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In this note we consider the question as to which central division algebras occur as
the Clifford algebra of a quadratic form over a field. Non-commutative ones other than
quaternion division algebras can occur and it is also the case that there are certain central
division algebras D which, while not themselves occurring as a Clifford algebra, are such
that some matrix ring over D does occur as a Clifford algebra. We also consider the
further question as to which involutions on the division algebra can occur as one of two
natural involutions on the Clifford algebra.

We use the standard notation and terminology of quadratic forms and Clifford
algebras as in [8] for example. We write C(q) for the Clifford algebra of a non-singular
quadratic form q over a field F, char F¥= 2, and we write (ax, a2, • • •, an) for a diagonali-
zation of q, where a{eF, i = 1, 2 , . . . , n. We write ((au a2)/F) for the quaternion algebra
over F generated by elements i, j , with i2 = a, j2 = b, ij = —ji. Note that ((a1( a2)/F) is
either a division algebra or else isomorphic to M2F, the ring of all 2 x 2 matrices over F.

All our quadratic forms will be assumed to be non-singular, i.e. represented by a
non-singular matrix.

PROPOSITION 1. Let A = d ® Q2<8> • • • ® Qs be a tensor product of s quaternion
algebras over F, s being a positive integer. (The Q, need not necessarily be division algebras.)
Then there exists a quadratic form q over F such that C(q) is isomorphic to A.

Proof. We proceed by induction on s.
If s = 1 we may take A = ((a1; bx)/F) and if q = (ax, b,) then C(q) is isomorphic to A.
Now assume the result holds for s - 1 and let A = Qx <8> Q2 <8> • • • <8> Qs. Write

Q, — ((<*;» bt)IF) for each i, for suitable af, bt in F, i = 1, 2 , . . . , s. A fundamental property
of Clifford algebras, see [7] or [8], is that if q1 is two dimensional then C(ql ± q2) is
isomorphic to C(q1)<8>FC(-8q2), fo being any non-singular form over F, 8 being the
determinant of qx (modulo squares in F) and 1 denoting the orthogonal sum of forms.
Let qx = (ax, bx) so that C(qx) is isomorphic to Qr. By the inductive assumption there is a
quadratic form, q2 say, such that C(q2) is isomorphic to Q2®Q3<8>- • -<S)QS. Then taking q
to be q l l (-a1b1q2) yields that C(q) is isomorphic to A.

Note that we could in fact have written down q directly as follows:

q = (au bu -axbxa2, -axbxb2, axbxa2b2a3, axbxa2b2b3,...,

COROLLARY. Let D be any central division algebra over F admitting an involution of the
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first kind (i.e. one which keeps fixed all the elements of F). Then for some integer rSsl, the
matrix ring M,D occurs as the Clifford algebra C(q) of some quadratic form q over F.

Proof. The algebra D represents an element of B2(F), the subgroup of elements of
order two in the Brauer group. (This is because the involution gives an isomorphism
between D and Dop, the opposite algebra of D, and the class of Dop is the inverse to that
of D in the Brauer group.) Note also that D must have degree equal to a power of two by
a result of Albert [1]. (The degree of D is the square root of its dimension as an F-vector
space.) The recent theorem of Merkurjev [10] implies that B2F is generated by the
quaternion algebras. Thus, for some integer r, the matrix ring MJ) must be a tensor
product of quaternion algebras over F and hence is C(q) for some quadratic form q over
F.

COMMENT 1. Our proposition gives a specific way of constructing the form q such that
C(q) is isomorphic to the algebra A provided that A has been decomposed into a tensor
product of quaternion algebras. Of course given an algebra A it is not necessarily easy to
see whether or how such a decomposition can be effected. However in many cases such a
decomposition can be done and so in these cases we have a way of constructing examples
of forms with specified Clifford algebras.

We should mention that Merkurjev's theorem in [10] gives an isomorphism of a
quotient of the algebraic K-group K2F with the group B2F. It can be reformulated as in
[4], in terms of quadratic forms without any K-theory, and our corollary is also an
immediate consequence of this version of Merkurjev's theorem.

COMMENT 2. A partial converse to Proposition 1 is the standard result, see [7] or [8],
that the Clifford algebra of any non-singular even-dimensional quadratic form over F is
always expressible as a tensor product of quaternion algebras over F. For an odd-
dimensional form q, C(q) is expressible as a tensor product of quaternion algebras over F
together with the centre of the algebra, the centre being either a quadratic extension field
of F or a sum of two copies of F. If we confine ourselves to looking at central division
algebras over F with an involution of the first kind then these can only occur as the
Clifford algebras of even-dimensional forms if at all.

COMMENT 3. Given a central division algebra D over F with an involution of the first
kind, we may ask what is the least integer r such that MJD is the Clifford algebra of a
quadratic form over F. Denote this integer by rD. We could also define, for the field F,
rF = max rD, maximum over all central division algebras D over F with an involution of
the first kind. (Possibly for some fields rF could be infinite.)

The values of rF and rD depend very much on the particular field F and algebra D.
The determination of rF and rD in general does not seem at all easy although there are a
lot of results in some special cases which we will summarize later on in this article.

COMMENT 4. A natural question to ask is the following:
When is a tensor product of s quaternion algebras a division algebra?
When s = 1 it is so if and only if the norm form of the quaternion algebra is
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anisotropic [8]. When s = 2 it is so if and only if a certain six-dimensional quadratic form
is anisotropic [2]. Specifically if Q; = ((ai; fcf)/F), i = 1,2, then this form is
(a,, bu -axbu -a2, -b2, -a2b2).

We may ask whether or not there is a quadratic form criterion for general s. It is easy
to check that for s = 1 an equivalent criterion to the norm form one is that (a,, bu -a^bx)
is anisotropic. This suggests the following conjecture which we are unable to prove.

s

CONJECTURE. \[ Q, is a division algebra if and only if the quadratic form

of dimension 3s, is anisotropic.

We now summarize some of the known facts about rF and rD.
(i) For any field F, if D has degree two or four then rD = 1. The degree two case

follows from the fact that any such D must be a quaternion division algebra and the
degree four case from the fact that D must be isomorphic to a tensor product of two
quaternion division algebras. Both these results are essentially due to Albert [1], [2]. See
also [11], [13]. Hence rF = 1 for any field in which each division algebra with involution of
the first kind has degree at most four. This includes a lot of familiar fields e.g. local fields
and global fields, where in fact the degree is at most two.

(ii) For any field F, if D has degree eight we have rD «2 . This follows from a result of
Tignol [14]. He proves that any central simple F-algebra A of degree eight and with an
involution of the first kind must be similar to a tensor product of quaternion algebras
provided that A is split by a Galois extension of rank eight and exponent two (i.e. a
triquadratic extension). When A is a division algebra D it has been shown by Rowen [12]
that this condition about the triquadratic extension is automatically satisfied. Thus M2D is
a tensor product of four quaternion algebras over F and hence a Clifford algebra over F.

(iii) There exist division algebras D for which rD = 2. In [3] an example is produced
of a central division algebra D with an involution of the first kind, D being of degree
eight, for which D is not a tensor product of quaternion algebras. The field F for this
example is F = Q(A), the rational functions in an indeterminate A, Q being the rationals.
Also in [5] this example is generalized to quite a few other fields of characteristic zero.

(iv) The techniques of [3], using abelian crossed products, leads to the construction of
division algebras with involution of the first kind of degree 2", n 5= 3, which are not tensor
products of quaternion algebras. The centre of these division algebras is a purely
transcendental extension of Q whose degree must get larger as the value of n increases. It
seems likely that as n increases the value of rD increases. So it is to be expected that there
are fields F and division algebras D with rD arbitrarily large.

We have the following general result.

PROPOSITION 2. Let D be a division algebra with an involution of the first kind over any
field F with char Fj= 2. Let D have degree 2 \ Then (i) rD is a power of two, (ii) if D is cyclic
then rD^22"-'-k.
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s

Proof. M£) = n Qt so that r222k = 4s. Hence r = 2"~k, i.e. r is a power of two. For (ii)
i = l

we appeal to a recent result of Tignol [15] who shows that if F contains a primitive nth
root of unity then a cyclic algebra of exponent m and degree mn is similar to a tensor
product of at most m symbols of degree n. In our case n = 2, a symbol of degree 2 is a
quaternion algebra, and m =2k~l so that s«2fc~1 yielding the result.

COMMENT 1. For k = 1, 2 this gives rD = 1, and for k = 3 it gives rD ^ 2 . These results
are valid even without D being cyclic as we have seen earlier. (Non-cyclic division
algebras exist of course. Albert [2] gave the first example.) For k = 4 we obtain rD =£ 16.
We would suspect that there is a lower bound than 16 in this case.

COMMENT 2. A natural question to ask is whether rF is related to any of the usual
field invariants such as the level sF [8]. While both rF and sF must each be a power of two,
there seems no obvious relation between them except that it appears to be the case that
rF ^ sF for all examples we have examined. However, see note added in proof.

Finally we consider which involutions can occur. By an involution we mean an
anti-automorphism of period two. On a Clifford algebra C(q) of a quadratic form
q : V —* R we have two natural involutions Je, e = ±1, induced by Je(x) = ex for all x in V.

Recall first the type of an involution as in [6] for example. We are interested here in
simple algebras A and the type of an involution is either +1 or - 1 according as our
involution is the adjoint involution of a symmetric or skew-symfnetric bilinear form. If A
has dimension n2 over F then the dimension of the subspace of A fixed by the involution
is either n(n+ l)/2 or n(n- l ) /2 according as to whether it is of type +1 or - 1 .

PROPOSITION 3. Let C{q) be the Clifford algebra of a quadratic form of dimension n, n
even. Let Je be the involution of C(q), e = ±1.

If n = 0 (mod 8), Je has type +1 for e = ±1.
If n=2 (mod 8), Je has type e.
If n = 4 (mod 8), Je has type - 1 for e = ±1.
If n = 6 (mod 8), Je has type —e.

Proof. Choosing a basis {e,, e2,..., en} for the underlying space of q, we have that
C{q) is spanned by the 2" possible monomials of the form e?1^2 • • • e"-, an = 0 or 1. It is
easy to see that the dimension of the subspace fixed by Jj must equal a sum of binomial
coefficients

and for that fixed by /_t it will be

For n = 0 (mod 8) and n = 4 (mod 8), the final term in each sum is I and it is easy to see
W
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that S = S' from the fact that I I = I I, i.e. J1 and /_, are of the same type for these
W \n-rJ

cases. Also, for n = 2 or 6 (mod 8), it is easy to see that S + S' = 2" and so J\ and /_, are
of opposite types in these cases. To see precisely which types occur, we observe that
S=i{2" + (l + i)"} forn = 0 o r 4 (mod 8), and that S = |{2n+Im(l + 0 } for n = 2 or 6
(mod 8).

To see this write out the binomial expansion of (1 + i)n and compare with S, noting
that (l + i)2 = 2i so that (1 + 0" is entirely real for n = 0 or 4 (mod 8) and entirely
imaginary for n = 2 or 6 (mod 8). For n = 0 (mod 8), (l + i )n>0 so that S-2"~1>0
implying that J, has type +1. For n = 4 (mod 8), (l + i')"<0 so that S-2"~1<0 implying
that J, has type - 1 . For n = 2 (mod 8), Im(l + i)n > 0 so that J t has type +1 and for n = 6
(mod 8) Im(l + i ) " < 0 so that J1 has type - 1 . This completes the proof.

COMMENT. This result gives us information about the division algebras with involution
(A,J) which occur as (C(q),/e) for some q and e = —1. For example if D is a division
algebra of degree four which is isomorphic to a tensor product Q^®Q2 of quaternion
algebras and J is an involution of type +1, (e.g. that induced by taking the standard
involution on each Q;), then (D, J) cannot occur as (C(q), Je) for any q since from our
proposition Je always has type - 1 .

We finish off with a couple of final remarks.

REMARK 1. We have talked about division algebras with involutions of the first kind
and their appearance as Clifford algebras with involution. A division algebra D over F
with involution /e of the second kind may well occur as (C(q), J) for an odd-dimensional
quadratic form q over Fo where F is a quadratic extension of Fo.

REMARK 2. Our initial interest in this question stemmed from [9] where we con-
structed exact octagons of Witt groups of hermitian forms over Clifford algebras with
involution.

ADDED IN PROOF. D. Shapiro has pointed out to me that for F = C(,x, y), SF= 1 while
rF3=2 by results in [5, §5].
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