, it follows from (4.4) and (5.4) that

$$(5.19) |a_{\nu,r}| = O(k^{n-r}), \quad r = 0, 1, \ldots, n.$$

Observe that $M_{\Lambda_n}(z\zeta^{-\nu})$ is non-zero only if $z \in \operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+n+1})$ and since τ_{ν} also lies in this arc, we have

 $|\tau_{\nu} - z| = O(k^{-1}),$

so that (5.18) and (5.19) give

$$|T_{\nu}(G)| \leq C_2 \omega\left(g; \frac{1}{k}\right).$$

Hence from (5.14), we obtain

$$|L_s(\mathscr{L}G)(z)| \leq \frac{C_3}{k^{n-s}}\omega\left(g;\frac{1}{k}\right),$$

which is equivalent to (5.12) because of (5.13).

6. Bernstein-Schoenberg type operator. While the quasi-interpolant requires information about the value of the function and its derivative up to order n at k points, the B-S operator needs only function-values at k points. In view of this, it is of some interest to define the B-S type operator for Λ -splines.

Using (2.2) and (3.11) and comparing coefficients of y^{λ_j} on both sides in (3.6), we obtain

 Λ -SPLINES

(6.1)
$$z^{\lambda_j} = C_j(\Lambda_n) \sum_{\nu=0}^{k-1} \zeta^{\nu\lambda_j} M_{\Lambda_n}(z\zeta^{-\nu}), \quad j = 0, 1, \dots, n$$

where

(6.2)
$$C_j(\Lambda_n) = (-1)\zeta^{\lambda_j} \prod_{\substack{l=0\\l\neq j}}^n \frac{\lambda_j - \lambda_l}{\zeta^{-\lambda_j} - \zeta^{-\lambda_l}}.$$

We shall show that there is a unique linear operator

(6.3)
$$(Sf)(z) = \sum_{\nu=0}^{k-1} b_{\nu} f(\sigma_{\nu}) M_{\Lambda_n}(z \zeta^{-\nu})$$

which reproduces z^{λ_0} and z^{λ_1} . This requirement gives, in view of (6.1)

$$b_{\nu}\sigma_{\nu}^{\lambda_0} = C_0(\Lambda_n)\xi^{\nu\lambda_0}, \quad b_{\nu}\sigma_{\nu}^{\lambda_1} = C_1(\Lambda_n)\xi^{\nu\lambda_1}.$$

It is easy to see that

$$b_{\nu} = \{C_0(\Lambda_n)\}^{\lambda_1/(\lambda_1 - \lambda_0)} \{C_1(\Lambda_n)\}^{\lambda_0/(\lambda_0 - \lambda_1)} = :b(\Lambda_n)$$

and

$$\sigma_{\nu} := \sigma_{\nu}(\Lambda_n) = \left\{ \frac{C_1(\Lambda_n)}{C_0(\Lambda_n)} \right\}^{(\lambda_1 - \lambda_0)^{-1}} \zeta^{\nu}.$$

From (6.2) it follows by elementary computation that

,

$$\sigma_{\nu} = R\zeta^{1/2(n+1)+\nu}$$

where

(6.4)
$$R^{\lambda_1 - \lambda_0} = \prod_{l=2}^n \left(\frac{\sin \frac{\lambda_l - \lambda_0}{k} \pi}{\frac{\lambda_l - \lambda_0}{k} \pi} \right) \left(\frac{\sin \frac{\lambda_l - \lambda_1}{k} \pi}{\frac{\lambda_l - \lambda_1}{k} \pi} \right).$$

We now renormalize our *B*-splines $M_{\Lambda_n}(z)$ and set

(6.5)
$$N_{\Lambda_n}(z) = b(\Lambda_n)M_{\Lambda_n}(z).$$

From (6.2) and Lemma 2, we get

(6.6)
$$N_{\Lambda_n}(z) = O(1).$$

Our operator (Sf)(z) now takes the form

(6.7)
$$(Sf)(z) = \sum_{\nu=0}^{k-1} f(\sigma_{\nu}) N_{\Lambda_n}(z\zeta^{-\nu}), \quad \sigma_{\nu} = R\zeta^{1/2(n+1)+\nu}.$$

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

When $\lambda_0 = 0$, we note that (6.7) shows that the normalized *B*-splines $N_{\Lambda_{\mu}}(z\zeta^{-\nu}), (\nu = 0, 1, ..., k - 1)$ form a partition of unity.

For a study of the convergence of this operator, we shall prove

LEMMA 5. For r = 0, 1, ..., n - 1 we have the identity

(6.8)
$$\widetilde{L}_{r}(Sf)(z) = b(\Lambda_{n}) \sum_{\nu=0}^{k-1} [1, \zeta^{-1}, \dots, \zeta^{-\nu}]_{\Lambda_{n-r}+1,n}$$

 $\times f(\sigma_{\nu} y) M_{\Lambda_{n-r}}(z\zeta^{-\nu}).$

Proof. We shall prove (6.8) by induction on r. For r = 0, (6.8) reduces to (6.7). We assume then that (6.8) is true for some r < n - 1. Then

$$\widetilde{L}_{r+1}(Sf)(z) = D_{n-r}\widetilde{L}_r(Sf)(z).$$

Applying our inductive hypothesis and observing that by (3.3),

$$D_{n-r}M_{\Lambda_{n-r}}(z\zeta^{-\nu}) = M_{\Lambda_{n-r-1}}(z\zeta^{-\nu-1}) - \zeta^{-\lambda_{n-r}}M_{\Lambda_{n-r-1}}(z\zeta^{-\nu})$$

we have after elementary rearrangement

$$L_{r+1}(Sf)(z) = b(\Lambda_n) \sum_{\nu=0}^{k-1} [1, \zeta^{-1}, \dots, \zeta^{-r}]_{\Lambda_{n-r+1,n}} F_{\nu}(y) M_{\Lambda_{n-r-1}}(z\zeta^{-\nu})$$

where

$$F_{\nu}(y) = f(\sigma_{\nu-1}y) - \zeta^{-\lambda_n-r}f(\sigma_{\nu}y).$$

We note that $\sigma_{\nu-1} = \sigma_{\nu} \zeta^{-1}$ and apply (2.13) and (2.15) to derive (6.8) with *r* replaced by r + 1 which completes the proof.

We shall now prove

THEOREM 4. Let f(z) be defined on some annulus $\{z:\rho_1 \leq |z| \leq \rho_2\}$ for some $\rho_1 < 1 < \rho_2$. Suppose that for any η , $\rho_1 \leq \eta \leq \rho_2$, the function $f(\eta z)$ lies in $C^r(U)$, $z \in U$ for some r, $0 \leq r \leq n-1$. Moreover let

$$H_r(\eta z) := (\eta z)^{-\lambda_0} \tilde{L}_r f(\eta z)$$

be continuous for $z \in U$, $\rho_1 \leq \eta \leq \rho_2$. Then

(6.9)
$$|\tilde{L}_r(Sf)(z) - \tilde{L}_rf(z)| \leq C\omega \left(H_r; \frac{1}{k}\right)$$

where C is independent of f and k.

Proof. Since the operator S reproduces z^{λ_0} , it follows from (6.7) that

(6.10)
$$z^{\lambda_0} = \sum_{\nu=0}^{k-1} (\sigma_{\nu}(\Lambda_{n-r}))^{\lambda_0} N_{\Lambda_{n-r}}(z \zeta^{-\nu}).$$

Then from (6.8) we obtain

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

 Λ -SPLINES

(6.11)
$$\widetilde{L}_r(Sf)(z) - \widetilde{L}_rf(z) = \frac{b(\Lambda_n)}{b(\Lambda_{n-r})} \sum_{\nu=0}^{k-1} (\Delta_n f) N_{\Lambda_{n-r}}(z\zeta^{-\nu})$$

where

(6.12)
$$(\Delta_{\nu}f) = [1, \zeta^{-1}, \dots, \zeta^{-r}]_{\Lambda_{n-r+1,n}} f(\sigma_{\nu}(\Lambda_{n})y) - \frac{b(\Lambda_{n-r})}{b(\Lambda_{n})} \widetilde{L}_{r} f(z) z^{-\lambda_{0}} (\sigma_{\nu}(\Lambda_{n-r}))^{\lambda_{0}}.$$

From (3.4) it follows that

(6.13) $[1, \zeta^{-1}, \dots, \zeta^{-r}]_{\Lambda_{n-r+1,n}} f = \int_U M_{\Lambda_{n-r+1,n}} (v^{-1}) v^{-1} (\tilde{L}_r f) (v) dv.$ In particular for $f(z) = z^{\lambda_0}$, this yields (from (6.2)),

(6.14)
$$\int_{U} M_{\Lambda_{n-r+1,n}}(v^{-1})v^{\lambda_{0}-1}dv = \prod_{j=n-r+1}^{n} \frac{\zeta^{\lambda_{0}}-\zeta^{\lambda_{j}}}{\lambda_{0}-\lambda_{j}} = \frac{C_{0}(\Lambda_{n-r})}{C_{0}(\Lambda_{n})}$$

Hence from (6.12), (6.13) and (6.14) after some simplification, we get

(6.15)
$$\Delta_{\nu}f = \int_{U} M_{\Lambda_{n-r+1,n}}(\nu^{-1})\nu^{\lambda_{0}-1}(\sigma_{\nu}(\Lambda_{\nu}))^{\lambda_{0}}\{H_{r}(\sigma_{\nu}(\Lambda_{n})\nu) - H_{r}(z)\}d\nu.$$

For a fixed $z \in U$, we shall estimate $\Delta_{\nu} f$ in (6.11) for those values of ν for which

 $N_{\Lambda_{n-r}}(z\zeta^{-\nu})\neq 0,$

i.e., for $z \in \operatorname{arc}(\zeta^{\nu}, \zeta^{\nu+n-r+1})$. Moreover, the integrand in (6.15) is non-zero only for values of ν in the $\operatorname{arc}(\zeta^{-r-1}, 1)$. Recalling that

$$\sigma_{\nu}(\Lambda_n) = R \zeta^{1/2(n+1)+\nu}$$
 and $1 - R = O(k^{-2})$,

we see that

$$|v\sigma_{\nu}(\Lambda_n) - z| = O(k^{-1})$$

so that using (5.2) of Lemma 2 in (6.15) we obtain

$$|\Delta_{\nu}f| = O(k^{-r})\omega\bigg(H_r;\frac{1}{k}\bigg).$$

Since

$$|b(\Lambda_n)/b(\Lambda_{n-r})| = O(k^r)$$
 and $|N_{\Lambda_{n-r}}(z)| = O(1)$,

the result follows from (6.11).

Remark. The B-S operator (6.7) is defined only for functions f which are defined on some annulus $\{z:\rho_1 \leq |z| \leq \rho_2\}$, $\rho_1 < 1 < \rho_2$. However, any function $f \in C(U)$ can be extended to \tilde{f} which is continuous on an

annulus in a number of ways. Perhaps the simplest way is to set

$$\widetilde{f}(\eta z) = f(z), \quad z \in U, \eta > 0.$$

Using this extension we can easily derive from Theorem 4, the following

COROLLARY. For $f \in C(U)$, set

(6.16)
$$(\widetilde{S}f)(z) = \sum_{\nu=0}^{k-1} f(\zeta^{1/2(n+1)+\nu}) N_{\Lambda_n}(z\zeta^{-\nu}).$$

If $f \in C^{r}(U)$ for some $r, 0 \leq r \leq n - 1$, then for $z \in U$,

$$|\tilde{L}_r(\tilde{S}f)(z) - \tilde{L}_rf(z)| \leq C_1 \left\{ \frac{1}{k} ||\tilde{L}_rf|| + \omega \left(\tilde{L}_rf; \frac{1}{k}\right) \right\}$$

where C_1 is independent of f and k.

In particular

$$(\tilde{S}f)^{(\nu)}(z) \to f^{(\nu)}(z), \quad (\nu = 0, 1, \dots, r)$$

uniformly on U as $k \to \infty$.

7. An asymptotic formula. If we suppose the function f(z) to be analytic in a neighbourhood of U, then it is possible to get a more precise result for the error of approximation to f by the B-S type operator. We shall indeed prove

THEOREM 5. If f is holomorphic in a neighbourhood \mathcal{D} of U, then we have

(7.1)
$$\lim_{k \to \infty} k^2 \{ (Sf)(z) - f(z) \} = -\frac{1}{6}(n+1)\pi^2 L_2 f(z).$$

The proof of Theorem 5 will be based on

LEMMA 6. If $E_{2,k}(z)$ is given by

(7.2)
$$E_{2,k}(z) = \sum_{\nu=0}^{k-1} \phi_{\Lambda_2}(\sigma_{\nu} z^{-1}) N_{\Lambda_n}(z \zeta^{-\nu})$$

then

(7.3)
$$E_{2,k}(z) = -\frac{(n+1)\pi^2}{6k^2} + O\left(\frac{1}{k^4}\right).$$

Proof. From (2.2) we see that

(7.4)
$$V(\lambda_0, \lambda_1, \lambda_2)E_{2,k}(z)$$

Λ-SPLINES

$$=\sum_{\nu=0}^{k-1} \begin{vmatrix} (\sigma_{\nu}z^{-1})^{\lambda_{0}} & (\sigma_{\nu}z^{-1})^{\lambda_{1}} & (\sigma_{\nu}z^{-1})^{\lambda_{2}} \\ 1 & 1 & 1 \\ \lambda_{0} & \lambda_{1} & \lambda_{2} \end{vmatrix} N_{\Lambda_{2}}(z\zeta^{-\nu}).$$

From (6.1) and (6.5) we have

$$\sum_{\nu=0}^{k-1} (\sigma_{\nu} z^{-1})^{\lambda_{j}} N_{\Lambda_{n}}(z \zeta^{-\nu}) = \begin{array}{c} 1, j = 0, 1, \\ K, j = 2, \end{array}$$

where

$$K = \frac{(C_0(\Lambda_n))^{(\lambda_1 - \lambda_2)/(\lambda_1 - \lambda_0)} (C_1(\Lambda_n))^{(\lambda_0 - \lambda_2)/(\lambda_0 - \lambda_1)}}{C_2(\Lambda_n)}.$$

Using (6.2), elementary calculation shows that

(7.5)
$$K = 1 - \frac{(n+1)\pi^2 V(\lambda_0, \lambda_1, \lambda_2)}{6k^2(\lambda_1 - \lambda_0)} + O\left(\frac{1}{k^4}\right).$$

The result now follows from (7.4) and (7.5).

Proof of Theorem 5. Since f is holomorphic in a domain \mathcal{D} , formula (2.9) is valid for any points z, a in \mathcal{D} . Thus for $z \in U$, $w \in \mathcal{D}$, we have

(7.6)
$$f(\omega) = f(z)\phi_{\Lambda_0}(\omega z^{-1}) + (L_1 f)(z)\phi_{\Lambda_1}(\omega z^{-1}) + (L_2 f)(z)\phi_{\Lambda_2}(\omega z^{-1}) + O(|\omega - z|^3).$$

Using (7.6) with $\omega = \sigma_{\nu}$, $\nu = 0, 1, \dots, k - 1$ we have

(7.7)
$$(Sf)(z) = \sum_{\nu=0}^{k-1} f(\sigma_{\nu}) N_{\Lambda_{n}}(z\zeta^{-\nu})$$
$$= f(z) E_{0,k}(z) + (L_{1}f)(z) E_{1,k}(z)$$
$$+ (L_{2}f)(z) E_{2,k}(z) + O(|\omega - z|^{3}).$$

where

$$E_{j,k}(z) = \sum_{\nu=0}^{k-1} \phi_{\Lambda_j}(\sigma_{\nu} z^{-1}) N_{\Lambda_{\nu}}(z \zeta^{-\nu}), \quad j = 0, 1, 2.$$

From (2.2),

$$\begin{split} \phi_{\Lambda_0}(\sigma_{\nu}z^{-1}) &= (\sigma_{\nu}z^{-1})^{\lambda_0} \text{ and} \\ \phi_{\Lambda_1}(\sigma_{\nu}z^{-1}) &= [(\sigma_{\nu}z^{-1})^{\lambda_1} - (\sigma_{\nu}z^{-1})^{\lambda_0}]/(\lambda_1 - \lambda_0), \end{split}$$

so that using the reproducing property of the B-S operator we have

(7.8) $E_{0,k}(z) = 1$ and $E_{1,k}(z) = 0$.

The result then follows from (7.7), (7.8) and (7.3).

Remark. We observe that

$$L_2 f(z) = z^2 f''(z) + (1 - \lambda_0 - \lambda_1) z f'(z) + \lambda_0 \lambda_1 f(z),$$

which shows that the asymptotic formula depends upon λ_0 and λ_1 and not on $\lambda_2, \ldots, \lambda_n$.

8. Trigonometric Λ -splines. We shall consider the special case when the numbers λ_i in Λ are symmetric about the origin, or equivalently, when

(8.1)
$$\Lambda_n = \begin{cases} \{\pm \mu_1, \dots, \pm \mu_m\}, & n = 2m - 1\\ \{0, \pm \mu_1, \dots, \pm \mu_m\}, & n = 2m. \end{cases}$$

In this case $\Pi(\Lambda_n)$ is related to the class of trigonometric polynomials $T(\Lambda_n)$ spanned by

 $\{\cos \mu_i \theta, \sin \mu_i \theta\}_1^m$ when n = 2m - 1

or by

 $\{1, \cos \mu_i \theta, \sin \mu_i \theta\}_1^m$ when n = 2m.

Indeed, $p(z) \in \Pi(\Lambda_n)$ if and only if $p(e^{i\theta}) \in T(\Lambda_n)$ when Λ_n is given by (8.1).

For a positive integer $k > 2 \max |\mu_j|$ we shall denote by $\mathcal{T}_k(\Lambda_n)$ the class of trigonometric splines $t(\theta)$ which satisfy

i) $t(\theta + 2\pi) = t(\theta), t(\theta) \in C^{n-1}(R),$

ii) $t(\theta)|_{(jh,jh+h)} \in T(\Lambda_n)$, for all integers j, where $h = 2\pi/k$.

It follows that taking

$$Z_k = \{1, e^{ih}, \ldots, e^{i(k-1)h}\},\$$

 $S(z) \in \mathscr{S}(\Lambda_n, Z_k)$ if and only if

$$S(e^{i\theta}) \in \mathscr{T}_k(\Lambda_n).$$

From Proposition 1, we see that

$$\dim \mathscr{T}_k(\Lambda_n) = k$$

Let $q_{\Lambda_n}(\theta) \in T(\Lambda_n)$ be such that

$$q_{\Lambda_n}^{(\nu)}(0) = \begin{cases} 0, & \nu = 0, 1, \dots, n-1 \\ 1, & \nu = n. \end{cases}$$

It is easy to see from (2.1) that

(8.2)
$$q_{\Lambda_n}(\theta) = i^{-n} \phi_{\Lambda_n}(e^{i\theta})$$

It is now possible to define the trigonometric B-splines $Q_{\Lambda_n}(\theta)$ as a

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

trigonometric Λ -divided difference of $q_{\Lambda_{\alpha}}(\theta - y)(\theta - y)^{0}_{+}$. However for the sake of brevity, we set

(8.3)
$$Q_{\Lambda_n}(\theta) = -i^n M_{\Lambda_n}(e^{i\theta}).$$

It follows immediately from Proposition 3 that $\{Q_{\Lambda_n}(\theta - \nu h)\}_0^{k-1}$ form a basis for the space $\mathscr{T}_k(\Lambda_n)$.

We shall use the symbol Λ_n^p to denote the set $\Lambda_n \setminus \{\pm \mu_p\}$. Using (8.3) and Lemma 1, we shall prove

LEMMA 6. The B-splines $Q_{\Lambda_n}(\theta)$ satisfying the following recurrence relations:

(8.4)
$$(\mu_m^2 - \mu_1^2) Q_{\Lambda_n}(\theta) = Q_{\Lambda_n^m}(\theta - 2h)$$
$$- 2 \cos \mu_m h Q_{\Lambda_n^m}(\theta - h) + Q_{\Lambda_n^m}(\theta)$$
$$- \{Q_{\Lambda_n^1}(\theta - 2h) - 2 \cos \mu_1 h Q_{\Lambda_n^1}(\theta - h)$$
$$+ Q_{\Lambda_n^1}(\theta) \}, \quad n \ge 3$$

and for n even

 $Q'_{\Lambda_n}(\theta) = Q_{\Lambda_{n-1}}(\theta) - Q_{\Lambda_{n-1}}(\theta - h).$ (8.5)

Proof. In order to prove (8.4), we use (3.2) with $\zeta = e^{ih}$, $\lambda_0 = \mu_1$, $\lambda_n = \mu_m$, and obtain

$$(\mu_m - \mu_1)M_{\Lambda_n}(z) = M_A(ze^{-ih}) - e^{-\mu_1 ih}M_A(z) - M_B(ze^{-ih}) + e^{-i\mu_m h}M_B(z).$$

where $A = \Lambda_n \setminus \{\mu_1\}$ and $B = \Lambda_n \setminus \{\mu_m\}$. We again apply (3.2) to $M_A(ze^{-ih})$ and $M_A(z)$ with $\lambda_0 = -\mu_1$ and $\lambda_n = \mu_m$. Also we use (3.2) for $M_B(ze^{-ih})$ and $M_B(z)$ with $\lambda_0 = \mu_1$ and $\lambda_n = -\mu_m$. After simplification, we get

$$(\mu_m^2 - \mu_1^2) M_{\Lambda_n}(z) = M_{\Lambda_n^1}(ze^{-2ih}) - 2 \cos \mu_1 h M_{\Lambda_n^1}(ze^{-ih}) + M_{\Lambda_n^1}(z) - \{M_{\Lambda_n^m}(ze^{-2ih}) - 2 \cos \mu_m h M_{\Lambda_n^m}(ze^{-ih}) + M_{\Lambda_n^m}(z) \}.$$

Formula (8.4) follows now on using (8.3).

In order to prove (8.5) we use (8.3) and (3.3).

Remark. As an application of (8.4) and (8.5) we show that $Q_{\Lambda_{n}}(\theta)$ is real. When n = 1,

$$Q_{\Lambda_1}(\theta) = \frac{\sin \mu_1 \theta}{\mu_1}$$
, for $0 < \theta < h$ and

$$Q_{\Lambda_1}(\theta) = \frac{\sin \mu_1(2h - \theta)}{\mu}$$
 for $h < \theta < 2h$.

It follows from (8.4) that $Q_{\Lambda_n}(\theta)$ is real for all odd *n*. From this and from (8.5) we see that $Q'_{\Lambda_n}(\theta)$ is real for *n* even. But from (3.1) and (8.3) we observe that for $0 < \theta < h$,

$$Q_{\Lambda_{u}}(\theta) = q_{\Lambda_{u}}(\theta),$$

whence it follows that for *n* even, $Q_{\Lambda_n}(\theta)$ is real.

Putting $z = e^{i\theta}$, $y = e^{-i\alpha}$ in (3.6) we can deduce from Theorem 1 an analogue of Marsden's identity. We state without proof

THEOREM 6. If $V_{\Lambda_n}(\theta) \in T(\Lambda_n)$ and satisfies the conditions

(8.6)
$$\begin{cases} V_{\Lambda_n}(0) = 1 \\ V_{\Lambda_n}(jh) = 0, \quad j = 1, 2, \dots, n \end{cases}$$

then we have the identity

(8.7)
$$q_{\Lambda_n}(\theta - \alpha) = \sum_{j=0}^{k-1} V_{\Lambda_n}(\alpha - jh)Q_{\Lambda_n}(\theta - jh)$$

We note from (3.11) and (3.12) that

$$V_{\Lambda_n}(\theta) = (-1)^{n-1} \psi_{\Lambda_n}(e^{-i\theta}).$$

In order to define the quasi-interpolant for trigonometric Λ -splines, we need to introduce some differential operators. We shall denote in the sequel $d/d\theta$ by D. If n = 2m - 1 and $\Lambda_n = \{\pm \mu_1, \ldots, \pm \mu_m\}$, we set

(8.8)
$$\Theta_0 = I, \, \Theta_{2r} = \prod_{j=1}^r (D^2 + \mu_j^2), \, \Theta_{2r+1} = D\Theta_{2r}$$

Similarly if n = 2m and $\Lambda_n = \{0, \pm \mu_1, \ldots, \pm \mu_m\}$, we set

(8.9)
$$\Theta_0 = I, \, \Theta_{2r-1} = D \prod_{j=1}^{r-1} (D^2 + \mu_j^2), \, \Theta_{2r} = D \Theta_{2r-1}.$$

For n even (or odd) we set

$$\widetilde{\Theta}_0 = 1, \, \widetilde{\Theta}_{2r} = \prod_{j=m-r+1}^m (D^2 + \mu_j^2), \, \widetilde{\Theta}_{2r+1} = D\widetilde{\Theta}_{2r}.$$

We now choose points $\tau_{\nu}(\nu = 0, 1, ..., k - 1)$ with $\tau_{\nu} \in (\nu h, (\nu + n + 1)h)$ and consider a linear operator

$$\mathscr{L}^*: C_2^n(R) \to \mathscr{T}_k(\Lambda_n)$$

https://doi.org/10.4153/CJM-1985-059-9 Published online by Cambridge University Press

of the following form:

(8.11)
$$(\mathscr{L}^*f)(\theta) = \sum_{\nu=0}^{k-1} T^*_{\nu}(f) Q_{\Lambda_n}(\theta - \nu h)$$

where

(8.12)
$$T_{\nu}^{*}(f) = \sum_{r=0}^{n} b_{\nu,r}(\Theta_{r}f)(\tau_{\nu})$$

and $b_{\nu,r}$ are constants depending on τ_{ν} but not on f.

We can then prove

THEOREM 7. An operator \mathcal{L}^* of the form given by (8.11) and (8.12) satisfies

(8.13)
$$(\mathscr{L}^*S)(\theta) = S(\theta), \text{ for all } S(\theta) \in \mathscr{T}_k(\Lambda_n)$$

if and only if

$$(8.14) \quad b_{\nu,r} = (-1)^{n-r} (\widetilde{\Theta}_{n-r} V_{\Lambda_{\nu}}) (\tau_{\nu} - \nu h), \quad \nu = 0, 1, \dots, k - 1.$$

where V_{Λ_n} is given by (8.6).

For \mathcal{L}^* of the form (8.11) and (8.12), define an operator

$$\mathscr{L}: C^n(\nu) \to \mathscr{S}$$

by

$$\mathscr{L}g(e^{i\theta}) = \mathscr{L}^*f(\theta), \text{ when } g(e^{i\theta}) = f(\theta).$$

It is easily seen that \mathcal{L} is of the form (4.1) and (4.2). Moreover \mathcal{L}^* satisfies (8.13) if and only if \mathcal{L} satisfies (4.3); also \mathcal{L}^* satisfies (8.14), if and only if \mathcal{L} satisfies (4.4). Theorem 7 then follows from Theorem 2.

From Theorem 3 we can deduce

THEOREM 8. If $f(\theta) \in C_{2\pi}^{n}(R)$, then the following estimate holds: (8.15) $|(\mathscr{L}^{*}f)^{(s)}(\theta) - f^{(s)}(\theta)|$

$$\leq Kh^{n-s} \{ \omega(g_1; h) + \omega(g_2; h) \} \quad (s = 0, 1, ..., n)$$

where

(8.16)
$$g_1(\theta) + ig_2(\theta) = e^{2i\mu_m\theta}D(e^{-i\mu_m\theta})\Theta_{n-1}f.$$

If n = 2m, the right hand side of (8.15) can be replaced by $Kh^{n-s}\omega(\widetilde{\Theta}_n f; h).$

It may be observed that $\omega(g_1; h)$ and $\omega(g_2; h)$ both vanish when $f \in T(\Lambda_n)$.

We now consider the B-S operator (6.7) where Λ_n is given by (8.1) and

 $\lambda_0 = \mu_1, \lambda_1 = -\mu_1$. It is easily seen from (6.4) that in this case R = 1 so that

(8.17)
$$(Sg)(z) = \sum_{\nu=0}^{k-1} g(\zeta^{1/2(n+1)+\nu}) N_{\Lambda_n}(z\zeta^{-\nu}).$$

Thus in this case S coincides with \tilde{S} given by (6.16). We now define an operator

$$S^*: C_{2\pi}(R) \to \mathscr{T}_k(\Lambda_n)$$

by

(8.18)
$$(S^*f)(\theta) = (Sg)(e^{i\theta}), \quad g(e^{i\theta}) = f(\theta).$$

It follows from (8.17) and (8.16) that S^* reproduces $\cos \mu_1 \theta$ and $\sin \mu_1 \theta$. An explicit formula for S^*f can be derived from (8.18), (8.17), (6.5) and (8.3). Indeed we have

(8.19)
$$(S^*f)(\theta) = \sum_{\nu=0}^{k-1} f\left(\frac{1}{2}(n+1)h + \nu h\right) A_1(\Lambda_n) Q_{\Lambda_n}(\theta - \nu h)$$

where

$$A_{1}(\Lambda_{n}) = \begin{cases} \frac{\mu_{1}}{\sin \mu_{1}h} \prod_{j=2}^{m} \frac{\left(\frac{1}{2}\mu_{1}\right)^{2} - \left(\frac{1}{2}\mu_{j}\right)^{2}}{\sin^{2}\frac{1}{2}\mu_{1}h - \sin^{2}\frac{1}{2}\mu_{j}h}, & n = 2m - 1, \\ \frac{1}{\cos\frac{1}{2}\mu_{1}h} \frac{\left(\frac{1}{2}\mu_{1}\right)^{2}}{\sin^{2}\frac{1}{2}\mu_{1}h} \prod_{j=2}^{m} \frac{\left(\frac{1}{2}\mu_{1}\right)^{2} - \left(\frac{1}{2}\mu_{j}\right)^{2}}{\sin^{2}\frac{1}{2}\mu_{1}h - \sin^{2}\frac{1}{2}\mu_{j}h}, & n = 2m. \end{cases}$$

From Corollary to Theorem 4, we can deduce

THEOREM 9. If $f(\theta) \in C^r_{2\pi}(R)$ for some $r, 0 \leq r \leq n - 1$, then

(8.20)
$$|(S^*f)^{(r)}(\theta) - f^{(r)}(\theta)| \leq C \left\{ h \sum_{\nu=0}^r ||f^{(\nu)}|| + \omega(f^{(r)}; h) \right\},$$

where C is independent of f and h.

Finally we consider an analogue of the asymptotic formula (7.1), which was proved under the assumption that f is holomorphic in a neighbourhood of U. However if the number R occurring in the definition of Sf is 1,

then we can prove (7.1) even for $f \in C^3(U)$, because then we require formula (7.6) only when $\omega, z \in U$. Thus from Theorem 5 we can deduce

THEOREM 10. If $f \in C^3_{2\pi}(R)$, then

$$\lim_{h \to 0} h^{-2} \{ (S^*f)(\theta) - f(\theta) \} = \frac{1}{24} (n+1)(f''(\theta) + \mu_1^2 f(\theta)).$$

For $\Lambda = \{0, 1, ..., n\}$ it is shown in [4] that the B-S operator S^* is variation-diminishing, i.e., the number of times which S^*f changes sign in $[0, 2\pi]$ is no greater than the number of times which f changes sign in $[0, 2\pi]$. It would seem plausible that S^* is also variation-diminishing for more general Λ , possibly under a restriction on the size of h.

REFERENCES

- 1. J. H. Ahlberg, E. N. Nilson and J. L. Walsh, Properties of analytic splines, I: Complex polynomial splines, J. of Analysis and Appl. 33 (1971), 234-257.
- 2. C de Boor and G. J. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory 8 (1973), 19-45.
- 3. Chen Han-Lin, Interpolation and approximation on the unit circle, I, Math. Comp. No. 5/80 ISBN 82-7151-035-5 Quasi interpolant splines on the unit circle, J. Approx. Theory 38 (1983), 312-318.
- 4. T. N. T. Goodman and S. L. Lee, *B-splines on the circle and trigonometric B-splines*, Proc. Conference on Approx. Theory, St. John's (Newfoundland). To appear.
- 5. I. I. Hirschman and D. V. Widder, Generalized Bernstein polynomials, Duke Math J. 16 (1949), 433-438.
- 6. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).
- 7. M. J. Marsden, An identity for spline functions with applications to variation diminishing spline approximation, J. Approx. theory 3 (1970), 7-49.
- 8. C. A. Micchelli and A. Sharma, *Spline functions on the circle: Cardinal L-splines revisited*, Can. J. Math. 32 (1980), 1459-1473.
- 9. L. Schumaker, Spline functions I (John Wiley & Sons, New York, 1981).
- 10. I. J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13 (1964), 795-826.
- 11. On polynomial spline functions on the circle (I and II), Proceedings of the Conference on Constructive Theory of Functions (Budapest, 1972), 403-433.
- 12. On variation diminishing approximation methods. In On numerical approximation, 249-274 MRC Symposium (U. of Wisconsin Press, Madison, 1959).

University of Dundee, Dundee, Scotland; University of Malaysia, Penang, Malaysia; University of Alberta, Edmonton, Alberta