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Equivalences and stratified flops

Sabin Cautis

Abstract

We construct natural equivalences between derived categories of coherent sheaves on
the local models for stratified Mukai and Atiyah flops (of type A).
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1. Introduction

1.1 Overview

The purpose of this paper is to define in a direct way the kernels which induce equivalences
between the (derived) categories of coherent sheaves on the local models for stratified Mukai or
Atiyah flops (of type A).

The relation between birational geometry and derived categories of coherent sheaves is an
interesting but sometimes subtle story. On the one hand, there are some general guesses of
when two birational varieties should be D-equivalent (i.e. have isomorphic derived categories).
For example, one such conjecture is that K-equivalence should imply D-equivalence. Recall
that two birational varieties Y and Y ′ are K-equivalent if they have a common resolution
Y

π1←−− Z π2−−→ Y ′ such that π∗1(KY )∼= π∗2(KY ′) (see [Huy06, p. 150] for details).

More generally, given a flip X 99K Y there should be an embedding of DCoh(Y ) into
DCoh(X). So, the minimal model program can be thought of as a process which yields a birational
model having the smallest derived category among all models.

On the other hand, one can take specific birational varieties Y and Y ′ and ask for an explicit
equivalence between their derived categories. One natural way to construct such an equivalence

Received 7 September 2009, accepted in final form 12 May 2011, published online 9 November 2011.
2010 Mathematics Subject Classification 14E99.
Keywords: Mukai flops, stratified flops, coherent sheaves, derived equivalences, categorical actions, Cohen–
Macaulay sheaves.
This journal is c© Foundation Compositio Mathematica 2011.

https://doi.org/10.1112/S0010437X11005616 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X11005616


S. Cautis

is to define a birational correspondence

Z
π1

����
��

��
�� π2

  AA
AA

AA
A

Y Y ′

and hope that the functor π2∗ ◦ π∗1 : DCoh(Y )→DCoh(Y ′) is an equivalence. Sometimes the
obvious correspondence works (i.e. it induces an equivalence) and sometimes it does not (see
the discussion below).

Interesting examples of such correspondences are given by (stratified) Mukai and Atiyah
flops (defined below). Such flops appear naturally in higher dimensional birational geometry. For
example, Fu [Fu07] showed that two Springer maps with the same degree over a nilpotent orbit
closure are connected by stratified Mukai flops. So, if one can show that stratified flops induce
equivalences, then it follows that any two Springer resolutions are derived equivalent.

Another example is from joint work with Kamnitzer [CK08b], where we used explicit
equivalences induced by Mukai flops to construct homological knot invariants. Stratified Mukai
flops show up when one tries to generalize this construction in order to categorify the colored
slm Reshetikhin–Turaev knot invariants. In these cases one wants a particular equivalence; it
does not suffice to simply know that the equivalence exists abstractly.

The geometry of stratified flops has also been studied in [CF07, Mar01]. The motives and
quantum cohomology rings of varieties related by flops were studied in [FW08, LLW10]. We will
not discuss these results here, although it is certainly an interesting question to relate them to
the derived category of coherent sheaves.

1.2 Stratified Mukai and Atiyah flops

The local model for the Mukai flop is a correspondence which relates the cotangent bundles
T ∗P(V ) and T ∗P(V ∨) of dual projective spaces. Notice that although T ∗P(V ) and T ∗P(V ∨)
are isomorphic, they are not naturally isomorphic (so, for example, they are not isomorphic in
families). In particular, this means that the categories of coherent sheaves Coh(T ∗P(V )) and
Coh(T ∗P(V ∨)) are not naturally isomorphic.

The correspondence is given by blowing up the zero section in T ∗P(V ) and then blowing
down the exceptional divisor in a different direction to obtain T ∗P(V ∨). One can also blow down
the zero sections of T ∗P(V ) and T ∗P(V ∨) to a common base B. To summarize, we obtain a
commutative diagram.

W
π1

{{vvv
vv

vv
vv π2

$$IIIIIIIII

T ∗P(V )

##HHHHHHHHH
T ∗P(V ∨)

zzuuu
uuu

uuu
u

B

One might guess that π2∗ ◦ π∗1 : DCoh(T ∗P(V ))→DCoh(T ∗P(V ∨)) should give an
equivalence. Perhaps a little surprisingly, this is not the case [Nam03]. However, if one uses
the fibre product Z := T ∗P(V )×B T ∗P(V ∨) instead of W , then the induced functor (given by
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pulling back to Z and pushing forward) does induce a natural equivalence

DCoh(T ∗P(V )) ∼−−→DCoh(T ∗P(V ∨))

as shown by Kawamata [Kaw02] and Namikawa [Nam03].

Now T ∗P(V ) and T ∗P(V ∨) have natural one-parameter deformations ˜T ∗P(V ) and ˜T ∗P(V ∨)
over A1. The Atiyah flop relates these two spaces by a correspondence also given by blowing
up and then down the zero section. One can also blow down the zero sections to get a common
space B̃ and obtain the analogous commutative diagram.

W̃
π̃1

||xx
xx

xx
xx

x
π̃2

##GG
GG

GG
GG

G

˜T ∗P(V )

""FF
FF

FF
FF

F
˜T ∗P(V ∨)

{{wwwwwwwww

B̃

This time W is actually the same as the fibre product ˜T ∗P(V )×B̃ ˜T ∗P(V ∨) and the functor
π̃2∗ ◦ π̃∗1 induces an equivalence

DCoh( ˜T ∗P(V )) ∼−−→DCoh( ˜T ∗P(V ∨)).

Mukai flops and Atiyah flops have natural generalizations to cotangent bundles of
Grassmannians. More precisely, the stratified Mukai flop (of type A) relates T ∗G(k, N) and
T ∗G(N − k, N) (the standard Mukai flop is the case k = 1) via a diagram.

W
π1

yyssssssssss
π2

&&NNNNNNNNNNN

T ∗G(k, N)

%%KKKKKKKKKK
T ∗G(N − k, N)

xxpppppppppppp

B

Such flops often show up in the birational geometry of symplectic varieties. We will give a
precise description of these spaces and maps in § 2. Perhaps surprisingly, it was shown by
Namikawa in [Nam04] that neither W nor the fibre product Z := T ∗G(k, N)×B T ∗G(N − k, N)
induces an equivalence DCoh(T ∗G(2, 4)) ∼−−→DCoh(T ∗G(2, 4)). At this point, it is not clear
what correspondence, if any, one can use to construct this equivalence.

In [CKL09], together with Kamnitzer and Licata, we constructed natural equivalences

DCoh(T ∗G(k, N)) ∼−−→DCoh(T ∗G(N − k, N))

for all 0 6 k 6N . The construction was indirect and involved categorical sl2 actions. However, a
little unexpectedly, it yielded a kernel which is a sheaf (i.e. a complex supported in one degree).
In this paper, we identity this sheaf in a more direct way as the pushforward of a line bundle
from an open subset of the fibre product Z (Theorem 3.8).

There is also a deformed version of stratified Mukai flops. These are the stratified Atiyah flops
(of type A) and they relate ˜T ∗G(k, N) and ˜T ∗G(N − k, N) (these spaces are natural deformations
of T ∗G(k, N) and T ∗G(N − k, N) over A1). It follows from Namikawa’s work [Nam04] that the
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natural correspondence here (which is the same as the natural fibre product) does not induce an
equivalence when (k, N) = (2, 4). In the second main theorem of this paper, we use the description
of the kernel used for the stratified Mukai flop (Theorem 3.8) to construct another kernel (again
given via the pushforward of a line bundle from an open subset) which induces an equivalence

DCoh( ˜T ∗G(k, N)) ∼−−→DCoh( ˜T ∗G(N − k, N))

for any 0 6 k 6N (Theorem 4.1).
In [Kaw06], Kawamata wrote down a tweaked version of the functor induced by Z and showed

that it induces an equivalence

DCoh( ˜T ∗G(2, 4)) ∼−−→DCoh( ˜T ∗G(2, 4)).

We show that our functor agrees with his functor in this special case (Proposition 5.7).

1.3 Outline
In § 2, we define all the varieties involved and their relevant deformations. We also briefly review
S2 sheaves and their extensions.

In § 3, we recall the equivalence T(k) : DCoh(T ∗G(k, N)) ∼−−→DCoh(T ∗G(N − k, N))
constructed in [CKL09, CKL10b] via categorical sl2 actions. We then give a new description of
the corresponding kernel T (k) as a pushforward of a line bundle from a locally closed subset
of T ∗G(k, N)× T ∗G(N − k, N) (Theorem 3.8).

In § 4, we show that the sheaf T (k) extends to a sheaf T̃ (k) on ˜T ∗G(k, N)×A1
˜T ∗G(N − k, N)

which induces an equivalence (Theorem 4.1). This sheaf also has a description as the pushforward
of a line bundle.

In § 5, we tie up some loose ends. First, we discuss the choices of the line bundles appearing
in Theorems 3.8 and 4.1. Then we compute explicitly the inverse of T̃(k). Finally, we explain the

relation between our equivalences and the equivalence DCoh( ˜T ∗G(2, 4)) ∼−−→DCoh( ˜T ∗G(2, 4))
constructed by Kawamata in [Kaw06].

2. Preliminaries

In this section, we discuss notation, define the main varieties we will study and review some
facts regarding S2 sheaves. One can skim this section on a first reading and refer back to it as a
reference.

2.1 Notation
We will only consider schemes (of finite type) over C. Schemes will carry some natural action of
C× (see § 2.4). We will denote by D(Y ) the bounded derived category of C×-equivariant coherent
sheaves on Y . All maps will be C×-equivariant.

All functors will be derived. So, for example, if f : Y →X is a morphism then f∗ :D(Y )→
D(X) denotes the derived pushforward (under this convention, the plain pushforward is denoted
R0f∗).

Warning 2.1. There is one important exception to this rule, namely if j : U → Y is an open
embedding then j∗ will always denote the plain (underived) pushforward.

Recall also the terminology of Fourier–Mukai transforms [Huy06]. Given an object P ∈
D(X × Y ) (whose support is proper over Y ), we may define the associated Fourier–Mukai
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transform, which is the functor

ΦP :D(X) → D(Y ),
F 7→ π2∗(π∗1(F)⊗ P),

where π1 and π2 are the natural projections from X × Y . The object P is called the (Fourier–
Mukai) kernel.

Fourier–Mukai transforms have right and left adjoints which are themselves Fourier–Mukai
transforms. The right and left adjoints of ΦP are the Fourier–Mukai transforms with respect to
the kernels

PR := P∨ ⊗ π∗2ωX [dim(X)] ∈D(Y ×X) and PL := P∨ ⊗ π∗1ωY [dim(Y )] ∈D(Y ×X).

If P induces an equivalence ΦP , then its inverse is induced by PL ∼= PR.
We can express composition of Fourier–Mukai transforms in terms of their kernel. If X, Y, Z

are varieties and ΦP :D(X)→D(Y ), ΦQ :D(Y )→D(Z) are Fourier–Mukai transforms, then
ΦQ ◦ ΦP is a Fourier–Mukai transform with respect to the kernel

Q ∗ P := π13∗(π∗12(P)⊗ π∗23(Q)).

The operation ∗ is associative. Moreover, by [Huy06, Remark 5.11], we have (Q ∗ P)R ∼= PR ∗ QR
and (Q ∗ P)L ∼= PL ∗ QL.

2.2 Varieties
Fix N once and for all. We will write Y (k) and Ỹ (k) for T ∗G(k, N) and ˜T ∗G(k, N), respectively.
If Y is a variety, then D(Y ) will denote the bounded derived category of coherent sheaves on Y .
We usually denote closed immersions by i and open immersions by j.

Suppose from now on 2k 6N . Recall the standard description of cotangent bundles to
Grassmannians

Y (k) =
{

(X, V ) :X ∈ End(CN ), 0 k−−→ V
N−k−−−−→ CN , XCN ⊂ V and XV ⊂ 0

}
,

where the arrows indicate the codimension of the inclusions. Forgetting X corresponds to the
projection Y (k)→G(k, N), while forgetting V gives a resolution p(k) : Y (k)→B(k), where B(k)
is the nilpotent orbit

B(k) := {X ∈ End(CN ) :X2 = 0 and dim(kerX) =N − k}.

The condition dim(kerX) =N − k is equivalent to rank(X) = k.
Now we also have the resolution p(N − k) : Y (N − k)→B(k). Thus, we get two resolutions

Y (k)
p(k)−−−−→B(k)

p(N−k)←−−−−−− Y (N − k),

which is the basic example of a stratified Mukai flop between Y (k) and Y (N − k). Consider the
fibre product

Z(k) := Y (k)×
B(k)

Y (N − k)

=
{

0
k−−−−→−−−−→

N−k

V1

V2

N−k−−−−→−−−−→
k

CN :XCN ⊂ V1, XCN ⊂ V2, XV1 ⊂ 0, XV2 ⊂ 0
}
.

The scheme Z(k) is equi-dimensional of dimension 2k(N − k). It consists of k + 1 irreducible
components Zs(k) (s= 0, . . . , k), where

Zs(k) := p(k)−1(B(k − s))×B(k−s) p(N − k)−1(B(k − s)).
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Notice that

{(X, V1, V2) ∈ Z(k) : dim(kerX) >N − s}= Zk−s(k) ∪ Zk−s+1(k) ∪ · · · ∪ Zk(k),
{(X, V1, V2) ∈ Z(k) : dim(V1 ∩ V2) > s}= Zk−s(k) ∪ Zk−s−1(k) ∪ · · · ∪ Z0(k),

so we have natural increasing and decreasing filtrations of Z(k). In particular, one can describe
Zs(k) more directly as

Zs(k) = {(X, V1, V2) ∈ Z(k) : dim(kerX) >N − k + s and dim(V1 ∩ V2) > k − s}.

Since span(V1, V2)⊂ kerX, it follows that dim(kerX) + dim(V1 ∩ V2) >N on Z(k). We define
the open subscheme

Zo(k) := {(X, V1, V2) ∈ Z(k) :N + 1 > dim(kerX) + dim(V1 ∩ V2)} ⊂ Z(k)

and Zos (k) := Zs(k) ∩ Zo(k). Abusing notation slightly, we denote all the open inclusions
j : Zos (k)→ Zs(k). We also denote by i all the closed inclusions of Zs(k) or Z(k) into Y (k)×
Y (N − k).

On Y (k), we have the natural vector bundle whose fibre over (X, V ) is V . Abusing notation,
we denote this vector bundle by V . Similarly, we have vector bundles V1 and V2 on Z(k) as well
as quotient bundles CN/V1 and CN/V2.

We will also use the following natural correspondences between Y (k) and Y (k + r):

W r(k) :=
{

(X, V1, V2) :X ∈ End(CN ), 0 k−−→ V1
r−−→ V2

N−k−r−−−−−−→ CN , XCN ⊂ V1 and XV2 ⊂ 0
}
.

The two projections give us an embedding W r(k)⊂ Y (k)× Y (k + r). Notice that if r =N − 2k,
then we get the standard birational correspondence

Y (k)←WN−2k(k)→ Y (N − k)

relating stratified Mukai flops.

2.3 Deformed varieties

The varieties Y (k) = T ∗G(k, N) have natural one-parameter deformations

Ỹ (k) =
{

(X, V, x) : x ∈ C, X ∈ End(CN ), 0⊂ V ⊂ CN , dim(V ) = k

and CN X−x·id−−−−−−→ V
X+x·id−−−−−−→ 0

}
over A1. The whole picture from the previous section can be repeated for these deformed varieties.

We can look at

B̃(s) := {X ∈ End(CN ) :X2 = x2 · id and dim(ker(X − x · id)) =N − s}

and define p̃(k) : Ỹ (k)→ B̃(k) as the map which forgets V (this is a resolution). We also have
the map p̃(N − k) : Ỹ (N − k)→ B̃(k) which forgets V (and maps x to −x). As before, we get
two resolutions

Ỹ (k)
p̃(k)−−−−→ B̃(k)

p̃(N−k)←−−−−−− Ỹ (N − k),

which is the basic example of a stratified Atiyah flop between Ỹ (k) and Ỹ (N − k).
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The variety Z(k) also deforms to

Z̃(k) := Ỹ (k)×
B̃(k)

Ỹ (N − k)

=
{

0
k−−−−→−−−−→

N−k

V1

V2

N−k−−−−→−−−−→
k

CN : (X − x · id)CN ⊂ V1, (X + x · id)CN ⊂ V2

× (X + x · id)V1 ⊂ 0, (X − x · id)V2 ⊂ 0
}
.

However, Z̃(k) is now irreducible and there are no deformed analogues of Zs(k). Notice that Z̃(k)
is naturally a subscheme of Ỹ (k)×A1 Ỹ (N − k) (where the second projection Ỹ (N − k)→ A1

maps (X, V, x) 7→ −x).

Next, we can define the open subscheme

Z̃o(k) := {(X, V1, V2, x) ∈ Z̃(k) :N + 1 > dim(ker(X − x · id)) + dim(V1 ∩ V2)} ⊂ Z̃(k).

Notice that if x 6= 0, then V1 and V2 are uniquely determined by X as the kernels of X + x · id
and X − x · id, respectively. In particular, this means that Z̃o(k) contains all the fibres over x 6= 0
since when x 6= 0 we have V1 ∩ V2 = 0. We denote the open inclusion j̃ : Z̃o(k)→ Z̃(k). Also, we
denote by ĩ the closed inclusion of Z̃(k) into Ỹ (k)×A1 Ỹ (N − k). As before, we also have natural
vector bundles V1, V2, CN/V1 and CN/V2.

Finally, note that the varieties W r(k) do not deform. The analogue of the standard birational
correspondence Y (k)←WN−2k(k)→ Y (N − k) is just

Ỹ (k)← Z̃(k)→ Ỹ (N − k)

relating stratified Atiyah flops.

2.4 C× actions

All varieties in the previous section carry a natural C× action. For t ∈ C×, this is given by scaling
X 7→ t2 ·X ∈ End(CN ) and similarly (for the deformed varieties) x 7→ t2 · x ∈ A1. We will always
work C×-equivariantly in this paper.

If a variety Y carries a C× action, we denote by OY {k} the structure sheaf of Y with non-
trivial C× action of weight k. More precisely, if f ∈ OY (U) is a local function then, viewed
as a section f ′ ∈ OY {k}(U), we have t · f ′ = t−k(t · f). If M is a C×-equivariant sheaf, then
we define M{k} :=M⊗OY {k}. Notice that this means that we get a natural map of sheaves
X : CN → V {2}.

2.5 Extensions of S2 sheaves

By a scheme, we mean a separated scheme of finite type over C. We review some known facts
about S2 sheaves.

Let Y be a scheme and F a coherent sheaf on Y . Recall that if Y is normal (or S2), then
F is S2 if and only if it is torsion free and reflexive. Equivalently, F is S2 if and only if for any
open U ⊂ Y

H i
X(U, F|U ) = 0,

where X ⊂ U is a locally closed subscheme and 0 6 i6 min(1, codim(X)− 1). We will use both
of these descriptions.
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Lemma 2.2. Let U, Y be schemes with j : U → Y an open embedding such that Z := Y \U ⊂ Y
has codimension at least two. If G is an S2 coherent sheaf on Y , then G ∼= j∗j

∗G. Similarly, if F
is a coherent sheaf on U , then F ∼= j∗j∗F .

Proof. We use the standard long exact sequence of local cohomology

0→H0
Z(Y, G)→H0(Y, G)→H0(U, j∗G)→H1

Z(Y, G)→ · · · .

Since G is S2 and codim(Z) > 2, we have H0
Z(Y, G) = 0 and H1

Z(Y, G) = 0. Thus, H0(Y, G) ∼−−→
H0(U, j∗G). But, we can replace Y by any other open set V ⊃ U and get the same isomorphism.
Thus, G = j∗j

∗G.
Now consider the composition of adjoint maps

j∗F → (j∗j∗)j∗F = j∗(j∗j∗)F → j∗F .

The left-most map is an isomorphism by the result above, while the composition is the identity
by the formal properties of adjoint maps. Thus, the right-most map is also an isomorphism.
Now consider the exact triangle j∗j∗F

φ−−→F → Cone(φ). Applying j∗, we get that j∗φ is an
isomorphism, so j∗ Cone(φ) = 0. This means that Cone(φ) = 0 and hence φ is an isomorphism. 2

Proposition 2.3. Let U, Y be schemes with j : U → Y an open embedding such that Y \U ⊂ Y
has codimension at least two. If F is an S2 coherent sheaf on U , then j∗F is a coherent S2 sheaf
on Y . Moreover, it is the unique such S2 sheaf whose restriction to U is F .

Proof. Let us first assume that U and Y are both S2.
Since j∗OY ∼=OU , then, by Lemma 2.2, we have OY = j∗j

∗OY ∼= j∗OU . Thus, j∗F is a
coherent sheaf because j∗OU ∼=OY .

Now a sheaf on Y is S2 if it is torsion free and reflexive. Now the (underived) double dual
(j∗F)∨∨ is reflexive and torsion free by construction. Also, since F is S2, this means that (j∗F)∨∨

is isomorphic to j∗F on U . Thus,

(j∗F)∨∨ ∼= j∗j
∗(j∗F)∨∨ ∼= j∗j

∗j∗F ∼= j∗F ,

where the first and last isomorphisms are by Lemma 2.2. Thus, j∗F is an S2 coherent sheaf. To
show uniqueness, suppose that G is another S2 coherent extension of F . Then j∗F ∼= j∗j

∗G ∼= G,
where the second isomorphism follows by Lemma 2.2.

Finally, if U is not S2, then restrict to an open subscheme U ′ ⊂ U whose complement has
codimension at least two and repeat the argument above. If Y is not S2, then look at its
S2-ification p : Y ′→ Y and apply the argument above to conclude that j′∗F is S2, where
j′ : U → Y ′. Then j∗F = p∗j

′
∗F is S2, since p is a finite map (cf. [KM08, Proposition 5.4]). 2

We will also need the following lemma.

Lemma 2.4. Consider a short exact sequences of sheaves

0→F1→F →F2→ 0

on an arbitrary scheme Y . If F1 and F2 are S2, then F is S2.

Proof. Recall the description of S2 from the beginning of § 2.5. Let U ⊂ Y be an open subset
and X ⊂ U a locally closed subscheme. Since F1, F2 are S2, this means that H i

X(U, Fj |U ) = 0
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for j = 1, 2 and 0 6 i6 min(1, codim(X)− 1). Using the standard long exact sequence

H0
X(U, F1|U )→ H0

X(U, F|U )→H0
X(U, F2|U )→H1

X(U, F1|U )
→ H1

X(U, F|U )→H1
X(U, F2|U )→ · · · ,

this means that H i
X(U, F|U ) = 0 for 0 6 i6 min(1, codim(X)− 1) and hence F is also S2. 2

3. Equivalences of stratified Mukai flops

In [CKL09], we constructed a natural equivalence T :D(Y (k)) ∼−−→D(Y (N − k)) induced by a
kernel T . We begin by studying the construction of T .

3.1 The varieties Zs(k)
We begin with some results on Z(k) and its irreducible components. It is helpful to remark that
Z(k) is quite singular. However, Zo(k) is quite well behaved.

Lemma 3.1. Each Zs(k) has a natural partial resolution

Z ′s(k) :=
{

0 k−s−−−→W1

s−−−−−−−→−−−−−−−→
N−2k+s

V1

V2

N−k−−−−→−−−−→
k

CN :XCN ⊂W1, XV1 ⊂ 0, XV2 ⊂ 0
}

πs−−→ Zs(k),

where πs forgets W1. Zos (k) is smooth and the restriction of πs to the preimage of Zos (k) is an
isomorphism. The complements of Zos (k) in Z ′s(k) and Zs(k) have codimensions at least two and
four, respectively.

Proof. Zs(k) has a natural resolution given by

Z ′′s (k) :=
{

0 k−s−−−→W1

s−−−−−−−→−−−−−−−→
N−2k+s

V1

V2

N−2k+s−−−−−−−→−−−−−−−→
s

W2
k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
.

This variety is smooth because forgetting V1 and V2 gives us a G(s, N − 2k + 2s)×G(N − 2k +
s, N − 2k + 2s) fibration

π : Z ′′s (k)→
{

0 k−s−−−→W1
N−2k+2s−−−−−−−→W2

k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0
}
.

This base is actually isomorphic to the conormal bundle of the partial flag variety {0 k−s−−−→
W1

N−2k+2s−−−−−−−→W2
k−s−−−→ CN} embedded inside the product G(k − s, N)×G(N − k + s, N).

Now Zos (k)⊂ Zs(k) is defined by the open condition

dim(kerX) + dim(V1 ∩ V2) 6N + 1.

Since dim(kerX) >N − k + s and dim(V1 ∩ V2) > k − s, there are two possibilities: either
dim(kerX) =N − k + s or dim(V1 ∩ V2) = k − s. In the first case, we can recover W2 as the
kernel of X and W1 as the image of X; this gives a local inverse of π. Similarly, in the second
case we can recover W1 as the intersection of V1 and V2 and W2 as the span of V1 and V2. So, π is
an isomorphism over Zos (k). In particular, since Z ′′s (k) is smooth, this means that Zos (k) is smooth.

Finally, the complement Z ′s(k)\Zos (k) is covered by three pieces:

• dim(V1 ∩ V2) > k − s+ 2 (where s> 2); or
• dim(V1 ∩ V2) > k − s+ 1 and dim(kerX) >N − k + s+ 1 (where s> 1); or
• dim(kerX) >N − k + s+ 2 (where s6 k − 1).
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The dimension of the first piece can be computed as the dimension of its resolution{
0 k−s−−−→W1

2−−→W ′1
s−2−−−−−−−−→−−−−−−−−→

N−2k+s−2

V1

V2

N−2k+s−−−−−−−→−−−−−−−→
s

W2
k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
.

By forgetting V1, V2 and then W ′1, we get a map{
0 k−s−−−→W1

N−2k+2s−−−−−−−→W2
k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
, (1)

which is an iterated Grassmannian bundle with fibres

G(s− 2, N − 2k + 2s− 2),G(N − 2k + s− 2, N − 2k + 2s− 2) and G(2, N − 2k + 2s).

This has dimension

(s− 2)(N − 2k + s) + (N − 2k + s− 2)(s) + 2(N − 2k + 2s− 2) = (N − 2k + s)(2s)− 4.

Now (1) is the conormal bundle of the flag variety F(k − s, N − 2k + 2s;N) inside G(k − s, N)×
G(N − k + s, N). So, its dimension is

dim(G(k − s, N)) + dim(G(N − k + s, N)) = 2(N − k + s)(k − s).

This means that the dimension of the first piece is

(N − 2k + s)(2s)− 4 + 2(N − k + s)(k − s) = 2k(N − k)− 4.

Now the dimension of Zs(k) is 2k(N − k), so the codimension of the first piece is four.
The codimensions of the second and third pieces are computed similarly. For the second piece,

we use the resolution{
0 k−s−−−→W1

1−−→W ′1
s−1−−−−−−−−→−−−−−−−−→

N−2k+s−1

V1

V2

N−2k+s−1−−−−−−−−→−−−−−−−−→
s−1

W2
k−s+1−−−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
,

which has dimension 2k(N − k)− 2 (codimension two).
For the third piece, we use the resolution{

0 k−s−−−→W1

s−−−−−−−→−−−−−−−→
N−2k+s

V1

V2

N−2k+s+2−−−−−−−−→−−−−−−−−→
s+2

W2
k−s+2−−−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
,

which has dimension 2k(N − k)− 4 again.
To show that the codimension of Zs(k)\Zos (k)⊂ Zs(k) is at least four, the same argument as

above works except in the second case. There one needs to use the resolution{
0 k−s+1−−−−−→W1

s−1−−−−−−−−→−−−−−−−−→
N−2k+s−1

V1

V2

N−2k+s−1−−−−−−−−→−−−−−−−−→
s−1

W2
k−s−1−−−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
,

which has dimension 2k(N − k)− 2(N − 2k + 2s). This is of codimension 2(N − 2k + 2s) > 4s>
4 since N > 2k and s> 1. 2

Corollary 3.2. πs∗OZ′s(k) ∼= j∗OZo
s (k).

Proof. We can factor j : Zos (k)→ Zs(k) as

Zos (k)
j′−−→ Z ′s(k) πs−−→ Zs(k).

We will see in the proof of Proposition 3.7 that Z ′s(k) can be expressed as the intersection of
the expected dimension of two smooth varieties (inside a smooth ambient variety). This means
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that Z ′s(k) is a local complete intersection and hence S2 (a local complete intersection is Cohen–
Macaulay, which is Sn, where n is the dimension of the variety and, in particular, S2 if n> 2).

Also, by Lemma 3.1, the codimension of the complement of Zos (k) inside Z ′s(k) is at least
two. By Proposition 2.3, this means that j′∗OZo

s (k)
∼=OZ′s(k). Thus,

πs∗OZ′s(k) ∼= πs∗j
′
∗OZo

s (k)
∼= j∗OZo

s (k). 2

Remark 3.3. By Lemma 3.1, we can identify Zos (k) with{
0 k−s−−−→W1

s−−−−−−−→−−−−−−−→
N−2k+s

V1

V2

N−2k+s−−−−−−−→−−−−−−−→
s

W2
k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0,

dim(kerX) + dim(V1 ∩ V2) 6N + 1
}
,

where the isomorphism to Zos (k) is obtained by forgetting W1 and W2.

Lemma 3.4. Using the identification of Zos (k) from Remark 3.3, the intersection

Do
s,+(k) := Zos (k) ∩ Zs+1(k)

= {(X, V1, V2) ∈ Zos (k) : dim(kerX) =N − k + s+ 1 and dim(V1 ∩ V2) = k − s}

is a divisor in Zos (k) which is the locus where X : CN/W2→W1{2} is not an isomorphism. More
precisely,

OZo
s (k)([D

o
s,+(k)])∼= det(CN/W2)∨ ⊗ det(W1){2(k − s)}. (2)

Similarly, the intersection

Do
s,−(k) := Zos (k) ∩ Zs−1(k)

= {(X, V1, V2) ∈ Zos (k) : dim(kerX) =N − k + s and dim(V1 ∩ V2) = k − s+ 1}

is a divisor in Zos (k) which is the locus where the inclusion V1/W1→W2/V2 is not an
isomorphism. More precisely,

OZo
s (k)([D

o
s,−(k)])∼= det(V1/W1)∨ ⊗ det(W2/V2). (3)

Finally, Zos (k) ∩ Zs′(k) = ∅ if |s− s′|> 1.

Proof. Do
s,+(k)⊂ Zos (k) is the locus where dim(kerX) =N − k + s+ 1. This is precisely the locus

where X : CN/W2→W1{2} does not induce an isomorphism. Forgetting X gives us a map from
Do
s,+(k) to the Schubert locus {(V1, V2) : dim(V1 ∩ V2) = k − s}. Since GL(CN ) acts transitively

on the Schubert locus, this map is a fibration. One can check that the fibres are irreducible and
hence Do

s,+(k) is irreducible.

Also, it is not hard to see that the scheme-theoretic locus where X : CN/W2→W1{2} does
not induce an isomorphism is reduced, so we conclude that

OZo
s (k)([D

o
s,+(k)])∼= det(CN/W2)∨ ⊗ det(W1){2(k − s)}.

This proves (2). The proof of (3) is similar.
Finally, suppose s′ − s > 1. The locus Zs(k) ∩ Zs′(k) corresponds to dim(kerX) >N − k + s′

and dim(V1 ∩ V2) > k − s. This means that

dim(kerX) + dim(V1 ∩ V2) >N + s′ − s > N + 1,

so the intersection lies outside the open subscheme Zos (k) and hence Zos (k) ∩ Zs′(k) = ∅. The case
s′ − s <−1 is dealt with similarly. 2
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Corollary 3.5. On Zos (k), we have

OZo
s (k)([D

o
s,+(k)]− [Do

s,−(k)])∼= det(CN/V1)∨ ⊗ det(V2){2(k − s)}.

Proof. This is a direct consequence of Lemma 3.4, since

det(CN/W2)∨ ⊗ det(W1)⊗ det(V1/W1)⊗ det(W2/V2)∨

∼= det(CN/V2)∨ ⊗ det(V1)
∼= (det(CN )∨ ⊗ det(V2))⊗ (det(CN )⊗ det(CN/V1)∨)
∼= det(CN/V1)∨ ⊗ det(V2). 2

3.2 The kernel T (k)

In [CKL09], we defined a kernel T (k) ∈D(Y (k)× Y (N − k)) as the (right) convolution of a
complex

Θk(k)→Θk−1(k)→ · · · →Θ1(k)→Θ0(k). (4)

Here Θs(k) = F (N−2k+s)(N − k) ∗ E(s)(k)[−s]{s}, where

E(s)(k) = OW s(k−s) ⊗ det(CN/V1)−s ⊗ det(V ′)s{s(k − s)},

F (N−2k+s)(N − k) = OWN−2k+s(k−s) ⊗ det(V2/V
′)s{k(N − 2k + s)}

and

W s(k − s) =
{

(X, V1, V
′) :X ∈ End(CN ), 0 k−s−−−→ V ′

s−−→ V1
N−k−−−−→ CN ,

XCN ⊂ V ′ and XV1 ⊂ 0
}
,

WN−2k+s(k − s) =
{

(X, V1, V
′) :X ∈ End(CN ), 0 k−s−−−→ V ′

N−2k+s−−−−−−−→ V2
k−−→ CN ,

XCN ⊂ V ′ and XV2 ⊂ 0
}

as in § 2.2 (the composition operator ∗ was defined in § 2.1). Notice that

E(s)(k) ∈D(Y (k)× Y (k − s)) and F (N−2k+s)(N − k) ∈D(Y (k − s)× Y (N − k)).

3.2.1 Convolutions. Let us recall the definition of a (right) convolution in a triangulated
category (see [GM03, § IV, Exercise 1]).

Let (A•, f•) =An
fn−−→An−1→ · · ·

f1−−→A0 be a sequence of objects and morphisms such that
fi ◦ fi+1 = 0. Such a sequence is called a complex. A (right) convolution of a complex (A•, f•) is
any object B such that there exist:

(i) objects A0 =B0, B1, . . . , Bn−1, Bn =B; and

(ii) morphisms gi :Bi[−i]→Ai, hi :Ai→Bi−1[−(i− 1)] (with h0 = id),

such that

Bi[−i]
gi−−→Ai

hi−−→Bi−1[−(i− 1)] (5)

is a distinguished triangle for each i and gi−1 ◦ hi = fi. Such a collection of data is called a
Postnikov system. Notice that in a Postnikov system we also have fi+1 ◦ gi = (gi+1 ◦ hi) ◦ gi = 0,
since hi ◦ gi = 0.
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The convolution of a complex need not exist, nor is it always unique. However, in the case of
the complex (4), we showed in [CKL09, CKL10a, CKL10b] the following theorem.

Theorem 3.6. The complex

Θk(k)→Θk−1(k)→ · · · →Θ1(k)→Θ0(k)

has a unique convolution T (k) ∈D(Y (k)× Y (N − k)) which induces an equivalence of stratified
Mukai flops

T(k) :D(Y (k)) ∼−−→D(Y (N − k)).

3.2.2 Explicit description of T (k). Next we identify T (k) as an S2 extension of sheaves.

Proposition 3.7. We have

Θs(k)∼= i∗j∗OZo
s (k) ⊗ det(CN/V1)−s ⊗ det(V2)s[−s]{k(N − k)− (k − s)2 + s}

as a sheaf on Y (k)× Y (N − k).

Proof. Ignoring the { · } shift, we have

Θs(k)∼= π13∗(π∗12OW s(k−s) ⊗ π∗23OWN−2k+s(k−s) ⊗ det(CN/V1)−s ⊗ det(V ′)s ⊗ det(V2/V
′)s).

Now

π−1
12 (W s(k − s)) ∩ π−1

23 (WN−2k+s(k − s))⊂ Y (k)× Y (k − s)× Y (N − k)

is the irreducible scheme

Z ′s(k) =
{

0 k−s−−−→ V ′
s−−−−−−−→−−−−−−−→

N−2k+s

V1

V2

N−k−−−−→−−−−→
k

CN :XCN ⊂ V ′, XV1 ⊂ 0, XV2 ⊂ 0
}
,

which, as we saw in Lemma 3.1, is a partial resolution of Zs(k). In particular,

dim(Z ′s(k)) = 2k(N − k) = expected dimension of π−1
12 (W s(k − s)) ∩ π−1

23 (WN−2k+s(k − s)).

This means that π∗12OW s(k−s) ⊗ π∗23OWN−2k+s(k−s)
∼=OZ′s(k) (one can check that the intersection

is reduced by a local or cohomological calculation).

Now π13 forgets V ′ and maps Z ′s(k) to Zs(k). By Corollary 3.2, π13∗OZ′s(k) ∼= i∗j∗OZo
s (k). Thus,

by the projection formula,

π13∗(OZ′s(k) ⊗ det(CN/V1)−s ⊗ det(V ′)s ⊗ det(V2/V
′)s)

∼= i∗j∗OZo
s (k) ⊗ det(CN/V1)−s ⊗ det(V2)s.

Finally, the { · } shift is

s(k − s) + k(N − 2k + s) + s= k(N − k)− (k − s)2 + s. 2

Theorem 3.8. There exists a C×-equivariant line bundle L(k) on Zo(k) such that T (k)∼=
i∗j∗L(k), where i and j are the natural inclusions

Zo(k)
j−−→ Z(k) i−→ Y (k)× Y (N − k).

This line bundle is uniquely determined by the restrictions

L(k)|Zo
s (k)
∼=OZo

s (k)([D
o
s,+(k)])⊗ det(CN/V1)−s ⊗ det(V2)s{k(N − k)− (k − s)2 + s}.
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Proof.

Step 1. First, we check that there is a unique line bundle L(k) which restricts as above. To do
this, we need to check that

OZo
s (k)([D

o
s,+(k)])⊗ det(CN/V1)−s ⊗ det(V2)s{k(N − k)− (k − s)2 + s}

and

OZo
s−1(k)([D

o
s−1,+(k)])⊗ det(CN/V1)−s+1 ⊗ det(V2)s−1{k(N − k)− (k − s+ 1)2 + s− 1}

agree on the overlap Do
s,− =Do

s−1,+. Cancelling line bundles and shifts, this is the same as

OZo
s (k)([D

o
s,+(k)]){2(k − s+ 1)} and OZo

s−1(k)([D
o
s−1,+(k)])⊗ det(CN/V1)⊗ det(V2)∨

restricting to the same line bundle. Now Do
s,+ ∩Do

s,− = ∅, so the first line bundle is just
ODo

s,−
{2(k − s+ 1)}. On the other hand,

OZo
s−1(k)([D

o
s−1,+(k)])∼=OZo

s−1(k)([D
o
s−1,−(k)])⊗ det(CN/V1)∨ ⊗ det(V2){2(k − s+ 1)}

using Corollary 3.5. So, the second line bundle restricts to ODo
s,−
{2(k − s+ 1)}, which is the

same as the first line bundle.

Step 2. Next we show that T (k) is an S2 sheaf. The convolution of Θ∗(k) is obtained by taking
repeated cones starting on the right. If we consider the convolution of the partial complex

T6s(k) := Conv(Θs(k)→ · · · →Θ0(k)),

then we have the exact triangle

T6s(k)→T6s+1→Θs+1(k)[s+ 1]. (6)

Now T60(k) = Θ0(k) is a sheaf and, by induction, we can assume that T6s(k) is a sheaf. Moreover,
Θs+1(k)[s+ 1] is an S2 sheaf with reduced scheme-theoretic support. So, by Proposition 3.7
(and induction), each T6s+1(k) is also an S2 sheaf with reduced scheme-theoretic support. In
particular, so is T (k).

Since each T6s(k) has reduced scheme-theoretic support, it is the pushforward of a sheaf on
Z(k). For the rest of the proof, we will work on Z(k) and to simplify notation we will think of
T (k), T6s(k) or Θs(k) as lying on Z(k). Now, by Lemma 3.1, the complement Z(k)\Zo(k) has
codimension at least four. So, by Proposition 2.2, to show that T (k)∼= j∗L(k) it suffices to show
that j∗T (k)∼= L(k).

Step 3. Now, by Step 1, there exists a unique line bundle L6s(k) supported on Zo6s(k) :=
Zo0(k) ∪ · · · ∪ Zos (k) such that its restrictions to Zos′(k) (where 0 6 s′ 6 s6 k) are isomorphic
to

OZo
s′ (k)

((1− δs,s′)[Do
s′,+(k)])⊗ det(CN/V1)−s

′ ⊗ det(V2)s
′{k(N − k)− (k − s′)2 + s′}.

The next step is to show by induction that

j∗T6s(k)∼= L6s(k).

The base case s= 0 follows by Proposition 3.7. To prove the induction step, we look at the
exact triangle

j∗Θs+1(k)[s] D−−→ j∗T6s(k)→ j∗T6s+1(k) (7)
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induced by (6). Notice that D 6= 0 because otherwise T (k) would be decomposable and would
subsequently not induce an equivalence.

Now, consider the standard short exact triangle

OZo
6s(k)

(−[Do
s,+(k)]) d−−→OZo

6s+1(k)→OZo
s+1(k),

where the right-hand map is the restriction. Tensoring by L6s+1(k), we get

L6s+1(k)|Zo
6s(k)

(−[Do
s,+(k)]) d−−→L6s+1(k)→L6s+1(k)|Zo

s+1(k).

Now L6s+1(k)|Zo
s+1(k)

∼= j∗Θs+1(k)[s+ 1] and

L6s+1(k)|Zo
6s(k)

∼= L6s(k)⊗OZo
6s(k)

([Do
s,+(k)])∼= j∗T6s(k)⊗OZo

6s(k)
([Do

s,+(k)]),

where the second isomorphism follows by induction. Thus, we end up with

j∗T6s(k)→L6s+1(k)→ j∗Θs+1(k)[s+ 1]

and subsequently the exact triangle

j∗Θs+1(k)[s] d−−→ j∗T6s(k)→L6s+1(k). (8)

Notice that the map d is again non-zero. Comparing (7) and (8), we find that d=D up to
some non-zero multiple (using Lemma 3.9). Thus, j∗T6s+1(k)∼= L6s+1 (which completes the
induction).

Lemma 3.9. We have Hom(j∗Θs+1(k)[s], j∗T6s(k))∼= C.

Proof. Recall that by Proposition 3.7 we have

j∗Θs+1(k)[s]∼=OZo
s+1(k) ⊗ det(CN/V1)−s−1 ⊗ det(V2)s+1[−1]{αk,s+1},

where αk,s+1 = k(N − k)− (k − s− 1)2 + (s+ 1). Thus, we get

Hom(j∗Θs+1(k)[s], j∗T6s(k))
∼= Hom(OZo

s+1(k) ⊗ det(CN/V1)−s−1 ⊗ det(V2)s+1[−1]{αk,s+1}, L6s(k))
∼= Hom(OZo

s+1(k) ⊗ det(CN/V1)−s−1 ⊗ det(V2)s+1[−1]{αk,s+1}, L6s(k)|Zo
s (k))

∼= Hom(OZo
s+1(k) ⊗ det(CN/V1)−s−1 ⊗ det(V2)s+1[−1]{αk,s+1},

OZo
s (k) ⊗ det(CN/V1)−s ⊗ det(V2)s{αk,s})

∼= Hom(OZo
s+1(k),OZo

s (k) ⊗ det(CN/V1)⊗ det(V2)∨[1]{−2(k − s)})
∼= Hom(OZo

s+1(k),OZo
s (k)(−[Do

s,+(k)] + [Do
s,−(k)][1])

∼= Hom(ODo
s,+(k),ODo

s,+(k))
∼=H0(ODo

s,+(k)),

where the second isomorphism follows since Zos′(k) ∩ Zos+1(k) = ∅ if s′ < s, the third last
isomorphism follows by Corollary 3.5 and the second last isomorphism follows by Lemma 3.10.

Since the complement of Do
s,+(k) in

Ds,+(k) = Zs(k) ∩ Zs+1(k)
= {(X, V1, V2) ∈ Z(k) : dim(kerX) >N − k + s+ 1 and dim(V1 ∩ V2) > k − s}
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has codimension at least two, it follows that H0(ODo
s,+(k))∼=H0(Ds,+(k). We would like to show

that the only C×-equivariant functions on Ds,+(k) are the constants. Since C× acts by scaling
X ∈ End(CN ), the closure of every C× orbit intersects the locus where X = 0. Thus,

H0(Ds,+(k))∼=H0({(V1, V2) ∈G(k, N)×G(N − k, N) : dim(V1 ∩ V2) > k − s})∼= C. 2

Lemma 3.10. Consider two smooth schemes Z1 and Z2 intersecting along a divisor D = Z1 ∩ Z2.
Then Hom(OZ1 ,OZ2(−D)[1])∼= Hom(OD,OD).

Proof. See, for example, [CK08a, Corollary 4.8]. 2

This completes the proof of Theorem 3.8. 2

4. Equivalences of stratified Atiyah flops

If we restrict to Z̃o(k), which is smooth, each Zos (k)⊂ Z̃o(k) defines a divisor and hence a line
bundle. Notice that Zs(k)⊂ Z̃(k) is in general only a divisor (it may fail to be Cartier). The
following is the main result of this paper. Recall the natural inclusions

Z̃o(k)
j̃−−→ Z̃(k) ĩ−→ Ỹ (k)×A1 Ỹ (N − k).

Theorem 4.1. Denote by L̃(k) the line bundle OZ̃o(k)(
∑k

l=0

(
l+1
2

)
[Zol (k)]){k(N − 2k)}. Then

T̃ (k) := ĩ∗j̃∗L̃(k) ∈D(Ỹ (k)×A1 Ỹ (N − k))

induces an equivalence T̃(k) :D(Ỹ (k)) ∼−−→D(Ỹ (N − k)) of stratified Atiyah flops. Moreover,
the restriction of T̃ (k) to Y (k)× Y (N − k) is T (k).

Proof. Over any non-zero x ∈ A1, the fibre Z̃o(k)x ∼= Z̃(k)x maps isomorphically down to Ỹ (k)x
and Ỹ (N − k)x and so T̃ (k)x induces an equivalence. So, to show that T̃(k) is an equivalence
it suffices, by Lemma 4.2 below, to show that T̃ (k) restricts to T (k) over the central fibre
Y (k)× Y (N − k).

Consider the following commutative diagram

Zo(k)
j //

f1
��

Z(k) i //

f2
��

Y (k)× Y (N − k)

f3
��

Z̃o(k)
j̃ // Z̃(k) ĩ // Ỹ (k)×A1 Ỹ (N − k)

where the f ’s denote the natural inclusions of the central fibre. We have

f∗3 T̃ (k) ∼= f∗3 ĩ∗j̃∗L̃(k)∼= i∗f
∗
2 j̃∗L̃(k)

∼= i∗j∗j
∗f∗2 j̃∗L̃(k)∼= i∗j∗f

∗
1 j̃
∗j̃∗L̃(k)∼= i∗j∗f

∗
1 L̃(k),

where the second isomorphism on the first row follows since Z̃(k) is flat over A1 and the first
isomorphism on the second row is because L̃(k) and hence f∗2 j̃∗L̃(k) is an S2 sheaf (we also used
Lemma 2.2, which applies to both j and j̃). Since T (k)∼= i∗j∗L(k), it follows that what we really
need to check is that f∗1 L̃(k)∼= L(k).
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As before, we just need to check that the restrictions of f∗1 L̃(k) and L(k) to each Zos (k) agree.
This involves checking that

OZ̃o(k)

( k∑
l=0

(
l + 1

2

)
[Zol (k)]

)∣∣∣∣
Zo

s (k)

∼=OZo
s (k)([D

o
s,+(k)])⊗ det(CN/V1)−s ⊗ det(V2)s{2ks− s2 + s}.

This follows from Lemma 4.3 and the fact that if |s− l|> 1, then Zol (k) ∩ Zos (k) = ∅, so that
OZ̃o(k)([Z

o
l (k)])|Zo

s (k) is trivial. Putting this together, we get

OZ̃o(k)

( k∑
l=0

(
l + 1

2

)
[Zol (k)]

)∣∣∣∣
Zo

s (k)

∼=OZ̃o(k)

((
s

2

)
[Zos−1(k)] +

(
s+ 1

2

)
[Zos (k)] +

(
s+ 2

2

)
[Zos+1(k)]

)∣∣∣∣
Zo

s (k)

∼=OZ̃o(k)(−s[Z
o
s−1(k)] + (s+ 1)[Zos+1(k)])|Zo

s (k){s(s+ 1)}
∼=OZo

s (k)(−s[Do
s,−(k)] + (s+ 1)[Do

s,+(k)]){s(s+ 1)}
∼=OZo

s (k)([D
o
s,+(k)])⊗ det(CN/V1)−s ⊗ det(V2)s{2s(k − s) + s(s+ 1)},

where the first isomorphism uses the first fact, the second uses the second fact and the last uses
Corollary 3.5. 2

Lemma 4.2. Let Ỹ →B and Ỹ ′→B be two families of smooth varieties over some base B and
let T ∈ Ỹ ×B Ỹ ′ be a relative kernel. If T |Ỹt×Ỹ ′t

induces an equivalence D(Ỹt)
∼−−→D(Ỹ ′t ) for

every t ∈B, then T induces an equivalence D(Ỹ ) ∼−−→D(Ỹ ′).

Proof. This follows by [Sze04, Proposition 3.2]. 2

Lemma 4.3. On Z̃o(k), we have OZ̃o(k)(
∑k

l=0[Zol (k)])∼=OZ̃o(k){2}.

Proof. The fibre of Z̃o(k)→ C over 0 ∈ C is Zo(k) =
⋃k
l=0 Z

o
l (k). Since C× acts with weight 2 on

C, it follows that OZ̃o(k)([Z
o(k)])∼=OZ̃o(k){2} and the result follows. 2

5. General remarks

5.1 Choice of line bundles
The choice of line bundles L(k) and L̃(k) in Theorems 3.8 and 4.1 might seem a little random.
One might ask, for instance, what (if anything) goes wrong if we take L̃(k) to be the trivial line
bundle.

Namikawa showed in [Nam04] that in the case of Ỹ (2, 4) the trivial line bundle on Z̃(2, 4)
(or Z(2, 4)) fails to induce and equivalence. It is therefore likely that the trivial line bundle
on Z̃(k, N) also fails to induce an equivalence if k 6= 1, N − 1. Unfortunately, we do not have a
conceptual reason for this.

On the other hand, we can tensor L̃(k) by the restriction L of any line bundle from
Z̃(k) and then i∗j∗(L̃(k)⊗ L) will still induce an equivalence. An interesting choice is L :=
det(CN/V1)∨ ⊗ det(V2), because of the following isomorphism.
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Lemma 5.1. We have L∼=OZ̃o(k)(
∑k

l=1 l[Z
o
l (k)]){−2k}.

Proof. The natural inclusion map V2→ CN/V1 on Z̃o(k) is an isomorphism over any general
fibre x 6= 0, because V1 ∩ V2 = 0. So, det(V2)∼= det(CN/V1), which means that L restricts to the
trivial line bundle over the general fibre (here we are working non-equivariantly).

Since every line bundle on the base A1 is trivial, it remains to show that

L|Zo(k)
∼=OZ̃o(k)

( k∑
l=1

l[Zol (k)]
)
{−2k}|Zo(k).

As before, it suffices to show that

L|Zo
s (k)
∼=OZ̃o(k)

( k∑
l=1

l[Zol (k)]
)∣∣∣∣

Zo
s (k)

{−2k}

as equivariant line bundles. Now we have

OZ̃o(k)

( k∑
l=1

l[Zol (k)]
)∣∣∣∣

Zo
s (k)

{−2k}

∼=OZ̃o(k)((s− 1)[Zos−1(k)] + s[Zos (k)] + (s+ 1)[Zos+1(k)])|Zo
s (k){−2k}

∼=OZ̃o(k)(−[Zos−1(k)] + [Zos+1(k)])|Zo
s (k){2s− 2k}

∼=OZo
s (k)(−[Do

s,−(k)] + [Do
s,+(k)]){2(s− k)}

∼= L|Zo
s (k),

where the first isomorphism uses that Zos (k) ∩ Zol (k) = ∅ if |s− l|> 1, the second uses Lemma 4.3
while the last uses Corollary 3.5. 2

Consequently, since
(
l+1
2

)
− l =

(
l
2

)
, we find the following corollary.

Corollary 5.2. The kernel i∗j∗OZ̃o(k)(
∑k

l=0

(
l
2

)
[Zol (k)]) induces an equivalence of stratified

Atiyah flops.

Notice that when k = 1, this kernel is just i∗j∗OZ̃o(1)
∼=OZ̃(1), which explains why the

structure sheaf of the natural correspondence for the standard Atiyah flop does induce an
equivalence (as proven in [Kaw02] or [Nam03]).

5.2 Inverses
In this section, we identify the inverse of T(k). The inverse is induced by the left (or right)
adjoint of T (k). One way to compute this is to write T (k) as the convolution of Θ∗(k) and take
left adjoints to get

T (k)L ∼= Conv(Θ0(k)L→Θ1(k)L→ · · · →Θk(k)L),

where PL denotes the left adjoint of P as defined in § 2.1. We have

Θs(k)L = E(s)(k)L ∗ F (N−2k+s)(N − k)L〈s〉
∼= F (s)(k)〈−s(N − 2k + s)〉 ∗ E(N−2k+s)(N − k)〈(N − 2k + s)(s)〉〈s〉
∼= F (s)(k) ∗ E(N−2k+s)(N − k)〈s〉,

where 〈s〉 is shorthand for [s]{−s}. So, as before, it becomes clear that T (k)L is an S2 sheaf
which is the pushforward of some line bundle (as in Theorem 3.8). To identify this line bundle,
we just need to work with the open subvarieties Zo(k) and Z̃o(k).
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Theorem 5.3. The inverse of T̃(k) is induced by

T̃ (k)L ∼= ĩ∗j̃∗L̃′(k) ∈D(Ỹ (k)×A1 Ỹ (N − k)),

where

L̃′(k) :=OZ̃o(k)

( k∑
l=0

(
l

2

)
[Zol (k)]

)
⊗ (det(CN/V1)∨ ⊗ det(V2))⊗(N−2k){k(N − 2k)}.

The inverse of T(k) is induced by the restriction of T̃ (k)L to Y (k)× Y (N − k).

Proof. We will show that T̃ (k) and ĩ∗j̃∗L̃′(k) restrict to inverses of each other on every fibre.
On a fibre over x 6= 0, this is easy to see because ĩ∗j̃∗L̃′(k) restricts to the structure sheaf.

This is because, as in the proof of Lemma 5.1, (X − x · id) : V2
∼−−→ CN/V1 is an isomorphism

(non-equivariantly). This gives the inverse to the kernel induced by OZ̃o(k)x
because, when x 6= 0,

π−1
12 (Z̃o(k)x) and π−1

23 (Z̃o(k)x) intersect transversely and the intersection maps one-to-one via π13

to the diagonal in Y (k)x × Y (k)x. Hence, if x 6= 0, the inverse of T̃(k)|x is (̃i∗j̃∗L̃′(k))|x.
The case x= 0 is more interesting. We have that

T̃ (k)L = ĩ∗j̃∗(ωZ̃o(k) ⊗ L̃(k)∨ ⊗ π∗1ω∨Ỹ (k)
).

By Proposition 5.5, we have

ωZ̃o(k) ⊗ L̃(k)∨ ⊗ π∗1ω∨Ỹ (k)
∼= OZ̃o(k)

( k∑
l=0

l2[Zol (k)]
)
⊗ L⊗(N−2k){−2k2 − 2}

⊗ OZ̃o(k)

( k∑
l=0

−
(
l + 1

2

)
[Zol (k)]

)
{−k(N − 2k)} ⊗ π∗1ω∨Ỹ (k)

∼= OZ̃o(k)

( k∑
l=0

(
l

2

)
[Zol (k)]

)
⊗ L⊗(N−2k) ⊗ π∗1ω∨Ỹ (k)

{−kN − 2},

where, as before, L= det(CN/V1)∨ ⊗ det(V2). Now

ωỸ (k)|Y (k)
∼= ωY (k) ⊗OY (k)(−[Y (k)])∼=OY (k){−2k(N − k)− 2},

where we used that OỸ (k)([Y (k)])∼=OỸ (k){2} and that ωT ?G(k,N)
∼=OT ?G(k,N){−2k(N − k)}

(see [CK10, Lemma 3.4]). Hence, T̃ (k)L restricts on the x= 0 fibre to

ĩ∗j̃∗

(
OZ̃o(k)

( k∑
l=0

(
l

2

)
[Zol (k)]

)
⊗ L⊗(N−2k){k(N − 2k)}

)∣∣∣∣
Y (k)×Y (N−k)

,

which is the same as the restriction of ĩ∗j̃∗L̃′(k). This concludes the proof. 2

Remark 5.4. Recall that T̃ (k) is induced by

ĩ∗j̃∗OZ̃o(k)

( k∑
l=0

(
l + 1

2

)
[Zol (k)]

)
{k(N − 2k)},

which is isomorphic to

ĩ∗j̃∗OZ̃o(k)

( k∑
l=0

(
l

2

)
[Zol (k)]

)
⊗ L{k(N − 2k + 2)}.
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On the other hand, as we just learned, T̃ (k)L is induced by

ĩ∗j̃∗OZ̃o(k)

( k∑
l=0

(
l

2

)
[Zol (k)]

)
⊗ LN−2k{k(N − 2k)}.

Thus, T̃ (k) and its inverse differ by tensoring by

(det(CN/V1)∨ ⊗ det(V2))⊗(N−2k−1){−2k},

which is a global line bundle (and likewise T (k) and its inverse). Even more, this line bundle
is the tensor product of pullbacks of line bundles from Ỹ (k) and Ỹ (N − k). Thus, T (k) and
its inverse differ by conjugation. This fact cannot be seen directly from the definition of T (k)
coming from categorical sl2 actions. Although this seems like a weird observation, it will help
in [CKL11] in constructing affine braid group actions, extending the work in [CK10].

Proposition 5.5. The dualizing sheaf of Z̃o(k) is

ωZ̃o(k)
∼=OZ̃o(k)

( k∑
l=0

l2[Zol (k)]
)
⊗ (det(CN/V1)∨ ⊗ det(V2))⊗(N−2k){−2k2 − 2}.

Proof. Ignoring the C×-equivariance, the right-hand side restricts to the trivial line bundle on
any non-central fibre Z̃o(k). This agrees with ωZ̃o(k)x

∼= ωỸ (k)x
, which is trivial since Ỹ (k)x is

obtained from T ∗G(k, N) by a hyper-Kähler rotation. It remains to show that

ωZo(k)
∼=
(
OZ̃o(k)

( k∑
l=0

l2[Zol (k)] + [Zo(k)]
)
⊗ L(N−2k){−2k2 − 2}

)∣∣∣∣
Zo(k)

,

where L= det(CN/V1)∨ ⊗ det(V2). Now OZ̃o(k)([Z
o(k)])∼=OZ̃o(k){2}. Also, Zo(k) is the union

of k + 1 smooth components Zos (k), where Zos (k) ∩ Zos′(k) = ∅ if |s− s′|> 1. Thus,

ωZo(k)|Zo
s (k)
∼= ωZo

s (k)([D
o
s,−(k)] + [Do

s,+(k)]),

so it suffices to show that

ωZo
s (k)([D

o
s,−(k)] + [Do

s,+(k)])∼=
(
OZ̃o(k)

( k∑
l=0

l2[Zol (k)]
)
⊗ L⊗(N−2k){−2k2}

)∣∣∣∣
Zo

s (k)

(9)

for every s= 0, . . . , k. But, OZ̃o(k)([Z
o
s (k)])∼=OZ̃o(k)(

∑
l 6=s −[Zol (k)]){2}, so the right-hand side

of (9) equals

OZo
s (k)(((s− 1)2 − s2)[Do

s,−(k)] + ((s+ 1)2 − s2)[Ds,+(k)])⊗ L⊗(N−2k){−2k2 + 2s2}
∼=OZo

s (k)((−2s+ 1)[Do
s,−(k)] + (2s+ 1)[Do

s,+(k)])⊗ L⊗(N−2k){−2k2 + 2s2}
∼=OZo

s (k)([D
o
s,−(k)] + [Do

s,+(k)])⊗ L⊗(N−2k+2s){4s(k − s)− 2k2 + 2s2},

where we used Corollary 3.5 to get the last isomorphism. By Lemma 5.6, this equals the left-hand
side of (9). 2

Lemma 5.6. The dualizing sheaf of Zos (k) is

ωZo
s (k)
∼= (det(CN/V1)∨ ⊗ det(V2))⊗(N−2k+2s){−2(k − s)2}.
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Proof. As we saw in the proof of Lemma 3.1, Zs(k) has a natural resolution

Z ′′s (k) :=
{

0 k−s−−−→W1

s−−−−−−−→−−−−−−−→
N−2k+s

V1

V2

N−2k+s−−−−−−−→−−−−−−−→
s

W2
k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0

}
,

where the map π : Z ′′s (k)→ Zs(k) is an isomorphism over Zos (k). Hence, ωZo
s (k)
∼= ωZ′′s (k)|Zo

s (k).
Now consider the projection map

p : Z ′′s (k)→
{

0 k−s−−−→W1
N−2k+2s−−−−−−−→W2

k−s−−−→ CN :XCN ⊂W1, XW2 ⊂ 0
}

given by forgetting V1 and V2. This is a G(s, W2/W1)×G(N − 2k + s, W2/W1) fibration, so the
relative cotangent bundle is

ωp ∼= (det(V1/W1)N−2k+s ⊗ det(W2/V1)−s)⊗ (det(V2/W1)s ⊗ det(W2/V2)−N+2k−s)
∼= (det(CN/V1)∨ ⊗ det(V2))N−2k+2s ⊗ (det(CN/W2)∨ ⊗ det(W1))−N+2k−2s.

On the other hand,

WN−2k+2s(k − s)⊂
{

0 k−s−−−→W1
N−2k+2s−−−−−−−→W2

k−s−−−→ CN :XW2 ⊂ 0
}

is carved out by the section X : CN/W2→W2/W1{2}. Then

ωWN−2k+2s(k−s)
∼= ωT ?G(N−k+s,N) ⊗ (det(W1)N−2k+2s ⊗ det(W2/W1)−k+s)

⊗ (det(CN/W2)−N+2k−2s ⊗ det(W2/W1{2})k−s)
∼= (det(CN/W2)∨ ⊗ det(W1))N−2k+2s

× {−2(N − k + s)(k − s) + 2(k − s)(N − 2k + 2s)},

where we used that ωT ?G(a,N)
∼=OT ?G(a,N){−2a(N − a)} (see [CK10, Lemma 3.4]). Thus,

ωZ′′s (k)
∼= ωp ⊗ ωWN−2k+2s(k−s)

∼= (det(CN/V1)∨ ⊗ det(V2))N−2k+2s{−2(k − s)2}

and the result follows. 2

5.3 Kawamata’s equivalence for T ∗G(2, 4)
For the rest of the paper, we will ignore the C×-equivariance. In [Kaw06], Kawamata studied

stratified Atiyah flops for Ỹ (2) = ˜T ∗G(2, N). Incidentally, Kawamata also called these stratified
Mukai flops (the terminology of stratified Atiyah flops is from [Nam04]).

Kawamata constructed two functors Ψ, Φ :D(Ỹ (2))→D(Ỹ (N − 2)) which are adjoints of
each other. He showed [Kaw06, Theorem 3.5] that whenN = 4 these functors induce equivalences.
We would like to briefly outline his construction and explain why they yield equivalences.

Proposition 5.7. The kernel S(2) = i∗j∗OZ̃o(2)(
∑2

l=0

(
l
2

)
[Zol (2)]) and its (left or right) adjoint

induce Kawamata’s functors Ψ, Φ :D(Ỹ (2))→D(Ỹ (N − 2)).

Remark 5.8. By Corollary 5.2, the kernel S(2) induces an equivalence. Hence, Kawamata’s
functors Ψ and Φ are equivalences for all N .

Inside

Ỹ (2) =
{

(X, V, x) : x ∈ C, X ∈ End(CN ), 0⊂ V ⊂ CN ,

dim(V ) = 2 and CN X−x·id−−−−−−→ V
X+x·id−−−−−−→ 0

}
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there are two natural strata: namely the locus where X = 0 (isomorphic to G(2, N)) and the
locus where rankX 6 1 (the locus rankX 6 2 is the whole central fibre Y (2)). Kawamata first
blew up the first locus and then the strict transform of the second locus to obtain

Ỹ ′′(2)
f1−−→ Ỹ ′(2)

f2−−→ Ỹ (2).

Inside Ỹ ′′(2) we denote by E1 the exceptional divisor of f1 and by E2 the strict transform of
the exceptional divisor of f2. Warning: our labeling of divisors does not match precisely that
in [Kaw06] for reasons that will soon become clear.

Kawamata then blew up Ỹ (N − 2) in the same way to obtain Ỹ ′′(N − 2) and identified this
smooth variety with Ỹ ′′(2). To summarize, we arrive at the following commutative diagram.

Ỹ ′′(2)∼= Ỹ ′′(N − 2)
f

wwooooooooooooo
f+

((QQQQQQQQQQQQQ

π

��
Ỹ (2)

''OOOOOOOOOOOOOO Z̃(2)
π1oo π2 // Ỹ (N − 2)

vvmmmmmmmmmmmmmm

B̃(2)

(10)

Notice that Z̃(2) = Ỹ (2)×
B̃(2)

Ỹ (N − 2), so the map π exists by the universal property of fibre
products. The functors Ψ and Φ are then defined by

Ψ( · ) := f∗(f+∗( · )⊗OỸ ′′(2)([E2])),

Φ( · ) := f+
∗ (f∗( · )⊗OỸ ′′(2)((2N − 5)[E2] + (N − 3)[E1])).

Notice that Z(2) contains three components, namely Zs(2), where s= 0, 1, 2. Similarly, Y ′′(2)
(the preimage of Y (2) under f) also contains three components, namely E1, E2 and the proper
transform of Y (2) inside Ỹ ′′(2) (which we denote E0). The map π then maps Es to Zs(2) for
s= 0, 1, 2 (the map is generically one-to-one).

From this, we see that the complement of Ỹ ′′(2)o := π−1(Z̃o(2)) in Ỹ ′′(2) has codimension
at least two (otherwise it would contain a divisor whose restriction to Y ′′(2) would be another
component). Now denote by j′ : Ỹ ′′(2)o→ Ỹ ′′(2) the natural open immersion. Thus, for any
a, b ∈ Z,

j′∗(OỸ ′′(2)o(a[E1] + b[E2]))∼=OỸ ′′(2)(a[E1] + b[E2]).

Using the commutative diagram

Ỹ ′′(2)o

πo

��

j′ // Ỹ ′′(2)

π

��
Z̃o(2)

j // Z̃(2)

we find that

R0π∗OỸ ′′(2)([E2]) ∼= R0π∗ ◦ j′∗(OỸ ′′(2)o([E2]))∼= j∗ ◦R0πo∗(OỸ ′′(2)o([E2]))
∼= j∗OZ̃o(2)([Z

o
2(2)])∼= S(2),

where the third isomorphism follows by the projection isomorphism since E2 = π−1
o Zo2(2) and πo
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is a proper map between smooth varieties. Now

Ψ( · ) ∼= f∗(f+∗( · )⊗OỸ ′′(2)([E2]))
∼= (π1∗π∗)(π∗π∗2( · )⊗OỸ ′′(2)([E2]))
∼= π1∗(π∗2( · )⊗ π∗(OỸ ′′(2)([E2])))
∼= π1∗(π∗2( · )⊗ S(2)),

which proves Proposition 5.7.
As a consistency check, one can similarly show that

R0π∗OỸ ′′(2)((2N − 5)[E2] + (N − 3)[E1])
∼= j∗OZ̃o(2)((2N − 5)[Zo2(2)] + (N − 3)[Zo1(2)])

∼= j∗OZ̃o(2)

( 2∑
l=0

(
l

2

)
[Zos (2)]

)
⊗ (det(CN/V1)∨ ⊗ det(V2))N−3

∼= S(2)L,

where we used that det(CN/V1)∨ ⊗ det(V2)∼=OZ̃o(2)(
∑2

l=0 l[Z
o
l (2)]). This means that S(2)L

induces Φ. Note that we already knew this because Ψ and Φ were shown to be adjoints in [Kaw06].

Remark 5.9. This same argument can be generalized from k = 2 to arbitrary k. More precisely,
one can iteratively blow up Ỹ (k) starting with the smallest stratum to obtain

Ỹ (k)(k)
f1−−→ Ỹ (k−1)(k)

f2−−→ · · · fk−−→ Ỹ (k).

We denote by Es the (proper transform of the) exceptional divisor of fs.

Then there are an isomorphism Ỹ (k)(k)∼= Ỹ (k)(N − k) (see [Mar01]) and a commutative
diagram like in (10). The map π : Ỹ (k)(k)→ Z̃(k) identifies the divisors Es with Zs(k) for
s= 0, . . . , k. Subsequently, we have the following proposition.

Proposition 5.10. There is an isomorphism

R0π∗

(
OỸ (k)(k)

( k∑
l=0

(
l

2

)
[El]
))
∼= j∗OZ̃o(k)

( k∑
l=0

(
l

2

)
[Zol (k)]

)
and thus both kernels induce equivalences D(Ỹ (k)) ∼−−→D(Ỹ (N − k)).
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