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Abstract. One of the typical features shown by observations of solar prominence oscillations
is that they are quickly damped in time by one or several not well-known mechanisms. In
addition, recent high resolution observations have revealed that the prominence fine structures,
called fibrils, can oscillate with their own periods, independently from the rest of the prominence.
The main aim of the present work is to study the attenuation of oscillations supported by a
single prominence fibril. We consider an equilibrium made of a prominence plasma Cartesian
slab of finite width embedded in a coronal medium, and assume non-adiabatic effects (thermal
conduction, radiation losses and heating) as damping mechanisms. The magnetic field is taken
uniform and parallel to the slab axis. We find that the efficiency of the non-adiabatic effects as
damping mechanisms is different for each magnetoacoustic mode. The obtained values of the
damping time are compatible with those observed in the case of the slow modes, but the fast
modes are much less attenuated.
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1. Introduction

The existence of waves and oscillations of small amplitude in solar quiescent promi-
nences is a well-known phenomenon reported by a large number of observations. Obser-
vations usually detected oscillations of the whole or large areas of the prominence (e.g.
Molowny-Horas et al. 1997; Terradas et al. 2002), but oscillations and motions of single
filament threads have been also detected (e.g. Yi et al. 1991; Yi & Engvold 1991; Lin
et al. 2007). In addition, several observers (Molowny-Horas et al. 1999; Terradas et al.
2002) have also reported signs of a very quick attenuation of the oscillations. From the
theoretical point of view, these oscillatory motions have often been interpreted in terms
of magnetoacoustic wave modes (see Oliver & Ballester 2002 for an extensive review).
However, the mechanism responsible for the damping is still under investigation, and sev-
eral candidates have been proposed (Ballai 2003). Taking into account simple prominence
models, the damping mechanisms more extensively investigated to date are non-adiabatic
effects, as radiation, thermal conduction and heating (Carbonell et al. 2004; Terradas et
al. 2005), which seem to be only efficient in damping slow modes, whereas the fast waves
remain almost undamped. On the other hand, Forteza et al. (2007) studied the role of the
ion-neutral collisions on the time damping of oscillations in an unbounded prominence
plasma, and found that the fast mode can be efficiently attenuated in almost neutral
plasmas, but the slow wave is slightly influenced. Recently, Soler et al. (2007a) have
studied the effect of non-adiabatic coronal mechanisms on the time damping of promi-
nence oscillations, by considering a prominence model that includes the external corona.
These authors found that the coronal thermal conduction have an important effect on
the damping of the fast mode, which is more attenuated than in simple models that
do not consider the presence of the corona. Nevertheless, the investigation of the time
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attenuation of vibrations supported by a single fibril, instead of the whole prominence,
is still not performed. This is, then, the main motivation for the present work.

2. Fibril Model and Basic Equations

Our equilibrium configuration representing a prominence fibril (Fig. 1) is made of a
homogeneous plasma layer with prominence conditions (density p, =5 x 107! kg m~*
and temperature T}, = 8000 K) embedded in an unbounded corona (density p. = 2.5 X
10713 kg m™3 and temperature T, = 10° K). The magnetic field is éo = Byé,, with
By = 5 G everywhere. Both media are unlimited in the z- and y-directions. The half-
width of the slab is z, = 30 km, whose value is motivated from the observations (Lin et
al. 2005). This equilibrium have been studied by Edwin & Roberts (1982), and recently
revisited by Soler et al. (2007b), in the case of ideal, adiabatic perturbations. The reader
is referred to these works for an extensive analysis of the eigenmodes supported by the
model.

Corona

Corona

Figure 1. Sketch of the equilibrium configuration.

We consider parallel thermal conduction to the magnetic field, radiation and heating
as non-ideal, damping mechanisms. Assuming small, linear perturbations from the equi-
librium state and no propagation in the y-direction, the dispersion relation which governs
the fast and slow non-adiabatic magnetoacoustic modes can be obtained by following the
same process as in Soler et al. (2007a). This dispersion relation is then,

Pe 129 2 cot 2.2 _ 2 —
Py (K2vi, —w )kzp{ tan }(kapzp) + (KZvi, —w’) kze =0, (2.1)

where the cot term and the + sign correspond to kink modes, whereas the tan term
and the — sign correspond to sausage modes. ¢? = % and v} = % are the adiabatic
sound speed squared and the Alfvén speed squared, respectively, while subscripts p or ¢
denote quantities computed using prominence or coronal values, respectively. In Eq. (2.1),
w = wg +iwy is the complex oscillatory frequency, k, is the wavenumber in the x-direction,
and k, plays the role of the wavenumber in the z-direction and is given by

o (@ k) (7 — K2A%)
TR+ A (WP k)

(2.2)

where A% and & are the modified sound and cusp (or tube) speed squared, respectively,
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due to the presence of non-adiabatic mechanisms,

e (vy=1) (Z—S%Hkg +uwp — wp) +iyw

A== , (2.3)
v (v—1) (%Hukg +(UT) + iw
2 A2
o Uz A
%:ETF' (2.4)

Finally, v is the adiabatic ratio, x| is the parallel thermal conductivity to the magnetic
field, and w, and wy are quantities related to the radiative losses and plasma heating
(see Soler et al. 2007a for details).

Among all solutions of Eq. (2.1) for a fixed, real k,, we focus to those evanescent
in the corona (R (k2.) < 0) but body-like in the prominence (R (k2,) > 0). So, leaky
waves (R (kzc) > 0) are discarded from this investigation. For simplicity, we also restrict
ourselves to the fundamental kink modes. Then, we compute the period, P, the damping
time, 7, and the ratio of both quantities as function to the real and imaginary parts of
the frequency as follows,

2 1 ™ o 1 WR

Pp=="2 == 2

= — 2.5
WR w17 P 2 w1 ( )

3. Results and Discussion

The results presented here correspond to an optically thin radiation and a constant
heating per unit volume (see Soler et al. 2007a, Table 1). Figure 2 shows the period, P,
the damping time, mp, and their ratio as function of k,, corresponding to the fundamental
kink modes.
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Figure 2. Period (left), damping time (centre) and ratio of the damping time to the period
(right) versus the longitudinal wavenumber for the fundamental kink oscillatory modes: internal
slow (solid line), fast (dotted line) and external slow (dashed line). The shaded zones correspond
to those wavelengths typically observed in prominence oscillations.

Taking into account the results in the range of wavelengths typically observed in promi-
nences, we see that the internal slow mode (responsible for longitudinal motions) pro-
duces periods compatible with intermediate- and large-period oscillations, whereas the
fast mode (responsible for transverse motions) could be associated with short-period os-
cillations. On the other hand, the external slow mode mainly disturbs the surrounding
corona, the amplitude of its motions within the prominence fibril being very small (Soler
et al. 2007b), hence it could be rather difficult to observe. Regarding the damping time,
both internal and external slow modes are efficiency attenuated, with damping times of
the order of their periods. However, the fast wave is much less attenuated since its damp-
ing time is between 2 and 6 orders of magnitude larger than its period. This means that
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non-adiabatic effects are not efficient enough in damping transverse fibril oscillations,
and so an additional mechanism (not considered here) is probably responsible for the
observed damping times.

Now, in order to assess which is the relative importance of each non-adiabatic damping
mechanism, we compare the damping time obtained when considering all non-adiabatic
effects (displayed in the middle column of Fig. 2) with the results obtained when a specific
mechanism is removed. With this analysis, we are able to find out where the omitted
mechanism has an appreciable effect on the damping. The results of these computations
are displayed in Fig. 3 and summarised next:
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Figure 3. Damping time versus the longitudinal wavenumber for the three fundamental kink
oscillatory modes: internal slow (left), fast (centre) and external slow (right). Different linestyles
represent the omitted mechanism: all mechanisms considered (solid line), prominence conduction
eliminated (dotted line), prominence radiation eliminated (dashed line), coronal conduction
eliminated (dot-dashed line) and coronal radiation eliminated (three dot-dashed line).

e The internal slow mode is only affected by prominence-related mechanisms, radiative
losses from the prominence plasma being responsible for the attenuation of this solution
in the range of typically observed wavelengths. The prominence thermal conduction is
only efficient for very small wavelengths (large k,) outside the observed range.

e The fast mode is affected by both prominence and coronal mechanisms. The former
are dominant for small wavenumber while the latter are more important for large k..
The coronal conduction is the most important damping mechanism in the region of
observed wavelengths. This involves an important novelty with respect to Soler et al.
(2007a), in which a wider slab representing the whole prominence was considered, and the
prominence radiation still had a relevant effect in the observed range of wavelengths. This
means that the slab width has an important influence on value of k, that determines the
transition between the regimes dominated by the prominence radiation and the coronal
conduction.

e The damping of the external slow mode is entirely governed by coronal-related mech-
anisms, mainly the coronal thermal conduction, which is the dominant damping mecha-
nism in the range of typically observed wavelengths.

4. Conclusion

In this work, we have performed a brief study on the time damping of the eigenmodes
supported by a Cartesian prominence fibril. Radiative losses, plasma heating and par-
allel thermal conduction have been considered as damping mechanisms. In agreement
with previous studies (Carbonell et al. 2004; Terradas et al. 2005), we have found that
only the slow modes are efficiently damped by non-adiabatic effects. On the contrary, the
efficiency of these mechanisms in damping transverse, fast-like oscillations is not enough
to reproduce the observations. On the basis of this result, we think that another damping
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mechanism, much more efficient in damping transverse oscillations, should be responsi-
ble for the observed damping times. Some candidates could be resonant absorption in
Alfvén or slow continua and ion-neutral collisions, whose effect on the damping of fibril
oscillations should be investigated in further works.
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