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Abstract

Forster [‘Finite-to-one maps’, J. Symbolic Logic 68 (2003), 1251–1253] showed, in Zermelo–Fraenkel
set theory, that if there is a finite-to-one map from P(A), the set of all subsets of a set A, onto A, then
A must be finite. If we assume the axiom of choice (AC), the cardinalities of P(A) and the set S (A) of
permutations on A are equal for any infinite set A. In the absence of AC, we cannot make any conclusion
about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a
condition that makes Forster’s theorem, with P(A) replaced by S (A), provable without AC.
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1. Introduction

Intuitively, the cardinality of a set is the number of all elements of the set. We will
denote the cardinality of a set A by |A|. There are many interesting facts concerning
the relationship between the cardinalities of the set of all subsets of a set A and the
set of all permutations on A, denoted by P(A) and S (A), respectively. In Zermelo–
Fraenkel set theory (ZF), we know, from Cantor’s theorem, that |P(A)| is always greater
than |A|. In [1], Dawson and Howard showed, in ZF, that |S (A)| is also greater than
|A| for any set A such that |A| ≥ 3. Moreover, they showed that, if we assume the
axiom of choice (AC), then |P(A)| and |S (A)| are equal for any infinite set A. However,
without AC, we cannot make any conclusion about the relationship between the two
cardinalities for an arbitrary infinite set. It has been shown in [1] that the statement
‘there exists a set A such that |P(A)| is greater than |S (A)|’ is consistent with ZF while
the opposite conclusion is consistent with ZF as well. It is also consistent with ZF
that ‘there is some set A such that |P(A)| and |S (A)| are not comparable’. As a result,
any relationship of these two cardinalities for an arbitrary infinite set cannot be proved
from ZF.

In [3], Forster showed, in ZF, that if there is a finite-to-one map from P(A) onto a
set A, then A must be finite. Thus, in the absence of AC, we can ask whether or not
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Forster’s theorem still holds if we replace P(A) in the statement by S (A). In this paper,
we give a condition that makes the theorem provable without AC.

2. Preliminaries

We use a, b, c, . . . , A, B,C, . . . for sets. Let BA, F � A and F[A] denote the set of
all functions from B into A, the restriction of a function F to A and the image of A
under F, respectively. All other standard concepts in set theory and their notations
will be used in the usual way. Proofs of all theorems in this section will be omitted.
The details can be found in any set theory text book, for example [2].

We say that A is equinumerous to B, denoted by A ≈ B, if there is a bijection from
A onto B. Since the cardinality of a set represents the number of all elements of the
set, it is defined so that for any sets A and B,

|A| = |B| if and only if A ≈ B.

We call |A| a cardinal (number).
Natural numbers are constructed as follows:

0 = ∅, 1 = {0}, 2 = {0, 1}, . . . , n + 1 = {0, 1, . . . , n}, . . . ,

and ω denotes the set of all natural numbers. A set is said to be finite if it is
equinumerous to a (unique) natural number and this natural number is the cardinality
of the set. A set which is not finite is said to be infinite.

Cardinal arithmetic is defined as follows. For cardinals m = |M| and n = |N|, define
m + n = |M ∪ N|, where M ∩ N = ∅, m · n = |M × N| and mn = |N M|.

We say that M is dominated by N, written M � N, if there is an injection from M
into N. We define |M| ≤ |N| if M � N and say that |M| < |N| if |M| ≤ |N| but |M| , |N|.
It is easy to see that ≤ is reflexive and transitive. It is antisymmetric by the Schröder–
Bernstein theorem.

A well-ordering R on A is a linear ordering on A such that every nonempty subset
of A has an R-least element. A set is well-ordered if there is a well-ordering on it.

A set A is transitive if each element of A is a subset of A. An ordinal is a transitive
set which can be well-ordered by ∈. Note that every natural number and ω are ordinals.
Every member of an ordinal is also an ordinal. The class of ordinals can be well-
ordered by ∈, which we sometimes write < instead. We will use α, β, γ, . . . for ordinals.

The successor of α, denoted by α + 1, is defined by α + 1 = α ∪ {α}. An ordinal α
is a successor ordinal if α = β + 1 for some ordinal β. An ordinal α , 0 which is not a
successor ordinal is called a limit ordinal.

An important property of well-ordered sets is that if < is a well-ordering on A, then
(A, <) is isomorphic to a unique ordinal. Such an ordinal will be denoted by type(A, <).
We may drop A and simply write type(<), which means that < is a well-ordering on its
field. We define the cardinality of a well-ordered set as the least ordinal equinumerous
to it. Note that every natural number and ω are cardinals.
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The cardinal number of an infinite well-ordered set is called an aleph. We have
ℵ + ℵ = ℵ · ℵ = ℵ for any aleph ℵ. If A is a set of alephs, then

⋃
A is also an aleph

and it is the supremum of A.
Hartogs’ theorem states that for any cardinal m, there exists a least aleph, denoted

by ℵ(m), such that ℵ(m) � m.
We define ωα (or ℵα) inductively as follows:

ω0 =ω,

ωα+1 =ℵ(ωα),

ωα =
⋃
{ωξ : ξ < α} if α is a limit ordinal.

Every aleph is equal to ωα for some α. We write ω<ωα for
⋃
{ωn

α : n < ω}. Note that
ω<ωα ≈ ωα.

The axiom of choice (AC) states that every set can be well-ordered. Thus, under AC,
every infinite cardinal is an aleph. There are many equivalent statements of AC, such
as the comparability of cardinals and Zorn’s lemma. Without AC, we cannot choose
an arbitrary object from each nonempty set in an infinite collection. Therefore, in ZF,
all proofs that require infinite processes must be constructive. Without AC, cardinal
comparability holds for alephs, but not for arbitrary cardinals in general. Therefore,
we cannot guarantee that there is an injection from ω into an arbitrary infinite set. A
set A is Dedekind-infinite if ω � A or, equivalently, A has a denumerable subset. For
more details on the axiom of choice, see [4].

We write A �∗ B or |A| ≤∗ |B| if A is empty or there is a surjection from B onto A.
It is easy to see that, for any cardinals m and n, m ≤ n implies that m ≤∗ n. But the
converse does not necessarily hold without AC. Analogous to Hartogs’ theorem, for
any cardinal m, there exists an aleph ℵ such that ℵ �∗ m.

All work in this paper is done in ZF without AC.

3. Main theorem

In this section we give our main result. We start with some relevant definitions.

Definition 3.1. For any set A, define S (A) = { f : f is a bijection on A}.

Definition 3.2. A function F : A → B is finite-to-one if F−1[{b}] is finite for all
b ∈ ran F.

Notation 3.3. We write F : A� B if F is a surjection from A onto B and write idA for
the identity function on A.

Definition 3.4. We say that A is even if there is a set B such that A ≈ 2 × B and A is
almost even if there is a function f on A which has no fixed point and f ◦ f = idA.

Note that if A is even, then A is almost even since if g : A→ 2 × B is a bijection, then
f = g−1 ◦ h ◦ g, where h : 2 × B→ 2 × B, defined by h(0, x) = (1, x) and h(1, x) = (0, x),
has no fixed point and f ◦ f = idA.
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Since ‘m = 2m for all infinite cardinals m’ is a weaker form of AC (see [5]) and
it implies that every infinite set is even and thus almost even, these consequences are
weaker than AC as well.

Proposition 3.5. If A is almost even, then there is a partition of A each of whose
members has exactly two elements.

Proof. Assume that A is almost even. Then there is a function f on A which has
no fixed point and f ◦ f = idA. Let Π = {{x, f (x)} | x ∈ A}. Since f ◦ f = idA, Π

is a partition of A. Note that, since f has no fixed point, each member of Π is of
cardinality 2. �

Definition 3.6. We call the partition Π constructed above an a.e.-partition of A
(induced by f ).

Proposition 3.7. If A is almost even and Π is an a.e.-partition of A, then we can
construct an injection from P(Π) into S (A). Thus, a surjection from S (A) onto P(Π)
can be constructed as well.

Proof. Let Π be an a.e.-partition of A induced by f . An injection G : P(Π)→ S (A) is
defined by

G(Σ) =

(
f �

⋃
Σ

)
∪ idA−

⋃
Σ .

Define a surjection from S (A) onto P(Π) by

h 7→

G−1(h) if h ∈ ran G,
∅ otherwise.

�

The proofs of the lemmas below as well as the main theorem are modified from
those in [3].

Lemma 3.8. Suppose that there exists a finite-to-one map F : S (A)→ A and A is
infinite. If A is almost even, then an a.e.-partition of A is Dedekind-infinite.

Proof. Let Π be an a.e.-partition of A induced by f . Define G : A → Π by
G(x) = {x, f (x)}. Then G is finite-to-one and onto. So H = G ◦ F : S (A)→ Π is also
finite-to-one. For each natural number m ≥ 2, define

Xm = {g ∈ S (A) : |{x ∈ A : g(x) , x}| = m}.

Note that these Xm are pairwise disjoint and nonempty. As a result, since H is finite-
to-one, for each n, there are only finitely many m such that H[Xm] = H[Xn]. Hence,
T = {H[Xm] : 2 ≤ m < ω} is a denumerable set.

Define Γ : T → S (A) by Γ(B) = ( f �
⋃

B) ∪ idA−
⋃

B. Clearly Γ is one-to-one,
so ran Γ is a denumerable subset of S (A). Since H is finite-to-one, H[ran Γ] is a
denumerable subset of Π. Thus, Π is Dedekind-infinite. �
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Lemma 3.9. Let A be almost even and Π be an a.e.-partition of A. Suppose that there
exists a finite-to-one and onto map H : S (A)� Π, where A is infinite. Then we can
construct:

(1) a surjection from Π onto ωα from a surjection h : S (A)� ωα;
(2) a surjection from S (A) onto ωα+1 from a surjection gα : Π� ωα;
(3) a surjection from S (A) onto ωλ from a collection {gα : α < λ}, where gα : Π� ωα

for all α < λ and λ is a limit ordinal.

Proof. (1) Suppose that h : S (A)� ωα. Define g : Π→P(ωα) by g(P) = h[H−1[{P}]].
Since H is finite-to-one, each g(P) is a finite subset of ωα, so

⋃
ran g ⊆ ωα. Since we

can regard each g(P) as a finite sequence of ordinals less than ωα, ran g can be well-
ordered by the lexicographic order and thus | ran g | is an aleph. Since h is onto and
h( f ) ∈ h[H−1[{H( f )}]] = g(H( f )) for all f ∈ S (A), ωα ⊆

⋃
ran g. Then |

⋃
ran g| = ℵα.

Since each member of ran g is a finite set of ordinals, | ran g| ≥ ℵα. Then, by recursion,
we can construct an injection from ωα into ran g. Since there is a canonical injection
from ran g into

⋃
{ωn

α : n < ω} = ω<ωα , by using the canonical bijection from ω<ωα onto
ωα, we can construct an injection from ran g into ωα. Therefore, we can construct a
bijection ρ from ran g onto ωα by the Schröder–Bernstein theorem. Thus, ρ ◦ g is a
surjection from Π onto ωα.

(2) Suppose that gα : Π� ωα. Then the map Σ 7→ g[Σ] is a surjection from P(Π)
onto P(ωα). Similarly, from the canonical bijection from ωα onto ωα × ωα, we can
construct a bijection fromP(ωα) ontoP(ωα ×ωα). By Lemma 3.7, there is a surjection
from S (A) onto P(Π). Thus, we obtain a surjection from S (A) onto P(ωα × ωα). In
order to have a surjection from S (A) onto ωα+1, it is enough to construct a surjection
from P(ωα × ωα) onto ωα+1.

Define a function from P(ωα × ωα) into ωα+1 by

R 7→

type(R) if R ⊆ ωα × ωα is a well-ordering,
0 otherwise.

The above map is surjective since if γ < ωα+1, then |γ| ≤ ωα, so there exists an injection
h : γ→ ωα. Thus, we can define the well-ordering R ⊆ ωα × ωα induced by this h.

(3) Suppose that λ is a limit ordinal and we have a collection {gα : α < λ}, where
gα : Π� ωα for all α < λ. Consider each β < ωλ, that is, β < ωα for some α < λ. Notice
that, since gα is onto, {α < λ : β ∈ ran gα} , ∅. Define µβ = min{α < λ : β ∈ ran gα}
and Πβ = g−1

µβ
[{β}]. Let B = {Πβ : β < ωλ}. Then |B| ≤ ℵλ. Note that if α < λ and

ωα < β < γ < ωα+1, then

µβ = min{ξ < λ : β < ωξ} = α + 1 = min{ξ < λ : γ < ωξ} = µγ

and so Πβ , Πγ. Thus, |B| ≥ ℵα for all α < λ, which implies that |B| ≥ ℵλ. Hence,
|B| = ℵλ. Thus, we may assume that for all distinct subscripts α, β < ωλ, Πα , Πβ and
so there is an obvious bijection ρ from B onto ωλ.
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Define a surjection from P(Π) onto ωλ by

Σ 7→

ρ(Σ) if Σ ∈ B,
0 if Σ < B.

By Lemma 3.7, we can construct a surjection from S (A) onto P(Π). So we have a
surjection from S (A) onto ωλ. �

Now we are ready to prove the main result.

Theorem 3.10. Suppose that A is almost even and there exists a finite-to-one and onto
map F : S (A)� A. Then A is finite.

Proof. Suppose to the contrary that A is infinite. Let Π be an a.e.-partition of A. By
Lemma 3.8, ℵ0 ≤ |Π|. So we have a surjection g0 : Π� ω0.

For each ordinal α, define gα recursively as follows. Define gα+1 : Π� ωα+1 from
gα : Π� ωα by (2) and (1) of Lemma 3.9, and gλ : Π� ωλ from {gα : α < λ} by (3)
and (1) of Lemma 3.9, where λ is a limit ordinal. Then, for any ordinal α, ℵα ≤∗ |Π|,
which contradicts the fact that there is an aleph ℵ such that ℵ �∗ |Π|. �

We can see from the proofs that, in order to relate subsets of A to permutations on
A, we need the condition that A is almost even to have a partition of A each of whose
members is finite with cardinality at least 2 and also a fixed permutation f on A with no
fixed point such that f � P is also a permutation on P for all members P of the partition.
Thus, more generally, the theorem also holds when there are a natural number n ≥ 2
and a bijection f on A such that f has no fixed point and f ◦ . . . ◦ f︸      ︷︷      ︸

n copies

= idA.
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