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On the uninodal quartic curve.

By H. W. RICHMOND, F.R.S.

(Received 10th January 1927. Mead Uh February 1927.)

1. In comparison with the general plane quartic on the one
hand, and the curves having either two or three nodes on the other,
the uninodal curve has been neglected.1 Many of its properties
may of course be deduced from those of the general quartic in the
limiting case when an oval shrinks to a point or when two branches
approach and ultimately unite. The modifications of properties of
the bitangents are shewn more clearly by Geiser's method2, in
which these lines are obtained by projecting the lines of a cubic
surface from a point on the surface. As the point moves up to and
crosses a line on the surface, the quartic acquires a node and certain
pairs of bitangents obviously coincide, viz. those obtained by pro-
jecting two lines coplanar with that on which the point lies. A
nodal quartic curve and its double tangents may also be obtained
by projecting a cubic surface which has a conical point from an
arbitrary point on the surface. Each of these three methods leads
us to the conclusion that, when a quartic acquires a node, twelve of
the double tangents coincide two and two and become six tangents
from the node, and the other sixteen remain as genuine bitangents:
the twelve which coincide are six pairs of a Steiner complex. More
precisely, if we adopt Hesse's notation for the 28 bitangents of a
general quartic explained in Salmon, we may consider that the
pairs:—17, 18:27, 28:37, 38:47, 48:57, 58:67, 68:—coincide and
become six lines which pass through the node and touch the curve at
a second point, while the other sixteen remain as genuine double
tangents. But the symbols 7 and 8 have now become unnecessary.
The six tangents from the node may be denoted by 1, 2, 3, 4, 5, 6,
(1 being the line in which 17 and 18 coincide): fifteen of the sixteen
genuine bitangents are denoted by a pair of these six symbols; while
the last, originally denoted by 78, may be represented by some
special symbol such as D..

1 But see Hilton, Plane Algebraic Curves, pp. 298-303. Clebsch (Vorlesungen),
Brill (Math. Annalen, 6 (1873), p. 66) and others have considered the curve in connection
with hyperelliptic functions. But a treatment by the elementary methods which are
applied successfully to the general quartic is wanting.

- Math. Annalen, 1 (1869) p, 129, Hilton, p. 345.
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From the results tabulated in Salmon and elsewhere concerning
sets of bitangents of the general quartic it is now easy to derive the
corresponding properties of the uninodal quartic. To take one
instance:—in the general quartic, four bitangents denoted by symbols
such as 12, 34, 56, 78 or such as 12, 23, 34, 41 have their eight points
of contact on a conic; other such sets are obtained by permuting the
symbols 1, 2, 3, 4, 5, 6, 7, 8, in any way. Hence in the uninodal
quartic, four bitangents such as 12, 12, 34, 56, or four such as 12, 23,
34, 41, or any sets derived, by permuting the symbols 1, 2, 3, 4, 5, 6,
have their eight points of contact on a conic. And further the
following sets of two bitangents and two tangents from the node:—
J2, 12, 1, 2: 12, 34, 5, 6: 12, 13, 2, 3:—have their points of contact on
a conic which passes through the node. And so on.

2. The existence of a double point on a curve offers possibilities
for the reduction of the equation to a standard form which are absent
in the general curve. No one has discovered a satisfactory canonical
form for a ternary quartic; there appears to be no point, or line, or
triangle . . . which stands in a specially simple geometrical relation
to the curve, and investigations are usually based upon the form
xyzw = / 2 , a form to which the equation of the curve can be reduced
in 315 ways. But if the curve has a node, it and the two nodal
tangents at once provide a point and two lines uniquely related to
the curve, and on this foundation we may build further results.

In the case of a quartic curve having a cusp,3 the equation of
the curve can be reduced in one and only one way to the form

F = x2 z2+ 2y3 z — (Ax*+ Bx3 y + Cx2 y2+ Dxy3+ Ey*)

or

x2F = (x2z + y3)2- (y«+ Ey*x2+ Dy3 x3+ Cy2xi+ Byx5+ Ax6)

= {x2z + y3)2- (y + ax) {y + bx) (y + cx) (y + dx) (y + ex) {y + fx)

where a + b + c + d + e + f = 0

Here x = 0, y = 0 is the cusp, and x = 0 the tangent there: the
first polar of the cusp is a cusped cubic, and the triangle of reference
is so chosen that this cubic has the standard form of equation
X2Z _|. ^ 3 = o. The six lines

y + ax = 0, y -\-bx = 0, ... y + fx = 0,

3 See Quarterly Journal of Mathematics, 26 (1893), 5-26.
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are the six tangents from the cusp, and the ten bitangents of the
curve all have precisely similar equations such as

2 (y»+ x2 z) = (y + ax) (y + dx) (y + ex) + (y + bx) (y + ex) (y + fx)

from which an extraneous factor x2 may be removed. With these
formulae properties of the curve may be discovered or verified; in
particular a classification of cusped quartic curves with the number
of branches, the reality and position of the bitangents, is easily
effected: it depends solely upon the constants a, b, c, d, e, / . An
analogous discussion of the nodal quartic will be attempted here, but
the problem is complicated and only the forms of equations and one
curious result will be given.

3. With a triangle of reference XYZ, the equation of a quartic
curve which has a node at Z is F = 0, where

F = z2ut (x, y) - 2z u3 (x, y) + ut (x, y),

or w2 F = (z u2— M 3 ) 2 - (u3
2- u2 « 4 ) .

Now u2= 0 is the equation of the two tangents at Z, and
H, ! =! /JU 4 is the equation of six lines through Z which touch the
quartic at six other points. The first polar of Z, which passes
through the six points of contact * is the nodal cubic

zu2 = u3.

But if x = 0 and y = 0 are the tangents at the node—(they will
be thought of as real in this paper)—of this cubic and also of the
quartic, and z = 0 the line of inflexions of the cubic, its equation
is reduced to the standard form

zxy = x3+ y3,

and the equation of the quartic F = 0 at the same time becomes

F ~ xyz2- 2 (xs+ y3) z + w4 (a;, y)

or xyF = {xyz — x3— y3)2— (x3+ y3)2+ xy ut (x, y)

With the factor xy introduced, the equation of the quartic may be
written in the convenient shape

(zxy — x3— ys)2= {x3-\- y3)2— xy ui (x, y)

= (x- ay) (x - by) (x - cy) (x - dy) (x - ey) (x - fy)

where abcdef—\.

4 The six points of contact lie also on a conic.
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The lines x = ay, x = by, ..., x = fy, are the six tangents from the
node Z. If a, b, c, d, e, f are the roots of a sextic equation

t*— «i f°+ s2 t
i - ss t

s+ s4 t 2- s51+ 1 = 0,

F = xyzi— 2 (x3+ y3) z + ^ .T 4 - «, .T3 */ + (s3+ 2) a;2?/2- *4 xy3+ *s 2/4

4. Double tangents. Suppose now that z = hx + iy is a double
tangent of the curve, and that its contacts lie on the two lines
through Z given by

v = Ix2+ mxy + ny2= 0.

Substituting for z in F we must have

(hx*y + kxy2- x3- y3)2- (x - ay) (x -by) . . . {x - fy) = xyv-

or (x3— hx2y — kxy2+ y3)2— xyv2 = (x — ay) (x — by) ... (x — fy).

The left hand member will factorize if we use the square root of xy;
to avoid radicals we will replace

x, y, a, b, c, d, e, f by A'2, Y2, A2, B2, C2, D2, E2, F\

Then ( X 6 - hX*Y2- kX2 Y*+ 7 6 ) 2 - X2 Y2 F2

= (X2- A2Y2) (X2- B2Y2) ...{X2- F2Y2)

where V == IX* + mX2 Y2+ n YK

The left hand member is now the product of two factors

X 6 - hX*T*- kX*Y*+ Y*±XYV

which differ only in the sign of Y, and each bracket on the right is
the product of two factors (e.g. X ± A Y) which differ in the same
way. Each factor on the left must be equal to the product of six
factors on the right, one from each bracket; the second factor on the
left will then be equal to the product of the other six factors on the
right. Now the quantities A, B, C, D, E, F, have not yet been
exactly denned; A2= a, but A may be either square root of a, and
there is little to guide us. If the values of A, B, C, D, E, F are
chosen at random, the product ABC'DEF must be ± 1, since

A2B2C*D2E2F2= abcdef = 1,

and it is convenient here to suppose the values of A, B, C, D, E, F
so chosen that

ABCDEF = 1

https://doi.org/10.1017/S001309150000729X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000729X


35

and further that A, B, G, D, E, F are roots of a sextic

T 6 - Sx T
5+ S2 T*- 83 T

3+ S4 T*- S5 T + 1 = 0.

We may then satisfy the previous formulae by writing

X6- hX*Y2- 1cXnr*+ Y°+XYV
= (X + AY) (X + BY) (X + CY) (X + DY) (X + EY) (X + FY),

X6- hX*Y>- kX*Y*+ Y*-XYV
= (X -AY)(X- BY) (X - CY) (X - DY) (X - EY) (X - FY);

for the coefficients of X6 and F6 agree; and if in addition

the identity is complete. Hence with these values of A,B, C, D, E, F,
we have proved that

z + £2 x + £4 y = 0

is a double tangent, and that its points of contact lie on

5. The system of double tangents. Other bitangents may be
obtained by changes of sign of A, B, C, D, E, F, which leave the
product equal to 1, i.e. by an even number of changes of sign. But to
change the sign of all six does not affect 82 and $4, or the other results
of §4; and, as a consequence, a change of sign of four is equivalent to
a, change of sign of the other two. However since two out of six
constants may be selected in fifteen ways, fifteen other bitangents
are derivable from that of § 4, i.e. the complete system. The double
tangent of §4 being denoted by £1, the others may be called {AB),
(AC), . . . (EF), (AB) denoting the double tangent obtained from Q. by
a, change of sign of A and B. We have thus arrived at a notation
which closely resembles that of § 1, except that the figures
1, 2, 3, 4, 5, 6 have been superseded by letters A, B, C, D, E, F.
But the letters have a definite significance: further any bitangent is
derivable from any other by a change of sign of two of the constants
A, B, C, D, E, F; thus there is a complete symmetry among the
equations of the bitangents which is not suspected if the notation
is regarded as a matter of symbols only.

These equations confirm many results obtained by the methods
of § 1; on occasion they are to be preferred to the old methods. One
problem which the new formulae answer most readily is that of
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classification of nodal quartic curves, especially those having a
crunode (or node with real tangents) which present some novel
features. If the nodal curve is reached as a degenerate form of the
curve without a singular point, it is difficult to be certain that no
case is overlooked; and neither of the methods of deriving the curve
by projection from a cubic surface will give all its varieties. Pro-
jection from a point on a line of a non-singular cubic surface cannot
give a quartic which has no real tangents from the node; and pro-
jection of a cubic surface with a conical point cannot give a nodal
quartic which has no real bitangent. Yet both these types of
nodal quartics exist.

6. Classification of crunodal quartic curves. The equation of a
given curve can be reduced to the form used in § 3 in one way and
only one; the classification therefore depends entirely upon the
constants contained in that form: since the six constants a, 6, c, d, e.f
(whose product was shown to be unity), are roots of a sextic
equation with real coefficients, crunodal quartic curves fall into four
main classes, according as six, four, two or none of these constants
are real.

If, in the equation of the curve in § 3, xiy is denoted by s, the
coordinates of points are found as functions of «:—

where 8 — (s — a) (s — b) (s — c) (s — d) (s — e) («•—/).

Hence all lines through the node Z given by values of s for which
S is positive meet the curve in two real points, and those for which
<S is negative do not meet the curve. Further S is positive for values
of s in the neighbourhood of 0 and GO. NOW if two, or four, or six,
of the constants a, b, c, d, e, f are real, two, or four, or six lines drawn
through Z touch the curve; and, being produced indefinitely in both
directions, divide" the plane into two, or four, or six compartments.
Imaginary values of the constants occur in pairs and give quadratic
factors of S which are always positive. Thus 8 changes sign only on
passing from one compartment to the next, and the curve lies wholly
in one, two or three of the two, four or six compartments, and not
in any of the alternate intervening compartments. The curve there-
fore consists of three distinct parts, or is tripartite if the six constants
are all real; it has two distinct parts, or is bipartite if four are real;
it is unipartite if only two are real. Lastly, if none are real, S is
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positive for all values of s, and every line through Z meets the curve
in two real points. The curve is unipartite.

7. Reality of the double tangents. The equations of the double
tangents found in §§ 4 and 5 depend upon the square roots of
a, b, c, d, e, / ; these were denoted by A, B, C, D, E, F, the doubtful
signs being so restricted that the product ABCDEF = 1, and it was
proved that, with this restriction,

z + Sox + S^y = 0

is the equation of a double tangent. It is clear then that among
real values of a, b, c, d, e, / , positive and negative values must be
distinguished. Positive, negative, and complex values of a, b, c, d, e, /
lead respectively to real, pure imaginary, and complex values of
A, B, C, D, E, F. Since the product abcdef = 1, there must be an
even number of each kind. An unexpected result presents itself if
a, b, c, d, e, f are all real; viz., that if all are positive or all negative,
all the sixteen double tangents are real;5 if some are positive and
some negative all the sixteen are imaginary. To carry out in detail
the discussion of all the types of the curve would require more
pages of algebraic work than can reasonably be asked for: but the
geometrical explanation of this one rather surprising fact may not
be superfluous. [All the double tangents must also be imaginary if
two of the six constants a, b, c, d, e, / are positive, two negative and
two complex.]

Branches of an algebraic curve are (as von Staudt first observed)
of two sorts; those of even order which are met by any straight line
in an even number of real points (possibly none) and those of odd
order, met by every straight line in an odd number of real points.
Any two branches of odd order intersect in at least one real point.
Thus a curve without double points cannot have two branches of
odd order, but a curve with a node, and in particular a nodal quartic
(crunodal) may. If so, the quartic cannot have a real double tangent,
because every line must meet each branch of odd order in one or
three points and cannot touch the curve twice. But a line through
the node may touch any branch of the curve at another point.

It is probable then that, in the exceptional curves which have no
real bitangents at all, the node is formed by two distinct branches

5 If all are negative, A, B, C, D, E, F are pure imaginary quantities, and S.z, Si

are real.
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of odd order intersecting; and this may be seen to be the case. For
if at least two of the real constants a, b, ... /, are positive and at
least two negative, the tangents ZX, ZF at the node lie in two
different compartments into which the plane is divided by the
tangents from Z. Hence the parts of the curve which touch ZX
and ZY are distinct branches: they cross at Z at a finite angle, but
a point moving continuously cannot pass from one to the other.
Each of them is touched by the lines through Z which bound the
compartment in which it lies, and such a line cuts each at a finite
angle at Z. Each of the branches is therefore of odd order. In all
other circumstances the lines ZX ZY lie in the same compartment,
and the node is a point where a branch of even order crosses itself.

To discuss the other types of crunodal curves, and also acnodal
curves (in which the node is isolated); the numbers of real bitangents,
the reality of their points of contact and the branches on which they
lie when real, etc., etc., would necessarily extend to many pages.
As far as this has been done, no special difficulty has been met with,
and the result scan as a rule be verified by other methods.
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