Proof of the theorem that the mid points of the three diagonals of a complete quadrilateral are collinear.

By John Dougall, M.A.

The following proof of this theorem assumes only Euclid, I. 43, and its converse, with the well-known deductions, "the line joining the mid points of two sides of a triangle is parallel to the third side," and "the mid point of one diagonal of a parallelogram is also the mid point of the other." The proof given by Dr Taylor in his Conics which suggested the method, makes use of ratios.

Let $A B C D$ (Fig. 16) be a quadrilateral, $A D, B C$, produced meeting in E, and $A B, D C$, produced in F. Through each of the angular points of the figure draw parallels to AB, AD, giving two sets of four parallel lines,

AGBF, HCKL, DMNP, EQRS, in the one set,
and AHDE, GCMQ, BKNR, FLPS, in the other set.
By Euclid, I. 43,

$$
\square^{m} \mathrm{AC}=\square^{m} \mathrm{CR}, \quad \text { and } \quad \square^{m} \mathrm{AC}=\square^{m} \mathrm{CP}
$$

$\therefore \quad \square^{m} \mathrm{CP}=\square^{m} \mathrm{OR}$, and \therefore CNS is a straight line.
\therefore the mid points of AC, AN, AS are collinear,
that is, the mid points of $\mathrm{AC}, \mathrm{BD}, \mathrm{EF}$ are collinear.

