APPROXIMATION BY Λ-SPLINES ON THE CIRCLE

T. N. T. GOODMAN, S. L. LEE AND A. SHARMA

1. Introduction. Let $\Lambda=\left\{\lambda_{0}, \ldots, \lambda_{n}\right\}$ denote a set of distinct integers and let $\Pi(\Lambda)$ denote the set of all generalized polynomials of the form

$$
\sum_{0}^{n} a_{j} z^{\lambda_{j}}, \quad a_{j} \in \mathbf{C}
$$

For any given ζ on the unit circle U with

$$
0 \leqq|\arg \zeta| \leqq \frac{2 \pi}{k},
$$

we consider the set Z_{k} of points $1, \zeta, \zeta^{2}, \ldots, \zeta^{k-1}$ where

$$
k>\max _{i, j}\left|\lambda_{i}-\lambda_{j}\right| .
$$

We shall denote by $\mathscr{S}\left(\Lambda, Z_{k}\right)$ or \mathscr{S} the class of Λ-splines $S(z)$ which satisfy the following conditions:
(i) $S(z) \in C^{n-1}(U)$
(ii) $\left.S(z)\right|_{A_{v}} \in \Pi(\Lambda)$ where

$$
\begin{aligned}
& A_{\nu}=\operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+1}\right),(\nu=0,1, \ldots, k-2) \quad \text { and } \\
& A_{k-1}=\operatorname{arc}\left(\zeta^{k-1}, 1\right)
\end{aligned}
$$

Λ-splines were introduced in [8] where their interpolation properties were studied. Although in [8], Λ is comprised of non-negative integers, there are no difficulties in allowing Λ to contain any integers. When $\Lambda=\{0,1, \ldots, n\}, \Lambda$-splines reduce to polynomial splines on the circle studied in [1], [11].
Our object here is to study approximation theoretic properties of Λ-splines and to obtain their trigonometric analogues. As in [11] and [8], a basic tool to this end will be the B-spline $M_{\Lambda}(z) \in \mathscr{S}$ which for $k \geqq n+2$ has support on the $\operatorname{arc}\left(1, \zeta^{n+1}\right.$), (in fact the minimal support possible). We shall be concerned mainly with the case $\zeta^{k}=1$ when the B-splines $M_{\Lambda}\left(z \zeta^{-\nu}\right), \nu=0,1, \ldots, k-1$ will form a basis for \mathscr{S}.

In Section 2 we introduce the preliminaries and some definitions and in Section 3 we study the properties of the B-splines in \mathscr{S} and the analogue of

[^0]Marsden's identity [7]. We then examine approximation operators of the form

$$
\begin{equation*}
(\mathscr{L} g)(z)=\sum_{\nu=0}^{k-1} T_{\nu}(g) M_{\Lambda}\left(z \zeta^{-\nu}\right) \tag{1.1}
\end{equation*}
$$

In Section 4, we take $T_{\nu}(g)$ to be a linear combination of $g^{(r)}\left(\tau_{\nu}\right)$, $r=0,1, \ldots, n$ for some prescribed points τ_{ν} on the $\operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+n+1}\right)$. It is shown that there is a unique such operator which reproduces \mathscr{S}. This is the analogue of the quasi-interpolant (see [2]), a special case of which is due to Chen [3] when $\Lambda=\{0,1, \ldots, n\}$. The order of approximation by this operator is the subject of Section 5 and generalizes the work in [3].

In Section 6 we consider (1.1) when $T_{\nu}(g)$ is a constant multiple of $g\left(\sigma_{\nu}\right)$ for some σ_{ν}. We show that there is a unique such operator which reproduces $z^{\lambda_{0}}$ and $z^{\lambda_{1}}$. This is the analogue of the Bernstein-Schoenberg operator (B-S operator) (see [9]). Similar results for the case of generalized real polynomials are due to Hirschman and Widder [5]. Section 6 also deals with the order of approximation of this operator and in Section 7 we obtain an asymptotic formula which is reminiscent of a result of Voronovskaja [6] for Bernstein polynomials, thus generalizing the results in [4] for the case $\Lambda=\{0,1, \ldots, n\}$.

Results of Sections 6 and 7 are analogous to the work of Marsden [7] for the B-S operator. However, unlike Marsden we keep n fixed $\leqq k-2$, but our results as $k \rightarrow \infty$ are somewhat stronger in so far as we get convergence for all derivatives up to order $n-1$ at all points.

By taking the λ_{j} 's in Λ to be symmetric about 0 , we can get corresponding results for trigonometric Λ-splines which is the subject of Section 8.
2. Preliminaries. For given distinct integers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ we denote by $\Lambda_{p, q}$ the set $\left\{\lambda_{p}, \ldots, \lambda_{q}\right\}$, but for simplicity we shall use Λ_{p} instead of $\Lambda_{0, p}$. In order to study the Λ-splines, it will be useful to consider the function $\phi_{\Lambda_{n}}(z) \in \Pi\left(\Lambda_{n}\right)$ satisfying the conditions

$$
\phi_{\Lambda_{n}}^{(\nu)}(1)=\left\{\begin{array}{l}
0, \nu=0,1, \ldots, n-1 \tag{2.1}\\
1, \nu=n .
\end{array}\right.
$$

It is easy to see that $\phi_{\Lambda_{n}}(z)$ is uniquely given by

$$
\phi_{\Lambda_{n}}(z)=(-1)^{n}\left|\begin{array}{llll}
z^{\lambda_{0}} & z^{\lambda_{1}} & \ldots & z^{\lambda_{n}} \tag{2.2}\\
1 & 1 & \ldots & 1 \\
\lambda_{0} & \lambda_{1} & \ldots & \lambda_{n} \\
\vdots & \vdots & & \vdots \\
\lambda_{0}^{n-1} & \lambda_{1}^{n-1} & \ldots & \lambda_{n}^{n-1}
\end{array}\right| \div V\left(\lambda_{0}, \ldots, \lambda_{n}\right)
$$

where $V\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ denotes the Vandermondian. It follows from (2.1)
and (2.2) that
(2.3) $\quad\left(\lambda_{n}-\lambda_{0}\right) \phi_{\Lambda_{n}}(z)=\phi_{\Lambda_{1, n}}(z)-\phi_{\Lambda_{n-1}}(z)$
since the coefficients of $z^{\lambda_{n}}$ on both sides are equal and all the derivatives up to order $n-1$ at 1 vanish on both sides.

For any $\beta \in U$ we introduce the analogue of the truncated power function by setting

$$
\phi_{\Lambda_{n}}(z, \beta)= \begin{cases}0 & , z \in \operatorname{arc}[1, \beta) \tag{2.4}\\ \phi_{\Lambda_{n}}\left(z \beta^{-1}\right), & z \in \operatorname{arc}[\beta, 1) .\end{cases}
$$

We shall prove the following
Proposition 1. The dimension of the space $\mathscr{S}\left(\Lambda_{n}, Z_{k}\right)=k$.
Proof. If $S(z) \in \mathscr{S}$, then $S(z)$ can be written in the form

$$
\begin{equation*}
S(z)=P(z)+\sum_{j=0}^{k-1} a_{j} \phi_{\Lambda_{n}}\left(z, \xi^{j}\right), \quad P(z) \in \Pi\left(\Lambda_{n}\right) \tag{2.5}
\end{equation*}
$$

where $S(z)$ on the $\operatorname{arc}\left(\xi^{k-1}, 1\right)$ is given by $P(z)$. Then it is easy to see that

$$
\begin{equation*}
\sum_{j=0}^{k-1} a_{j} \phi_{\Lambda_{n}}\left(z \zeta^{-j}\right)=0 \tag{2.6}
\end{equation*}
$$

Moreover any $S(z)$ satisfying (2.5) and (2.6) belongs to \mathscr{S}. Equating to zero the coefficients of $z^{\lambda_{j}}$, we see that (2.6) is equivalent to the system of $n+1$ equations:

$$
\sum_{j=0}^{k-1} a_{j} \zeta^{-j \lambda_{\nu}}=0, \quad \nu=0,1, \ldots, n
$$

Since $k>\max \left|\lambda_{\mu}-\lambda_{\nu}\right|$ and $|\arg \zeta| \leqq 2 \pi / k$, it follows that the rank of the matrix of this system is $n+1$, so that from (2.5) the dimension of \mathscr{S} is $k-(n+1)+(n+1)=k$.

We shall now derive an analogue of Taylor's formula. To this end we set

$$
D_{j} f(z)=z^{\lambda_{j}+1} \frac{d}{d z}\left(z^{-\lambda_{j}} f\right), \quad j=0,1, \ldots, n
$$

Observe that if $g(z)=f(a z)$, then

$$
D_{j} g(z)=\left(D_{j} f\right)(a z),
$$

for any constant a. Since

$$
D_{j} \phi_{\Lambda_{j}} \in \Pi\left(\Lambda_{j-1}\right)
$$

and since it is easily seen from (2.1) that

$$
\left.\frac{d^{\nu}}{d z^{\nu}}\left(D_{j} \phi_{\Lambda_{j}}\right)\right]_{z=1}=\left\{\begin{array}{l}
0, \nu=0,1, \ldots, j-2 \\
1, \nu=j-1,
\end{array}\right.
$$

it follows that

$$
\begin{equation*}
D_{j} \phi_{\Lambda_{j}}(\dot{z})=\phi_{\Lambda_{j-1}}(z) \tag{2.7}
\end{equation*}
$$

For $j=1,2, \ldots, n+1$, we define the differential operators L_{j} by

$$
\begin{equation*}
L_{j}=D_{j-1} D_{j-2} \ldots D_{0}, \quad L_{0}=I \tag{2.8}
\end{equation*}
$$

This enables us to get the following analogue of the Taylor's formula where $f \in C^{n+1}(U)$:

$$
\left\{\begin{align*}
& f(z)=f(a) \phi_{\Lambda_{0}}\left(z a^{-1}\right)+\left(L_{1} f\right)(a) \phi_{\Lambda_{1}}\left(z a^{-1}\right)+\ldots \tag{2.9}\\
&+\left(L_{n} f\right)(a) \phi_{\Lambda_{n}}\left(z a^{-1}\right)+R_{n} \\
& R_{n}=\int_{a}^{z} \phi_{\Lambda_{n}}\left(z v^{-1}\right) v^{-1}\left(L_{n+1} f\right)(v) d v, \quad a, z \in U
\end{align*}\right.
$$

Formula (2.9) can be easily verified by integrating by parts and is perhaps known.

It is of interest to introduce the operators \widetilde{L}_{j} by
(2.10) $\quad \widetilde{L}_{j}=D_{n-j+1} D_{n-j+2} \ldots D_{n}, \quad 1 \leqq j \leqq n+1 ; \widetilde{L}_{0}=I$.

In this case, we get an analogue of (2.9). Indeed we have

$$
\left\{\begin{align*}
& f(z)=f(a) \phi_{\Lambda_{n, n}}\left(z a^{-1}\right)+\left(\widetilde{L}_{1} f\right)(a) \phi_{\Lambda_{n}-1, n}\left(z a^{-1}\right)+\ldots \tag{2.11}\\
&+\left(\widetilde{L}_{n} f\right)(a) \phi_{\Lambda_{n}}\left(z a^{-1}\right)+\widetilde{R}_{n} . \\
& \widetilde{R}=\int_{a}^{z} \phi_{\Lambda_{n}}\left(z v^{-1}\right) v^{-1}\left(\widetilde{L}_{n+1} f\right)(v) d v .
\end{align*}\right.
$$

In order to define B-splines in \mathscr{S}, we introduce the Λ-divided difference of a function f on a subset of Z_{k} by the symbol $\left[1, \zeta, \ldots, \zeta^{n+1}\right]_{\Lambda_{n}} f$ defined by the expression

$$
\left.\begin{array}{lllll}
1 & 1 & \ldots & 1 & f(1) \tag{2.12}\\
\zeta^{\lambda_{0}} & \zeta^{\lambda_{1}} & \ldots & \zeta^{\lambda_{n}} & f(\zeta) \\
\cdot & \ldots & \ldots & \cdots & \ldots \\
\zeta^{(n+1) \lambda_{0}} & \zeta^{(n+1) \lambda_{1}} & \ldots & \zeta^{(n+1) \lambda_{n}} & f\left(\zeta^{n+1}\right)
\end{array} \right\rvert\, \div V\left(\zeta^{\lambda_{0}}, \ldots, \xi^{\lambda_{n}}\right)
$$

where $V\left(\zeta^{\lambda_{0}}, \ldots, \zeta^{\lambda_{n}}\right)$ is a Vandermondian. More generally, we set
(2.13) $\left[\zeta^{\nu}, \zeta^{\nu+1}, \ldots, \zeta^{\nu+n+1}\right]_{\Lambda_{n}} f(z)=\left[1, \zeta, \ldots, \zeta^{n+1}\right]_{\Lambda_{n}} f\left(z \zeta^{\nu}\right)$.

From (2.12) we can see that

$$
\begin{equation*}
\left[1, \zeta, \ldots, \zeta^{n+1}\right]_{\Lambda_{n}} f=\sum_{\nu=0}^{n+1}(-1)^{n+1-\nu} S_{n+1-\nu}\left(\Lambda_{n}\right) f\left(\zeta^{\nu}\right) \tag{2.14}
\end{equation*}
$$

where $S_{\nu}\left(\Lambda_{n}\right)$ is the ν-th elementary symmetric function of the numbers $\zeta^{\lambda_{0}}, \zeta^{\lambda_{1}}, \ldots, \zeta^{\lambda^{\lambda_{n}}}$. From (2.14), it follows that

$$
\begin{align*}
{\left[1, \zeta, \ldots, \zeta^{n+1}\right]_{\Lambda_{n}} f } & =\left[\zeta, \zeta^{2}, \ldots, \zeta^{n+1}\right]_{\Lambda_{n-1}} f \tag{2.15}\\
& -\zeta^{\lambda_{n}}\left[1, \zeta, \ldots, \zeta^{n}\right]_{\Lambda_{n-1}} f \\
& =\left[\zeta, \zeta^{2}, \ldots, \zeta^{n+1}\right]_{\Lambda_{1, n}} f \\
& -\zeta^{\lambda_{0}}\left[1, \zeta, \ldots, \zeta^{n}\right]_{\Lambda_{1 . n}} f .
\end{align*}
$$

Remark. If $\Lambda_{n}=\{0,1, \ldots, n\}$, then our Λ-divided difference differs from the usual divided difference on the same points by a constant factor. More precisely, in this case

$$
\left[1, \zeta, \ldots, \xi^{n+1}\right]_{\Lambda_{n}} f=\prod_{j=0}^{n}\left(\zeta^{n+1}-\xi^{j}\right)\left[1, \zeta, \ldots, \xi^{n+1}\right] f
$$

where the right hand divided difference is the usual one.
3. B-splines and their properties. Here and in the sequel we shall assume that $k \geqq n+2$. We now define the B-spline $M_{\Lambda_{n}}(z)$ to be an element of \mathscr{S} given by

$$
\begin{equation*}
M_{\Lambda_{n}}(z)=\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}} \phi_{\Lambda_{n}}\left(z, y^{-1}\right) . \tag{3.1}
\end{equation*}
$$

For $z \in \operatorname{arc}\left(\zeta^{n+1}, 1\right)$,

$$
M_{\Lambda_{n}}(z)=\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}} \phi_{\Lambda_{n}}(z y)
$$

because of (2.4) and so vanishes since

$$
\phi_{\Lambda_{n}}(z y) \in \Pi\left(\Lambda_{n}\right) .
$$

We shall show that $M_{\Lambda_{n}}(z)$ is the spline of minimal support in \mathscr{S}.
Proposition 2. If $S(z) \in \mathscr{S}$ has support strictly contained in the arc $\left(1, \zeta^{n+1}\right)$, then $S(z) \equiv 0$.

Proof. Suppose the support of $S(z)$ lies in $\left(1, \zeta^{n}\right)$. Then $S(z)$ lies in the space of all Λ-splines with knots $1, \zeta, \ldots, \zeta^{n}$ which by Proposition 1 has dimension $n+1$ and thus equals $\Pi\left(\Lambda_{n}\right)$. So $S(z) \in \Pi\left(\Lambda_{n}\right)$ and since $S(z)$ vanishes on an arc, $S(z) \equiv 0$.

We shall now prove
Lemma 1. The B-splines satisfy the following recurrence relations:

$$
\left\{\begin{align*}
\left(\lambda_{n}-\lambda_{0}\right) M_{\Lambda_{n}}(z) & =M_{\Lambda_{1, n}}\left(z \zeta^{-1}\right)-\zeta^{-\lambda_{0}} M_{\Lambda_{1, n}}(z) \tag{3.2}\\
& -M_{\Lambda_{n-1}}\left(z \zeta^{-1}\right)+\zeta^{-\lambda_{n} M_{\Lambda_{n}-1}}(z)
\end{align*}\right.
$$

and

$$
\begin{equation*}
D_{n} M_{\Lambda_{n}}(z)=M_{\Lambda_{n-1}}\left(z \zeta^{-1}\right)-\zeta^{-\lambda_{n}} M_{\Lambda_{n-1}}(z) . \tag{3.3}
\end{equation*}
$$

Proof. Using (2.3) we see from (3.1) that

$$
\begin{aligned}
\left(\lambda_{n}-\lambda_{0}\right) M_{\Lambda_{n}}(z)=\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}}\left(\phi_{\Lambda_{1, n}}\right. & \left(z, y^{-1}\right) \\
& \left.-\phi_{\Lambda_{n-1}}\left(z, y^{-1}\right)\right)
\end{aligned}
$$

Next we use (2.15) which yields

$$
\begin{aligned}
\left(\lambda_{n}-\lambda_{0}\right) M_{\Lambda_{n}}(z) & =\left[\zeta^{-1}, \zeta^{-2}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{1, n}} \phi_{\Lambda_{1, n}}\left(z, y^{-1}\right) \\
& -\zeta^{-\lambda_{0}}\left[1, \zeta^{-1}, \ldots, \zeta^{-n}\right]_{\Lambda_{1, n}} \phi_{\Lambda_{1, n}}\left(z, y^{-1}\right) \\
& -\left[\zeta^{-1}, \zeta^{-2}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n-1}} \phi_{\Lambda_{n-1}}\left(z, y^{-1}\right) \\
& +\zeta^{-\lambda_{n}}\left[1, \zeta^{-1}, \ldots, \zeta^{-n}\right]_{\Lambda_{n-1}} \phi_{\Lambda_{n-1}}\left(z, y^{-1}\right) .
\end{aligned}
$$

We now get (3.2) from (2.13) and (3.1).
Formula (3.3) follows on applying D_{j} to (3.1) and on using (2.7), (2.13) and (2.15).

As a simple application of the B-splines, we show that

$$
\begin{equation*}
\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}} f=\int_{U} M_{\Lambda_{n}}\left(v^{-1}\right) v^{-1}\left(L_{n+1} f\right)(v) d v \tag{3.4}
\end{equation*}
$$

In order to see this we use (2.4) and observe that for $a=1$ in (2.9) we have

$$
R_{n}=\int_{U} \phi_{\Lambda_{n}}\left(v^{-1}, z^{-1}\right) v^{-1}\left(L_{n+1} f\right)(v) d v
$$

We now apply the difference operator $\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}}$ to both sides of (2.9) and using (3.1), we get (3.4).

In the sequel we shall suppose that ζ is a primitive $k^{\text {th }}$ root of unity, i.e.,

$$
\zeta=e^{2 \pi i / k}, k \geqq n+2
$$

We then have
Proposition 3. If ζ is a primitive $k^{\text {th }}$ root of unity, then the B-splines $M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right), \nu=0,1, \ldots, k-1$ form a basis for the space \mathscr{S} of Λ-splines.

Proof. Since the dimension of \mathscr{S} is k (Proposition 1), it is enough to show that $\left.\left\{M_{\Lambda_{n}}(z\}^{-\nu}\right)\right\}_{0}^{k-1}$ are linearly independent. We shall show that if there exists a relation

$$
S(z):=\sum_{\nu=0}^{k-1} c_{\nu} M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \equiv 0
$$

then all the c_{ν} 's are zero.
Consider the function $T(z)$ given by

$$
T(z)=\sum_{\sum_{\nu=k-n-1}^{0}}^{c_{\nu} M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right),} \quad z \in \operatorname{arc}\left(\zeta^{k-n-1}, 1\right) .
$$

Since $M_{\Lambda_{n}}(z)$ vanishes outside the $\operatorname{arc}\left(1, \zeta^{n+1}\right)$ it follows that

$$
T(z)=S(z)=0, \quad \text { for } z \in \operatorname{arc}\left(\zeta^{k-1}, 1\right) .
$$

Thus $T(z) \in \mathscr{S}$ and has support in the $\operatorname{arc}\left(\zeta^{k-n-1}, \zeta^{k-1}\right)$ and hence by Proposition 2, vanishes identically.

Observe that for $z \in \operatorname{arc}\left(\xi^{k-n-1}, \zeta^{k-n}\right)$,

$$
T(z)=c_{k-n-1} M_{\Lambda_{n}}\left(z \zeta^{-k+n+1}\right)=0
$$

which implies $c_{k-n-1}=0$. Proceeding in this manner we see that

$$
c_{\nu}=0, \quad \nu=k-n-1, \ldots, k-1 .
$$

Hence

$$
\sum_{\nu=0}^{k-n-2} c_{\nu} M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \equiv 0
$$

and by the same argument as above, we see that c_{ν} 's are all zero.
We shall now prove the analogue of Marsden's identity.
Theorem 1. If ζ is a primitive k-th root of unity and if $\psi_{\Lambda_{n}}(y) \in \Pi\left(\Lambda_{n}\right)$ satisfies the conditions

$$
\left\{\begin{array}{l}
\psi_{\Lambda_{n}}\left(\zeta^{-j}\right)=0, \quad j=1,2, \ldots, n \tag{3.5}\\
\psi_{\Lambda_{n}}\left(\zeta^{-n-1}\right)=-1,
\end{array}\right.
$$

then we have the identity

$$
\begin{equation*}
\phi_{\Lambda_{n}}(z y)=\sum_{j=0}^{k-1} \psi_{\Lambda_{n}}\left(\zeta^{j} y\right) M_{\Lambda_{n}}\left(z \zeta^{-j}\right) . \tag{3.6}
\end{equation*}
$$

Proof. We prove the identity by induction on n. For $n=0$, we have

$$
\phi_{\Lambda_{0}}(z)=z^{\lambda_{0}}
$$

while $M_{\Lambda_{0}}(z)=-z^{\lambda_{0}} \zeta^{-\lambda_{0}}$ on $\operatorname{arc}(1, \zeta)$ and is 0 elsewhere. Also by (3.5),

$$
\psi_{\Lambda_{0}}(y)=-\zeta^{\lambda_{0}} y^{\lambda_{0}} .
$$

From this we can easily see that for $z \in \operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+1}\right)$, we have

$$
\sum_{j=0}^{k-1} \psi_{\Lambda_{0}}\left(\xi^{j} y\right) M_{\Lambda_{0}}\left(z \zeta^{-j}\right)=\phi_{\Lambda_{0}}\left(\zeta^{\nu} y\right) M_{\Lambda_{0}}\left(z \zeta^{-\nu}\right)=(z y)^{\lambda_{0}}=\phi_{\Lambda_{0}}(z y) .
$$

We shall now suppose that (3.6) is true for any Λ-set containing n elements. Then using (2.3) and the inductive hypothesis, we obtain

$$
\begin{aligned}
& \left(\lambda_{n}-\lambda_{0}\right) \psi_{\Lambda_{n}}(z y)=\phi_{\Lambda_{1, n}}(z y)-\phi_{\Lambda_{n}-1}(z y) \\
& =\sum_{j=0}^{k-1} \psi_{\Lambda_{1, n}}\left(\zeta^{j} y\right) M_{\Lambda_{1, n}}\left(z \zeta^{-j}\right)-\sum_{j=0}^{k-1} \psi_{\Lambda_{n-1}}\left(\zeta^{j} y\right) M_{\Lambda_{n-1}}\left(z \zeta^{-j}\right) .
\end{aligned}
$$

We recall formula (3.2) Lemma 1 to obtain

$$
\begin{aligned}
& \left(\lambda_{n}-\lambda_{0}\right) \sum_{j=0}^{k-1} \psi_{\Lambda_{n}}\left(\zeta^{j} y\right) M_{\Lambda_{n}}\left(z \zeta^{-j}\right) \\
& =\sum_{j=0}^{k-1} \psi_{\Lambda_{n}}\left(\zeta^{j} y\right)\left[M_{\Lambda_{\mathrm{l}, n}}\left(z \zeta^{-j-1}\right)-\zeta^{-\lambda_{0}} M_{\Lambda_{\mathrm{l}, n}}\left(z \xi^{-j}\right)\right. \\
& \left.-M_{\Lambda_{n-1}}\left(z \zeta^{-j-1}\right)+\zeta^{-\lambda_{n}} M_{\Lambda_{n-1}}\left(z \zeta^{-j}\right)\right]
\end{aligned}
$$

which after elementary manipulation gives

$$
\begin{align*}
& \sum_{j=0}^{k-1} \psi_{\Lambda_{n}}\left(\zeta^{j-1} y\right)\left\{M_{\Lambda_{1, n}}\left(z \zeta^{-j}\right)-M_{\Lambda_{n-1}}\left(z \zeta^{-j}\right)\right\} \tag{3.8}\\
& +\sum_{j=0}^{k-1} \psi_{\Lambda_{n}}\left(\zeta^{j} y\right)\left\{-\zeta^{-\lambda_{0}} M_{\Lambda_{1, n}}\left(z \zeta^{-j}\right)+\zeta^{-\lambda_{n}} M_{\Lambda_{n-1}}\left(z \zeta^{-j}\right)\right\}
\end{align*}
$$

In order to prove (3.6) it is sufficient to show that the right side of (3.7) is equal to (3.8). This will be so if the following relations hold:

$$
\begin{aligned}
& \psi_{\Lambda_{1, n}}\left(\zeta^{j} y\right)=\psi_{\Lambda_{n}}\left(\xi^{j-1} y\right)-\zeta^{-\lambda_{0}} \psi_{\Lambda_{n}}\left(\zeta^{j} y\right) \\
& \psi_{\Lambda_{n-1}}\left(\zeta^{j} y\right)=\psi_{\Lambda_{n}}\left(\xi^{j-1} y\right)-\zeta^{-\lambda_{n}} \psi_{\Lambda_{n}}\left(\zeta^{j} y\right)
\end{aligned} \quad, j=0,1, \ldots, k-1
$$

or equivalently,

$$
\begin{align*}
& \psi_{\Lambda_{1, n}}(y)=\phi_{\Lambda_{n}}\left(\zeta^{-1} y\right)-\zeta^{-\lambda_{0}} \psi_{\Lambda_{n}}(y) \tag{3.9}\\
& \psi_{\Lambda_{n-1}}(y)=\psi_{\Lambda_{n}}\left(\zeta^{-1} y\right)-\zeta^{-\lambda_{n}} \psi_{\Lambda_{n}}(y)
\end{align*}
$$

Obviously both sides of (3.9) belong to the class $\Pi\left(\Lambda_{1, n}\right)$ and by (3.5) they agree for $y=\zeta^{-j}(j=1,2, \ldots, n)$. This shows that (3.9) is valid. In a similar way, we can show that (3.10) is true.

Remark. From (3.5) we can get an explicit representation for $\psi_{\Lambda_{n}}(y)$. Thus

$$
\phi_{\Lambda_{n}}(y)=\frac{(-1)^{n-1} \zeta^{\lambda_{0}+\lambda_{1}+\ldots+\lambda_{n}}}{V\left(\zeta^{-\lambda_{0}}, \ldots, \zeta^{-\lambda_{n}}\right)}\left|\begin{array}{llll}
y^{\lambda_{0}} & y^{\lambda_{1}} & \ldots & y^{\lambda_{n}} \tag{3.11}\\
\zeta^{-\lambda_{0}} & \zeta^{-\lambda_{1}} & \ldots & \zeta^{-\lambda_{n}} \\
\zeta^{-n \lambda_{0}} & \zeta^{-n \lambda_{1}} & \ldots & \zeta^{-n \lambda_{n}}
\end{array}\right|
$$

whence we see that
(3.12) $\quad \psi_{\Lambda_{n}}(1)=(-1)^{n-1} \zeta^{\lambda_{0}+\ldots+\lambda_{n}}$.
4. The quasi-interpolant. It is known that for polynomial splines the quasi-interpolant plays a very useful role. An analogue of the quasiinterpolant for polynomial splines on the circle has recently been given in [3].

In order to obtain the quasi-interpolant for Λ-splines, we choose points $\tau_{\nu} \in \operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+n+1}\right), \nu=0,1, \ldots, k-1$ where ζ is a primitive k th root of unity. Consider an operator $\mathscr{L}: C^{(n)}(U) \rightarrow \mathscr{S}$ of the following form:

$$
\begin{equation*}
(\mathscr{L g})(z)=\sum_{\nu=0}^{k-1} T_{\nu}(g) M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\nu}(g)=\sum_{r=0}^{n} a_{\nu, r}\left(L_{r} g\right)\left(\tau_{\nu}\right) \tag{4.2}
\end{equation*}
$$

and $a_{\nu, r}$'s are constants depending on τ_{ν}, but independent of g. We shall show that there is a unique operator \mathscr{L} of the form (4.1), (4.2) which reproduces splines in \mathscr{S}. We shall call such an operator the quasiinterpolant. We can now prove.

Theorem 2. For an operator \mathscr{L} of the form (4.1), (4.2) we have

$$
\begin{equation*}
(\mathscr{L} S)(z)=S(z) \quad \text { for all } S(z) \in \mathscr{S} \tag{4.3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
a_{\nu, r}=\left(\widetilde{L}_{n-r} \psi_{\Lambda_{n}}\right)\left(\tau_{\nu}^{-1} \zeta^{\nu}\right), \nu=0,1, \ldots, k-1 ; r=0,1, \ldots, n . \tag{4.4}
\end{equation*}
$$

Proof. We shall first show that (4.3) implies (4.4). Note that (4.3) is equivalent to

$$
\begin{equation*}
T_{\nu}\left(M_{\Lambda_{n}}\left(z \zeta^{-j}\right)\right)=\delta_{\nu j}, \quad j, \nu=0,1, \ldots, k-1 \tag{4.5}
\end{equation*}
$$

Applying the operator \widetilde{L}_{j} to the identity (3.6) with respect to the variable y and using (2.7) successively, we obtain

$$
\begin{equation*}
\phi_{\Lambda_{n}-j}(z y)=\sum_{l=0}^{k-1}\left(\widetilde{L}_{j} \psi_{\Lambda_{n}}\right)\left(\zeta^{l} y\right) M_{\Lambda_{n}}\left(z \zeta^{-l}\right) . \tag{4.6}
\end{equation*}
$$

Now applying the operator T_{ν} to both sides of (4.6) with respect to z and recalling (4.5), we have

$$
\begin{equation*}
\sum_{r=0}^{n} a_{\nu, r}\left(L_{r} \phi_{\Lambda_{n-j}}\right)\left(\tau_{\nu} y\right)=\left(\widetilde{L}_{j} \psi_{\Lambda_{n}}\right)\left(\xi^{j} y\right) . \tag{4.7}
\end{equation*}
$$

From (2.7) we see that

$$
L_{r} \phi_{\Lambda_{n-j}}=D_{r-1} D_{r-2} \ldots D_{0} \phi_{\Lambda_{n-j}}=\phi_{\Lambda_{r, n}-j}
$$

and from (2.1) we note that

$$
\phi_{\Lambda_{r, n}-j}(1)=\delta_{r, n-j}
$$

so that putting $y=\tau_{\nu}^{-1}$ in (4.7) we have

$$
a_{\nu, n-j}=\left(\widetilde{L}_{j} \psi_{\Lambda_{n}}\right)\left(\tau_{\nu}^{-1} \zeta^{\nu}\right), \quad j=0,1, \ldots, n
$$

which is equivalent to (4.4).
We shall now show that (4.4) implies (4.3), which is equivalent to (4.5). Applying the operator T_{ν} to both sides of (3.1) after replacing z by $z \zeta^{-j}$ we have

$$
\begin{equation*}
T_{\nu}\left(M_{\Lambda_{n}}\left(z \zeta^{-j}\right)\right)=\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}} T_{\nu}\left(\phi_{\Lambda_{n}}\left(z \zeta^{-j}, y^{-1}\right)\right) \tag{4.8}
\end{equation*}
$$

In order to simplify the right side above we observe that (4.2) yields

$$
\begin{equation*}
T_{\nu}\left(\phi_{\Lambda_{n}}(z y)\right)=\sum_{r=0}^{n} a_{\nu, r}\left(L_{r} \phi_{\Lambda_{n}}\right) \phi_{\Lambda_{r, n}}\left(\tau_{\nu} y\right)=\sum_{r=0}^{n} a_{\nu, r} \phi_{\Lambda_{r, n}}\left(\tau_{\nu} y\right) . \tag{4.9}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
T_{\nu}\left(\phi_{\Lambda_{n}}(z y)\right)=\sum_{r=0}^{n} a_{\nu, r} \phi_{\Lambda_{r, n}}\left(\tau_{\nu} y\right)=\psi_{\Lambda_{n}}\left(y \xi^{\nu}\right) \tag{4.10}
\end{equation*}
$$

Since both sides belong to $\Pi\left(\Lambda_{n}\right)$, it is sufficient to show that

$$
\begin{equation*}
\left[\widetilde{L}_{j}\left(\sum_{r=0}^{n} a_{\nu, r} \phi_{\Lambda_{r, n}}\left(\tau_{\nu} y\right)\right)\right]_{(j=0,1, \ldots, n)}^{y=\tau_{\nu}^{-1}}=\left(\widetilde{L}_{j} \psi_{\Lambda_{n}}\right)\left(\tau_{\nu}^{-1} \zeta^{\nu}\right), \tag{4.11}
\end{equation*}
$$

To see this, we observe that on using (2.1) and (2.7) the left side in (4.11) becomes

$$
\sum_{r=0}^{n} a_{\nu, r} \phi_{\Lambda_{r, n}-j}(1)=a_{\nu, n-j}
$$

which by (4.4) equals the right side of (4.11). This proves the assertion (4.10).

In order to find $T_{\nu}\left(M_{\Lambda_{n}}\left(z \zeta^{-j}\right)\right.$), we examine $T_{\nu}\left(\phi_{\Lambda_{n}}\left(z \zeta^{-j}, y^{-1}\right)\right)$ in the light of (4.8). We observe that from (4.10),
(4.12) $\quad T_{\nu}\left(\phi_{\Lambda_{n}}\left(z \zeta^{-j}, y^{-1}\right)\right)= \begin{cases}0 & , \quad \tau_{\nu} \in \operatorname{arc}\left[\zeta^{j}, \zeta^{j} y^{-1}\right) \\ \psi_{\Lambda_{n}}\left(y \zeta^{\nu-j}\right), & \text { otherwise. }\end{cases}$

Thus from (4.8) and (4.12) on using (2.13), we obtain
(4.13) $T_{\nu}\left(M_{\Lambda_{n}}\left(z \zeta^{-j}\right)\right)=\left[\zeta^{-j}, \zeta^{-j-1}, \ldots, \zeta^{-j-n-1}\right]_{\Lambda_{n}} \Psi_{\nu}(y)$,
where we set

$$
\Psi_{\nu}(y)=\left\{\begin{array}{l}
0, \\
\psi_{\Lambda_{n}}\left(y \zeta^{\nu}\right), \text { otherwise }
\end{array}\right.
$$

We now consider three cases:
(a) $j<\nu$. In this case, take any $l, 0 \leqq l \leqq n+1$. If

$$
\zeta^{-j-l} \in \operatorname{arc}\left(\tau_{\nu}^{-1}, \zeta^{-j}\right)
$$

then

$$
\tau_{\nu}^{-1} \in \operatorname{arc}\left(\zeta^{-j-1}, \zeta^{-j}\right)
$$

and so

$$
\Psi_{\nu}\left(\zeta^{-j-l}\right)=\psi_{\Lambda_{n}}\left(\zeta^{-j-l+\nu}\right)
$$

On the other hand, if

$$
\begin{gathered}
\zeta^{-j-l} \in \operatorname{arc}\left[\zeta^{-\nu-n-1}, \tau_{\nu}^{-1}\right] \\
\text { then }-n-1<\nu-j-l<0 \text { and so by (3.5) } \\
\psi_{\Lambda_{n}}\left(\zeta^{\nu-j-l}\right)=0 .
\end{gathered}
$$

Hence
(4.14) $\Psi_{\nu}\left(\zeta^{-j-l}\right)=0=\psi_{\Lambda_{n}}\left(\zeta^{\nu-j-l}\right)$.

Thus we have
(4.15) $\left[\zeta^{-j}, \zeta^{-j-1}, \ldots, \zeta^{-j-n-1}\right]_{\Lambda_{n}} \Psi_{\nu}(y)$

$$
=\left[\zeta^{-j}, \zeta^{-j-1}, \ldots, \zeta^{-j-n-1}\right]_{\Lambda_{n}} \psi_{\Lambda_{n}}\left(y \zeta^{\nu}\right)=0
$$

(b) $j>\nu$. Again, as in case (a) we take any $l, 0 \leqq l \leqq n+1$. If

$$
\zeta^{-j-l} \in \operatorname{arc}\left[\tau_{\nu}^{-1}, \zeta^{-j}\right]
$$

then $-n-1<\nu-j-l<0$ so that by (3.5), we have (4.14). If

$$
\zeta^{-j-1} \in \operatorname{arc}\left[\zeta^{-j-n-1}, \tau_{\nu}^{-1}\right)
$$

then this implies that

$$
\tau_{\nu}^{-1} \in \operatorname{arc}\left[\zeta^{-j-1}, \zeta^{-j}\right)
$$

and so

$$
\Psi_{\nu}\left(\zeta^{-j-l}\right)=0
$$

Hence

$$
\left[\zeta^{-j}, \zeta^{-j-1}, \ldots, \zeta^{-j-n-1}\right]_{\Lambda_{n}} \Psi_{\nu}(y)=0
$$

(c) $j=\nu$. In this case we observe that from (3.5).

$$
\psi_{\Lambda_{n}}\left(\zeta^{-j-l+\nu}\right)=\psi_{\Lambda_{n}}\left(\zeta^{-l}\right)=0, \quad l=1,2, \ldots, n .
$$

Hence

$$
\Psi_{\nu}\left(\zeta^{-j-l}\right)=0, \quad l=1,2, \ldots, n
$$

Since

$$
\tau_{\nu}^{-1} \in \operatorname{arc}\left(\zeta^{-\nu-n-1}, \zeta^{-\nu}\right)
$$

it follows that

$$
\Psi_{\nu}\left(\zeta^{-j-n-1}\right)=0 .
$$

Moreover

$$
\Psi_{\nu}\left(\zeta^{-j}\right)=\psi_{\Lambda_{n}}(1)=(-1)^{n-1} \zeta^{\lambda_{0}+\ldots+\lambda_{n}}
$$

by (3.12). Thus when $j=\nu$, we see from (2.13) and (2.12) that

$$
\begin{aligned}
& {\left[\zeta^{-j}, \zeta^{-j-1}, \ldots, \zeta^{-j-n-1}\right]_{\Lambda_{n}} \Psi_{\nu}(y)} \\
& =\left[1, \zeta^{-1}, \ldots, \zeta^{-n-1}\right]_{\Lambda_{n}} \Psi_{\nu}\left(y \zeta^{-j}\right)=1 .
\end{aligned}
$$

Combining the results of (a), (b) and (c) above, we see from (4.13) that (4.5) holds, which completes the proof.
5. Approximation by quasi-interpolants. We shall now examine the quasi-interpolant \mathscr{L} as a tool for approximating functions of class $C^{n}(U)$. In order to do so, we recall the definition of the modulus of continuity for a function $f \in C(U)$. We set

$$
\omega(f ; h)=\sup \left\{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|: z_{1}, z_{2} \in U,\left|z_{1}-z_{2}\right| \leqq h\right\} .
$$

We are interested in the approximating property of \mathscr{L}, for fixed Λ_{n} as $k \rightarrow \infty$. We shall prove
Theorem 3. For any $f \in C^{n}(U)$ and $z \in U$, we have the following estimates:

$$
\begin{equation*}
\left|(\mathscr{L} f)^{(s)}(z)-f^{(s)}(z)\right| \leqq \frac{K}{k^{n-s}} \omega\left(g ; \frac{1}{k}\right), s=0,1, \ldots, n \tag{5.1}
\end{equation*}
$$

where $g(y)=y^{-\lambda_{n}} L_{n} f(y)$ and K is independent of f and k.
It may be observed that $\omega\left(g ; \frac{1}{k}\right)$ vanishes whenever $f(z)=z^{\lambda_{j}}, j=0$, $1, \ldots, n$.
For the proof of Theorem 3, we shall need two lemmas. In what follows for any $f \in U$, we set

$$
\|f\|=\sup _{z \in U}|f(z)| .
$$

Lemma 2. For $j=0,1, \ldots, n$, we have

$$
\begin{equation*}
\left\|L_{j} M_{\Lambda_{n}}\right\|=O\left(k^{j-n}\right) \tag{5.2}
\end{equation*}
$$

Proof. Using (2.9) with $a=1, n=0$, and replacing Λ_{0} by $\Lambda_{n, n}$, we see that

$$
M_{\Lambda_{n}}(z)=\int_{1}^{z} \phi_{\Lambda_{n, n}}\left(z v^{-1}\right) v^{-1} D_{n} M_{\Lambda_{n}}(v) d v
$$

Since $M_{\Lambda_{n}}(z)$ has support in the $\operatorname{arc}\left(1, \zeta^{n+1}\right)$, we get

$$
\left\|M_{\Lambda_{n}}\right\|=O\left(\frac{1}{k}\right)\left\|D_{n} M_{\Lambda_{n}}\right\|=O\left(\frac{1}{k}\right)\left\|M_{\Lambda_{n-1}}\right\|
$$

on using (3.3). Hence

$$
\begin{equation*}
\left\|M_{\Lambda_{n}}\right\|=O\left(k^{-n}\right)\left\|M_{\Lambda_{O}}\right\|=O\left(k^{-n}\right) \tag{5.3}
\end{equation*}
$$

since

$$
M_{\Lambda_{0}}(z)=-z^{\lambda_{0} \zeta^{-\lambda_{0}}} .
$$

Again applying (3.3) successively, we obtain

$$
\left\|L_{j} M_{\Lambda_{n}}\right\| \leqq 2^{j}\left\|M_{\Lambda_{j, n}}\right\|=O\left(k^{j-n}\right), \quad j=0,1, \ldots, n
$$

on observing that $\Lambda_{j, n}=\left\{\lambda_{j}, \ldots, \lambda_{n}\right\}$ and on using (5.3).
Lemma 3. For $j=0,1, \ldots, n$, we have

$$
\begin{equation*}
\sup \left\{\left|\psi_{\Lambda_{n}}^{(j)}(z)\right|: z \in \operatorname{arc}\left(\zeta^{-n-1}, 1\right)\right\}=O\left(k^{j}\right) \tag{5.4}
\end{equation*}
$$

Proof. From (3.11) it can be seen that

$$
\psi_{\Lambda_{n}}(z)=\sum_{j=0}^{n} \frac{(-1)^{n-1+j} \zeta^{\lambda_{j}} \lambda_{j}}{\prod_{\substack{\nu=0 \\ \nu \neq j}}^{n}\left(\zeta^{-\lambda_{j}}-\zeta^{-\lambda_{\nu}}\right)}
$$

whence we easily obtain
(5.5) $\quad\left\|\psi_{\Lambda_{n}}^{(\nu)}\right\|=O\left(k^{n}\right), \quad \nu=0,1, \ldots, n$.

Furthermore, it is known that for any $z \in U$, we have
(5.6) $\quad\left[z, \zeta^{-1}, \ldots, \zeta^{-n}\right] \psi_{\Lambda_{n}}(y)$

$$
=\frac{1}{n!} \int_{U} M\left(\omega \mid z, \zeta^{-1}, \ldots, \zeta^{-n}\right) \psi_{\Lambda_{n}}^{(n)}(\omega) d \omega
$$

where the divided difference on the left is the usual divided difference and the B-spline on the right in the integral is the usual B-spline on the circle. If $z \in \operatorname{arc}\left(\zeta^{-n-1}, 1\right)$, then by (5.6) and (3.5), we see that

$$
\begin{equation*}
\psi_{\Lambda_{n}}(z)=\frac{1}{n!} \int_{\zeta^{-n-1}}^{1} F(z, \omega) \psi_{\Lambda_{n}}^{(n)}(\omega) d \omega \tag{5.7}
\end{equation*}
$$

where

$$
F(z, \omega)=\prod_{j=1}^{n}\left(z-\zeta^{-j}\right) M\left(\omega \mid z, \zeta^{-1}, \ldots, \zeta^{-n}\right)
$$

For any $\omega, \xi \in\left(\zeta^{-n-1}, 1\right)$, we define the truncated power function

$$
(\xi-\omega)_{+}^{n-1}=\left\{\begin{array}{c}
(\xi-\omega)^{n-1}, \\
\text { if } \omega \in \operatorname{arc}\left(\xi^{-n-1}, \xi\right) \\
0,
\end{array}, \text { if } \omega \in \operatorname{arc}(\xi, 1) .\right.
$$

Since the B-spline is the divided difference of the truncated power function, we see that

$$
\begin{aligned}
\frac{1}{n+1} F(z, \omega) & =(z-\omega)_{+}^{n-1}-\sum_{l=1}^{n}\left(\zeta^{-l}-\omega\right)_{+}^{n-1} \\
& \times \sum_{\substack{r=1 \\
r \neq 1}}^{n}\left(\frac{z-\zeta^{-r}}{\zeta^{-l}-\zeta^{-r}}\right)
\end{aligned}
$$

From the above it is easy to see that

$$
\begin{equation*}
\left|\frac{\partial^{j}}{\partial z^{j}} F(z, \omega)\right| \leqq \frac{C}{k^{n-1-j}}, \quad j=0,1, \ldots, n-1 \tag{5.8}
\end{equation*}
$$

for all $z, \omega \in \operatorname{arc}\left(\zeta^{-n-1}, 1\right)$, where C is a constant independent of k. Differentiating (5.7) j times and using (5.5) and (5.8) we obtain (5.4).

Lemma 4. If $G(t) \in C^{n}(U)$ and if for some $z \in U$,

$$
G^{(\nu)}(z)=0, \quad \nu=0,1, \ldots, n-1
$$

then for $\omega \in U$, we have

$$
\begin{equation*}
\left|L_{r} G(\omega)\right| \leqq C_{1}|\omega-z|^{n-r} \sup _{t \in \operatorname{arc}(\omega, z)}\left|L_{n} G(t)\right| \tag{5.9}
\end{equation*}
$$

for $r=0,1, \ldots, n-1$, where C_{1} is independent of G, ω and z.
Proof. Using (2.9) with f replaced by $L_{r} G$, we get for $r=0,1, \ldots$, $n-1$,
(5.10) $\quad L_{r} G(\omega)=\int_{z}^{\omega} \phi_{\Lambda_{r, n-1}}\left(\omega \nu^{-1}\right) v^{-1} L_{n} G(v) d v$.

Now from (2.1), we know that

$$
\begin{aligned}
& \phi_{\Lambda_{r, n-1}}^{(\nu)}(1)=0 \text { for } \nu=0,1, \ldots, n-2-r, \text { and } \\
& \phi_{\Lambda_{r, n-1}}^{(n-1-r)}(1)=1 .
\end{aligned}
$$

So by the classical Taylor's formula with remainder,

$$
\phi_{\Lambda_{r, n}-1}(t)=\frac{1}{(n-2-r)!} \int_{1}^{t}(t-v)^{n-2-r_{r}} \phi_{\Lambda_{r, n}-1}^{(n-1-r)}(v) d v .
$$

Hence we get

$$
\begin{equation*}
\left|\phi_{\Lambda_{r, n-1}}(t)\right| \leqq C_{1}|t-1|^{n-1-r} \tag{5.11}
\end{equation*}
$$

which combined with (5.10), yields (5.9).
Proof of Theorem 3. In order to prove (5.1) it is enough to show that

$$
\begin{equation*}
\left|L_{s}(\mathscr{L} f)(z)-L_{s} f(z)\right| \leqq \frac{K}{k^{n-s}} \omega\left(g ; \frac{1}{k}\right), \quad s=0,1, \ldots, n \tag{5.12}
\end{equation*}
$$

Set

$$
G(t)=f(t)-P_{z}(t)
$$

where

$$
\begin{aligned}
& P_{z}(t) \in \Pi\left(\Lambda_{n}\right) \quad \text { and } \\
& \left(f^{(\nu)}-P_{z}^{(\nu)}(z)=0, \quad(\nu=0,1, \ldots, n)\right.
\end{aligned}
$$

Then

$$
\begin{align*}
L_{s}(\mathscr{L} f)(z)-L_{s} f(z) & =L_{s}(\mathscr{L} f)(z)-L_{s} P_{z}(z) \\
& =L_{s}(\mathscr{L} f)(z)-L_{s}\left(\mathscr{L} P_{z}\right)(z), \quad \text { by }(4.3) \tag{5.13}\\
& =L_{s}(\mathscr{L} G)(z)
\end{align*}
$$

From (4.1), we see that
(5.14) $\quad L_{s}(\mathscr{L} G)(z)=\sum_{\nu=0}^{k-1} T_{\nu}(G) L_{s} M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right)$
where from (4.2), we have
(5.15) $\quad T_{\nu}(G)=\sum_{r=0}^{n} a_{\nu, r}\left(L_{r} G\right)\left(\tau_{\nu}\right)$.

By Lemma 4, we can see that for $r=0,1, \ldots, n-1$
(5.16) $\left|\left(L_{r} G\right)\left(\tau_{\nu}\right)\right| \leqq C_{1}\left|\tau_{\nu}-z\right|^{n-r} \sup _{t \in \operatorname{arc}\left(\tau_{\nu}, z\right)}\left|L_{n} G(t)\right|$.

From the definition of $P_{z}(t)$ it follows that

$$
L_{n} P_{z}(v)=C_{2} v^{\lambda_{n}}
$$

(C_{2} a constant) and

$$
L_{n} P_{z}(z)=L_{n} f(z)
$$

so that

$$
\begin{align*}
L_{n} G(v) & =L_{n} f(v)-L_{n} P_{z}(v) \\
& =L_{n} f(v)-\left(v z^{-1}\right)^{\lambda_{n}} L_{n} f(z) \tag{5.17}\\
& =v^{\lambda_{n}}(g(v)-g(z)) .
\end{align*}
$$

where

$$
g(v)=v^{-\lambda_{n}} L_{n} f(v)
$$

From (5.16) and (5.17), we obtain

$$
\left|L_{r} G\left(\tau_{\nu}\right)\right| \leqq C_{1}\left|\tau_{\nu}-z\right|^{n-r} \omega\left(g ;\left|\tau_{\nu}-z\right|\right), \quad r=0,1, \ldots, n
$$

which from (5.15) yields

$$
\begin{equation*}
\left|T_{\nu}(G)\right| \leqq C_{1} \sum_{r=0}^{n}\left|a_{\nu, r}\right|\left|\tau_{\nu}-z\right|^{n-r} \omega\left(g ;\left|\tau_{\nu}-z\right|\right) \tag{5.18}
\end{equation*}
$$

Since $\tau_{\nu} \in \operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+n+1}\right)$, i.e., $\tau_{\nu}^{-1} \zeta^{\nu} \in \operatorname{arc}\left(\zeta^{-n-1}, 1\right)$, it follows from (4.4) and (5.4) that
(5.19) $\quad\left|a_{\nu, r}\right|=O\left(k^{n-r}\right), \quad r=0,1, \ldots, n$.

Observe that $M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right)$ is non-zero only if $z \in \operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+n+1}\right)$ and since τ_{ν} also lies in this arc, we have

$$
\left|\tau_{\nu}-z\right|=O\left(k^{-1}\right)
$$

so that (5.18) and (5.19) give

$$
\left|T_{\nu}(G)\right| \leqq C_{2} \omega\left(g ; \frac{1}{k}\right)
$$

Hence from (5.14), we obtain

$$
\left|L_{s}(\mathscr{L} G)(z)\right| \leqq \frac{C_{3}}{k^{n-s}} \omega\left(g ; \frac{1}{k}\right)
$$

which is equivalent to (5.12) because of (5.13).
6. Bernstein-Schoenberg type operator. While the quasi-interpolant requires information about the value of the function and its derivative up to order n at k points, the B-S operator needs only function-values at k points. In view of this, it is of some interest to define the B-S type operator for Λ-splines.

Using (2.2) and (3.11) and comparing coefficients of $y^{\lambda_{j}}$ on both sides in (3.6), we obtain

$$
\begin{equation*}
z^{\lambda_{j}}=C_{j}\left(\Lambda_{n}\right) \sum_{\nu=0}^{k-1} \zeta^{\nu \lambda_{j}} M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right), \quad j=0,1, \ldots, n \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{j}\left(\Lambda_{n}\right)=(-1) \zeta^{\lambda_{j}} \prod_{\substack{l=0 \\ l \neq j}}^{n} \frac{\lambda_{j}-\lambda_{l}}{\zeta^{-\lambda_{j}}-\zeta^{-\lambda_{l}}} \tag{6.2}
\end{equation*}
$$

We shall show that there is a unique linear operator

$$
\begin{equation*}
(S f)(z)=\sum_{\nu=0}^{k-1} b_{\nu} f\left(\sigma_{\nu}\right) M_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \tag{6.3}
\end{equation*}
$$

which reproduces $z^{\lambda_{0}}$ and $z^{\lambda_{1}}$. This requirement gives, in view of (6.1)

$$
b_{\nu} \sigma_{\nu}^{\lambda_{0}}=C_{0}\left(\Lambda_{n}\right) \xi^{\nu \lambda_{0}}, \quad b_{\nu} \sigma_{\nu}^{\lambda_{1}}=C_{1}\left(\Lambda_{n}\right) \xi^{y \lambda_{1}}
$$

It is easy to see that

$$
b_{\nu}=\left\{C_{0}\left(\Lambda_{n}\right)\right\}^{\lambda_{1} /\left(\lambda_{1}-\lambda_{0}\right)}\left\{C_{1}\left(\Lambda_{n}\right)\right\}^{\lambda_{0} /\left(\lambda_{0}-\lambda_{1}\right)}=: b\left(\Lambda_{n}\right)
$$

and

$$
\sigma_{\nu}:=\sigma_{\nu}\left(\Lambda_{n}\right)=\left\{\frac{C_{1}\left(\Lambda_{n}\right)}{C_{0}\left(\Lambda_{n}\right)}\right\}^{\left(\lambda_{1}-\lambda_{0}\right)^{-1}} \zeta^{\nu} .
$$

From (6.2) it follows by elementary computation that

$$
\left.\sigma_{\nu}=R\right\}^{1 / 2(n+1)+\nu}
$$

where

$$
\begin{equation*}
R^{\lambda_{1}-\lambda_{0}}=\prod_{l=2}^{n}\left(\frac{\sin \frac{\lambda_{l}-\lambda_{0}}{k} \pi}{\frac{\lambda_{l}-\lambda_{0}}{k} \pi}\right)\left(\frac{\sin \frac{\lambda_{l}-\lambda_{1}}{k} \pi}{\frac{\lambda_{l}-\lambda_{1}}{k} \pi}\right) \tag{6.4}
\end{equation*}
$$

We now renormalize our B-splines $M_{\Lambda_{n}}(z)$ and set
(6.5) $\quad N_{\Lambda_{n}}(z)=b\left(\Lambda_{n}\right) M_{\Lambda_{n}}(z)$.

From (6.2) and Lemma 2, we get

$$
\begin{equation*}
N_{\Lambda_{n}}(z)=O(1) \tag{6.6}
\end{equation*}
$$

Our operator $(S f)(z)$ now takes the form

$$
\begin{equation*}
(S f)(z)=\sum_{\nu=0}^{k-1} f\left(\sigma_{\nu}\right) N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right), \quad \sigma_{\nu}=R \zeta^{1 / 2(n+1)+\nu} \tag{6.7}
\end{equation*}
$$

When $\lambda_{0}=0$, we note that (6.7) shows that the normalized B-splines $N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right),(\nu=0,1, \ldots, k-1)$ form a partition of unity.

For a study of the convergence of this operator, we shall prove
Lemma 5. For $r=0,1, \ldots, n-1$ we have the identity

$$
\begin{align*}
\widetilde{L}_{r}(S f)(z) & =b\left(\Lambda_{n}\right) \sum_{\nu=0}^{k-1}\left[1, \zeta^{-1}, \ldots, \zeta^{-r}\right]_{\Lambda_{n-r}+1, n} \tag{6.8}\\
& \times \mathrm{f}\left(\sigma_{\nu} y\right) M_{\Lambda_{n-r}}\left(z \zeta^{-\nu}\right)
\end{align*}
$$

Proof. We shall prove (6.8) by induction on r. For $r=0$, (6.8) reduces to (6.7). We assume then that (6.8) is true for some $r<n-1$. Then

$$
\widetilde{L}_{r+1}(S f)(z)=D_{n-r} \widetilde{L}_{r}(S f)(z)
$$

Applying our inductive hypothesis and observing that by (3.3),

$$
D_{n-r} M_{\Lambda_{n-r}}\left(z \zeta^{-\nu}\right)=M_{\Lambda_{n-r}-1}\left(z \zeta^{-\nu-1}\right)-\zeta^{\left.-\lambda_{n-r} M_{\Lambda_{n-r-1}}\left(z \zeta^{-\nu}\right), ~\right)}
$$

we have after elementary rearrangement

$$
\begin{aligned}
& \widetilde{L}_{r+1}(S f)(z) \\
& =b\left(\Lambda_{n}\right) \sum_{\nu=0}^{k-1}\left[1, \zeta^{-1}, \ldots, \zeta^{-r}\right]_{\Lambda_{n-r+1, n}} F_{\nu}(y) M_{\Lambda_{n-r}, 1}\left(z \zeta^{-\nu}\right)
\end{aligned}
$$

where

$$
F_{\nu}(y)=f\left(\sigma_{\nu-1} y\right)-\zeta^{-\lambda_{n-r} f\left(\sigma_{\nu} y\right)}
$$

We note that $\sigma_{\nu-1}=\sigma_{\nu} \zeta^{-1}$ and apply (2.13) and (2.15) to derive (6.8) with r replaced by $r+1$ which completes the proof.

We shall now prove
Theorem 4. Let $f(z)$ be defined on some annulus $\left\{z: \rho_{1} \leqq|z| \leqq \rho_{2}\right\}$ for some $\rho_{1}<1<\rho_{2}$. Suppose that for any $\eta, \rho_{1} \leqq \eta \leqq \rho_{2}$, the function $f(\eta z)$ lies in $C^{r}(U), z \in U$ for some $r, 0 \leqq r \leqq n-1$. Moreover let

$$
H_{r}(\eta z):=(\eta z)^{-\lambda_{0}} \widetilde{L}_{r} f(\eta z)
$$

be continuous for $z \in U, \rho_{1} \leqq \eta \leqq \rho_{2}$. Then

$$
\begin{equation*}
\left|\widetilde{L}_{r}(S f)(z)-\widetilde{L}_{r} f(z)\right| \leqq C \omega\left(H_{r} ; \frac{1}{k}\right) \tag{6.9}
\end{equation*}
$$

where C is independent of f and k.
Proof. Since the operator S reproduces $z^{\lambda_{0}}$, it follows from (6.7) that
(6.10) $\quad z^{\lambda_{0}}=\sum_{\nu=0}^{k-1}\left(\sigma_{\nu}\left(\Lambda_{n-r}\right)\right)^{\lambda_{0}} N_{\Lambda_{n-r}}\left(z \zeta^{-\nu}\right)$.

Then from (6.8) we obtain

$$
\begin{equation*}
\widetilde{L}_{r}(S f)(z)-\widetilde{L}_{r} f(z)=\frac{b\left(\Lambda_{n}\right)}{b\left(\Lambda_{n-r}\right)} \sum_{\nu=0}^{k-1}\left(\Delta_{n} f\right) N_{\Lambda_{n-r}}\left(z \zeta^{-\nu}\right) \tag{6.11}
\end{equation*}
$$

where

$$
\begin{align*}
\left(\Delta_{\nu} f\right) & =\left[1, \zeta^{-1}, \ldots, \zeta^{-r}\right]_{\Lambda_{n-r+1, n}} f\left(\sigma_{\nu}\left(\Lambda_{n}\right) y\right) \tag{6.12}\\
& -\frac{b\left(\Lambda_{n-r}\right)}{b\left(\Lambda_{n}\right)} \widetilde{L}_{r} f(z) z^{-\lambda_{0}}\left(\sigma_{\nu}\left(\Lambda_{n-r}\right)\right)^{\lambda_{0}} .
\end{align*}
$$

From (3.4) it follows that

$$
\begin{equation*}
\left[1, \zeta^{-1}, \ldots, \zeta^{-r}\right]_{\Lambda_{n-r+1, n}} f=\int_{U} M_{\Lambda_{n-r+1, n}}\left(v^{-1}\right) v^{-1}\left(\widetilde{L}_{r} f\right)(v) d v \tag{6.13}
\end{equation*}
$$

In particular for $f(z)=z^{\lambda_{0}}$, this yields (from (6.2)),

$$
\begin{equation*}
\int_{U} M_{\Lambda_{n-r+1, n}}\left(v^{-1}\right) v^{\lambda_{0}-1} d v=\prod_{j=n-r+1}^{n} \frac{\zeta^{\lambda_{0}}-\xi^{\lambda_{j}}}{\lambda_{0}-\lambda_{j}}=\frac{C_{0}\left(\Lambda_{n-r}\right)}{C_{0}\left(\Lambda_{n}\right)} . \tag{6.14}
\end{equation*}
$$

Hence from (6.12), (6.13) and (6.14) after some simplification, we get

$$
\begin{align*}
& \Delta_{\nu} f=\int_{U} M_{\Lambda_{n-r+1, n}}\left(v^{-1}\right) \nu^{\lambda_{0}-1}\left(\sigma_{\nu}\left(\Lambda_{\nu}\right)\right)^{\lambda_{0}}\left\{H_{r}\left(\sigma_{\nu}\left(\Lambda_{n}\right) v\right)\right. \tag{6.15}\\
& \left.-H_{r}(z)\right\} d v .
\end{align*}
$$

For a fixed $z \in U$, we shall estimate $\Delta_{\nu} f$ in (6.11) for those values of ν for which

$$
N_{\Lambda_{n-r}}\left(z \zeta^{-\nu}\right) \neq 0
$$

i.e., for $z \in \operatorname{arc}\left(\zeta^{\nu}, \zeta^{\nu+n-r+1}\right)$. Moreover, the integrand in (6.15) is non-zero only for values of v in the $\operatorname{arc}\left(\zeta^{-r-1}, 1\right)$. Recalling that

$$
\sigma_{\nu}\left(\Lambda_{n}\right)=R \zeta^{1 / 2(n+1)+\nu} \quad \text { and } \quad 1-R=O\left(k^{-2}\right)
$$

we see that

$$
\left|\nu \sigma_{\nu}\left(\Lambda_{n}\right)-z\right|=O\left(k^{-1}\right)
$$

so that using (5.2) of Lemma 2 in (6.15) we obtain

$$
\left|\Delta_{\nu} f\right|=O\left(k^{-r}\right) \omega\left(H_{r} ; \frac{1}{k}\right) .
$$

Since

$$
\left|b\left(\Lambda_{n}\right) / b\left(\Lambda_{n-r}\right)\right|=O\left(k^{r}\right) \quad \text { and } \quad\left|N_{\Lambda_{n-r}}(z)\right|=O(1)
$$

the result follows from (6.11).
Remark. The B-S operator (6.7) is defined only for functions f which are defined on some annulus $\left\{z: \rho_{1} \leqq|z| \leqq \rho_{2}\right\}, \rho_{1}<1<\rho_{2}$. However, any function $f \in C(U)$ can be extended to \hat{f} which is continuous on an
annulus in a number of ways. Perhaps the simplest way is to set

$$
\widetilde{f}(\eta z)=f(z), \quad z \in U, \eta>0 .
$$

Using this extension we can easily derive from Theorem 4, the following
Corollary. For $f \in C(U)$, set

$$
\begin{equation*}
(\widetilde{S} f)(z)=\sum_{\nu=0}^{k-1} f\left(\zeta^{1 / 2(n+1)+\nu}\right) N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \tag{6.16}
\end{equation*}
$$

If $f \in C^{r}(U)$ for some $r, 0 \leqq r \leqq n-1$, then for $z \in U$,

$$
\left|\widetilde{L}_{r}(\widetilde{S} f)(z)-\widetilde{L}_{r} f(z)\right| \leqq C_{1}\left\{\frac{1}{k}\left\|\widetilde{L}_{r} f\right\|+\omega\left(\widetilde{L}_{r} f ; \frac{1}{k}\right)\right\}
$$

where C_{1} is independent of f and k.
In particular

$$
(\widetilde{S} f)^{(\nu)}(z) \rightarrow f^{(\nu)}(z), \quad(\nu=0,1, \ldots, r)
$$

uniformly on U as $k \rightarrow \infty$.
7. An asymptotic formula. If we suppose the function $f(z)$ to be analytic in a neighbourhood of U, then it is possible to get a more precise result for the error of approximation to f by the B-S type operator. We shall indeed prove

Theorem 5. If f is holomorphic in a neighbourhood \mathscr{D} of U, then we have
(7.1) $\lim _{k \rightarrow \infty} k^{2}\{(S f)(z)-f(z)\}=-\frac{1}{6}(n+1) \pi^{2} L_{2} f(z)$.

The proof of Theorem 5 will be based on
Lemma 6. If $E_{2, k}(z)$ is given by

$$
\begin{equation*}
E_{2, k}(z)=\sum_{\nu=0}^{k-1} \phi_{\Lambda_{2}}\left(\sigma_{\nu} z^{-1}\right) N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \tag{7.2}
\end{equation*}
$$

then

$$
\begin{equation*}
E_{2, k}(z)=-\frac{(n+1) \pi^{2}}{6 k^{2}}+O\left(\frac{1}{k^{4}}\right) \tag{7.3}
\end{equation*}
$$

Proof. From (2.2) we see that

$$
\begin{equation*}
V\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) E_{2, k}(z) \tag{7.4}
\end{equation*}
$$

$$
=\sum_{\nu=0}^{k-1}\left|\begin{array}{lll}
\left(\sigma_{\nu} z^{-1}\right)^{\lambda_{0}} & \left(\sigma_{\nu} z^{-1}\right)^{\lambda_{1}} & \left(\sigma_{\nu} z^{-1}\right)^{\lambda_{2}} \\
1 & 1 & 1 \\
\lambda_{0} & \lambda_{1} & \lambda_{2}
\end{array}\right| N_{\Lambda_{2}}\left(z \zeta^{-\nu}\right)
$$

From (6.1) and (6.5) we have

$$
\sum_{\nu=0}^{k-1}\left(\sigma_{\nu} z^{-1}\right)^{\lambda} N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right)=\begin{aligned}
& 1, j=0,1, \\
& K, j=2
\end{aligned}
$$

where

$$
K=\frac{\left(C_{0}\left(\Lambda_{n}\right)\right)^{\left(\lambda_{1}-\lambda_{2}\right) /\left(\lambda_{1}-\lambda_{0}\right)}\left(C_{1}\left(\Lambda_{n}\right)\right)^{\left(\lambda_{0}-\lambda_{2}\right) /\left(\lambda_{0}-\lambda_{1}\right)}}{C_{2}\left(\Lambda_{n}\right)} .
$$

Using (6.2), elementary calculation shows that

$$
\begin{equation*}
K=1-\frac{(n+1) \pi^{2} V\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)}{6 k^{2}\left(\lambda_{1}-\lambda_{0}\right)}+O\left(\frac{1}{k^{4}}\right) . \tag{7.5}
\end{equation*}
$$

The result now follows from (7.4) and (7.5).
Proof of Theorem 5. Since f is holomorphic in a domain \mathscr{D}, formula (2.9) is valid for any points z, a in \mathscr{D}. Thus for $z \in U, w \in \mathscr{D}$, we have

$$
\begin{align*}
f(\omega) & =f(z) \phi_{\Lambda_{0}}\left(\omega z^{-1}\right)+\left(L_{1} f\right)(z) \phi_{\Lambda_{1}}\left(\omega z^{-1}\right) \tag{7.6}\\
& +\left(L_{2} f\right)(z) \phi_{\Lambda_{2}}\left(\omega z^{-1}\right)+O\left(|\omega-z|^{3}\right) .
\end{align*}
$$

Using (7.6) with $\omega=\sigma_{\nu}, \nu=0,1, \ldots, k-1$ we have

$$
\begin{align*}
(S f)(z) & =\sum_{\nu=0}^{k-1} f\left(\sigma_{\nu}\right) N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \tag{7.7}\\
& =f(z) E_{0, k}(z)+\left(L_{1} f\right)(z) E_{1, k}(z) \\
& +\left(L_{2} f\right)(z) E_{2, k}(z)+O\left(|\omega-z|^{3}\right) .
\end{align*}
$$

where

$$
E_{j, k}(z)=\sum_{\nu=0}^{k-1} \phi_{\Lambda_{j}}\left(\sigma_{\nu} z^{-1}\right) N_{\Lambda_{\nu}}\left(z \zeta^{-\nu}\right), \quad j=0,1,2 .
$$

From (2.2),

$$
\begin{aligned}
& \phi_{\Lambda_{0}}\left(\sigma_{\nu} z^{-1}\right)=\left(\sigma_{\nu} z^{-1}\right)^{\lambda_{0}} \text { and } \\
& \phi_{\Lambda_{1}}\left(\sigma_{\nu} z^{-1}\right)=\left[\left(\sigma_{\nu} z^{-1}\right)^{\lambda_{1}}-\left(\sigma_{\nu} z^{-1}\right)^{\lambda_{0}}\right] /\left(\lambda_{1}-\lambda_{0}\right),
\end{aligned}
$$

so that using the reproducing property of the B-S operator we have

$$
\begin{equation*}
E_{0, k}(z)=1 \quad \text { and } \quad E_{1, k}(z)=0 . \tag{7.8}
\end{equation*}
$$

The result then follows from (7.7), (7.8) and (7.3).
Remark. We observe that

$$
L_{2} f(z)=z^{2} f^{\prime \prime}(z)+\left(1-\lambda_{0}-\lambda_{1}\right) z f^{\prime}(z)+\lambda_{0} \lambda_{1} f(z)
$$

which shows that the asymptotic formula depends upon λ_{0} and λ_{1} and not on $\lambda_{2}, \ldots, \lambda_{n}$.
8. Trigonometric Λ-splines. We shall consider the special case when the numbers λ_{j} in Λ are symmetric about the origin, or equivalently, when

$$
\Lambda_{n}= \begin{cases}\left\{ \pm \mu_{1}, \ldots, \pm \mu_{m}\right\}, & n=2 m-1 \tag{8.1}\\ \left\{0, \pm \mu_{1}, \ldots, \pm \mu_{m}\right\}, & n=2 m .\end{cases}
$$

In this case $\Pi\left(\Lambda_{n}\right)$ is related to the class of trigonometric polynomials $T\left(\Lambda_{n}\right)$ spanned by

$$
\left\{\cos \mu_{j} \theta, \sin \mu_{j} \theta\right\}_{1}^{m} \quad \text { when } n=2 m-1
$$

or by

$$
\left\{1, \cos \mu_{j} \theta, \sin \mu_{j} \theta\right\}_{1}^{m} \quad \text { when } n=2 m .
$$

Indeed, $p(z) \in \Pi\left(\Lambda_{n}\right)$ if and only if $p\left(e^{i \theta}\right) \in T\left(\Lambda_{n}\right)$ when Λ_{n} is given by (8.1).

For a positive integer $k>2 \max \left|\mu_{j}\right|$ we shall denote by $\mathscr{T}_{k}\left(\Lambda_{n}\right)$ the class of trigonometric splines $t(\theta)$ which satisfy
i) $t(\theta+2 \pi)=t(\theta), t(\theta) \in C^{n-1}(R)$,
ii) $\left.t(\theta)\right|_{(j h, j h+h)} \in T\left(\Lambda_{n}\right)$, for all integers j, where $h=2 \pi / k$.

It follows that taking

$$
Z_{k}=\left\{1, e^{i h}, \ldots, e^{i(k-1) h}\right\}
$$

$S(z) \in \mathscr{S}\left(\Lambda_{n}, Z_{k}\right)$ if and only if

$$
S\left(e^{i \theta}\right) \in \mathscr{T}_{k}\left(\Lambda_{n}\right) .
$$

From Proposition 1, we see that

$$
\operatorname{dim} \mathscr{T}_{k}\left(\Lambda_{n}\right)=k
$$

Let $q_{\Lambda_{n}}(\theta) \in T\left(\Lambda_{n}\right)$ be such that

$$
q_{\Lambda_{n}}^{(\nu)}(0)= \begin{cases}0, & \nu=0,1, \ldots, n-1 \\ 1, & \nu=n\end{cases}
$$

It is easy to see from (2.1) that

$$
\begin{equation*}
q_{\Lambda_{n}}(\theta)=i^{-n} \phi_{\Lambda_{n}}\left(e^{i \theta}\right) \tag{8.2}
\end{equation*}
$$

It is now possible to define the trigonometric B-splines $Q_{\Lambda_{n}}(\theta)$ as a
trigonometric Λ-divided difference of $q_{\Lambda_{n}}(\theta-y)(\theta-y)_{+}^{0}$. However for the sake of brevity, we set

$$
\begin{equation*}
Q_{\Lambda_{n}}(\theta)=-i^{n} M_{\Lambda_{n}}\left(e^{i \theta}\right) \tag{8.3}
\end{equation*}
$$

It follows immediately from Proposition 3 that $\left\{Q_{\Lambda_{n}}(\theta-\nu h)\right\}_{0}^{k-1}$ form a basis for the space $\mathscr{T}_{k}\left(\Lambda_{n}\right)$.

We shall use the symbol Λ_{n}^{p} to denote the set $\Lambda_{n} \backslash\left\{ \pm \mu_{p}\right\}$. Using (8.3) and Lemma 1, we shall prove

Lemma 6. The B-splines $Q_{\Lambda_{n}}(\theta)$ satisfying the following recurrence relations:

$$
\begin{align*}
\left(\mu_{m}^{2}-\mu_{1}^{2}\right) Q_{\Lambda_{n}}(\theta) & =Q_{\Lambda_{n}^{m}}(\theta-2 h) \tag{8.4}\\
& -2 \cos \mu_{m} h Q_{\Lambda_{n}^{m}(\theta-h)}+Q_{\Lambda_{n}^{m}(\theta)} \\
& -\left\{Q_{\Lambda_{n}^{\prime}(\theta-2 h)-2 \cos \mu_{1} h Q_{\Lambda_{n}^{\prime}}(\theta-h)}\right. \\
& +Q_{\left.\Lambda_{n}^{\prime}(\theta)\right\}, \quad n \geqq 3}
\end{align*}
$$

and for n even

$$
\begin{equation*}
Q_{\Lambda_{n}}^{\prime}(\theta)=Q_{\Lambda_{n-1}}(\theta)-Q_{\Lambda_{n-1}}(\theta-h) \tag{8.5}
\end{equation*}
$$

Proof. In order to prove (8.4), we use (3.2) with $\zeta=e^{i h}, \lambda_{0}=\mu_{1}$, $\lambda_{n}=\mu_{m}$, and obtain

$$
\begin{aligned}
\left(\mu_{m}-\mu_{1}\right) M_{\Lambda_{n}}(z) & =M_{A}\left(z e^{-i h}\right)-e^{-\mu_{1} h} M_{A}(z) \\
& -M_{B}\left(z e^{-i h}\right)+e^{-i \mu_{m} h} M_{B}(z)
\end{aligned}
$$

where $A=\Lambda_{n} \backslash\left\{\mu_{1}\right\}$ and $B=\Lambda_{n} \backslash\left\{\mu_{m}\right\}$.
We again apply (3.2) to $M_{A}\left(z e^{-i h}\right)$ and $M_{A}(z)$ with $\lambda_{0}=-\mu_{1}$ and $\lambda_{n}=\mu_{m}$. Also we use (3.2) for $M_{B}\left(z e^{-i h}\right)$ and $M_{B}(z)$ with $\lambda_{0}=\mu_{1}$ and $\lambda_{n}=-\mu_{m}$. After simplification, we get

$$
\begin{aligned}
\left(\mu_{m}^{2}-\mu_{1}^{2}\right) M_{\Lambda_{n}}(z) & =M_{\Lambda_{n}^{\prime}}\left(z e^{-2 i h}\right) \\
& \left.-2 \cos \mu_{1} h M_{\Lambda_{n}^{\prime}\left(z e^{-i h}\right.}\right)+M_{\Lambda_{n}^{\prime}(z)} \\
& -\left\{M_{\Lambda_{n}^{m}}\left(z e^{-2 i h}\right)-2 \cos \mu_{m} h M_{\Lambda_{n}^{m}}\left(z e^{-i h}\right)\right. \\
& \left.+M_{\Lambda_{n}^{m}}(z)\right\} .
\end{aligned}
$$

Formula (8.4) follows now on using (8.3).
In order to prove (8.5) we use (8.3) and (3.3).
Remark. As an application of (8.4) and (8.5) we show that $Q_{\Lambda_{n}}(\theta)$ is real. When $n=1$,

$$
Q_{\Lambda_{1}}(\theta)=\frac{\sin \mu_{1} \theta}{\mu_{1}}, \quad \text { for } 0<\theta<h \text { and }
$$

$$
Q_{\Lambda_{1}}(\theta)=\frac{\sin \mu_{1}(2 h-\theta)}{\mu} \text { for } h<\theta<2 h .
$$

It follows from (8.4) that $Q_{\Lambda_{n}}(\theta)$ is real for all odd n. From this and from (8.5) we see that $Q_{\Lambda_{n}}^{\prime}(\theta)$ is real for n even. But from (3.1) and (8.3) we observe that for $0<\theta<h$,

$$
Q_{\Lambda_{n}}(\theta)=q_{\Lambda_{n}}(\theta)
$$

whence it follows that for n even, $Q_{\Lambda_{n}}(\theta)$ is real.
Putting $z=e^{i \theta}, y=e^{-i \alpha}$ in (3.6) we can deduce from Theorem 1 an analogue of Marsden's identity. We state without proof

Theorem 6. If $V_{\Lambda_{n}}(\theta) \in T\left(\Lambda_{n}\right)$ and satisfies the conditions

$$
\left\{\begin{array}{l}
V_{\Lambda_{n}}(0)=1 \tag{8.6}\\
V_{\Lambda_{n}}(j h)=0, \quad j=1,2, \ldots, n
\end{array}\right.
$$

then we have the identity

$$
\begin{equation*}
q_{\Lambda_{n}}(\theta-\alpha)=\sum_{j=0}^{k-1} V_{\Lambda_{n}}(\alpha-j h) Q_{\Lambda_{n}}(\theta-j h) \tag{8.7}
\end{equation*}
$$

We note from (3.11) and (3.12) that

$$
V_{\Lambda_{n}}(\theta)=(-1)^{n-1} \psi_{\Lambda_{n}}\left(e^{-i \theta}\right)
$$

In order to define the quasi-interpolant for trigonometric Λ-splines, we need to introduce some differential operators. We shall denote in the sequel $d / d \theta$ by D. If $n=2 m-1$ and $\Lambda_{n}=\left\{ \pm \mu_{1}, \ldots, \pm \mu_{m}\right\}$, we set

$$
\begin{equation*}
\Theta_{0}=I, \Theta_{2 r}=\prod_{j=1}^{r}\left(D^{2}+\mu_{j}^{2}\right), \Theta_{2 r+1}=D \Theta_{2 r} \tag{8.8}
\end{equation*}
$$

Similarly if $n=2 m$ and $\Lambda_{n}=\left\{0, \pm \mu_{1}, \ldots, \pm \mu_{m}\right\}$, we set

$$
\begin{equation*}
\Theta_{0}=I, \Theta_{2 r-1}=D \prod_{j=1}^{r-1}\left(D^{2}+\mu_{j}^{2}\right), \Theta_{2 r}=D \Theta_{2 r-1} \tag{8.9}
\end{equation*}
$$

For n even (or odd) we set

$$
\widetilde{\Theta}_{0}=1, \widetilde{\Theta}_{2 r}=\prod_{j=m-r+1}^{m}\left(D^{2}+\mu_{j}^{2}\right), \widetilde{\Theta}_{2 r+1}=D \widetilde{\Theta}_{2 r} .
$$

We now choose points $\tau_{\nu}(\nu=0,1, \ldots, k-1)$ with $\tau_{\nu} \in(\nu h,(\nu+n+$ 1) h) and consider a linear operator

$$
\mathscr{L}^{*}: C_{2}^{n}(R) \rightarrow \mathscr{T}_{k}\left(\Lambda_{n}\right)
$$

of the following form:
(8.11) $\left(\mathscr{L}^{*} f\right)(\theta)=\sum_{\nu=0}^{k-1} T_{\nu}^{*}(f) Q_{\Lambda_{n}}(\theta-\nu h)$
where
(8.12) $T_{\nu}^{*}(f)=\sum_{r=0}^{n} b_{\nu, r}\left(\Theta_{r} f\right)\left(\tau_{\nu}\right)$
and $b_{\nu, r}$ are constants depending on τ_{ν} but not on f.
We can then prove
Theorem 7. An operator \mathscr{L}^{*} of the form given by (8.11) and (8.12) satisfies
(8.13) $\quad\left(\mathscr{L}^{*} S\right)(\theta)=S(\theta), \quad$ for all $S(\theta) \in \mathscr{T}_{k}\left(\Lambda_{n}\right)$
if and only if
(8.14) $\quad b_{\nu, r}=(-1)^{n-r}\left(\widetilde{\Theta}_{n-r} V_{\Lambda_{n}}\right)\left(\tau_{\nu}-\nu h\right), \quad \nu=0,1, \ldots, k-1$.
where $V_{\Lambda_{n}}$ is given by (8.6).
For \mathscr{L}^{*} of the form (8.11) and (8.12), define an operator

$$
\mathscr{L}: C^{n}(\nu) \rightarrow \mathscr{S}
$$

by

$$
\mathscr{L} g\left(e^{i \theta}\right)=\mathscr{L} * f(\theta), \quad \text { when } g\left(e^{i \theta}\right)=f(\theta)
$$

It is easily seen that \mathscr{L} is of the form (4.1) and (4.2). Moreover \mathscr{L}^{*} satisfies
 \mathscr{L} satisfies (4.4). Theorem 7 then follows from Theorem 2.

From Theorem 3 we can deduce
THEOREM 8. If $f(\theta) \in C_{2 \pi}^{n}(R)$, then the following estimate holds:
(8.15) $\left|\left(\mathscr{L}^{*} f\right)^{(s)}(\theta)-f^{(s)}(\theta)\right|$

$$
\leqq K h^{n-s}\left\{\omega\left(g_{1} ; h\right)+\omega\left(g_{2} ; h\right)\right\} \quad(s=0,1, \ldots, n)
$$

where
(8.16) $g_{1}(\theta)+i g_{2}(\theta)=e^{2 i \mu_{m} \theta} D\left(e^{-i \mu_{m} \theta}\right) \Theta_{n-1} f$.

If $n=2 m$, the right hand side of (8.15) can be replaced by

$$
K h^{n-s} \omega\left(\widetilde{\Theta}_{n} f ; h\right)
$$

It may be observed that $\omega\left(g_{1} ; h\right)$ and $\omega\left(g_{2} ; h\right)$ both vanish when $f \in T\left(\Lambda_{n}\right)$.

We now consider the B-S operator (6.7) where Λ_{n} is given by (8.1) and
$\lambda_{0}=\mu_{1}, \lambda_{1}=-\mu_{1}$. It is easily seen from (6.4) that in this case $R=1$ so that

$$
\begin{equation*}
(S g)(z)=\sum_{\nu=0}^{k-1} g\left(\zeta^{1 / 2(n+1)+\nu}\right) N_{\Lambda_{n}}\left(z \zeta^{-\nu}\right) \tag{8.17}
\end{equation*}
$$

Thus in this case S coincides with \widetilde{S} given by (6.16). We now define an operator

$$
S^{*}: C_{2 \pi}(R) \rightarrow \mathscr{T}_{k}\left(\Lambda_{n}\right)
$$

by

$$
\begin{equation*}
\left(S^{*} f\right)(\theta)=(S g)\left(e^{i \theta}\right), \quad g\left(e^{i \theta}\right)=f(\theta) \tag{8.18}
\end{equation*}
$$

It follows from (8.17) and (8.16) that S^{*} reproduces $\cos \mu_{1} \theta$ and $\sin \mu_{1} \theta$. An explicit formula for $S^{*} f$ can be derived from (8.18), (8.17), (6.5) and (8.3). Indeed we have

$$
\begin{equation*}
\left(S^{*} f\right)(\theta)=\sum_{\nu=0}^{k-1} f\left(\frac{1}{2}(n+1) h+\nu h\right) A_{1}\left(\Lambda_{n}\right) Q_{\Lambda_{n}}(\theta-\nu h) \tag{8.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}\left(\Lambda_{n}\right)= \\
& \left\{\begin{array}{l}
\frac{\mu_{1}}{\sin \mu_{1} h} \prod_{j=2}^{m} \frac{\left(\frac{1}{2} \mu_{1}\right)^{2}-\left(\frac{1}{2} \mu_{j}\right)^{2}}{\sin ^{2} \frac{1}{2} \mu_{1} h-\sin ^{2} \frac{1}{2} \mu_{j} h}, \quad n=2 m-1, \\
\frac{1}{\cos \frac{1}{2} \mu_{1} h \sin ^{2} \frac{1}{2} \mu_{1} h^{j=2}} \prod_{\operatorname{lin}^{2} \frac{1}{2} \mu_{1} h-\sin ^{2} \frac{1}{2} \mu_{j} h}^{m} \frac{\left(\frac{1}{2} \mu_{1}\right)^{2}-\left(\frac{1}{2} \mu_{j}\right)^{2}}{\sin ^{2}}, n=2 m .
\end{array}\right.
\end{aligned}
$$

From Corollary to Theorem 4, we can deduce
Theorem 9. If $f(\theta) \in C_{2 \pi}^{r}(R)$ for some $r, 0 \leqq r \leqq n-1$, then
(8.20) $\left|\left(S^{*} f\right)^{(r)}(\theta)-f^{(r)}(\theta)\right| \leqq C\left\{h \sum_{\nu=0}^{r}\left\|f^{(\nu)}\right\|+\omega\left(f^{(r)} ; h\right)\right\}$,
where C is independent of f and h.
Finally we consider an analogue of the asymptotic formula'(7.1), which was proved under the assumption that f is holomorphic in a neighbourhood of U. However if the number R occurring in the definition of $S f$ is 1 ,
then we can prove (7.1) even for $f \in C^{3}(U)$, because then we require formula (7.6) only when $\omega, z \in U$. Thus from Theorem 5 we can deduce

Theorem 10. If $f \in C_{2 \pi}^{3}(R)$, then

$$
\lim _{h \rightarrow 0} h^{-2}\left\{\left(S^{*} f\right)(\theta)-f(\theta)\right\}=\frac{1}{24}(n+1)\left(f^{\prime \prime}(\theta)+\mu_{1}^{2} f(\theta)\right)
$$

For $\Lambda=\{0,1, \ldots, n\}$ it is shown in [4] that the B-S operator S^{*} is variation-diminishing, i.e., the number of times which $S^{*} f$ changes sign in $[0,2 \pi]$ is no greater than the number of times which f changes sign in [$0,2 \pi$]. It would seem plausible that S^{*} is also variation-diminishing for more general Λ, possibly under a restriction on the size of h.

References

1. J. H. Ahlberg, E. N. Nilson and J. L. Walsh, Properties of analytic splines, I: Complex polynomial splines, J. of Analysis and Appl. 33 (1971), 234-257.
2. C de Boor and G. J. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory 8 (1973), 19-45.
3. Chen Han-Lin, Interpolation and approximation on the unit circle, I, Math. Comp. No. 5/80 ISBN 82-7151-035-5 Quasi interpolant splines on the unit circle, J. Approx. Theory 38 (1983), 312-318.
4. T. N. T. Goodman and S. L. Lee, B-splines on the circle and trigonometric B-splines, Proc. Conference on Approx. Theory, St. John's (Newfoundland). To appear.
5. I. I. Hirschman and D. V. Widder, Generalized Bernstein polynomials, Duke Math J. 16 (1949), 433-438.
6. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).
7. M. J. Marsden, An identity for spline functions with applications to variation diminishing spline approximation, J. Approx. theory 3 (1970), 7-49.
8. C. A. Micchelli and A. Sharma, Spline functions on the circle: Cardinal L-splines revisited, Can. J. Math. 32 (1980), 1459-1473.
9. L. Schumaker, Spline functions I (John Wiley \& Sons, New York, 1981).
10. I. J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13 (1964), 795-826.
11. -On polynomial spline functions on the circle (I and II), Proceedings of the Conference on Constructive Theory of Functions (Budapest, 1972), 403-433.
12. -_On variation diminishing approximation methods. In On numerical approximation, 249-274 MRC Symposium (U. of Wisconsin Press, Madison, 1959).

University of Dundee, Dundee, Scotland; University of Malaysia, Penang, Malaysia; University of Alberta, Edmonton, Alberta

[^0]: Received February 23, 1984. The first author was partially supported by NSERC 3094.

