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ON SEMIGROUP PRESENTATIONS

by EDMUND F. ROBERTSON AND YUSUF UNLU*

(Received 4th December 1990)

Semigroup presentations have been studied over a long period, usually as a means of providing examples of
semigroups. In 1967 B. H. Neumann introduced an enumeration method for finitely presented semigroups
analogous to the Todd-Coxeter coset enumeration process for groups. A proof of Neumann's enumeration
method was given by Jura in 1978.

In Section 3 of this paper we describe a machine implementation of a semigroup enumeration algorithm
based on that of Neumann. In Section 2 we examine certain semigroup presentations, motivated by the fact
that the corresponding group presentation has yielded interesting groups. The theorems, although proved
algebraically, were suggested by the semigroup enumeration program.

1980 Mathematics subject classification (1985 Revision): 20MO5.

1. Definitions and preliminary theorems

Let X be a finite set and let FS(X) be the free semigroup (excluding the empty word)
on X. Throughout this paper, by a presentation P on X we mean a generating set X
together with a finite set of relations L; = Rh i e / where Lh Rt e FS(X). We write

and use the notation SmgpP and GpP for the free-est semigroup on X satisfying the
relations L, = i?,, iel and the free-est group on X satisfying the relations L, = /?,, iel,
respectively. We are thus only interested in finitely presented semigroups and finitely
presented groups. We use the symbols F*J and Z for the set of positive integers and the
set of integers, respectively.

Definition 1.1. Let P be a presentation on X. We say that SmgpP has a group kernel
if it has an ideal which is isomorphic to Gp P.

Theorem 1.2. Let P be a presentation, S = SmgpP and G = GpP.

(a) S has a group kernel if and only if S has an idempotent e such that Se is a group
which is an ideal in S.
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56 E. F. ROBERTSON AND YUSUF UNLU

(b) / / Se and Sf are group kernels in S for idempotents e and f, then e=f. In
particular S can only have one group kernel.

Proof, (a) Let / be a group kernel in S. If e is the identity of /, then e is an
idempotent in S. We have

Seal = IeczSe,

which implies that I = Se.
Conversely, suppose that eeS is an idempotent such that Se is a group which is an

ideal in S. Then e is the identity of Se. For weS let us define w = we. If w, ueS then

wu = (we) (ue) = w(e(ue)) = w(ue) = (wu)e = (wu).

Hence if X i , . . . , x B e S and w = xl ...xn then w = xl...xn. This shows that Se is
generated by X = {x:xeX}. Let

P = (X:L1=R1,...,Lk=Rky

As observed above, for l^j^/c we have !,, = /?,. Since G is the group presented by P,
there is a homomorphism / from G onto Se such that /(x) = x. Considering G as a
semigroup, we see that there is a homomorphism g from S into G such that g(x) = x.
Since e is an idempotent, then so is g(e). Thus g(e) is the identity of G and for xeX,

g(x) = g{xe) = g(x)g(e) = x.

This shows that gf\X = ̂ x and fg\X = ̂ x. Consequently / is an isomorphism and Se is
a group kernel in S.

(b) Let E = Se and F = Sf. Then I = EF is an ideal in S contained both in E and F.
Since e and / are the identities of E and F, respectively, we have

(ef) (ef) = ((ef)e)f) = (ef)f = ef.

This shows that ef is an idempotent in E n F. So e=f=ef.

We can give conditions on a presentation P = (X:R), where X = {xl,x1,...,xn},
under which Smgp P will have a group kernel. First we introduce some notation.

Definition 1.3. For weFs(X) define g(w) = {xieX:xi occurs in w}.

Suppose S = SmgpP is finite and xt satisfies x7"+1=x, for l^i^n. Then xj"' is
idempotent for 1 ^ / ̂  n. Consider the conditions:

Cl. xi"i +1 = x, and xj"1 is central in S for 1 g i ̂  n.
C2. For each relation L, = /?, in R, g(Li)=g(Ri).

Theorem 1.4. IfP = (X:R} satisfies conditions Cl and C2 and S = SmgpP, then S has
a group kernel Kx = {weS:g(w) = X}. Moreover
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S=\jKr
r

where the union is taken over all YsA".

Proof. Clearly Kx is an ideal of S. Using Cl we see that the idempotent element

e — X i x 2 • • • x n

is the identity of Kx and that the inverse of w = x1 1x i 2 . . .x ,k , where g(w) = X, is

x i k
 x i i , - , • • • • x i i

Taking any subset Y of X we see that Sr={iveS:j(w)cy} is a subsemigroup of S with
group kernel KY by the above argument. The final conclusion now follows.

The condition C2 above ensures that KYr\Kz = 0 for subsets Y^Z of A'. The next
result gives similar results under slightly different conditions.

Theorem 1.5. Let X = {x,y] where x^y. Let A = Fs(X)\{x':ieN} and let L,,R,e/l
for 1 ^ Ii ̂  s. Consider the presentation

where w e FS(X) and n^.2 is a positive integer. If either we A or w = x then in S = Smgp P,
the elements x,x2,...,x"~l are pairwise distinct and

An{x,x2,...,x"-1} = 0.

Proof. Case 1. we A. Let B be the set of integers k such that 0^k^2"-l. Let us
define the functions /:B->B and g:B-*B as /c/ = [fc/2] and kg = 0 for keB, where [fc/2]
is the integer part of k/2. It is fairly easy to see that

(2"-l) / ' ' = 2 n " ' - l f o r l ^ i ^ n . (1.5.1)

In particular f=g and 0/=0. Let us observe that if h:B-+B is any function with
0/i = 0, then gh = hg=g. Let U be the subsemigroup of all self-maps of B generated by
f,g. By the remark we have just made

There is a homomorphism t/> from FS(X) onto U satisfying \j/(x)=f, *p(y)=g. We note
that for all ueA, ij/(u)=g. It follows that
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58 E. F. ROBERTSON AND YUSUF UNLU

and il/(w)=g=f = 4/(x"). Hence U is a semigroup satisfying the given relations.
Consequently there is a homomorphism a:S->U such that <x{x)=f and <x(y)=g. By 1.5.1

and f,f2,..., f are pairwise distinct. This shows that

/4n{x ,x 2 , . . . , x" - 1 }=0

and x,x2,...,x"~l are pairwise distinct.

Case 2. w=x. Let B be the set of integers k such that 0^/c^n. Let us define the
functions / : B-+B and g: B->B as

kf=\ k+l 0<k<n

.2

and

kg = O

for keB. It is easy to see that / " = / and / , f 2 , . . . , /"~* are pairwise distinct. Now
reasoning as in Case 1 we can prove the assertion.

The following theorem is easy to prove.

Theorem 1.6. Let P be a presentation on X and S = SmgpP. Let H be a subset of S
such that XcH and Hx^H for all x in X. Then H = S.

2. Some semigroup presentations

In this section we investigate some semigroup presentations and the relationship
between the semigroup and the group presented by the same presentation. First we
consider a presentation P where Gp P is the dihedral group.

Theorem 2.1. Let P=<a,b:a3 = a, bn+i=b, bab = a> where n^.2, DSn = SmgpP and
Dn = GpP. Then

(a) ab" = b"a = a.

(b) a2b = ba2 = ab"~1a.

(c) DSna
2 is the group kernel of DSn and |£)SJ = 3n = |Dn| + n.
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Proof, (a) b"a = b"bab = bn + lab = bab = a = bab = bab"+1 = babb" = ab".

(b) a2b = a2bnb = abn-1bab = abn-la = babbn-la = babna = ba2.

(c) Let S = DSn and I = Sa2. Now / is an ideal in S by (b) and contains the
idempotent e = a2. Also, again using (b), we see that e is the identity element of / and

(ae)2 = e and (be)n = {ba2)n = bna2 = a2=e.

Thus ae and be have inverses in S, which shows that / is a group. So / is the group
kernel which is isomorphic to Dn. If B = {b,b2,...,b"}, then BnI = BnSa2 = 0 and
b,b2,...,b" are pairwise distinct, by Theorem 1.5. Since ae = a3 = a, then ael. If w is a
word in S, then either weB or w contains the letter a. Consequently S = BuI. This
shows that

since Dn is the dihedral group and |Dn| = 2w.

Taking n = 2 in Theorem 2.1 gives |Z)S2| = 6. However we will show that if we change
the second relation from b3 = b into ab3 = ab, the semigroup with this new presentation
is infinite. This shows that Gp P is not enough to determine the structure of Smgp P.

Theorem 2.2. Let P = (a,b:a3 = a,ab3=ab,bab = a}. Then GpP is D2, the Klein
four-group, while Smgp P is infinite.

Proof. Let a and b be the functions from f̂J to M defined by

/ca=l and kb = k2 for keN.

Then a3 = a, ab3 = ab and bab = a. Thus a and b satisfy the given relations. Clearly the
powers of b are pairwise distinct, hence Smgp P is infinite.

The next presentation comes from the presentation for a general metacyclic group.

Theorem 2.3. Let P = (x, y:xm+l =x, xy = yxr, y" = xsy where m, n, r, s are positive
integers satisfying

r" = 1 (modm), rs = s(modm), s<m,l<r^

Let S = SmgpP and G = GpP.

(a) x'y = yxJr for all j 6 N.

(b) xmy = yxm and xm is an idempotent in S.

(c) Sxm is the group kernel of S and \S\ = n-l + |G | = n - l +mn.

https://doi.org/10.1017/S0013091500005897 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005897


60 E. F. ROBERTSON AND YUSUF UNLU

Proof, (a) This easily follows from the relation xy = yxr by induction.

(b) Clearly xm is an idempotent, since xm+1 = x. We have xmy=yxrm by (a). Since xm

is an idempotent, then xkm = xm for all k in H. So xmy = yxm.

(c) Since e = xm is central in S, I = Sxm is an ideal in S with e as an identity. Since
rs = s(mod m), then m\(r— l)s. Hence there is a positive integer p such that rs = s + mp.
Now

^r~1)= y"(r~ 1 ) x m = v"('""1)xsxm~s = y"(r~ 1)

ynr v m — s ^r Ym — s Ys + mp Ym - s

It follows that ye and xe each has an inverse in /, and so / is a group. Since x = ex, then
xel. Reasoning as in Theorem 2.1, we see that if Y={y,y2,...,y"~1} then 7 n / =
Yn Sxm = 0 , S= y u / and y, y2,..., y"~l are pairwise distinct. Hence

\S\ = n-l+\l\ = n-l+mn

since G is a metacyclic group of order mn.

Before giving the next theorem, we define the Lucas sequence of numbers {g,} by

go = 2, gi = 1, gi + 2=gn-i+gi for i^O.

Theorem 2.4. Let P = (a,b:ab2 = ba2,an+1 =a,bn + l = b\ S = SmgpP and G = GpP.
Then

(i) if n is odd\S\ = 2n + \G\ = 2n + ngn,

(ii) (/ n is even then

r 10 ifn = 2

\S = 68 ifn = 4

- oo i/ n ̂  6.

That |S | is infinite for n ^ 6 follows since \G\ is infinite in this case, see [1]. We shall
break trie proof of the finite parts of the theorem into a lemma and two examples. We
consider first the case where n is odd.

Lemma 2.5. / / S and G are as in Theorem 2.4 then, with n = 2k + 1, we have:

(a) ab = ba2b2kandba = ab2a2k;

(b) ab = (bay + 1a and ba = (ab)k + lb;
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(c) (ba)k + 1=aba2k and (ab)k+l = bab2k;

(d) ab = aba2k+1 and ba = bab2k + 1;

(e) ab = b2k +1 ab and ba = a2k+1 ba;

(f) abn = bnaandba" = a"b;

(g) \S\ =

Proof. Before we start the proof let us observe that if we interchange a with b in any
identity in S, then we obtain another identity, since the relations in P are symmetric. So
we will prove only one of the identities in each case.

(a) ba2b2k = ab2b2k = abn+1 = ab.

(b) We prove by induction on r that

ab = (ba)rab2k ~2r + 2 for 1 g r g k.

^l:Suppose that l ^ r^ /c— 1 and the assertion holds for r. We have 2k — 2r>0.

This completes the induction. If we then take r = k we get

ab = (bafab2 = {bafba2 = (ba)k+1a.

(c) We prove by induction on r that

(ba)k+l=(ba)k-r+1ab2ra2k for l^r^

r=\:{ba)k+l={ba)kba = (ba)kab2a2k by (a).

r ^ 1:Suppose that 1 ^ r^ /c— 1 and the assertion holds for r.

(ba)k+l=(ba)k'r+1ab2ra2k = (ba)k-rba2b2ra2k

This completes the induction. If we then take k = r we obtain

(baf +1 = ba2b2ka2k = ab2b2ka2k = aba2k.

(d) By (b) and (c) we get

ab=(bay+la = (aba2k)a = aba2k+l.
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(e) ba = ab2a2k = a2k+2b2a2k = a2k + lab2a2k = a2k+lba by (a).

(f) ab2k+l = abb2k = (b2k + 1ab)b2k = b2k+lab2k+l=b2k(bab2k+l) = b2kba = b2k+la.

(g) Note that Cl and C2 are satisfied so e = a"b" is the identity of the group kernel
I = Se. Let A = {a,a2,...,a"} and B = {b,b2,...,bn}. Then by Theorem 1.4 S = AvBvI
and consequently |S| = 2n + |G|. But using the results of [6] we know that |G| = ngn and
so we obtain

as required.

All the semigroup presentations we have studied so far have group kernels. However
not every semigroup presentation has a group kernel. In fact the next part of Theorem
2.4 gives an example of a presentation P such that Gp P is abelian, S = Smgp P is finite
but S is not abelian and S has no group kernel.

Example 2.6. Let P = (a,b:a3 = a,b3 = b,ab2 = ba2}, S = SmgpP. Then

(a) G = GpP is isomorphic to Z2.

(b) S has no group kernel, |S| = 10 and S is not abelian.

Proof, (a) We have

Hence GpP is isomorphic to Z2.

(b) Let H = {a,a2,b,b2,ab,ba,ab2,bab,aba,a2b2}. We have the following identities:

b2a = b2a3 = bba2a = bab2a = ba2ab2a — ab2ab2a = ab2ba2a = aba;

baa = ab2;

ab2 a = ba2 a — ba;

abaa = aba2 = ab2ba2 = ba2ab2 = bab2;

a2b2a = a2(aba) = aba;

a2b2 = aba2 = ab2ba2 = ba2ab2 = bab2 = b2a2.

It follows that Ha is contained in H. The last identity shows that b2a2 is an element of
H. Thus interchanging a with b in H leaves H invariant. Hence Hb is also contained in
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H. Since a and b are in H, then H = S, by Theorem 1.6. Now let X = {1,2, . . . , 10}. Define
the functions a and b from A" to X as follows:

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
a: | 1 1 1 1 i i I i 1 b:i I j 1 1 1 I I I I

2 1 6 9 9 7 6 6 10 9 5 8 4 3 7 8 5 10 5 8

It is routine to check that a and b satisfy the given relations and all elements in H yield
distinct elements. Thus |S| = 10 and S is non-abelian. It is easy to check that S has no
group kernel using this representation of S.

Example 2.7. Let P = (a,b:a5 =a,b5 = b,ab2=ba2}, S = SmgpP. Then

(a) G = GpP has order 20.

(b) The idempotents of S are a4, b4, (ab)2, (ba)2, a4b4.

(c) The idempotents form a subsemigroup.

(d) S has no group kernel.

(e) |S| = 68 and S is not abelian.

Proof. The result (a) can be deduced from the results in [1]. We leave the other
details to the reader.

Note that the proof of Theorem 2.4 is now complete.
Each of the presentations given above has at least one relation of the form xm = x. But

as the following theorem shows this not essential for Smgp P to have finite order.

Theorem 2.8. Let P = (a,b:a2 = bk, bab = a}, S = SmgpP and G = GpP. Then Sa4 is
the group kernel in S and \S\ = k— l+\G\ = 5k— 1, where keN and 2g/c.

Proof. Since a2 = bk, then a2 and a4 are central in S. It follows that Sa4 is an ideal in
S. Also a5 = a2aa2 = bkabk = a. Thus e = aA is an idempotent in S. We also have

(ae)4 = a4 = e and {be)2k = b2ka*k = a*a4 = a4 = e.

Hence ae and be have inverses in Se. This shows that / = Se is the group kernel in S. Let
B = {b,...,bk~1}. Then by Theorem 1.5, I nB = 0 and b,...,bk~l are pairwise distinct.
If w is a word in S\B, then w is of the form w = . . . a... and so w = . . . aa* ... = we belongs
to /. Consequently S = B u /. If we let

x = b, y = a, n = 2, s = k, m = 2k, r = 2k — 1,

we see that G is isomorphic to a metacyclic group and so \G\ = 2-2k = 4k. Hence
|S| = 5fc-l.

3. Description of the computer program

The computer program is an implementation based loosely on the method described

https://doi.org/10.1017/S0013091500005897 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005897


64 E. F. ROBERTSON AND YUSUF UNLU

by Neumann in [5] and incorporates some ideas from [2]. To describe the program we
choose a concrete example and explain the main ideas using this example.

The program has a few main variables which we will list below in an effort to make
the description of the program clearer.

DefList : A doubly linked list used to keep track of definitions made.
DefTable: A two-dimensional array of integers. DefTable[i,j] is the definition made

for i*j where j is one of the generators. If no definition is made for i*j,
then DefTable[ij] = O.

EquClass: A one-dimensional array of integers. The equivalence class £[i] of i can be
determined by using the following procedure:

set £[i] = empty; j = i
repeat

set £[i] = £[i] u {j}; j = EquClassfJ]
until j = i

EquPair : A stack, which is an array of equivalence pairs, used to keep track of
equivalences.

Let P = (X:Ll=Rl,L2 = R2,...,Ls = Rsy be a presentation on X. We first define 0 to
represent the empty word, which of course is not part of the semigroup. Starting with
the definition 0 and stepping forward through the list DefList for a given relation L = R,
where L = ala2...an and R = blb2...bm, and a definition k, then we process this relation
in the following fashion:

take left relation L
let t = k
for i = 1 to n — 1 do

let p = DefTable[t,a,]
if p = 0 then

make a new definition p
let DefTable[t,a,]=p

end if
let t = p

end for

At the end of this process we obtain a definition ld = t waiting to be processed to see
whether a definition Id * an needs to be made.

Repeating the same process for R we obtain rd waiting to be processed to see whether
a definition rd * bm needs to be made. There are four cases that may occur.

Case 1. One of the integers DefTable[W, an] and DefTable[rd, bm~] is zero and the
other is not. In this case we set the zero one to be the same as the non-zero one.

Case 2. DefTable[W, an] and DefTable[r<i, bm] are both non-zero and equal. In this
case we continue the above process with the next relation.
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Case 3. Def Table[/d, an] and Def Table [rd,fcm] are both zero. In this case we
reprocess the left relation. This is necessary if L is embedded in R. After this we may
end up with case 1 or case 3 again. If we end up with case 3, we make a new definition
p, and set both of DefTable[W, an] and Def Table [rd,bm] equal to p.

Case 4. c = Def Table[/d, an~\ and d = DefTable[rd, fcm] are both non-zero but c # d.
This means that k*L = c and k*R = d yield distinct results. Since this is impossible c
and d must be equivalent. To resolve this problem we proceed as follows.

for each definition k let EquClass[/c] = k
push the pair (c, d) into the stack EquPair
while stack EquPair is not empty do

pop pair (a, b) from the stack
for each generator g do

let /i = DefTable[a,g] and v = DefTable[fe,g]
if j i #0 and v = 0 then let DefTable[b,g] = n
if n = 0 and v^O then let DefTable[a,g] = v
if both /z#0, v^O and / /#v then

if n is not equivalent to v, then push the pair (/J, V) into the stack
end for
join the equivalence classes of a and b

end while
for each equivalence class £[i] with more than two elements, replace each occurrence

of xe£[ i ] \{ i} with i in the DefTable.
Remove x from Def List.

Now restart the process with the next definition which is not yet processed until all
the definitions in the Def List are finished. If the program terminates in a finite number
of steps then the total number of definitions is one more than the order of the
semigroup.

Consider the semigroup S given in Example 2.6. Using this example, we list below the
tables which show how definitions are made and equivalences resolved by the computer
program described above.

We define 0 to be the empty word, 1 to be a, and 2 to be b. We process each relation
making definitions as described above. An asterisk denotes an equivalence.

a a a = a b b b = b a b b = b a a

0 1 3 1 0 1 0 2 4 2 0 2 0 1 5 7 0 2 6 7
1 3 1 3 1 3 1 5 7 5 1 5 1 3 8 1 0 1 5 9 1 0

2 6 7 6 2 6 2 4 2 4 2 4 2 6 1 1 1 3 2 4 1 2 1 3
3
4
5
6
7

1
12
9
7
6

3
13
10
6
7

1
12
9
7
6

3
4
5
6
7

1
12
9
7
6

3
4
5
6
7

8
2
7
11
5

10
4
5
13
7

8
2
7
11
5

3
4
5
6
7

8
2
7
11
5

3
4
5
6
7

1
12
9
7
6

5
15
16
5
11

7
7
7
7
13*

3
4
5
6
7

8
2
7
11
5

14
6
6
17
9

7
7
7
7
10*
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After processing relation 3, we find that 13 and 10 are equivalent. Before processing
this equivalence relation the linked list of definitions is as follows:

DefList:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17.

This equivalence yields the following non-trivial equivalence classes:

Class of 8 = {8,11}
Class of 9 = {9,12}
Class of 10 = {10,13}
Class of 14 = {14,17}
Class of 15 = {15,16}

After processing these equivalences, the linked list of definitions reduces to

DefList: 0 1 2 3 4 5 6 7 9 10 14 15.

If we compare the old and new DefList, we see that they are the same up to
definition 6 and the program paused to resolve the equivalence 13 = 10 while processing
definition 7. So we only need to make a partial table to describe how the program
continues starting with definition 7. But we list below the whole table starting with
definition 0, to show how all necessary changes are made and how all the equivalences
are resolved. Later we will list only the partial tables which start with the definition
which is not yet completely processed.

a a a = a b b b = b a b b = b a a

0 1 3 1 0 1 0 2 4 2 0 2 0 1 5 7 0 2 6 7
1 3 1 3 1 3 1 5 7 5 1 5 1 3 8 1 0 1 5 9 1 0
2 6 7 6 2 6 2 4 2 4 2 4 2 6 8 1 0 2 4 9 1 0
3
4
5
6
7

1
9
9
7
6

3
10
10
6
7

1
9
9
7
6

3
4
5
6
7

1
9
9
7
6

3
4
5
6
7

8
2
7
8
5

10
4
5
10
7

8
2
7
8
5

3
4
5
6
7

8
2
7
8
5

3
4
5
6
7

1
9
9
7
6

5
15
15
5
8

7
7
7
7
10

3
4
5
6
7

8
2
7
8
5

14
6
6
14
9

7
7
7
7
1

8 14 7 6* 8 14*

After processing relation 1, we find that 6 and 14 are equivalent. Before processing
this equivalence relation the linked list DefList of definitions is as follows:

DefList: 0 1 2 3 4 5 6 7 8 9 10 14 15.

This equivalence yields only one non-trivial equivalence class {6,14}. After processing
this equivalence, the linked list of definitions reduces to
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DefList:0 1 2 3 4 5 6 7 8 9 10 15.

We continue with definition 8 and obtain

a a a = a b b b = b a b b = b a a

8 6 7 6 8 6 8 10 8 10 8 10 8 6 8 10 8 10 9 10
9 10 9 10 9 10 9 15 7 5* 9 15*

While processing relation 2, we find that 5 and 15 are equivalent. Before processing
this equivalence relation the linked list of definitions is as follows:

DefList: 0 1 2 3 4 5 6 7 8 9 10 15.

This equivalence yields only one non-trivial equivalence class {5,15}. After processing
this equivalence, the linked list of definitions reduces to:

DefList: 0 1 2 3 4 5 6 7 8 9 10.

We continue with definition 9 and finally end up with the following consistent table:

a a a = a b b b = b a b b = b a a

0
1
2
3
4
5
6
7
8
9

1
3
6
1
9
9
7
6
6
10

3
1
7
3
10
10
6
7
7
9

1
3
6
1
9
9
7
6
6
10

0
1
2
3
4
5
6
7
8
9

1
3
6
1
9
9
7
6
6
10

0
1
2
3
4
5
6
7
8
9

2
5
4
8
2
7
8
5
10
5

4
7
2
10
4
5
10
7
8
7

2
5
4
8
2
7
8
5
10
5

0
1
2
3
4
5
6
7
8
9

2
5
4
8
2
7
8
5
10
5

0
1
2
3
4
5
6
7
8
9

1
3
6
1
9
9
7
6
6
10

5
8
8
5
5
5
5
8
8
8

7
10
10
7
7
7
7
10
10
10

0
1
2
3
4
5
6
7
8
9

2
5
4
8
2
7
8
5
10
5

6
9
9
6
6
6
6
9
9
9

7
10
10
7
7
7
7
10
10
10

10 9 10 9 10 9 10 8 10 8 10 8 10 9 5 7 10 8 6 7

As is proved in Example 2.6, the semigroup S has order 10.
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