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Abstract

In this paper we give a big-step Structured Operational Semantics (SOS), in the style of

Plotkin, Kahn and Milner, of a significant fragment of the functional programming language

Scheme, including quote, eval, quasiquote and unquote. The SOS formalism allows us to

discuss incrementally the various features of the language and to keep a low mathematical

overhead, thus producing a rigorous account of the semantics of a ‘real’ programming

language, which nonetheless has a pedagogical value. More specifically, we formalize four

strictly increasing fragments of Scheme, using a number of formal systems which express the

evaluation of expressions, the display of output results, and the handling of errors.

Capsule Review

Using the formalism of Structured Operational Semantics (S.O.S.), introduced by Plotkin in

1980, the paper present a serious case study in formal specification of programming language

semantics. In fact a “big-step” natural presentation à la Milner and Kahn is given of the

operational semantics of a large fragment of the “real” untyped functional programming

language SCHEME. Besides discussing standard features, also the problem of specifying

input and output displays is discussed. A detailed account of non-standard operators such as

quote, quasiquote, and eval is given. The formal semantics is presented in a modular way.

Starting from the specification of a core language, gradually extensions are made to include

more and more complex features.

This case study clearly illustrates the flexibility and naturalness of the S.O.S. formalism,

which, when used carefully, requires only to introduce as little mathematical and definitional

overhead as is strictly needed by the language. Together with the modularity of the presen-

tation, this also shows the pedagogical use that mathematical semantics can have in helping

novice users to develop a “language model”.
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1 Introduction

To use correctly, implement uniformly, or simply understand a programming lan-

guage, we need a precise and unambiguous (formal) description of its semantics.

In the literature, there are various formal language description languages and tech-

niques which can be used for this purpose. Two important such techniques are the

denotational and the operational semantics. According to the former, a program is

interpreted as a function, living in a suitable mathematical space. This has proved

to be very fruitful for proving properties of programs like correctness, termination,

equality, etc. However the ‘dynamics’ of program evaluation is often buried in a

complex mathematical structure, and it is not immediately apparent. To express this

more clearly, the formalism of operational semantics seems more appropriate. In the

operational approach, the semantics of a program is specified using the transition

function of a suitable abstract machine (automaton). The transition function maps

a configuration of the abstract machine to the configuration resulting from the

execution of a computation step (small step semantics). However, to understand the

behaviour of a program, the behaviour of the abstract machine itself has to be

understood first, and this can be difficult if the programming language has elaborate

features.

Structural Operational Semantics (SOS), introduced by Plotkin (Plotkin, 1981)

and further developed by Harper et al. (1987) and Kahn (1987), is a tool for spec-

ifying semantics, which combines positive features of operational and denotational

semantics. The gist of SOS is to view the semantics of a programming language

as a formal system, thereby reducing the processes of elaboration and execution to

that of formally deriving particular judgements (assertions). SOS allows to describe

naturally the dynamics of the execution of terminating programs, as operational

semantics does, but without the need to define the details of an abstract machine,

which are often cumbersome and not strictly necessary for understanding the lan-

guage itself. On the other hand, SOS is a form of reified denotational semantics,

which can be defined directly on the abstract syntax of the language, and can be

naturally embedded into a program logic, but without any heavy mathematical

overhead.

Many of the virtues of SOS semantics are particularly apparent when we focus on

the relation between input and output, i.e. when we give the big step semantics . In

this case, one reduces the very process of evaluation to that of proof derivation and

many interesting properties of programs (apart, of course, from non-termination)

can be completely analysed just by induction on the structure of proofs. This style

of SOS semantics is particularly suitable for pedagogical purposes in that the global

effect of each program phrase is immediately visible.

In this paper, by developing a case study of considerable size, we illustrate the

applicability of big-step SOS semantics, and the pedagogical value deriving from

the readability of its format. More specifically, we formalize the semantics of the

core of a real functional programming language: Scheme, a LISP dialect. The

fragment of the language Scheme, that we consider, includes the one introduced in

Abelson and Sussman (1985), which amounts to the continuation-free fragment of
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the Standard Scheme (see IEEE (1990)). In addition, we consider also the intriguing

and problematic special symbols quasiquote and eval.

We feel that even a superficial comparison of our structured operational semantics

of Scheme with its denotational semantics as given in Rees and Clinger (1986),

illustrates clearly the differences in scope and enphasis of the two approaches to

semantics, as discussed above.

In Abelson and Sussman (1985), the evaluation process of Scheme is described by

means of a meta-interpreter. Various aspects of our SOS specification, and especially

the representation of the environment, have been inspired by it. However, as a means

of specifying the evaluation of Scheme programs, we think that our SOS approach

is, in a sense, more abstract and more general, since a meta-interpreter can be easily

designed starting from it.

Our SOS semantics of Scheme should be compared to other formal specifications

of the operational semantics of untyped functional programming languages with

imperative features appearing in the literature, such as those of Felleisen et al. (1989)

and of Mason and Talcott (1991). We tried to stick as closely as possible to the

syntax of a real programming language, including all its idiosyncrasies. They have

considered somewhat more purified syntaxes, which are more directly embeddable

into a logical system/calculus for reasoning about program equivalences.

It is important to point out that the operational semantics that we give agrees

with the Standard description of Scheme given by the IEEE (1990), except for the

special symbol eval, for which there is no standard interpretation.

In recent years, a lot of energy has been put in trying to obtain a well justified

semantics for eval, but as yet no definitive agreement has been reached. In all Lisp-

like languages, such as Scheme, eval can be considered as a ‘built-in interpreter’.

In order to make this precise, however, the differences between a Lisp expression,

to be processed by the interpreter, and its internal representation, to be interpreted

by eval, have to be clarified. This issue is particularly explicit when specifying the

behaviour of eval on internal representations of abstractions. In the present work we

take a very liberal attitude and do evaluate internal representations of abstractions.

Our definition of eval should be contrasted with those of Muller (1992) and

Smith (1994).

Throughout the paper we use freely standard notions and terminology from proof

theory. For the sake of completeness, however, we briefly recall a few crucial concepts

which will be extensively used in the sequel.

We take a formal system to be a set of rule schemata of the shape:

premise1. . .premisen
conclusion

Where premise1,. . ., premisen, and conclusion are judgements. The intended meaning

of a rule schema is the following:

for every instantiation S of the schematic variables occurring in the judgements, if the

instantiations S(premise1). . .S(premisen), have been established (derived), then we are allowed

to establish S(conclusion).
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A derivation is a decorated tree, whose nodes are labeled by instantiations of rules,

which furthermore satisfies the consequence constraint, i.e. the premises of the parent

node coincide with the conclusions of the children nodes.

In this paper, we are not concerned with scanning or parsing issues. We assume,

throughout the paper, that input expressions be strings of characters correctly

parsed. On the other hand, we discuss in detail how the output is presented. For

languages like Scheme, which have abstract objects as first class citizens, what is

actually displayed on the monitor is not immediate.

In giving the semantics of Scheme, we proceed incrementally. We discuss, sepa-

rately, four strictly increasing fragments gradually introducing the semantical con-

cepts we need. Thus, we illustrate one of the most appealing features of SOS

specifications, namely, the possibility of tailoring the metalanguage to the language

currently under consideration, keeping a low mathematical overhead.

In section 2, we define and discuss the fragment of Scheme which has only

integer numbers and booleans as basic data types. In section 3, we consider an

extension of this fragment obtained by introducing the fundamental operations on

pairs. In section 4, we extend the language with two special symbols, quote and

eval. In order to specify their semantics, we have to formalize an intermediate

compilation from correctly parsed expressions to expressions which are fed as

input to the interpreter. In section 5, we extend furthermore the language with the

special symbols quasiquote and unquote. Section 6 is devoted to the handling of

errors. Finally, in section 7, we formalize the semantics of proper Scheme Programs,

consisting of lists of declarations and expressions.

An earlier version of this paper (Honsell and Ronchi, 1989), has been used, by two

of the authors, as class notes for introductory courses in Programming Languages

at the University of Torino and Udine (Italy).

2 The numerical fragment

In this section we give the operational semantics of the fragment of the language

Scheme which manipulates only integer numbers as atomic data type. The evaluation

process is captured essentially by a single formal system. Another formal system is

necessary in order to formalize the output.

2.1 Syntax

We freely utilize BNF notation to define syntactic domains. Terminal symbols are

written in typewriter style; this leaves us, of course, with some ambiguity concerning

the blank character. We denote the generic objects of a given syntactic domain by

the non-terminal symbol of the corresponding category, possibly with indices or

primes. Non-terminal symbols, used as generic objects of a given category, are taken

as pattern variables one matches against. We use bold characters to denote syntactic

domains.
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2.1.1 Syntactic domains

• Char, the domain of characters, ranged over by c, consists of arbitrary keyboard

characters different from (, ) and “ ” (blank).

• Sym, the domain of symbols, ranged over by s, consists of arbitrary strings of

characters, i.e.

s ::= c|cs
The following are distinguished subdomains of Sym:

— K, the subdomain of constants, ranged over by k,

k ::= 0|1|−1| . . . |#t|#f| . . .
— Op(n), the subdomain of standard operators of arity n, ranged over by op(n)

for n ≥ 1,

op(1) ::= abs|even?| . . .
op(2) ::= ∗|+|eqv?|max| . . .
op(3) ::= +| . . .
. . .

Let us denote
⋃
n Op(n) by Op.

— Sp, the subdomain of special symbols, ranged over by sp,

sp ::= lambda|define|if|begin|set!

— Var, the subdomain of identifiers, ranged over by x, y, z or f, consists of

those symbols which start with a character that cannot begin a numerical

constant and which not belong neither to K nor to Sp. (Let us stress that

Op ⊆ Var.)

• S-symbols, the domain of Scheme Sentences, ranged over by S , consists of those

strings of (, ), “ ” and elements of Sym, defined by the following grammar:

S ::= s|()|(S . . . S)

We define two subdomains of S-symbols: the subdomain of declarations, ranged

over by d, and the subdomain of expressions, ranged over by e. These subdo-

mains are defined respectively by the following grammars:

— Declarations

d ::= (define x e)|(define (f x1. . .xn) body) (n ≥ 0)

— Expressions

e ::= x | k | (lambda (x1. . .xm) body) | (e1. . .en) |
(if e1 e2 e3) | (set! x e) | (begin e1. . .en) (m ≥ 0, n ≥ 1).

where body has the following shape:

body ::= d1. . .dm e (m ≥ 0).

Given a declaration d, we define V(d) to be the set of variables defined by d as

follows:

V(d) =

{ {x} if d ≡ (define x e)

{f} if d ≡ (define (f x1. . .xn) body)

2.2 Semantics

We use set theoretic notation or BNF to define semantic domains. In particular we

denote with [A⇒ B] the set of partial functions whose domain is a finite subset of
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A and whose range is in B. If f is a partial function, dom(f) denotes its domain. The

everywhere undefined function is denoted by ∅. We use bold characters to denote

semantic domains.

2.2.1 Semantic domains

• The domain V of values is defined as follows:

V = K ∪Op ∪ C ∪ {?}
where:

— K is the subdomain of semantic constants. We will assume that Z⊆ K,

where Z is the set of integer numbers. If k ∈ K is a (syntactic) constant,

then k ∈ K will denote the corresponding semantic constant.

— Op is the subdomain of semantic operators . If op(n) ∈ Op(n) is a standard

operator, then op(n) ∈ Op will denote the corresponding semantic opera-

tor. (e.g. addition is the semantic operator corresponding to the standard

operator +.)

— C is the subdomain of closures (location closures).

Closures are pairs <ln, e> where ln is a location and e is an expression of

the shape (lambda (x1. . .xm) body), (m ≥ 0). The set of locations Loc is a

countable set of tokens that we take to be a copy of the set of natural

numbers. Whenever clear from the context we will refer to ln as n.

— ? is a dummy value with which variables are initialized by default.

We suppose K, Op, C, Loc and {?} to be pairwise disjoint. Let D ranges over

these semantic domains. We denote with =D the equality relation in D. For

what concerns K, Op, Loc and {?}, =D is the natural equality, while on C it is

defined as: <ln, e>=C<lm, e
′> iff ln =Loc lm.

• The domain F of frames, ranged over by ρ, is defined as [Var ⇒ V]. Starting

from a frame ρ, we denote with ρ[x, v] the frame such that: dom(ρ[x, v]) =

dom(ρ) ∪ {x}, and ρ[x, v](y) = ρ(y) on every y 6≡ x, while ρ[x, v](x) = v.

• The domain Env, of environments, ranged over by ζ, is defined as

Env = [Loc⇒ ((Loc ∪ {⊥})× F)].

If ζ is an environment then Next(ζ) denotes the smallest location (integer)

which does not belong to the domain of ζ. We denote by ζ[n,<n′, ρ>] the

environment such that dom(ζ[n,<n′, ρ>]) = dom(ζ) ∪ {n}, and

ζ[n,<n′, ρ>](m) = ζ(m) on every m 6≡ n, while ζ[n,<n′, ρ>](n) =<n′, ρ>.

This particular choice of Env is justified by the concept of block structure described

in Abelson and Sussman (1985, p. 27). Namely, viewing locations as pointers, an

environment ζ can be intuitively seen as a tree of frames. Given a location n, ζ(n)

allows to access to a pair of the shape <n′, ρ> or to a pair of the shape <⊥, ρ>.

In the first case we have a frame ρ which is a node of the tree whose parent is the

pair ζ(n′), while in the second case we have the root of the tree. The root of a tree is

the top-level frame. In such a frame the associations between the standard operators

and their correspondent semantic operators will be present.
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Note that, for every environment ζ and location n ∈ dom(ζ), there must be exactly

one path reaching the top-level frame.

2.2.2 Judgements

The operational semantics is given by the formal systems E1 and D1. These formal

systems prove judgements, respectively, of the shapes:

ζ, n `E e→ v, ζ ′

ζ, n `D d→ ζ ′

where ζ and ζ ′ are environments, n is a location, e is an expression, d is a declaration

and v is a value. The intended meaning of the judgement ζ, n `E e→ v, ζ ′ is:

the evaluation of the expression e in the environment ζ, accessed via the location n, produces

the value v and modifies the existing environment into the new environment ζ ′.

The intended meaning of the judgement ζ, n `D d→ ζ ′ is:

the processing of the declaration d in the environment ζ, accessed via the location n, modifies

the existing environment into the new environment ζ ′.

In the formal system E1 the Rule set which an auxiliary formal system R
formalizing the operation of environment updating. The judgements proved by

R are of the shape:

ζ, n, x, v ; ζ ′

where ζ and ζ ′ are environments, n is a location, x is a variable and v is a value.

The intended meaning of the judgement ζ, n, x, v ; ζ ′ is:

if ρ is the first frame in the path from the location n to the root of the environment tree, such

that x ∈ dom(ρ), then ρ is replaced by ρ[x, v].

Moreover, Rule appl 2 uses an auxiliary formal system `Op formalizing the be-

haviour of the semantic interpretation of the standard operators. The judgements

regulated by `Op are of the shape:

`Op opm(v1, . . . , vm)→ v

where opm is an m-ary standard operator, and v1, . . ., vm, v are values. The intended

meaning of the judgement `Op opm(v1, . . . , vm)→ v is:

the value of the semantics operator opm applied to the values v1, . . ., vm is v.

2.2.3 The formal system D1

(dec 1)
x 6∈ Op ζ, n `E e→ v, ζ ′ ζ ′(n) =<n′, ρ>
ζ, n `D (define x e)→ ζ ′[n,<n′, ρ[x, v]>]

(dec 2)

f 6∈ Op ζ(n) =<n′, ρ>
<n′, ρ[f,<n, (lambda (x1. . .xm) body)>]>= w

ζ, n `D (define (f x1. . .xm) body)→ ζ[n, w]
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2.2.4 The formal system E1

(const)
k ∈ K

ζ, n `E k → k, ζ

(var 1)
ζ(n) =<n′, ρ> x ∈ dom(ρ) ρ(x) 6=?

ζ, n `E x→ ρ(x), ζ

(var 2)

ζ(n) =<n′, ρ> x 6∈ dom(ρ) n′ 6= ⊥
ζ, n′ `E x→ v, ζ

ζ, n `E x→ v, ζ

(lambda)
<n, (lambda (x1. . .xm) body)>= c

ζ, n `E (lambda (x1. . .xm) body)→ c, ζ

(appl 1)

ζ0, n `E e0 →<n′, (lambda (x1. . .xm) d1. . .dp e)>, ζ1

{ζi, n `E ei → vi, ζi+1}(1≤i≤m)

{y1,. . ., yq} =
⋃

(1≤i≤p)V(di)

ζ ′1 = ζm+1[Next(ζm+1), <n′, ∅[x1, v1] . . . [xm, vm][y1, ?] . . . [yq, ?]>]

{ζ ′i ,Next(ζm+1) `D di → ζ ′i+1}(1≤i≤p)
ζ ′p+1,Next(ζm+1) `E e→ v, ζ ′′

ζ0, n `E (e0 e1. . .em)→ v, ζ ′′

(appl 2)

ζ0, n `E e0 → op(m), ζ1

{ζi, n `E ei → vi, ζi+1}(1≤i≤m)

`Op op(m)(v1,. . ., vm)→ v

ζ0, n `E (e0 e1. . .em)→ v, ζm+1

(set)
x 6∈ Op ζ, n `E e→ v, ζ ′ ζ ′, n, x, v ; ζ ′′

ζ, n `E (set! x e)→ v, ζ ′′

(sequence)
{ζi, n `E ei → vi, ζi+1}(1≤i≤m)

ζ1, n `E (begin e1. . .em)→ vm, ζm+1

(if 1)

ζ, n `E e1 → v′, ζ ′ v′ 6= #f

ζ ′, n `E e2 → v, ζ ′′

ζ, n `E (if e1 e2 e3)→ v, ζ ′′

(if 2)

ζ, n `E e1 → #f, ζ ′
ζ ′, n `E e3 → v, ζ ′′

ζ, n `E (if e1 e2 e3)→ v, ζ ′′

Some remarks are in order here.
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Among the premises of Rule appl 1, a ‘new’ frame is needed for storing the

internally defined variables, according to the block structure of the language. The

internally defined variables y1,. . ., yq are initialized with ?, the undefined value.

Following Abelson and Sussman (1985, p. 441), a Scheme interpreter must go into

an error state if an attempt is made to use the value ?.

Rules var 1, var 2 and appl 1 reflect the fact that Scheme adopts the lexical scoping

rule w.r.t. the variables definition. Given a program written in some programming

language, the lexical scoping determines that the definition of a variable can be

obtained examining the program text alone, hence in a static way, furthermore the

body of a function must be evaluated in the environment in which the function is

called extended with the frame in effect when the function was defined. Rules var

1 and var 2 show that the value of a variable can be obtained following the static

chain in the tree represented by the environment ζ. Moreover, in Rule appl 1, the

expression part of the closure is evaluated accessing the environment at the location

specified in the closure itself.

The IEEE standard (IEEE, 1990) states that the evaluation of an expression of

the shape (set! x e) yields an unspecified value. In the present operational semantics,

Rule set yields, as result, the value obtained from the evaluation of the expression e.

Moreover, the IEEE standard (IEEE, 1990) states that the evaluation of an

expression of the shape (e0 e1. . .en) does not follow a specified order evaluating

the expressions e0, e1, . . ., en. In the present operational semantics, for simplicity,

Rules appl 1 and appl 2 adopt a left-to-right order of evaluation. To consider an

unspecified order of evaluation, Rule appl 2, for example, could be:

(appl 2)

σ : {0, . . . , m} ⇒ {0, . . . , m} is a permutation

{ζi, n `E eσ(i) → vσ(i), ζi+1}(0≤i≤m)

v0 = op(m) `Op op(m)(v1,. . ., vm)→ v

ζ0, n `E (e0 e1. . .em)→ v, ζm+1

2.2.5 The formal system R

(scan 1)
ζ(n) =<n′, ρ> x ∈ dom(ρ)

ζ, n, x, v ; ζ[n,<n′, ρ[x, v]>]

(scan 2)

ζ(n) =<n′, ρ> x 6∈ dom(ρ) n′ 6= ⊥
ζ, n′, x, v ; ζ ′

ζ, n, x, v ; ζ ′

2.2.6 The formal system `Op
In this subsection, only the rules for the standard operator eqv? are shown, because

the rules for the other numeric and boolean operators are straightforward.

In the following rules, D, D1 and D2 denote semantic domains ranging over K,
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Op, C, Loc and {?}.
(eqv 1)

v1, v2 ∈ D v1 =D v2

`Op eqv?(v1, v2)→ #t

(eqv 2)
v1, v2 ∈ D v1 6=D v2

`Op eqv?(v1, v2)→ #f

(eqv 3)
v1 ∈ D1 v2 ∈ D2 D1 6= D2

`Op eqv?(v1, v2)→ #f

Example 1

We want to evaluate the expression e ≡ (e0 e1) where e1 ≡ 2 and

e0 ≡ (lambda (x) (define (f) (+ z z)) (define z x) (f)), in an environment ζ accessed

through a location n, namely we search for a value v and an environment ζ ′ such

that ζ, n `E e→ v, ζ ′. We obtain the following derivation:

ζ, n `E e0 →<n, e0>, ζ
(lambda)

ζ, n `E 2→ 2, ζ
(const) Der1 Der2 Der3

ζ, n `E e→ 4, ζ4
(appl1)

where Der1 is the following derivation:

ζ1, n
′ `D (define (f) (+ z z))→ ζ2

(dec2)

where ζ1 = ζ[Next(ζ), <n, ∅[x, 2][f, ?][z, ?]>] and, posing n′ = Next(ζ),

ζ2 = ζ[n′, <n, ∅[x, 2][z, ?][f,<n′, (lambda ( ) (+ z z))>]>]. Der2 is the following deriva-

tion:

ζ2, n
′ `E x→ 2, ζ2

(var1)

ζ2, n
′ `D (define z x)→ ζ3

(dec1)

where ζ3 = ζ[n′, <n, ∅[x, 2][f,<n′, (lambda ( ) (+ z z))>][z, 2]>]. Der3 is the following

derivation:

ζ3n
′f<n′, (lambda ( ) (+ z z))>ζ3

(var1) Der4
ζ3, n

′ `E (f)→ 4, ζ4
(appl1)

where Der4 is the following derivation:

...
...

ζ4, n
′′ `E +→ +, ζ4

(var2)

...
...

ζ4, n
′′ `E z → 2, ζ4

(var2) `Op +(2, 2)→ 4

ζ4, n
′′ `E (+ z z)→ 4, ζ4

(appl2)

where ζ4 = ζ3[n′′, <n′, ∅>], for n′′ = Next(ζ3). 2

2.3 The display

The display value of an expression e is the string of characters which is displayed on

the monitor upon termination of the evaluation process of e. The domain of display

values DV, ranged over by dv, is defined as follows:

dv ::= n|x|#t|#f|# < PROCEDURE >
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where n ranges over natural numbers in decimal notation and x ranges over identi-

fiers.

The formal system DS1, defined below, is used to establish judgements of the

shape:

ζ, n `Ds e→ dv

where ζ is an environment, n is a location, e is an expression or a declaration and

dv ∈ DV. The intended meaning of the judgement ζ, n `Ds e→ dv is:

after the evaluation of the expression or declaration e, in the environment ζ accessed through

the location n, the display value dv appears on the monitor.

2.3.1 The system DS1

(definition)
ζ, n `D d→ ζ ′ {x} =V(d)

ζ, n `Ds d→ x

(const)
ζ, n `E e→ k, ζ ′ k ∈ N

ζ, n `Ds e→ k

(bool 1)
ζ, n `E e→ #t, ζ ′

ζ, n `Ds e→ #t

(bool 2)
ζ, n `E e→ #f, ζ ′

ζ, n `Ds e→ #f

(procedure)
ζ, n `E x→ v, ζ ′ v ∈ C ∪Op

ζ, n `Ds x→ # < PROCEDURE >

3 The extension with ‘pairs’

In this section we discuss the fragment of the language Scheme obtained by extending

the one in section 2 with the standard operations on pairs. Consequently, the

operational semantics is expressed by a formal system which is a conservative

extension of System E1.

3.1 Syntax

To include pairs and their standard operators, only the set Op of section 2 must be

augmented. Namely, let Char, Sym, K, Var and S-symbols be defined as in section 2,

and let the subdomain of standard operators be extended by the operators car and

cdr belonging to Op(1) and cons, set−car!, set−cdr! and equal? belonging to

Op(2). Let us define P = {car, cdr, cons, set−car!, set−cdr!, equal?}.
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3.2 Semantics

3.2.1 Semantic domains

• The domain V of values is extended to include the set Adr of addresses,

namely:

V = K ∪Op ∪ Adr ∪ C ∪ {?}
where:

— K, Op, C and Loc are defined as before. Op must contain the set of semantic

operators corresponding to the set P. The semantics of these operators

will be given through the rules of System `Op.
— Adr is the domain of addresses. Adr is into one-one correspondence with

the set N of natural numbers except for the special address nil. We denote

the nth address (different from nil) by adrn, and by adr a generic address.

Adr is assumed to be disjoint from C ∪ Loc.

• F and Env are defined as before.

• The domain Str, of structures, ranged over by h, is defined as

Str = [(Adr \ {nil})⇒ (V× V)].

We denote by Next(h) the address with the smallest index not in dom(h).

We denote by h[adrn, < v1, v2>] the structure obtained from h as follows:

dom(h[adrn, <v1, v2>]) = dom(h)∪{adrn}, and h[adrn, <v1, v2>](adrm) = h(adrm)

for n 6= m, while

h[adrn, <v1, v2>](adrn) =<v1, v2>.

Notice that the presence of addresses is justified only by the semantics of the

operators set−car! and set−cdr!, described after.

3.2.2 Judgements

The operational semantics is given by the formal systems E2 and D2. These formal

systems prove judgements, respectively, of the shapes:

ζ, n, h `E e→ v, ζ ′, h′

ζ, n, h `D d→ ζ ′, h′

where ζ and ζ ′ are environments, n is a location, h and h′ are structures, e is

an expression, d is a declaration and v is a value. The intended meaning of the

judgement ζ, n, h `E e→ v, ζ ′, h′ is:

the evaluation of the expression e in the environment ζ, accessed via the location n, w.r.t.

the structure h, produces the value v, modifies the existing environment producing the new

environment ζ ′ and modifies the existing structure yielding the new structure h′.

The intended meaning of the judgement ζ, n, h `D d→ ζ ′, h′ is:

the processing of the declaration d in the environment ζ, accessed via the location n, w.r.t. the

structure h, modifies the existing environment producing the new environment ζ ′ and modifies

the existing structure yielding the new structure h′.
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The auxiliary formal system `Op, defined in section 2.2.6 and utilized by Rule appl

2 of E2, must be extended since the behaviour of some operator can depend upon a

particular structure which can be modified. The judgements have the following new

shape:

h `Op opm(v1, . . . , vm)→ v, h′

where opm is an m-ary standard operator, v1, . . ., vm, v are values and h and h′ are

structures. The intended meaning of the judgement h `Op opm(v1, . . . , vm)→ v, h′ is:

the interpretation of the standard operator opm applied to the values v1, . . ., vm in the structure

h, yields the value v and modifies the structure h into h′.

3.2.3 The formal system D2

(dec 1)
x 6∈ Op ζ, n, h `E e→ v, ζ ′, h′ ζ ′(n) =<n′, ρ>
ζ, n, h `D (define x e)→ ζ ′[n,<n′, ρ[x, v]>], h′

(dec 2)

f 6∈ Op ζ(n) =<n′, ρ>
<n′, ρ[f,<n, (lambda (x1. . .xm) body)>]>= w

ζ, n, h `D (define (f x1. . .xm) body)→ ζ[n, w], h′

3.2.4 The formal system E2

(const)
k ∈ K

ζ, n, h `E k → k, ζ, h

(var 1)
ζ(n) =<n′, ρ> x ∈ dom(ρ) ρ(x) 6= ?

ζ, n, h `E x→ ρ(x), ζ, h

(var 2)

ζ(n) =<n′, ρ> x 6∈ dom(ρ) n′ 6= ⊥
ζ, n′, h `E x→ v, ζ, h

ζ, n, h `E x→ v, ζ, h

(lambda)
<n, (lambda (x1. . .xm) body)>= c

ζ, n, h `E (lambda (x1. . .xm) body)→ c, ζ, h

(appl 1)

ζ0, n, h0 `E e0 →<n′, (lambda (x1. . .xm) d1. . .dp e)>, ζ1, h1

{ζi, n, hi `E ei → vi, ζi+1, hi+1}(1≤i≤m)

{y1,. . ., yq} =
⋃

(1≤i≤p)V(di)

ζ ′1 = ζm+1[Next(ζm+1), <n′, ∅[x1, v1] . . . [xm, vm][y1, ?] . . . [yq, ?]>]

{ζ ′i ,Next(ζm+1), h′i `D di → ζ ′i+1, h
′
i+1}(1≤i≤p)

ζ ′p+1,Next(ζm+1), h′p+1 `E e→ v, ζ ′′, h′′

ζ0, n, h0 `E (e0 e1. . .em)→ v, ζ ′′, h′′
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(appl 2)

ζ0, n, h0 `E e0 → op(m), ζ1, h1

{ζi, n, hi `E ei → vi, ζi+1, hi+1}(1≤i≤m)

hm+1 `Op op(m)(v1,. . ., vm)→ v, hm+2

ζ0, n, h0 `E (e0 e1. . .em)→ v, ζm+1, hm+2

(set)
x 6∈ Op ζ, n, h `E e→ v, ζ ′, h′ ζ ′, n, x, v ; ζ ′′

ζ, n, h `E (set! x e)→ v, ζ ′′, h′

(sequence)
{ζi, n, hi `E ei → vi, ζi+1, hi+1}(1≤i≤m)

ζ1, n, h1 `E (begin e1. . .em)→ vm, ζm+1, hm+1

(if 1)

ζ, n, h `E e1 → v′, ζ ′, h′ v′ 6= #f

ζ ′, n, h′ `E e2 → v, ζ ′′, h′′

ζ, n, h `E (if e1 e2 e3)→ v, ζ ′′, h′′

(if 2)

ζ, n, h `E e1 → #f, ζ ′, h′
ζ ′, n, h′ `E e3 → v, ζ ′′, h′′

ζ, n, h `E (if e1 e2 e3)→ v, ζ ′′, h′′

3.2.5 The new version of the formal system `Op
All the rules introduced in section 2.2.6 are still valid, once every judgement of

the shape `Op opm(v1,. . ., vm) → v has been replaced by one of the shape h `Op
opm(v1,. . ., vm)→ v, h, and D ranges also over Adr. The new rules are:

(cons)
h `Op cons(v1, v2)→ Next(h), h[Next(h), <v1, v2>]

(car)
v ∈ Adr \ {nil} h(v) =<v1, v2>

h `Op car(v)→ v1, h

(cdr)
v ∈ Adr \ {nil} h(v) =<v1, v2>

h `Op cdr(v)→ v2, h

(setcar)
v′ ∈ Adr \ {nil} h(v′) =<v1, v2>

h `Op set−car!(v′, v′′)→ v′′, h[v′, <v′′, v2>]

(setcdr)
v′ ∈ Adr \ {nil} h(v′) =<v1, v2>

h `Op set−cdr!(v′, v′′)→ v′′, h[v′, <v1, v′′>]

(equal 1)
v1, v2 6∈ Adr h `Op eqv?(v1, v2)→ v, h

h `Op equal?(v1, v2)→ v, h
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(equal 2)
ı ∈ {0, 1} vı 6∈ Adr v1−ı ∈ Adr

h `Op equal?(v0, v1)→ #f, h

(equal 3)
h `Op equal?(nil,nil)→ #t, h

(equal 4)
ı ∈ {0, 1} vı ∈ {nil} v1−ı ∈ Adr \ {nil}

h `Op equal?(v0, v1)→ #f, h

(equal 5)

v1, v2 ∈ Adr \ {nil}
h(v1) =<v′1, v′′1> h(v2) =<v′2, v′′2>

h `Op equal?(v′1, v′2)→ #t, h h `Op equal?(v′′1 , v′′2 )→ v, h

h `Op equal?(v1, v2)→ v, h

(equal 6)

v1, v2 ∈ Adr \ {nil}
h(v1) =<v′1, v′′1> h(v2) =<v′2, v′′2>

h `Op equal?(v′1, v′2)→ #f, h

h `Op equal?(v1, v2)→ #f, h

Let us note that the rules for the evaluation of the operator equal? correspond to

a recursive scanning of the arguments, if they belong to Adr. Consequently, there

exist no a derivation for a judgement h `Op equal?(v1, v2) → v, h′ if the addresses v1

and v2 access to a circular structure in h.

3.3 The display

The domain of display values DV, ranged over by dv, is extended as follows:

dv ::= sdv|(list)
list ::= ε|lne|lne.dv
lne ::= dv|dv lne
sdv ::= n|x|#t|#f|# < PROCEDURE >

where list ranges over sequences of display values (ε denotes the empty sequence),

lne ranges over non empty sequences of display values and sdv ranges over display

values that are not lists.

The formal system DS2, defined below, is used to establish judgements of the

shape:

ζ, n, h `Ds e→ dv

where ζ is an environment, n is a location, h is a structure, e is an expression or a

declaration and dv ∈ DV. The intended meaning of the judgement ζ, n, h `Ds e→ dv

is:

after the evaluation of the expression or declaration e, in the environment ζ accessed through

the location n over the structure h, the display value dv appears on the monitor.
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3.3.1 The system DS2

(definition)
ζ, n, h `D d→ ζ ′, h′ {x} =V(d)

ζ, n, h `Ds d→ x

(const)
ζ, n, h `E e→ k, ζ ′, h′ k ∈ N

ζ, n, h `Ds e→ k

(bool 1)
ζ, n, h `E e→ #t, ζ ′, h′

ζ, n, h `Ds e→ #t

(bool 1)
ζ, n, h `E e→ #f, ζ ′, h′

ζ, n, h `Ds e→ #f

(procedure)
ζ, n, h `E e→ v, ζ ′, h′ v ∈ C ∪Op

ζ, n, h `Ds e→ # < PROCEDURE >

(address)

ζ, n, h `E e→ v, ζ ′, h′
v ∈ Adr h′, v `h list
ζ, n, h `Ds e→ (list)

The third premise in Rule address above is a new judgement form:

h, adr `h list
where h is a structure, adr is an address and list is a sequence of display values. The

intended meaning of the judgement h, adr `h list is:

list is the sequence of display values contained in the structure h starting from address adr,

as it appears on the monitor.

This judgement obeys the rules in the following formal system `h:
(rule 1)

h,nil `h ε

(rule 2)

h(adr) =<v1, v2>

v1, v2 ∈ Adr

h, v1 `h list
h, v2 `h lne

h, adr `h (list)lne
(rule 3)

h(adr) =<v1, v2>

v1, v2 ∈ Adr

h, v1 `h list
h, v2 `h lne.dv

h, adr `h (list)lne.dv

(rule 4)

h(adr) =<v1, v2>

v1 6∈ Adr, v2 ∈ Adr

v1 ↪→ sdv

h, v2 `h lne
h, adr `h sdv lne (rule 5)

h(adr) =<v1, v2>

v1 6∈ Adr, v2 ∈ Adr

v1 ↪→ sdv

h, v2 `h lne.dv
h, adr `h sdv lne.dv
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(rule 6)

h(adr) =<v1, v2>

v1 ∈ Adr, v2 6∈ Adr

h, v1 `h list
v2 ↪→ sdv

h, adr `h (list). sdv
(rule 7)

h(adr) =<v1, v2>

v1, v2 6∈ Adr

v1 ↪→ sdv1

v2 ↪→ sdv2

h, adr `h sdv1.sdv2

where, among the premises of the rules 1, . . ., 7 above, there are judgements managed

by the following formal system ↪→:

(rule 1)
#t ↪→ #t

(rule 3)
k ∈ N

k ↪→ k

(rule 2)
#f ↪→ #f

(rule 4)
c ∈ C ∪Op

c ↪→ # < PROCEDURE >

Example 2

Let us view the output after the evaluation of the expression

e ≡ (cons 1 (cons 2 3)) in a given environment ζ, accessed through a location n, and

structure h. First, we have the following evaluation in E2:

...
...

ζ, n, h `E cons→ cons, ζ, h
(var2)

ζ, n, h `E 1→ 1, ζ, h
(const) Der1 Der2

ζ, n, h `E e→ adr2, ζ, h[adr1, <2, 3>][adr2, <1, adr1>]
(appl2)

where Der1 is the following derivation:

···· · · (var2)
···· · · (const) ···· · · (const) h `Op cons(2, 3)→ adr1, h[adr1, <2, 3>]

(cons)

ζ, n, h `E (cons 2 3)→ adr1, ζ, h[adr1, <2, 3>]
(appl2)

for adr1 = Next(h), while Der2 is the following one:

h[adr1, <2, 3>] `Op cons(1, adr1)→ adr2, h[adr1, <2, 3>][adr2, <1, adr1>]
(cons)

Now, since letting h′ = h[adr1, < 2, 3>][adr2, < 1, adr1 >] we have the following

derivation in `h:
1 ↪→ 1 (3)

2 ↪→ 2
(3)

3 ↪→ 3
(3)

h′, adr1 `h 2 . 3 (7)

h′, adr2 `h 1 2 . 3
(4)

in System DS2 the following judgement is derivable through Rule address:

ζ, n, h `Ds (cons 1 (cons 2 3))→ (1 2 . 3)

2

4 The fragment with quote and eval

In this section we extend further the fragment of the language Scheme under analysis.

Therefore, we discuss the special symbols quote and eval. To this end we need to

consider as basic data types also literals. Indeed, if S is an S-sysmbol, the evaluation
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of (quote S) gives a literal as result, namely a list of symbolic data. The special

symbol eval is considered as a ‘built-in’ interpreter that processes literals as input.

Since eval is not specified in the standard definition of Scheme (see (IEEE, 1990)),

various treatments of eval are possible. Our proposal is to minimize the differences

between the semantics of (eval (quote S)) and the semantics of S itself. Moreover,

we do not want to introduce any additional notation w.r.t. the orginal syntax. To

this aim, if an S-symbol submitted to quote contains a lambda expression, the

special symbol eval will process the resulting literal representation as if it contained

a closure.

Other semantical accounts of the behaviour of eval/quote, can be found in the

literature. For example, Muller (1992) gives a complete coding of an input expression

in terms of new syntactical operators. This is extremely natural in a setting in which

the operational semantics is expressed as a term rewriting system, but it is awkward

in an ‘input-output’ (big-step) SOS setting, such as ours. Furthermore, in Muller’s

approach the symbol eval does not evaluate closures, since closures are not part of

his internal representation of S-symbols.

As we anticipated in the introduction, in order to give the operational semantics

of eval and quote we need two distinct formal systems: one to formalize the ‘read’

process and one to formalize the ‘evaluation’ process.

4.1 Syntax

Let all the subdomains of Sym be defined as in the previous section, but for that of

special symbols, Sp, which is now extended with the two new elements quote and

eval. The domain S-symbols, ranged over by S , is now defined as before starting

from the new Sym. We define two special subdomains of S-symbols, the subdomain

of input declarations, ranged over by dcl , and the subdomain of input expressions,

ranged over by exp.

• Input-Declarations

dcl ::=(define x exp)|(define (f x1. . .xn) bexp) (n≥0)

• Input-Expressions

exp ::= x|k|(lambda (x1. . .xm) bexp)|(exp1. . .expn)|
(if exp1 exp2 exp3)|(set! x exp)|(begin exp1. . .expn)|
(quote S)|(eval exp) (m ≥ 0, n ≥ 1).

where bexp has the following shape:

bexp ::= dcl1. . .dclm exp (m ≥ 0).

4.2 Semantics

4.2.1 Semantic domains

• Let the set Adr be defined as before.

• Tab is the domain of symbol-table addresses. Tab is into one-one correspondence

with the syntactic domain Sym and is assumed to be disjoint from Adr. We

denote the symbol-table address corresponding to the symbol s as τ(s).
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• The domain InV, of input values, consists of those objects which are fed to

the interpreter, i.e. the output of a precompilation (reading) process. These

can either be expression input values, expressions for short, denoted by e,

or declaration input values, declarations for short, denoted by d. These are

inductively defined as:

— Declarations

d ::= (define x e)|(define (f x1. . .xn) body) (n ≥ 0)

— Expressions

e ::= adr|τ(s)|x|k
(lambda (x1. . .xm) body)|(e1. . .en)|
(if e1 e2 e3)|(set! x e)|(begin e1. . .en)|
(eval e) (m ≥ 0, n ≥ 1).

where adr are suitable objects different from strings of characters, denoting

addresses, and body has the following shape:

body ::= d1. . .dm e (m ≥ 0).

• The domain V of values is now extended to include the domain of symbol

table addresses Tab:

V = K ∪Op ∪ Adr ∪ C ∪ Tab ∪ {?}
where:

— K, Op and Adr are defined as before.

— The subdomain of closures C is now defined considering expression input

values, i.e. pairs <l, e> where l is a location belonging to the subdomain

Loc (defined as in section 2) and e is an expression (input value) of the

shape (lambda (x1. . .xn) body), (n ≥ 0).

The sets K, Op, Adr, Tab, C, Loc and {?} are assumed to be pairwise disjoint.

• F and Env are defined as in the previous section using the new values.

If ζ ∈ Env, then NewVar(ζ) denotes the smallest identifier which does not

belong to the domains of the frames in the range of ζ, w.r.t. some fixed order

relation between identifiers.

• Str is now defined in order to mark some addresses as read-only, namely:

Str = [Adr \ {nil} ⇒ (V× V)× Bool],

where Bool is the boolean set {#t,#f} ⊂ K.

The new definition of Str is necessary because a pair obtained from the evaluation

of a quote expression (a literal pair) cannot be modify by the standard operators

set−car! and set−cdr!. Such a pair will be stored in a triple of the form

<v1, v2,#f>.

4.2.2 Judgements

The operational semantics is given by three formal systems Iexp, E3 and D3

Iexp is used for establishing judgements of the shape:

h `Ie exp→ e, h′
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where h and h′ are structures, exp is an input expression or an input declaration and

e is an expression or a declaration input value. The intended meaning of establishing

the judgement h `Ie exp→ e, h′ is:

the input expression (declaration) exp produces, during the ‘read’ process, the expression

(declaration) input value e and modifies the structure h to h′.

The formal system E3 and D3 regulate respectively judgements of the shapes:

ζ, n, h `E e→ v, ζ ′, h′

ζ, n, h′ `E d→ ζ ′, h
where ζ and ζ ′ are environments, n is a location, h and h′ are structures, e is

an expression input value, d is a declaration input value and v is a value. The

intended meaning of the above judgements are exactly the intended meaning of the

judgements of systems E2 and D2.

The formal system E3 utilizes two auxiliary formal systems which correspond to

the system R, defined in section 2.2.5, with the appropriate modification concerning

values, and to the system `Op, defined in section 2.2.6, with the appropriate modifi-

cation concerning the structures. In particular, Rules cons, setcar and setcdr must

be modified in order that they do not consider read-only addresses, namely:

(cons)
h `Op cons(v1, v2)→ Next(h), h[Next(h), <v1, v2,#t>]

(setcar)
v′ ∈ Adr \ {nil} h(v′) =<v1, v2,#t>

h `Op set−car!(v′, v′′)→ v′′, h[v′, <v′′, v2,#t>]

(setcdr)
v′ ∈ Adr \ {nil} h(v′) =<v1, v2,#t>

h `Op set−cdr!(v′, v′′)→ v′′, h[v′, <v1, v′′,#t>]

4.2.3 The formal system Iexp

We shall not give all the rules which do not involve explicitly quote or eval. The

omitted rules follow the same pattern of rules eval 1 and eval 2 below.

(declaration)
h `Ie exp→ e, h′

h `Ie (define x exp)→ (define x e), h′

(symbol)
h `Ie (quote s)→ τ(s), h

(nil)
h `Ie (quote ( ))→ nil, h

(pair)

h `Ie (quote S1)→ e1, h1

h1 `Ie (quote (S2. . .Sm))→ e2, h2

h `Ie (quote (S1. . .Sm))→ Next(h2), h2[Next(h2), <e1, e2,#f>]
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(eval 1)
h `Ie exp→ e, h′

h `Ie (eval exp)→ (eval e), h′

(eval 2)
{hi `Ie expi → ei, hi+1}(1≤i≤n)

h1 `Ie (exp1. . .expn)→ (e1. . .en), hn+1

4.2.4 The formal systems E3 and D3

The formal systems E3 and D3 include all the rules of the formal systems E2 and

D2, defined in section 3, but the general variable e ranges now over expression

input values, that d ranges over declaration input values and that environments and

structures are defined over the new class of values. The system E3 consists moreover

of the following extra rules:

(address)
ζ, n, h `E adr→ adr, ζ, h

(symbol)
ζ, n, h `E τ(s)→ τ(s), ζ, h

(eval 1)
ζ, n, h `E e→ v, ζ ′, h′ v 6∈ (Adr \ {nil})

ζ, n, h `E (eval e)→ v, ζ ′, h′

(eval 2)

ζ, n, h `E e→ adrm, ζ
′, h′

NewVar(ζ ′), h′, adrm . exp

h′ `Ie exp→ e′, h′′
ζ ′[Next(ζ ′), <n, ∅[NewVar(ζ ′), adrm]>],Next(ζ ′), h′′ `E e′ → v, ζ ′′, h′′′

ζ, n, h `E (eval e)→ v, ζ ′′, h′′′

Rule eval 2 uses a new form of judgement:

S, h, v . S ′

where h is a structure, v is a value, S and S ′ are Scheme-sentences. The intended

meaning of this judgement is:

the structure h, accessed through v, encodes the Scheme-sentence S ′, where semantic values

are represented relatively to S .

The rules for this kind of judgement are:

(rule 1)
S, h, τ(s) . s

(rule 3)

m ≥ 2

h(adr) =<v1, adr′>
(car S), h, v1 . S1

(cdr S), h, adr′ . (S2. . .Sm)

S, h, adr . (S1 S2. . .Sm)

(rule 2)
v ∈ C ∪ K

S, h, v . S

(rule 4)

h(adr) =<v1,nil>

(car S), h, v1 . S1

S, h, adr . (S1)
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Example 3

We want to evaluate the input expression (eval exp) where exp is

(cons (quote abs)(cons(cons(lambda(y)y)(cons−2()))())).

Let h be a structure. In System Iexp we have

h `Ie exp→ e, h

where e = (cons τ(abs)(cons(cons(lambda(y)y)(cons−2()))())).

Let ζ, n be, respectively, an environment and a location. Now we want to evaluate

the expression (eval e) in ζ, n, h, namely we search for a value v such that ζ, n, h `E
(eval e)→ v, ζ ′′, h′ for some ζ ′′ and h′.

In System E3 we have

ζ, n, h `E e→ adr, ζ ′, h′

where h′=h[adr, <τ(abs), adr′>][adr′, <adr′′,nil>][adr′′, <c, adr′′′>][adr′′′,
<−2,nil>], with c =<n′, (lambda(y)y)>. Let x = NewVar(ζ ′). The following is a

derivation in System .:

(caadr x), h′, c . (caadr x)
(2)

(cadadr x), h′,−2 . (cadadr x)
(2)

(cdadr x), h′, adr′′′ . ((cadadr x))
(4)

(cadr x), h′, adr′′ . ((caadr x) (cadadr x))
(3)

(car x), h′, τ(abs) . abs
(1)

(cdr x), h′, adr′ . (((caadr x) (cadadr x)))
(4)

x, h′, adr . (abs ((caadr x) (cadadr x)))
(3)

where (cadr x) stands for (car(cdr x)), (caadr x) stands for (car(car(cdr x))), and

so on. System Iexp and System E3 give us

h′ `Ie (abs ((caadr x) (cadadr x)))→ (abs ((caadr x) (cadadr x))), h′
ζ ′[n′′, <n, ∅[x, adr]>], n′′, h′ `E (abs ((caadr x) (cadadr x)))→ 2, ζ ′′, h′

where n′′ = Next(ζ ′). Furthermore, through eval 2 of System E3 we have

ζ, n, h `E (eval e)→ 2, ζ ′′, h′

2

4.3 The display

The domain of display values DV is extended as follows:

dv ::= sdv|(list)
list ::= ε|lne|lne.dv
lne ::= dv|dv lne
sdv ::= s|n|x|#t|#f|# < PROCEDURE >

where s ranges over symbols.

The formal system DS3, defined below, is used to establish judgements of the

shape:

ζ, n, h `Ds e→ dv

where ζ is an environment, n is a location, h is a structure, e is an expression or
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a declaration input value and dv ∈ DV. The intended meaning of the judgement

ζ, n, h `Ds e→ dv is:

after the evaluation of the expression or declaration e, in the environment ζ accessed through

the location n over the structure h, the display value dv appears on the monitor.

4.3.1 The system DS3

The system DS3 includes all the rules of the system DS2, defined in section 3.3.

e and d now denote respectively an expression input value and a declaration input

value. Moreover, environments and structures are defined using the new class of

values. The system DS3 consists moreover of the following extra rule:

(symbol)
ζ, n, h `E e→ τ(s), ζ ′, h′

ζ, n, h `Ds e→ s

Accordingly, we need to reinterpret also the formal system `h, of section 3.3 (notice

that although the definition of Str is changed, from the point of view of the display

only the first two component of a triple h(adr) are useful), and to extend the formal

system ↪→ by the following rule:

(rule 5)
τ(s) ↪→ s

which reflects the ‘self-quoting’ nature of the constant symbols.

5 Adding quasiquote and unquote

The special symbol quasiquote has a behaviour similar to that of the symbol quote

but, when it is used in combination with the new special symbol unquote, it allows

the construction of literals in which some components are evaluated. In a sense one

can say that the semantics of quasiquote blurs the strict separation between the

‘read’ and the ‘evaluation’ processes which we had so far.

To give the semantics of these new symbols, the shape of the judgements of the

formal system Iexp must be modified. In fact, now, some evaluations can be done

also in the ‘read’ process. Furthermore, the judgements of System Iexp must keep

track also of the environment.

In any case, we shall design the semantics in such a way, that the evaluation of

(quasiquote S) will produce the same results as (quote S) when unquote does not

occurr in S .

5.1 Syntax

Let all the subdomains of Sym be defined as in the previous section, but for that of

special symbols, Sp, which is now extended with the two new elements quasiquote

and unquote. One of the two subdomains of S-symbols, the subdomain of input

expressions, is extended in order to contain also these two input expressions:

(quasiquote S)|(unquote exp).
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5.2 Semantics

5.2.1 Semantic domains

Every semantic domain is defined as before except for InV, the domain of input

values, in which the expression input values are extended to contain the set of

closures C and the set {?}.

5.2.2 Judgements

The formal system Iexp has now judgement of the shape:

ζ, n, h, k `Ie exp→ e, ζ ′, h′

where h and h′ are structures, exp is an input expression or an input declaration,

e is an expression or a declaration input value, ζ and ζ ′ are environments, n

is a location and k a natural number. The intended meaning of the judgement

ζ, n, h, k `Ie exp→ e, ζ ′, h′ is:

the input expression (declaration) exp produces, during the ‘read’ process, the expression

(declaration) input value e, evaluating the ‘unquoted’ expressions occurring in exp, at the

nesting level k, in the environment ζ accessed through location n, and modifies the structure

h to h′ and the environment ζ to ζ ′.

The intended meaning of nesting level will be clear from the rules below.

5.2.3 The new formal system Iexp

Every rule of the formal system Iexp of the previous section must be changed

only in the shape of the judgements. In order to obtain the new System Iexp, the

following rules must be added:

(quasiquote 1)
ζ, n, h, k `Ie (quasiquote s)→ τ(s), ζ, h

(quasiquote 2)
ζ, n, h, k `Ie (quasiquote ( ))→ nil, ζ, h

(quasiquote 3)

k > 0

ζ, n, h, k − 1 `Ie (quasiquote (S))→ e, ζ ′, h′

ζ, n, h, k `Ie (quasiquote (unquote S))→
Next(h′), ζ ′, h′[Next(h′), <τ(unquote), e,#f>]

(quasiquote 4)
ζ, n, h, k + 1 `Ie (quasiquote (S))→ e, ζ ′, h′

ζ, n, h, k `Ie (quasiquote (quasiquote S))→
Next(h′), ζ ′, h′[Next(h′), <τ(quasiquote), e,#f>]

https://doi.org/10.1017/S0956796898003074 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003074


SOS of the language Scheme 359

(quasiquote 5)

ζ, n, h, 0 `Ie S → e, ζ ′, h′
ζ ′, n, h′ `E e→ v, ζ ′′, h′′

ζ, n, h, 0 `Ie (quasiquote (unquote S))→ ν(v), ζ ′′, h′′

(quasiquote 6)

S1 6∈ {quasiquote, unquote}
ζ, n, h, k `Ie (quasiquote S1)→ e1, ζ1, h1

ζ1, n, h1, k `Ie (quasiquote (S2 . . . Sm))→ e2, ζ2, h2

ζ, n, h, k `Ie (quasiquote (S1 . . . Sm))→
Next(h2), ζ2, h2[Next(h2), <e1, e2,#f>]

where ν is the identity function on Tab ∪ Adr ∪ C ∪ {?} ∪Op and yields the symbol

corresponding to a semantic constant, namely:

ν(τ(s)) = τ(s) ν(k) = τ(k)

ν(adr) = adr ν(op(m)) = op(m)

ν(?) =? ν(c) = c

As one can see, the rules governing quote are closely related to those of

quasiquote, introduced in Section 4. In effect, one can easily show by induction on

the structure of derivations that, whenever unquote does not occurr in S , the result

of (quasiquote S) coincides with that of (quote S) for all structures and environ-

ments. Thus we can formally substantiate the remark made in the introduction to

this Section,

5.2.4 The formal system E3

The formal systems E3 and D3 include all the rules of the formal systems E3 and

D3 of the previous section. Only the following rule must be added to system E3:

(closure)
c ∈ C ∪Op

ζ, n, h `E c→ c, ζ, h

Example 4

Let us use the following standard abbreviations: for each S-symbol S and in-

put expression exp, we write ‘S instead of (quasiquote S) and ,exp instead of

(unquote exp).

We want to evaluate the following expression:

exp ≡ ‘(f ‘(x ,( + 1 2) ,(z ,( + 1 3))))

for given variables f, x and z.

For lack of space, we write only two sub-derivations of the entire derivation for

exp in Iexp. Let ζ, n, h be, respectively, an environment, a location and a structure.
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Abbreviating in qn the name of the Rule quasiquote n, for 1 ≤ n ≤ 6, we have:

...
...

ζ, n, h, 0 `Ie ‘( + 1 2)→ adr3, ζ, h3 ζ, n, h3, 0 `Ie ‘( )→ nil, ζ, h3
(q2)

ζ, n, h, 0 `Ie ‘(( + 1 2))→ adr4, ζ, h4 (q6)
...
Der ...

ζ, n, h, 1 `Ie ‘,( + 1 2)→ adr5, ζ, h5
(q3)

ζ, n, h5, 1 `Ie ‘(,(z ,( + 1 3)))→ adr10, ζ, h10
(q6)

ζ, n, h, 1 `Ie ‘(,( + 1 2) ,(z ,( + 1 3)))→ adr11, ζ, h11 (q6)

where a meaningful subderivation of Der is the following:

...
...

ζ, n, h5, 0 `Ie ( + 1 3)→ ( + 1 3), ζ, h5

...
...

ζ, n, h5 `E ( + 1 3)→ 4, ζ, h5

ζ, n, h5, 0 `Ie ‘,( + 1 3)→ τ(4), ζ, h5 (q5)

ζ, n, h5, 0 `Ie ‘( )→ nil, ζ, h5
(q2)

ζ, n, h5, 1 `Ie ‘(,( + 1 3))→ adr6, ζ, h6 (q6)

where the structure h11, accessed through location adr11, can be viewed as the

following tree:

adr11

�
��

PPPPPP
adr5

Q
QQ

adr10

Q
QQ

τ(unquote) adr4

Q
QQ

adr9

Q
QQ

nil

adr3

Q
QQ

nil τ(unquote) adr8

Q
QQ

τ(+) adr2

Q
QQ

adr7

Q
QQ

nil

τ(1) adr1

Q
QQ

τ(z) adr6

Q
QQ

τ(2) nil τ(4) nil

Completing the derivation, we have

ζ, n, h, 0 `Ie ‘(f ‘(x ,( + 1 2) ,(z ,( + 1 3))))→ adr14, ζ, h14

where h14 is a modify of h11 and it such that the address adr14, once evaluated in

System E3, gives the following display:

ζ, n, h `Ds adr14 → (f ‘(x ,( + 1 2) ,(z 4)))

2

6 Errors

The systems introduced in the previous sections do not make distinctions between

non-termination and ‘error’. Indeed, assume that, for a given expression e, environ-

ment ζ, location n and structure h, there are no v, ζ ′ and h′ such that the judgement

ζ, n, h `E e → v, ζ ′, h′ can be derived. This means that either the evaluation of the

expression e, with respect to ζ, n and h, does not terminate, or it gives rise to an error.
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Since we suppose that the input expressions are correctly parsed, the only possible

errors can be related either to the semantics of a standard operators or to an attempt

of evaluating the value ?, or an undefined variable. For simplicity, we give to this

last kind of error the code 0, we give code 1 to the error concerning the value ?, and

we give codes greater than 1 to errors arising from a bad application of a standard

operator.

Let us see how System E3 must be modified in order to keep track of these errors.

We omit the modifications on Systems D3, Iexp and DS3, since they simply follow

from the modifications on System E3. In particular, System DS3 must provide a

suitable error message for each error code.

The judgements of System E3 must be extended to the following shape:

ζ, n, h `E e→ error, m

where ζ is an environment, n a location, h a structure, e an expression, error the

exceptional operational value and m an error code. The intended meaning of the

judgement ζ, n, h `E e→ error, m is:

the evaluation of the expression e in the environment ζ, accessed via the location n, w.r.t. the

structure h, goes into the error whose code is m.

Moreover, also Systems R and `Op must have two different shapes of judgements.

System R must have also judgements of this shape:

ζ, n, x, v ; error, m

while System `Op must have also judgements of this shape:

h `Op opm(v1, . . . , vm)→ error, m

where in both the cases error is the exceptional operational value and m an error

code.

The rules that must be added to System R are:

(fail)
ζ(n) =<⊥, ρ> x 6∈ dom(ρ)

ζ, n, x, v ; error, 0

and the following rule for the propagation of the exceptional operational value

through a derivation:

(prop)

ζ(n) =<n′, ρ> x 6∈ dom(ρ) n′ 6= ⊥
ζ, n′, x, v ; error, m

ζ, n, x, v ; error, m

For what concerns System `Op, the errors depend on the semantics of the standard

operators. For example, the following rule must be added:

(car-fail)
v 6∈ Adr \ {nil}

h `Op car(v)→ error, m

where m is a code grater than 1.
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At the end, System E3. Here we must add the following rules:

(var 1 fail)
ζ(n) =<n′, ρ> x ∈ dom(ρ) ρ(x) = ?

ζ, n, h `E x→ error, 1

(var 2 fail)
ζ(n) =<⊥, ρ> x 6∈ dom(ρ)

ζ, n, h `E x→ error, 0

(appl 2 fail)

ζ0, n, h0 `E e0 → op(m), ζ1, h1

{ζi, n, hi `E ei → vi, ζi+1, hi+1}(1≤i≤m)

hm+1 `Op op(m)(v1,. . ., vm)→ error, m

ζ0, n, h0 `E (e0 e1. . .em)→ error, m

(set fail)
x 6∈ Op ζ, n, h `E e→ v, ζ ′, h′ ζ ′, n, x, v ; error, 0

ζ, n, h `E (set! x e)→ error, 0

(unreference)
ζ, n, h `E?→ error, 1

Moreover rules for the propagation of the error through a derivation must be added.

These rules are simply a copy of the other rules of System E3 where the exceptional

operational value is copied from a premise to the conclusion. We give only the

following rule as an example:

(prop sequence)

{ζi, n, hi `E ei → vi, ζi+1, hi+1}(1≤i≤p<m)

ζp+1, n, hp+1 `E ep+1 → error, k

ζ1, n, h1 `E (begin e1. . .em)→ error, k

7 Semantics of Scheme programs

In this section we give the semantics of programs written with the fragment of the

language Scheme considered in the previous section. To this end, we introduce a

new formal system which uses, besides a new judgement, all the various forms of

judgement introduced earlier. The corresponding system for defining the output of

a program is introduced as usual.

A Scheme Program is a sequence: <ed1,. . ., edm> (m ≥ 1), where the edi’s are input

expressions or input declarations. The value of the Scheme Program <ed1, . . . , edm>

w.r.t. a structure h and an environment ζ, accessible via a location n, is a list of

values <v1,. . ., vp> with p ≤ m. This value is defined using the formal system S,

which allows to establish judgements of the two forms:

ζ, n, h `S<ed1,. . ., edm>→<v1,. . ., vp>, ζ
′, h′

ζ, n, h `S<ed1,. . ., edm>→ error, k
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The intended meaning of the first judgement is:

the evaluation of the Scheme Program <ed1,. . ., edm>, w.r.t. the structure h and the environment

ζ, accessed via the location n, produces the list of values <v1,. . ., vp>, vi ∈ V, and moreover

mutates the environment to ζ ′ and the structure to h′,

while the intended meaning of the second judgement is:

the evaluation of the Scheme Program <ed1,. . ., edm>, w.r.t. the structure h and the environment

ζ, accessed via the location n, reports the error with code k.

7.1 The formal system S

(decl 1)

ζ, n, h, 0 `Ie dcl → d, ζ ′, h′
ζ ′, n, h′′ `E d→ ζ ′′, h′

ζ, n, h `S<dcl>→< >, ζ ′′, h′′

(decl 2)

ζ, n, h, 0 `Ie dcl → d, ζ ′, h′
ζ ′, n, h′′ `E d→ ζ ′′, h′

ζ ′′, n, h′′ `S<ed1,. . ., edm>→<v1,. . ., vp>, ζ
′′′, h′′′

ζ, n, h `S<dcl , ed1,. . ., edm>→<v1,. . ., vp>, ζ ′′′, h′′′

(exp 1)

ζ, n, h, 0 `Ie exp→ e, ζ ′, h′
ζ ′, n, h′ `E e→ v, ζ ′′, h′′

ζ, n, h `S<exp>→<v>, ζ ′′, h′′

(exp 2)

ζ, n, h, 0 `Ie exp→ e, ζ ′, h′
ζ ′, n, h′ `E e→ v, ζ ′′, h′′

ζ ′′, n, h′′ `S<ed1,. . ., edm>→<v1,. . ., vp>, ζ
′′′, h′′′

ζ, n, h `S<exp, ed1,. . ., edm>→<v, v1,. . ., vp>, ζ ′′′, h′′′

(fail 1)

ζ, n, h, 0 `Ie exp→ e, ζ ′, h′
ζ ′, n, h `E e→ error, m

ζ, n, h `S<exp, ed1,. . ., edm>→ error, <v, v1,. . ., vp> k

We omit the other rules for handling the exceptional operational value error.

Definition 1

Let ζ∅ be the initial environment, i.e. dom(ζ∅) = {0} and ζ∅(0) = <⊥, ∅>. A Scheme

Program <ed1,. . ., edm> is terminating if one of the following situations occurs:

1. ∃ζ, h such that: ζ∅, 0, ∅ `S<ed1,. . ., edm>→<v1,. . ., vp>, ζ, h,

2. ∃k such that: ζ∅, 0, <ed1,. . ., edm>`S<v1,. . ., vp>→ error, k

In the first case the terminating Scheme Program is correct and has value

<v1,. . ., vp> while in the second case it reports the error with code k.
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7.2 The display

The display value of a terminating Scheme Program is defined using the formal

system SDS below. The judgements of the system SDS are of the form:

ζ, n, h `Sdy<ed1,. . ., edm>→<dv1,. . ., dvm>

where <dv1,. . ., dvm> is a list of display values.

7.2.1 The system SDS
We omit the rules useful for display error messages.

(rule 1)

ζ, n, h, 0 `Ie ed→ e, ζ ′, h′
ζ ′, n, h′ `Ds e→ dv

ζ, n, h `Sdy<ed>→<dv>

(rule 2)

ζ, n, h, 0 `Ie dcl → d, ζ ′, h′
ζ ′, n, h′ `Ds d→ dv

ζ ′, n, h′′ `E d→ ζ ′′, h′
ζ ′′, n, h′′ `Sdy<ed1,. . ., edm>→<dv1,. . ., dvm>

ζ, n, h `Sdy<dcl , ed1,. . ., edm>→<dv, dv1,. . ., dvm>

(rule 3)

ζ, n, h, 0 `Ie exp→ e, ζ ′, h′
ζ ′, n, h′ `Ds e→ dv

ζ ′, n, h′ `E e→ v, ζ ′′, h′′
ζ ′′, n, h′′ `Sdy<ed1,. . ., edm>→<dv1,. . ., dvm>

ζ, n, h `Sdy<exp, ed1,. . ., edm>→<dv, dv1,. . ., dvm>
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