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Abstract. Let X be a complex in®nite dimensional Banach space. We use �a�T �
and �ea�T �, respectively, to denote the approximate point spectrum and the essential
approximate point spectrum of a bounded operator T on X. Also, �a�T � denotes the
set iso �a�T � n �ea�T �. An operator T on X obeys the a-Browder's theorem provided
that �ea�T � � �a�T � n �a�T �. We investigate connections between the Browder's
theorems, the spectral mapping theorem and spectral continuity.

1991 Mathematics Subject Classi®cation. 47A10.

1. Introduction. Let X be a complex in®nite-dimensional Banach space and let
B�X� and K�X� denote respectively the algebra of bounded operators and the ideal of
compact operators on X. If T 2 B�X�, then ��T � denotes the spectrum of T and ��T �
denotes the resolvent set of T. It is well known that the following sets form semi-
groups of semi±Fredholm operators on X:

���X� � fT 2 B�X� : R�T � is closed and dimN�T � <1g

and

�ÿ�X� � fT 2 B�X� : R�T � is closed and dimX=R�T � <1g:

The semigroup of Fredholm operators is ��X� � ���X� \�ÿ�X�. If T is semi±
Fredholm and ��T � � dimN�T � and ��T � � dimX=R�T �, then we de®ne the index
by i�T � � ��T � ÿ ��T �. We also consider the sets

�0�X� � fT 2 ��X� : i�T � � 0g (Weyl operators);

�ÿ��X� � fT 2 ���X� : i�T � � 0g; ��ÿ�X� � fT 2 �ÿ�X� : i�T � � 0g:

The following de®nitions are well known: the essential spectrum of T is �e�T � �
f� 2 C : Tÿ � =2��X�g, the Weyl spectrum of T is �w�T � � f� 2 C : Tÿ � =2�0�X�g
and the Browder spectrum of T is �b�T � � \f��T� K� : TK � KT;K 2 K�X�g. �a�T �
denotes the approximate point spectrum of T 2 B�X�. Let �00�T � be the set of all
� 2 C such that � is an isolated point of ��T � and 0 < dimN�Tÿ �� <1, and let
�0�T � be the set of all normal eigenvalues of T; that is the set of all isolated points of
��T � for which the corresponding spectral projection has ®nite-dimensional range. It
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is well known that, for all T 2 B�X� the next inclusion �0�T � � �00�T � holds. We say
that T obeys Weyl's theorem ([6],[8]), if

�w�T � � ��T � n �00�T �;

and we say that T obeys Browder's theorem ([6],[7]), if

�w�T � � ��T � n �0�T �:

Let �a0 denote the set of all � 2 C such that � is isolated in �a�T � and
0 < ��Tÿ �� <1. Also, by de®nition, �ea�T � � \f�a�T� K� : K 2 K�X�g is the
essential approximate point spectrum ([9]) and

�ab�T � � \f�a�T� K� : AK � KA;K 2 K�X�g

is the Browder essential approximate point spectrum ([10]). It is well known that
�ea�T � � f� 2 C : Tÿ � =2�ÿ��X�g. We say that T obeys a-Weyl's theorem ([3],[11]), if

�ea�T � � �a�T � n �a0�T �:

It is well known that if T 2 B�X� obeys a-Weyl's theorem, then it obeys Weyl's the-
orem also ([11]).

Let ÿ0e�T � be the union of all trivial components of the set ([1]): that is

ÿ0e�T � � ��e�T � n ���sÿF�T ��ÿ� [ �[ÿ1<n<1f��nsÿF�T ��ÿ n �nsÿF�T �g� ;

where

��sÿF�T � � f� 2 C : Tÿ � 2 ���X� [�ÿ�X�; i�Tÿ �� 6� 0g;

�nsÿF�T � � f� 2 C : Tÿ � 2 ���X� [�ÿ�X�; i�Tÿ �� � ng:

If ��n� is a sequence of compact subsets of C, then, by the de®nition, its limit
inferior is lim inf �n � f� 2 C : there are �n 2 �n with �n ! �g and its limit superior
is lim sup �n � f� 2 C : there are �nk 2 �nk with �nk ! �g. If lim inf �n � lim sup �n,
then lim �n is de®ned by this common limit. A mapping p, de®ned on B�X�, whose
values are compact subsets of C, is said to be upper (lower) semi-continuous at A,
provided that if An ! A (in the norm topology) then lim sup p�An� � p�A�
(p�A� � lim inf p�An��. If p is both upper and lower semi-continuous at A, then it is
said to be continuous at A and in this case lim p�An� � p�A�.

2. Browder's theorem. Let H be a separable complex in®nite-dimensional
Hilbert space. It was shown in ([6]) that, for an operator T 2 B�X�, Browder's
theorem holds if and only if ��T � � �w�T � [ �00�T �, or equivalently �w�T � � �b�T �.

Theorem 2.1. If the Browder spectrum �b is continuous at T 2 B�H�, then Brow-
der's theorem holds for T.
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Proof. Since �b is continuous at T 2 B�H�, we have by [1, Theorem 14.17] that
�w�T � � �b�T �. Now, by an argument of Harte and Lee [6, Theorem 2], Browder's
theorem holds for T. &

Our next theorem gives a connection between Browder's theorem and spectral
continuity.

Theorem 2.2. If Browder's theorem holds for T 2 B�H�, then the following con-
ditions are equivalent:

(i) � is continuous at T;
(ii) �w is continuous at T;
(iii) �b is continuous at T.

Proof. (ii),(iii). Since for T 2 B�H� Browder's theorem holds, or equivalently
�b�T � � �w�T �, by [1, Theorem 14.17], it follows that �b is continuous at T if and
only if �w is continuous at T.

(i),(ii) Since T obeys Browder's theorem we have �w�T � � ��T � n �0�T �. Now,

�e�T � \ �0�T � � �w�T � \ �0�T � � ���T � n �0�T �� \ �0�T � � ÿ0e�T �:

It follows from [1, Theorem 14.17] that � is continuous at T if and only if �w is
continuous at T. &

3. a-Browder's theorem. Let a�T � be the ascent of T; i.e. the smallest non-
negative integer n such that N�Tn� � N �Tn�1�. Let b�T � be the descent of T; i.e., the
smallest non-negative integer n such that R�Tn� � R�Tn�1�.

The following is basically due to V. RakocÏ evicÂ [10].

Lemma 3.1. If T 2 B�X�, the following are equivalent:
(i) � =2 �ab�T �;
(ii) Tÿ � 2 ���X� and a�Tÿ �� <1;
(iii) Tÿ � 2 ���X� and � =2 acc �a�T �.

Proof. An argument of RakocÏ evicÂ [10, Theorem 2.1] gives that � =2 �ab�T � if and
only if Tÿ � 2 �ÿ��X� and a�Tÿ �� <1, giving the implication (i) ) (ii). For the
converse, it su�ces to show that Tÿ � 2 ���X� and a�Tÿ �� <1 imply
Tÿ � 2 �ÿ��X�. Indeed, if Tÿ � 2 ���X�, but Tÿ � =2��X�, then evidently
i�Tÿ �� � 0. If instead Tÿ � 2 ��X� and a�Tÿ �� <1, then either b�Tÿ �� <1
whence � =2 �b�T �, so that i�Tÿ �� � 0, or b�Tÿ �� � 1 and we have

n i�Tÿ �� � i��Tÿ ��n� � dimN��Tÿ ��n� ÿ dimX=R��Tÿ ��n� ÿÿÿÿ!n!1 ÿ1;

which implies that i�Tÿ �� < 0. This proves the implication (ii)) (i).
The implication (i), (iii) follows from the proof of [10, Theorem 2.1]. &

We denote

�a�T � :� �a�T � n �ab�T �: �3:1�
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By Lemma 3.1,

�a�T � � f� 2 �a�T � : Tÿ � 2 ���X� and a�Tÿ �� <1g: �3:2�

Evidently,

iso �a�T � n �ea�T � � �a�T � � �a0�T �: �3:3�

Definition 3.2. We say that a-Browder's theorem holds for T 2 B�X� if
�ea�T � � �a�T � n �a�T �: �3:4�

Evidently, a-Weyl's theorem implies a-Browder's theorem. However, the con-
verse is not true in general: for example, consider the operator T 2 B�`2� de®ned by

T : �x1; x2; x3; � � �� 7! �1
2
x2;

1

3
x3;

1

4
x4; � � ��:

Then the operator T does not obey a-Weyl's theorem [6, Example 3] and T obeys a-
Browder's theorem.

Theorem 3.3. If T 2 B�X�, the following are equivalent:
(i) a-Browder's theorem holds for T;
(ii) �ea�T � � �ab�T �;
(iii) �a�T � � �ea�T � [ �a�T �;
(iv) �a�T � � ��T �, where ��T � :� f� 2 C : Tÿ � 2 �ÿ��X� and ��Tÿ �� > 0g;
(v) acc �a�T � � �ea�T �;
(vi) �a�T � [��T � is a subset of discontinuities of T��� :� �Tÿ ��, where ���

denotes the reduced minimum modulus.

Proof. �i� , �ii�. This follows from (3.1) and (3.4).
�ii� , �iii�. If �ea�T � � �ab�T �, then

�ea�T � [ �a�T � � �ab�T � [ �a�T � n �ab�T �� � � �a�T �:

Conversely, if �a�T � � �ea�T � [ �a�T �, then �a�T � n �ea�T � � �a�T �. Since
�a�T � � �a�T � n �ab�T �, we have that �a�T � n �ea�T � � �a�T � n �ab�T �. Thus
�ab�T � � �ea�T �, and hence �ea�T � � �ab�T �.
�i� , �iv�. Suppose a-Browder's theorem holds for T, so that �ea�T � �

�a�T � n �a�T �. Let � 2 ��T �. Then � 2 �a�T � n �ea�T �, and so � 2 �a�T �. Thus
��T � � �a�T �, and evidently the inclusion is reversible. Conversely suppose
�a�T � � ��T �. If � 2 �ea�T �, then Tÿ � =2�ÿ��X� and so � =2��T � � �a�T �. Thus
� 2 �a�T � n �a�T � and hence �ea�T � � �a�T � n �a�T �. For the reverse inclusion,
observe that if � 2 �a�T � n �a�T � and � =2 �ea�T �, then Tÿ � 2 �ÿ��X�. Since
� =2�a�T � � ��T �, we have ��Tÿ �� � 0. Thus Tÿ � is bounded below and hence
� =2 �a�T �, a contradiction. Thus we should have � 2 �ea�T �, so that
�a�T � n �a�T � � �ea�T �. Therefore a-Browder's theorem holds for T.
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�ii� , �v�. By Lemma 3.1, �ab�T � � �ea�T � [ acc �a�T �. Thus �ab�T � � �ea�T � if
and only if acc �a�T � � �ea�T �.
�iv� , �vi�. Suppose that �a�T � � ��T �. Recall that by [4, Lemma 5.52], �a�T �

consists of discontinuities of T��� and hence �a�T � [��T �. Conversely suppose
that �a�T � [��T � consists of discontinuities of T���. Let �0 2 ��T �. Then
��Tÿ �0� > 0 and ��0� > 0. By the punctured neighborhood theorem, there exists a
neighborhood N��0; p�, for some p > 0, such that ��Tÿ �� is constant (say n0) on
N��0; p� n f�0g and 0 � ��Tÿ �� < ��Tÿ �0�. We now claim that n0 � 0. Assume to
the contrary that n0 6� 0. Also by the punctured neighborhood theorem there exists a
neighborhood N��0; q�, for some q > 0, such that �1 2 N��0; q� n f�0g implies
��Tÿ �1� > 0 and Tÿ �1 2 �ÿ��X�. Thus we have �1 2 ��T �. Now, by the same
reason as for �0, there exists a neighborhood N��1; r� for some r > 0 such that
��Tÿ �� is constant (say n1) and 0 � ��Tÿ �� < ��Tÿ �1�. Thus

� 2
�
N��0; q� \N��1; r�

�
n f�0; �1g �) ��Tÿ �� � n1 < n0;

a contradiction. Therefore n0 � 0 and hence �0 2 iso �a�T �. Thus �0 2 ��T � implies
�0 2 iso �a�T � and so �0 2 �a�T � n �ab�T �. Therefore we have �0 2 �a�T � and hence
��T � � �a�T �. The converse is evident. &

Corollary 3.4. Let �ab be continuous at T 2 B�H�. Then a-Browder's theorem
holds for T.

Proof. Since �ab is continuous at T, by [2, Theorem 2.2] it follows that
�ea�T � � �ab�T �. Now, by Theorem 3.3, we have that a-Browder's theorem holds for
T. &

Corollary 3.5. a-Browder's theorem holds for quasinilpotent operators and
algebraic operators.

Proof. If T 2 B�X� is either quasinilpotent or algebraic then acc �a�T � � ;. Thus
by Theorem 3.3, T obeys a-Browder's theorem. &

In [8], it was shown that if T 2 B�X� then @ �w�T � � �ea�T �, where @��� denotes
the topological boundary. We can prove more.

Proposition 3.6. If T 2 B�X�, then @ �e�T � � �ea�T �, and hence �ea�T � 6� ;.

Proof. If � =2 �ea�T �, then Tÿ � 2 ���X� and i�Tÿ �� � 0. Assume to the con-
trary that � 2 @ �e�T �. Then, by the punctured neighborhood theorem, there exists
p > 0 such that � 2 N��; p� n f�g implies that Tÿ � 2 ��X�. Since Tÿ � 2 ���X�, it
follows from the continuity of the (semi-Fredholm) index that Tÿ � 2 ��X�. Hence
� =2 �e�T �, a contradiction. &

Corollary 3.7. Suppose that H is a separable Hilbert space and that T 2 B�H�
is a polynomially Riesz operator, in the sense that there exists a nonzero complex
polynomial p such that p�T � is a Riesz operator. Then a-Browder's theorem holds for
T.
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Proof. Suppose that T is polynomially Riesz. Then, by [7, Lemma 3],
acc ��T � � �w�T � and hence acc �a�T � � �w�T �. Since �w�T � is ®nite it follows that
�w�T � � @ �w�T �. Now @ �w�T � � @ �e�T � and we have, by Lemma 3.6, acc �a�T � �
�ea�T �. Therefore, by Theorem 3.3, T obeys a-Browder's theorem. &

Also, it is easy to see that if T 2 B�H� obeys a-Browder's theorem, then �ea is
continuous at T if and only if �ab is continuous at T.

Theorem 3.8. Necessary and su�cient conditions that a-Weyl's theorem holds for
T 2 B�X� are a-Browder's theorem holds together with one of the following:

(i) if � 2 �a0�T �, then R�Tÿ �� is closed;
(ii) �ea�T � \ �a0�T � � ;;
(iii) �a0�T � � �a�T �.

Proof. Suppose a-Weyl's theorem holds for T 2 B�X�. Then evidently a-Brow-
der's theorem holds too and the condition (i) holds by [9, Theorem 5.6]. By a-Weyl's
theorem, �ea�T � � �a�T � n �00�T �; i.e. �ea�T � \ �a�T � � ;. By [3, Lemma 2.6] we
have that �ea�T � � �ab�T � and now

�a0�T � � �a�T � n �ea�T � � �a�T � n �ab�T � � �a�T �:

Suppose that T obeys a-Browder's theorem and the condition (i) holds. Let
Tÿ � 2 �ÿ��X�. Then � =2 �ea�T � � �ab�T �. Now, by [10, Corollary 2.4] it follows that
� is not a limit point of �a�T � and by [11, Theorem 1.1] T obeys a-Weyl's theorem.

If a-Browder's theorem holds for T 2 B�X� we have that
�ea�T � � �a�T � n �a�T � � �a�T � n �a0�T �:

By the condition (ii) we have that the opposite inclusion holds; i.e.

�ea�T � � �a�T � n �a0�T �:

Now, by a-Browder's theorem together with the condition (iii), it follows
directly that a-Weyl's theorem holds for T 2 B�X�. &

Theorem 3.9. If a-Browder's theorem holds for T 2 B�X�, then T obeys Browder's
theorem.

Proof. Suppose the contrary. Then, by [6, Theorem 2] it follows that
�b�T � 6� �w�T �; i.e. there exists � 2 �b�T � n �w�T �. For this � we have that
Tÿ � 2 �0�X� and a�Tÿ �� � 1 by [5, Theorem 7.9.3]. Since we have
Tÿ � 2 �0�X� and a�Tÿ �� � 1, it follows from [10] that � 2 �ab�T �. By Theorem
3.3, we have that �ea�T � � �ab�T �; i.e. � 2 �ea�T � � �w�T �. This is a contradiction
because of our assumption that � =2 �w�T �. &

Let T 2 B�X� and let p be a polynomial. It is known that the inclusion
�ea�p�T �� � p��ea�T �� holds [9] and it is known that for �ab a spectral mapping the-
orem holds [10]. The next theorem gives some su�cient conditions for a spectral
mapping theorem for �ea to hold.
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Theorem 3.10. If a-Browder's theorem holds for T 2 B�X� and if p is a poly-
nomial, then a-Browder's theorem holds for p�T � if and only if p��ea�T �� � �ea�p�T ��.

Proof. If a-Browder's theorem holds for p�T � then
�ea�p�T �� � �ab�p�T �� � p��ab�T �� � p��ea�T ��:

Since the opposite inclusion holds we have that p��ea�T �� � �ea�p�T ��.
Suppose that p��ea�T �� � �ea�p�T �� and let a-Browder's theorem hold for T.

Then we have

�ab�p�T �� � p��ab�T �� � p��ea�T �� � �ea�p�T ��
that is, by Theorem 3.3, a-Browder's theorem holds for p�T �. &

Let S and T be in B�X�. Then clearly,

�ea�S� T � � �ea�S� [ �ea�T �: ���

By contrast the Browder essential approximate point spectrum of a direct sum is
the union of the Browder essential approximate point spectrum of the components.
This might suggest that a-Browder's theorem for S and T is su�cient for equality in
���.

Theorem 3.11. If a-Browder's theorem holds for S and T 2 B�X�, then a-Brow-
der's theorem holds for S� T if and only if �ea�S� T � � �ea�S� [ �ea�T �:

Proof. If S� T obeys a-Browder's theorem, then

�ea�S� [ �ea�T � � �ab�S� [ �ab�T � � �ab�S� T � � �ea�S� T � � �ea�S� [ �ea�T �;

and so we have

�ea�S� T � � �ea�S� [ �ea�T �:

Suppose that �ea�S� T� � �ea�S� [ �ea�T �. Then we have

�ab�S� T � � �ab�S� [ �ab�T � � �ea�S� [ �ea�T � � �ea�S� T�;

that is, �ab�S� T � � �ea�S� T �. By Theorem 3.3, a-Browder's Theorem holds for
S� T. &
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