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A continuation method is used to study Rayleigh–Bénard convection in a non-Newtonian
fluid inside a parallelepiped cavity. The cavity has its length equal to twice the side of the
square cross-section. Shear-thinning and shear-thickening Carreau fluids are considered.
The focus is put on the two stable branches which exist in the Newtonian case, a stable
primary branch of transverse rolls B1 and a primary branch of longitudinal roll B2,
stabilized beyond a secondary bifurcation point S2. Although the primary bifurcation
points are unchanged, the non-Newtonian properties strongly modify the bifurcation
diagram. Indeed, for a shear-thinning fluid, the stable solutions can exist at much smaller
Rayleigh numbers Ra, on subcritical branches beyond saddle-node points SN1 and SN2,
and small perturbations can be sufficient to reach them. In agreement with Bouteraa et al.
(J. Fluid Mech., vol. 767, 2015, pp. 696–734), the change of the primary bifurcations
from supercritical to subcritical occurs at given values of what they define as the
degree of shear-thinning parameter α. Moreover, the value of the Rayleigh number at
the saddle-node points can be approximated by a simple expression, as proposed by
Jenny et al. (J. Non-Newtonian Fluid Mech., vol. 219, 2015, pp. 19–34). In the case of
a shear-thickening fluid, the branches remain supercritical, but the secondary point S2 is
strongly moved towards larger Ra, making it more difficult to reach the longitudinal roll
solution. Energy analyses at the bifurcations SN1, SN2 and S2 show that the changes of
the corresponding critical thresholds Rac are connected with the changes of the viscous
properties, but also with changes of the buoyancy effect.

Key words: convection in cavities, bifurcation, non-Newtonian flows

1. Introduction

The convection obtained by heating from below, known as the Rayleigh–Bénard
convection because of the pioneering studies of Bénard (1901) and Rayleigh (1916), has

† Email address for correspondence: daniel.henry@ec-lyon.fr

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 936 A24-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:daniel.henry@ec-lyon.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.68&domain=pdf
https://doi.org/10.1017/jfm.2022.68


D. Henry and others

been widely studied, first for theoretical reasons as the analysis of pattern formation and
then for its great interest in practical applications, as for example crystal growth (see the
references in Lappa 2007) and thermal convection in the Earth’s mantle (Baumgardner
1985). The first studies rather concerned infinitely extended layers for which analytical
derivations could be performed (Chandrasekhar 1961), but studies in confined enclosures
have also been developed in connection with practical applications and with the progress
in numerical computing (Meneguzzi et al. 1987). In such situations, a critical Rayleigh
number Rac has to be reached for the onset of flow, and subsequent flow bifurcations,
either steady or oscillatory, can occur before a chaotic state is reached, which gives a
very interesting flow dynamics (Bodenschatz, Pesch & Ahlers 2000). The dynamics is
particularly rich in confined situations, where geometry effects and boundary conditions
play an important role and where symmetry considerations are involved (Cliffe & Winters
1986). Numerical linear stability analyses were first carried out to determine the variation
of Rac with the aspect ratio of the cavity (Catton 1970; Charlson & Sani 1970). For further
nonlinear study, numerical methods using the parameter continuation and bifurcation
methods proved to be very efficient. In the case of parallelepipedic situations, very
interesting results are reported by Puigjaner et al. (2004, 2006, 2008): detailed bifurcation
diagrams give the development of the steady flow patterns inside a cubic cavity heated
from below with either adiabatic or conducting lateral walls and filled either with air
(Pr = 0.71) or silicone oil (Pr = 130). Different flow patterns are found to be stable
in the same Ra range. These bifurcation diagrams allow us to explain the transitions
between different steady flow patterns observed experimentally by Pallares et al. (2001)
in a cubic cavity filled with silicone oil. More recently, Torres et al. (2013, 2014) studied
the perturbations induced to the bifurcation diagrams by imposing a small tilt to such
three-dimensional cavities.

All these aforementioned studies generally refer to Newtonian fluids, i.e. fluids in which
the viscous shear stress is proportional to the shear rate, with a constant of proportionality
which is the viscosity. However, the liquids involved in many engineering applications and
in some geophysical phenomena very often present more complex rheological behaviours.
We can mention the viscoplastic rheology often associated with geophysical flows, where
the fluids generally behave as shear-thinning liquids with a yield stress. For the sake of
simplicity, the latter effect is often not taken into account, and generalized Newtonian
fluids are considered, where the viscosity remains a scalar but varies with the local shear
rate (decreasing for a shear-thinning fluid and increasing for a shear-thickening fluid),
giving a more complex nonlinear relationship between shear stress and shear rate. A typical
model for such fluids is the Carreau inelastic model giving the viscosity as a function of the
shear rate with a four-parameter expression, or the simplified and more tractable power-law
model, each of these models involving the power-law index n.

The first theoretical investigations considered power-law fluids. Tien, Tsuei & Sun
(1969) investigated the linear threshold of convection in a horizontal layer heated from
below, using the energy approach developed by Chandrasekhar (1961) for a Newtonian
fluid. They wrongly predicted the dependence of the critical Rayleigh number Rac with
the power-law index n, as shown later by Khayat (1996). The reason is the inability of the
power-law model to predict viscosity at low shear rate, with a singularity for shear-thinning
fluids and a zero value for shear-thickening fluids in place of the Newtonian value. Because
of its simplicity, this model was also used in two-dimensional (2-D) numerical simulations,
particularly in rigid rectangular cavities. Inaba, Dai & Horibe (2003) performed
simulations in long 2-D cavities in connection with phase-change-material slurries and
established correlations between the heat transfer expressed by the Nusselt number and
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the governing parameters. Turan et al. (2014) considered a square enclosure with either
a prescribed temperature or a prescribed thermal flux at the horizontal boundaries.
Thanks to simulations initiated from Newtonian steady states, they give the variations of
the flow onset (smallest Rayleigh number for which a convective solution is obtained), flow
characteristics and Nusselt number as a function of the power-law index n. They obtain a
decrease of the flow onset for n < 1, but also detect variations of this onset, based on small
Nu deviations from unity, for n > 1. Yigit, Poole & Chakraborty (2015) then extended the
study to rectangular enclosures with different aspect ratios. Numerical simulations in 2-D
rigid cavities have also been done by Benouared, Mamou & Ait Messaoudene (2014) with
the Carreau model. They interestingly consider long cavities in which, for imposed heat
fluxes at the lower and upper boundaries, the flow takes the form of a single long-size
roll. Such flow can be either numerically simulated in two dimensions, or obtained by a
simpler asymptotic approach based on the parallel flow approximation. In that way, they
were able to get a precise description of the subcritical branches obtained for sufficiently
shear-thinning fluids. They also considered a square cavity with either constant heat fluxes
or constant temperatures at the horizontal boundaries.

The Carreau model has also been used to study the Rayleigh–Bénard dynamics in
extended layers of non-Newtonian fluids. Khayat (1996) examined the influence of weak
shear thinning on the development of chaos in a layer heated from below and with
lower and upper stress-free surfaces, generalizing the classical Lorenz system. He found
that the critical Rayleigh number for the linear onset of flow is the same as for a
Newtonian fluid, but the flow development until chaos is dramatically altered by shear
thinning. This study based on the planar convection hypothesis is later extended to 3-D
flow structures by Albaalbaki & Khayat (2011). Linear and weakly nonlinear analyses
show that, if rolls are preferred for shear-thickening fluids as in the Newtonian case,
rolls, squares or hexagons can be obtained for shear-thinning fluids on supercritical and
subcritical branches, and the preferred structure on the supercritical branches depends
on the shear-thinning level. Bouteraa et al. (2015) also performed a weakly nonlinear
analysis of the same configuration, but assumed variable slip conditions on the lower
and upper boundaries, from no slip to stress free, and focused on shear-thinning fluids.
They determined the degree of shear-thinning parameter α above which the bifurcation
becomes subcritical and found smaller values than Albaalbaki & Khayat (2011). They also
found that, in the supercritical regime, only rolls are stable near onset. This work is further
extended to situations with upper and lower boundaries of arbitrary conductivity (Bouteraa
& Nouar 2015, 2016).

Two-dimensional simulations of the Rayleigh–Bénard flow in non-Newtonian fluids
have also been performed in periodic square or almost square cavities. The idea is
to simulate one roll in a regular pattern inside an extended geometry. Considering a
shear-thinning power-law fluid in a square cavity, Ozoe & Churchill (1972) determined
the smallest Rayleigh number at which a solution can be sustained, an approximation
of the saddle-node point on the subcritical branch. This value was found to decrease
when the shear-thinning properties were amplified. Parmentier (1978) took a similar
approach and studied in detail nonlinear convection rolls above their subcritical onset in
shear-thinning power-law fluids. He introduced a volume-average viscosity (weighted by
the square of the shear rate) that allows us to define a new Rayleigh number, known as
the Parmentier–Rayleigh number. Expressed as a function of that new Rayleigh number,
the variation of the heat transfer (expressed with the Nusselt number) for the convection
rolls in shear-thinning conditions can appear as a single universal curve, which is the
one obtained for Newtonian fluids. Benouared et al. (2014) simulated a similar square
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cavity situation with the Carreau model. For different values of the power-law index
n, they gave the stable part of the subcritical branches, down to the saddle-node point.
Finally Jenny, Plaut & Briard (2015) considered a similar problem in an almost square
cavity, choosing a length corresponding to the critical length for one roll. For a large range
of rheological parameters, they computed the stable roll solutions along the subcritical
branches in shear-thinning Carreau fluids. They obtained an interesting simple expression
for the value of the Rayleigh number at which subcritical rolls appear. They also proposed
a correlation to estimate the Nusselt number of these subcritical rolls.

We did not find any paper related to 3-D simulations of such Rayleigh–Bénard flows in
generalized Newtonian fluids, such as shear-thinning fluids, inside confined 3-D cavities.
Moreover, such studies involving the calculation of subcritical branches would benefit
from the possibility of using continuation methods. This led us to adapt a 3-D spectral
finite element code using continuation and developed for Newtonian fluids to study the
Rayleigh–Bénard convection in a non-Newtonian fluid inside a parallelepiped enclosure.
The 3-D cavity we consider has moderate dimensions (its length is equal to twice the size
of the square cross-section), allowing reasonable computing times. Already used by Torres
et al. (2013) to study the effect of a tilt imposed on the cavity, it offers a relatively simple
flow dynamics in the case without tilt, with two stable solutions in the Newtonian case, a
solution with one longitudinal roll and a solution with two transverse rolls. In such a cavity,
the modifications induced by the non-Newtonian properties are expected to be more clearly
depicted. Non-Newtonian Carreau fluids with either shear-thinning or shear-thickening
properties are considered. For this problem, we first recall the results obtained in the
Newtonian case and then put into light the changes affecting the flow dynamics of the
stable branches when shear-thinning or shear-thickening fluids are considered. Order of
magnitude and energy analyses at the thresholds are also proposed, as well as comparisons
with previous studies.

2. Mathematical model and numerical techniques

2.1. Mathematical model
The mathematical model consists of a parallelepiped cavity filled with a non-Newtonian
fluid which is differentially heated. The cavity has aspect ratios Az = l/h = 2 and Ay =
wd/h = 1, where l is the length of the cavity (along z∗), h is its height (along x∗) and
wd is its width (along y∗), as shown schematically in figure 1. The origin of the system
of coordinates is placed at the centre of the cavity and its axes are parallel to the edges
of the truncated square duct. The coordinates (x∗, y∗, z∗) are then normalized by h to
obtain (x, y, z). The lower and upper walls corresponding to yz-planes at x = −1/2 and
x = 1/2, respectively, are isothermal and held at different temperatures, T∗H for the lower
wall and T∗C for the upper wall, with T∗H > T∗C, whereas the other walls are adiabatic.
All the boundaries are rigid walls with no-slip conditions. The non-Newtonian fluid is
assumed to follow the four-parameter Carreau inelastic model, i.e. its dynamic viscosity
varies with the shear rate, from the value at zero shear rate to the asymptotic value at
infinite shear rate, with an intermediate power-law variation. Such a viscosity μc following
the Carreau model can be expressed as

μc − μ∞
μ0 − μ∞

= [1+ (δ|γ̇ ∗u |)2](n−1)/2, (2.1)

where μ0 and μ∞ are the limit Newtonian dynamic viscosities at zero and infinite shear
rate, respectively, n is the power-law index, δ is a characteristic time of the fluid and γ̇ ∗u is
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Figure 1. Geometry of the dimensionless heated truncated square duct. The cross-section of the duct is a unit
square and its length is 2. The two walls corresponding to yz-planes at x = −1/2 and x = 1/2 are isothermal
and held at TH = 1/2 and TC = −1/2, respectively. The other walls are adiabatic.

the shear rate expressed as

γ̇ ∗u,ij =
(

∂u∗i
∂x∗j
+

∂u∗j
∂x∗i

)
, (2.2)

from which the shear stress σ ∗ij = μcγ̇
∗
u,ij can be obtained. In the expression of the shear

rate, x∗i and u∗i (i = 1, 3) are the coordinates and velocities in the different directions. Note
that 1/δ gives the characteristic shear rate at which the viscosity μc starts to decrease
below the Newtonian plateau at μ0. Using μ0 to normalize the viscosity and κ/h2 (κ is
the thermal diffusivity) to normalize the shear rate, and defining I as μ∞/μ0, we can also
write

μc

μ0
= I + (1− I)[1+ (L|γ̇u|)2](n−1)/2, (2.3)

or
μc

μ0
= [1+ (L|γ̇u|)2](n−1)/2, (2.4)

if we assume μ∞ = 0, as will be done in this study. In these expressions, L = δκ/h2

is the dimensionless characteristic time and γ̇u is the dimensionless shear rate. Note that
Bouteraa et al. (2015), in a weakly nonlinear analysis, have shown that, for a shear-thinning
fluid, the nature of the bifurcation from the conduction state to convection rolls depends
on a single rheological parameter, quantifying the degree of shear thinning,

α = 1
2 (1− n)L2, (2.5)

which, in fact, controls the magnitude of the first nonlinear term in the development
of the dimensionless viscosity (2.4) with respect to the shear rate. Finally, the Carreau
dynamic viscosity can also be expressed as μc = μ0(1+ μ), where μ is the dimensionless
departure from the dynamic viscosity at zero shear rate. Using (2.4), μ can be expressed
as

μ = ([1+ (L|γ̇u|)2](n−1)/2 − 1). (2.6)

The other physical properties of the fluid (thermal diffusivity κ , density ρ) will be
assumed constant, except that, according to the Boussinesq approximation, the fluid
density is considered as temperature dependent in the buoyancy term with a linear law
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ρ = ρm(1− β(T∗ − T∗m)), where β is the thermal expansion coefficient and T∗m is a
reference temperature taken as the mean temperature (T∗H + T∗C)/2.

The convective motions are then modelled by the Navier–Stokes equations coupled to an
energy equation. Using h, h2/κ , κ/h, ρmκ2/h2 and 
T∗ = (T∗H − T∗C) as scales for length,
time, velocity, pressure and temperature, respectively, these equations take the following
form:

∇ · u = 0, (2.7)

∂u
∂t
+ (u · ∇)u = −∇p+ Pr ∇ · ((1+ μ(u))γ̇u)+ Pr Ra Tex, (2.8)

∂T
∂t
+ (u · ∇)T = ∇2T, (2.9)

with boundary conditions given by T = 1/2 on x = −1/2 and T = −1/2 on x =
1/2, ∂T/∂z = 0 on z = −1, 1 and ∂T/∂y = 0 on y = −1/2, 1/2 and u = 0 on all
the boundaries. The dimensionless variables are the velocity vector u = (u, v, w), the
pressure p and the temperature T = (T∗ − T∗m)/(T∗H − T∗C). Here, ex is the unit vector
in the vertical x direction. Note that μ is written as μ(u) to express that it depends
on the velocity u through the shear rate (see (2.6)). The non-dimensional parameters
are the Rayleigh number, Ra = β
T∗gh3/(κν0) and the Prandtl number, Pr = ν0/κ ,
where ν0 is the kinematic viscosity defined as ν0 = μ0/ρm and g is the gravitational
acceleration. We can also define the Nusselt number Nu, which expresses the actual
heat transfer through yz-planes compared with the diffusive heat transfer. Due to the
adiabatic sidewalls, Nu is the same for all yz-planes. It can be written simply in our case
as Nu = ∫y,z (−dT/dx)/2 dy dz and will be calculated at the upper wall for x = 1/2.

Under the approximation of the model, the basic no-flow solution presents different
symmetries: reflection symmetries SPyz , SPxz and SPxy with respect to the three middle
planes (horizontal yz-plane, longitudinal vertical xz-plane and transverse vertical xy-plane,
respectively), which, by combination, induce π-rotational symmetries SAx , SAy and SAz

about the three middle axes (vertical x-, transverse y- and longitudinal z-axes, respectively).
These symmetries belong to a Z2 × Z2 × Z2 group. As an example, we define two of these
symmetries, SPxy and SAz , and the others can be obtained by circular permutation

SPxy : (x, y, z, t)→ (x, y,−z, t), (u, v, w, T)→ (u, v,−w, T), (2.10)

SAz : (x, y, z, t)→ (−x,−y, z, t), (u, v, w, T)→ (−u,−v, w,−T). (2.11)

The symmetry SC with respect to the centre point of the cavity can also be obtained by
combination of the previous symmetries. If all these symmetries are those of the basic
no-flow solution, the effective symmetries of the flow solutions will depend on the flow
configuration triggered. Moreover, when increasing Ra, bifurcations to new flow states
(steady or oscillatory) will occur, at which some of the symmetries will usually be broken.

2.2. Numerical techniques
The governing equations of the model are solved in the 3-D domain using a
spectral element method, as described in Ben Hadid & Henry (1997). The spatial
discretization is obtained through Lagrange polynomials with Gauss–Lobatto–Legendre
point distributions; the time discretization is carried out using a semi-implicit splitting
scheme where, as proposed by Karniadakis, Israeli & Orszag (1991), the nonlinear terms
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are first integrated explicitly, the pressure is then solved through a pressure equation
enforcing the incompressibility constraint (with a consistent pressure boundary condition
derived from the equations of motion), and the linear terms are finally integrated implicitly,
using the very efficient matrix solver by diagonalization of the operator along each
of the space directions. In its first-order formulation, this time integration scheme is
used for steady-state solutions (Mamun & Tuckerman 1995), eigenvalue and eigenvector
calculation and determination of bifurcation points (Bergeon et al. 1998; Petrone, Chénier
& Lauriat 2004) through a Newton method, as it is described in Torres et al. (2013). The
overall continuation strategy is also well explained in Torres et al. (2014). Such methods,
originally developed for Newtonian fluids, had to be adapted to deal with Carreau fluids.
These adaptations are described in the following, after a brief summary of the Newtonian
case approach.

In the Newtonian case, the first-order time scheme is written in the abbreviated form

X (k+1) − X (k)


t
= N (X (k), Ra)+ LX (k+1), (2.12)

which, for large 
t, can also be expressed as

X (k+1) − X (k) = −L−1[N (X (k), Ra)+ LX (k)]. (2.13)

In these expressions, X denotes all of the spatially discretized fields (u(u, v, w), T), N is
the spatially discretized nonlinear operator (including pressure and buoyancy terms) and L
is the spatially discretized linear operator corresponding to the Laplacian operator (viscous
or diffusive terms). If we consider the steady-state problem expressed as

N (X , Ra)+ LX = 0, (2.14)

and want to solve it with a Newton method, each Newton step, preconditioned with the
operator −L−1, can be written as

−L−1[NX (X , Ra)+ L]δX = −(−L−1)[N (X , Ra)+ LX ],
X ← X + δX ,

}
(2.15)

where NX (X , Ra) is the Jacobian of N with respect to X evaluated at X and Ra. If we
solve the linear system (2.15) by an iterative method, we need only provide the right-hand
side and the action of the matrix-vector product constituting the left-hand side. Referring to
(2.13), we see that the right-hand side of (2.15) can be obtained by carrying out a time step,
and the matrix-vector product by carrying out a linearized version of the same time step.
The Jacobian matrix is thus never constructed or stored. The generalized minimal residual
(GMRES) algorithm from the NSPCG software library (Oppe, Joubert & Kincaid 1989)
is used as the iterative solver.

In the case of the Carreau fluid, the viscous term is no longer a simple Laplacian
operator. A first possibility we have tested is to calculate the new viscous discretized
operator. This operator, however, depends on the local velocities through the viscosity and
the shear rate, so that it has to be regularly recalculated at each Newton step. Moreover,
with this operator, we cannot use the very efficient diagonalization solver for the velocity
at each time step, which is a real handicap to the solution of large 3-D problems. Following
the idea of Karamanos & Sherwin (2000), we finally chose another possibility, which is to
write the viscous term in (2.8) as

∇ · ((1+ μ(u))γ̇u) = ∇2u(k+1) +∇ · (μ(u(k))γ̇u(k) ). (2.16)

With this choice, we keep L as the Laplacian and the other term ∇ · (μ(u(k))γ̇u(k) ) is
added in the nonlinear terms N considered at the known step k. We also have to consider
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the viscous term of the linearized time step that allows us to calculate the correction δu of
u on the left-hand side of (2.15). It can be written as

δ(∇ · ((1+ μ(u))γ̇u)) = ∇2δu(k+1) +∇ · (μ(u(k))γ̇δu(k) )

+∇ · ((∂μ/∂u)δu(k)γ̇u(k) ). (2.17)

The two last terms are included in NX during the Newton step, which is otherwise
unchanged and keeps the form given in (2.15). Compared with the Newtonian case, the fact
that parts of the viscous operator are taken explicitly can slightly slow down the Newton
convergence, but the use of the diagonalization solver allows us to keep reasonable overall
computing times.

Note that other developments of the viscous term are needed, in particular for the
calculation of the bifurcation points, which involves the solution of the linearized equation
for the eigenvector at threshold by a Newton method (such a solution in the Newtonian
case can be found in Torres et al. 2013). If the velocity eigenvector is denoted as up, in the
linearized equation for the eigenvector we will have a viscous term similar to (2.17) and
expressed as

∇2u(k+1)
p +∇ · (μ(u(k))γ̇u(k)

p
)+∇ · ((∂μ/∂u)u(k)

p γ̇u(k) ). (2.18)

The viscous term corresponding to the Jacobian equation used to solve the equation for
the eigenvector with a Newton method is still more complex. This viscous term involves
the corrections δup of the velocity eigenvector and δu of the velocity and can be expressed
as

∇2δu(k+1)
p +∇ · (μ(u(k))γ̇

δu(k)
p

)+∇ · ((∂μ/∂u)δu(k)
p γ̇u(k) )

+∇ · ((∂μ/∂u)δu(k)γ̇u(k)
p

)+∇ · ((∂μ/∂u)u(k)
p γ̇δu(k) )

+∇ · ((∂2μ/∂2u)δu(k)u(k)
p γ̇u(k) ). (2.19)

We see that many different terms must then be taken into account. In our formulation,
except for the first Laplacian term, they are all considered at the known step k and added
to the nonlinear terms. Despite all these new terms, which make the Newton steps more
complex, we generally also keep a good convergence of the bifurcation points with the
Carreau model.

3. Results

Our results concern the convective flows induced in Carreau fluids in a cavity with Ay = 1
(square xy-cross-section) and Az = 2, and for Pr = 1. We will assume that μ∞ = 0 (I = 0)
and the focus will be first on shear-thinning fluids (n < 1) for which the viscosity decreases
with the increase of the shear rate. In a second step, we will consider shear-thickening
fluids (n > 1) for which the viscosity increases with the increase of the shear rate.

3.1. Discussion on the choice of the parameters
As presented in the introduction, shear-thinning fluids have been considered in many
studies (for example, Albaalbaki & Khayat 2011; Benouared et al. 2014; Bouteraa et al.
2015; Bouteraa & Nouar 2015, 2016; Jenny et al. 2015; Yigit et al. 2015; Darbouli et al.
2016). Benouared et al. (2014) give the Carreau parameters for typical non-Newtonian
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fluids, xanthan gum, carboxymethylcellulose, polyacrylamide: 0.484 ≤ n ≤ 0.673, 9×
10−4 ≤ I ≤ 9× 10−2, 0.0125 ≤ δ ≤ 45.8 s. The dimensionless time parameter L cannot
be obtained as the values of the thermal diffusivity κ are not given and a characteristic
length is also needed. Looking through the different studies, we find that the parameters
generally used are 0.4 ≤ n ≤ 1, 0 or small values for I and 0 ≤ L ≤ 0.8. The range of
L can be extended to large values, up to L = 200, as in Jenny et al. (2015). Following
these studies, we decided to choose I = 0, 0 ≤ L ≤ 1 and 0.5 ≤ n ≤ 1. Besides, for
shear-thickening fluids, we chose 1 ≤ n ≤ 1.5.

Concerning the Prandtl number, Albaalbaki & Khayat (2011) indicate that most of
the fluids displaying shear-thinning behaviour such as polymeric melts and solutions are
characterized by a high Prandtl number, but other fluids of a low Prandtl number such
as low-temperature monoatomic liquids also exhibit shear thinning. They then chose to
study a large range of Prandtl number, 5× 10−2 ≤ Pr ≤ 103. Yigit et al. (2015) and
Darbouli et al. (2016) rather focus on large values such as Pr = 1000. Benouared et al.
(2014) and Jenny et al. (2015) chose moderate values, Pr = 10 and Pr = 7, respectively.
Finally, Bouteraa et al. (2015) also considered an extended range, 5× 10−2 ≤ Pr ≤ 10.
In their figure 11, they give the critical value of the degree of shear thinning αc above
which the bifurcation to rolls becomes subcritical vs the Prandtl number and show that,
according to the variation of αc, Pr = 1 is already in the high Pr asymptotic regime.
From this observation and the fact that the reference results for the chosen cavity in the
Newtonian case were obtained for Pr = 1, we decided to keep this value for the present
study involving non-Newtonian Carreau fluids. At the end of the results section, however,
we consider the influence of Pr on the critical Rayleigh number at the saddle-node point
SN1 for n = 0.5 and show that this influence remains moderate.

3.2. Continuation procedure and validation tests
As heating is from below (Rayleigh–Bénard situation), a purely diffusive solution (without
motion) exists and the convection will only appear beyond primary thresholds. The
whole continuation procedure described in Torres et al. (2013, 2014), which organizes
the different steps of the calculation to get a bifurcation diagram, can be used: the leading
eigenvalues of the diffusive solution are first calculated for increasing Ra in order to detect
the primary bifurcations (change of sign of the real part of an eigenvalue), using either
Arnoldi’s method or following a specific, well-chosen, eigenvalue. Each time, the detected
bifurcations are then precisely determined. In a second step the branching algorithm is
used to jump on the solution branches emerging at these primary bifurcation points.
For each solution calculated along these primary branches, some leading eigenvalues are
calculated, in the same way as for the diffusive solution branch, in order to detect and then
precisely calculate the secondary (steady or Hopf) bifurcation points. Then the steady
branches emerging at the steady secondary bifurcation points will, in turn, be reached and
followed by continuation in a similar way.

Such bifurcation diagrams have been calculated in the Newtonian case and for Carreau
fluids with different values of the power-law index n and the time parameter L. In a second
step, the direct calculation of the bifurcation points by the Newton method is used to
follow the main bifurcation points as a function of the time parameter L or the power-law
index n.

As in Torres et al. (2013), the same refined spectral mesh comprising 27× 27× 41
points (in the x, y and z directions, respectively) was chosen, which was shown to give a
good precision for the calculation of the flow solutions and the bifurcation points in the
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SN1 27× 27× 41 31× 31× 45 35× 35× 49

L = 0.1 1788.957 1788.959 1788.961
L = 0.4 935.657 935.668 935.676
L = 1 610.147 610.160 610.169

Table 1. Mesh refinement tests of numerical accuracy for the critical Rayleigh numbers at the saddle-node
point SN1 for different values of L and n = 0.5 (Pr = 1, I = 0).

Newtonian case. Some mesh refinement tests of numerical accuracy have also been done
in the shear-thinning case. The results, presented in table 1, concern the critical Rayleigh
number at the saddle-node point SN1 for n = 0.5 (the smallest value of n) and different
values of L. We see that refinements of the mesh in the three space directions only modify
the hundredths in the critical values.

It is finally interesting to validate the implementation of the Carreau model in our
numerical code. As we did not find other results in 3-D confined cavities, we propose
to give comparisons with available 2-D results in square (Benouared et al. 2014) and
almost square (Jenny et al. 2015) cavities. To simulate these 2-D cases, we keep the
same duct with a square cross-section, but change the velocity boundary conditions. More
precisely, to simulate a roll in a 2-D cavity with no-slip lateral boundary conditions, we
apply periodic (or free) boundary conditions on the velocity in the xy-planes at z = −1
and z = 1 (∂u/∂z = 0, ∂v/∂z = 0, w = 0). To simulate the case with slip lateral boundary
conditions, we have also to change the boundary conditions along the vertical lateral walls
at y = −0.5 and y = 0.5 (∂u/∂y = 0, v = 0, w = 0). The comparisons, which concern the
critical value of the Rayleigh number at the saddle-node point on the subcritical branch
for Pr = 10, I = 0.01, L = 0.4 and different values of n, are given in table 2 for no-slip or
slip conditions at the lateral walls. We see that the comparisons with the previous results
are very good. In fact, the critical values we obtain are more precise than those obtained
in the previous studies, because we directly calculate the position of the bifurcation points
(saddle node here) by a Newton method, whereas the previous studies give approximate
values. For the same situation at n = 0.6, Jenny et al. (2015) also give the value of the
Nusselt number for cases beyond the saddle-node point, at Ra = 800 and Ra = 2000. They
give Nu = 1.4751 and Nu = 2.7655, respectively, whereas we obtain very close values,
Nu = 1.4749 and Nu = 2.7651. Finally, for the case with slip boundary conditions, Pr = 7,
I = 0, L = 1 and n = 0.7, Jenny et al. (2015) give an approximate critical value for the
saddle-node point at Rac = 753.125 (see their figure 13), whereas we obtain precisely
Rac = 751.07 for this point. Note that Jenny et al. (2015) consider an almost square cavity
with Ay = 1.008 to simulate a roll typical of the Rayleigh–Bénard instability in a cavity
with infinite extent, whereas we consider a perfectly square cross-section. Finally, the
mesh refinement tests and comparisons with previous studies, both attest the reliability
and accuracy of the 3-D results presented hereafter.

3.3. Newtonian fluid
The convective flows occurring in a Newtonian fluid in such a 1× 1× 2 cavity have been
studied in detail in Torres et al. (2013), in situations where the cavity is tilted about its
main z axis. Here, we will only recall some of the results obtained for a horizontal cavity,
which are important for our present purpose concerning non-Newtonian fluids.
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Benouared et al. (2014) Our work Jenny et al. (2015)

Rac No-slip Slip No-slip Slip Slip

n = 0.6 1120 800 1122.10 780.74 780 < Rac < 782.5
n = 0.8 1800 1250 1838.83 1247.41
n = 1 2585 1707.7 2585.02 1707.92

Table 2. Validation of the numerical method by comparison with results obtained in 2-D square (Benouared
et al. 2014) and almost square (Jenny et al. 2015) cavities. The critical Rayleigh number Rac corresponding to
the saddle-node point on the subcritical branch is given for Pr = 10, I = 0.01, L = 0.4, different values of n
and either slip or no-slip lateral boundary conditions.

(a) (b) (c) (d)

Figure 2. Vertical velocity contours in the horizontal midplane (yz-plane at x = 0) for the critical eigenvectors
at the first four primary bifurcation points (P1 to P4) for a 1× 1× 2 cavity heated from below containing either
a Newtonian fluid or a Carreau fluid (RaP1 = 2726.53, RaP2 = 2818.78, RaP3 = 3443.54, RaP4 = 3498.72).
The positive and negative vertical velocities are indicated by solid and dashed lines, respectively.

As previously indicated, for a horizontal cavity heated from below, the no-flow diffusive
state is a solution of the problem, and the flow will be triggered at critical values of the
Rayleigh number corresponding to primary bifurcation points. The critical eigenvectors
at the first four primary bifurcation points (denoted as P1 to P4) are presented in
figure 2 through the vertical velocity contours in the horizontal midplane (x = 0). These
eigenvectors are important as they give the structure of the flow on the branches they
initiate. The first eigenvector is characterized by two counter-rotating transverse rolls (with
axis along y), the second eigenvector by a single longitudinal roll (with axis along z), the
third eigenvector by three counter-rotating transverse rolls, the central roll being dominant
and the fourth eigenvector by a four-roll structure. These eigenvectors have also different
symmetries: the SPxy and SPxz symmetries at P1, the SPxy and SAz symmetries at P2, the SAy

and SPxz symmetries at P3 and the SAy and SAz symmetries at P4. As the eigenvectors at
least break the up–down symmetry SPyz , all these primary bifurcations will be pitchforks.

The bifurcation diagram obtained from these four eigenvectors for Ra ≤ 4000 is given
in figure 3. The maximum absolute value of the vertical velocity |u|max is plotted as
a function of the Rayleigh number Ra. Precisions on the stability of each branch are
given by a number indicating the number of unstable real eigenvalues (there are no
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Figure 3. Bifurcation diagram in the case of a Newtonian fluid in a 1× 1× 2 cavity heated from below
(Pr = 1). Solution branches obtained in the range 2600 ≤ Ra ≤ 4000 and initiated from the first four primary
bifurcations. The number of unstable real eigenvalues is indicated for each branch, 0 corresponding to the
stable solutions. The insets give the vertical velocity contours in the horizontal midplane (yz-plane at x = 0)
for the solutions on the different branches at Ra = 4000 and for the solution at the saddle-node point on the
short branch between S3 and S4.

unstable complex conjugate eigenvalues in this Ra range). The four primary branches
(denoted as B1 to B4) are found to evolve supercritically. The first primary branch B1,
which corresponds to two transverse rolls, is stable in the calculated range of Ra. The
second primary branch B2, which corresponds to a single longitudinal roll, is unstable
at its onset, but stabilized at a secondary bifurcation point S2. The critical eigenvector
at this bifurcation point S2 is a transverse two-roll structure, similar to the primary
eigenvector at P1. The bifurcated branch B2−1, which is one-time unstable, corresponds
to a kind of two-oblique-roll structure which has kept the reflection symmetry with
respect to the xy-plane. The third primary branch B3 corresponding to three transverse
rolls and the fourth primary branch B4 corresponding to a four-roll structure (which are,
respectively, two-time and three-time unstable at their onset) exchange stability through a
short secondary branch which connects them and presents a saddle-node point. Branches
B3 and B4 will remain unstable for larger Ra, so that stable solutions will only exist on the
B1 and B2 branches, from the primary bifurcation point P1 (RaP1 = 2726.53) for B1 and
from the secondary bifurcation point S2 (RaS2 = 3213.62) for B2, in a large Ra range, at
least up to Ra = 80 000 (Torres et al. 2013). Note that, as all the primary branches emerge
from pitchfork bifurcation points, two equivalent solutions (symmetric from each other
with respect to the symmetry broken at the primary pitchfork point), which correspond to
roll structures with the opposite sense of rotation, exist for each branch, but these solutions
appear on a single curve when |u|max or Nu is plotted.

3.4. Shear-thinning Carreau fluid
In this section, we will study the influence of the non-Newtonian character of the fluid,
specifically its shear-thinning properties, on the bifurcation diagram obtained in the
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Figure 4. Bifurcation diagrams in the case of a shear-thinning fluid with n = 0.5 for three different values of
L, 0, 0.01 and 0.1. First branch B1 initiated at P1 in black, second branch B2 initiated at P2 in red. The branches
in the Newtonian case (L = 0) are given as dashed lines. The number of unstable real eigenvalues is indicated
for each branch, 0 corresponding to the stable solutions. The secondary bifurcation S2 on the B2 branch is given
as blue solid circles. Saddle-node bifurcations appear on both branches for L = 0.1.

1× 1× 2 cavity heated from below. As we have previously seen that, in the Newtonian
case, the stable solutions appear on the first two primary branches, we chose to focus our
study on these two solution branches B1 and B2. We have first to note that the primary
thresholds will be unchanged. Indeed, as these primary bifurcations appear on the no-flow
solution branch, the viscous term of the linearized equation for the eigenvector given by
(2.18) has to be estimated for u(k) = 0, which gives γ̇u(k) = 0 (see (2.2)) and μ(u(k)) = 0
(see (2.6)). The viscous term is then reduced to its first Laplacian component and the
equation for the primary eigenvector becomes similar to the Newtonian one.

3.4.1. Bifurcation diagrams
The bifurcation diagrams obtained for a shear-thinning fluid with a power-law index
n = 0.5 and different values of L (L = 0, 0.01 and 0.1) are plotted in figure 4. The branches
B1 are given as black lines, whereas the branches B2 are given as red lines. On the
branches B2, the bifurcation point S2 beyond which the branch is stabilized is given as blue
solid circles. As explained before, the primary bifurcation points do not change with the
non-Newtonian properties and are the same as in the Newtonian case. Compared with the
Newtonian case (L = 0, dashed lines), the change of the value of L to 0.01 does not change
the bifurcation diagram much: the flow intensities are only slightly increased, whereas
the threshold for the bifurcation point S2 is slightly decreased, which gives a quicker
stabilization of the branch B2. In contrast, the bifurcation diagram for L = 0.1 has strongly
evolved. The two primary bifurcations have changed from supercritical to subcritical, with
an already important subcriticity. Both subcritical branches B1 and B2 turn towards larger
Ra values at saddle-node points SN1 (black solid square, RaSN1 = 1788.96) and SN2 (green
solid square, RaSN2 = 1822.42), respectively. For L = 0.1, as the first primary branch
B1 emerges subcritically, it is now one-time unstable at onset and is stabilized beyond
the saddle-node point SN1. Conversely, the second primary branch B2 is now two-time
unstable at onset, becomes one-time unstable at the secondary bifurcation point S2 and is
eventually stabilized beyond the saddle-node point SN2. For such sufficiently large values
of L, the important bifurcation points are then the saddle-node points SN1 and SN2 as, for
both primary branches, they determine the range of Ra where stable flow solutions can be
obtained.
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Figure 5. Modification of the first primary branch B1 of the bifurcation diagram in the case of a shear-thinning
fluid with n = 0.5 for an increase of L from 0 to 1 (0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.1, 0.2, 0.3, 0.5, 0.8, 1). The
branch in the Newtonian case (L = 0) is given as a dashed line. The path of the saddle-node point SN1 (black
solid squares) is also given.
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Figure 6. Modification of the second primary branch B2 of the bifurcation diagram in the case of a
shear-thinning fluid with n = 0.5 for an increase of L from 0 to 1 (0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.1, 0.2, 0.3,
0.5, 0.8, 1). The branch in the Newtonian case (L = 0) is given as a dashed line. The paths of the secondary
bifurcation point S2 (blue solid circles) and saddle-node point SN2 (green solid squares) are also given.

To get a better understanding of the change of the bifurcation diagram with L, we
separately give the evolutions of the two branches B1 and B2 in figures 5 and 6. Different
values of L have been chosen between 0 and 1 for which the branches have been followed
up to Ra = 5000. Note that, for the larger values of L, the calculation has been stopped
earlier, as soon as the convergence of the solutions by the Newton method becomes lengthy
(due to the increasing importance of the viscous terms that are considered as explicit in
the Newton steps), but in any case beyond the saddle-node point. In both cases, we have
also followed the path of the different bifurcation points by continuation, SN1 for B1 and
SN2 and S2 for B2.

The change of the first branch B1 with L is shown in figure 5. We see that the saddle-node
point SN1 does not exist for L = 0.02, whereas it is present for L = 0.03, indicating that it
appears between these values. A more precise estimation of this limit value Ll,SN1 can be
obtained by following the path of SN1 by continuation. We thus get Ll,SN1 ≈ 0.0278. The
B1 branch will then evolve supercritically for values of L below Ll,SN1 and subcritically
for values of L above Ll,SN1 . Note that, for the larger values of L, the subcritical part of

936 A24-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.68


Rayleigh–Bénard flow for a Carreau fluid in a 3-D cavity

B1 appears at P1 with a very weak flow intensity, and that the range of such solutions
with weak flows increases with L. Concerning the evolution of SN1, we see that |u|max
associated with SN1 progresses quickly close above the limit value Ll,SN1 at almost
constant Ra. Its critical value RaSN1 is then found to decrease with the increase of L,
reaching the value 610.15 for L = 1. In a similar way, the change of the second branch B2
with L is shown in figure 6. The subcritical character of B2 still appears above a limit value
of L which can be estimated at Ll,SN2 ≈ 0.0263. Above this value, the saddle-node SN2
exists and its critical value RaSN2 is also found to decrease with the increase of L, reaching
the value 604.01 for L = 1, a value even slightly smaller than for SN1. Concerning the
secondary bifurcation S2, its threshold RaS2 decreases with the increase of L, from values
above RaP2 to values below RaP2 , S2 being thus located in the subcritical part of the branch.
For large L, due to the weak flows in these subcritical parts of B2, S2 is associated with
small values of |u|max and its threshold RaS2 seems to tend towards a constant.

3.4.2. Paths of the bifurcation points
As the different bifurcation points play a crucial role in the flow dynamics, determining
in particular the domains of existence of the stable solutions, it is interesting to follow
their paths more precisely and plot their characteristics as a function of L. For the three
bifurcation points SN1, SN2 and S2, we give |u|max, Nu− 1 and Rac vs L in figure 7(a–c).
In figure 7(a), we see the very steep increase of |u|max at the onset of the saddle-node
points SN1 and SN2, before a moderate decrease for larger values of L. A similar trend is
found for the Nusselt number, with a still weaker final decrease. The onsets of SN1 and
SN2 can be determined from their paths calculated for decreasing values of L. We find that
SN1 appears on the first branch B1 for Ll,SN1 ≈ 0.0278 at Rac ≈ 2725.5, i.e. very close
to the primary threshold RaP1 = 2726.53, whereas SN2 appears on the second branch B2
for Ll,SN2 ≈ 0.0263 at Rac ≈ 2818.4, i.e. also very close to the primary threshold RaP2 =
2818.78. Considering these very steep variations and the difficulty of following bifurcation
points in such conditions, it can be expected that the curves of SN1 and SN2 in figure 7(a)
will in fact go to |u|max = 0 (and in figure 7(b) to Nu− 1 = 0) for L values very close
to Ll,SN1 and Ll,SN2 , respectively, and that the saddle-node points SN1 and SN2 emerge
in reality directly from the primary bifurcations P1 and P2 of their respective branch. If
the curves of SN1 and SN2 are quite distinct in terms of |u|max and Nu− 1, they are in
contrast very close in terms of Rac (figure 7c), except, indeed, at their onsets, where they
are close to RaP1 and RaP2 , respectively. This means that, when shear-thinning properties
are involved, the onset of the stable solutions at the saddle nodes does not depend much
on the type of flow considered, two transverse rolls on B1 and one longitudinal roll on
B2. Concerning the secondary bifurcation point S2, its characteristics (threshold Rac, flow
intensity |u|max and Nusselt number Nu− 1) decrease with the increase of L, the main
variations occurring for L < 0.2. For larger L, |u|max and Nu− 1 slowly diminish to very
small values, whereas Rac tends towards a limit value at Ral,S2 ≈ 2317, as already expected
from figure 6.

Finally, the different curves in figure 7 and their crossings give information about the
modification of the stable parts of the two branches B1 and B2 when L is increased. For
small L and until L = Ll,SN1 ≈ 0.0278, B1 is stable above the primary bifurcation point
P1 (constant threshold at RaP1 = 2726.53). For L values beyond Ll,SN1 , B1 will become
stable above the saddle-node bifurcation SN1 (decreasing threshold given by the black
dashed curve in figure 7c). Concerning B2, it is first stable for small L above the secondary
bifurcation S2 (decreasing threshold given by the blue solid curve in figure 7c), and
then, after the crossing of the S2 and SN2 curves at L ≈ 0.0298, it becomes stable above
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Figure 7. For a shear-thinning fluid with n = 0.5, paths of the different bifurcation points SN1 (black dashed
lines), SN2 (green solid lines) and S2 (blue solid lines) as a function of L, expressed through the variation of
|u|max in (a), Nu− 1 in (b) and Rac in (c). On the first branch, SN1 appears for Ll,SN1 ≈ 0.0278 at Rac ≈ 2725.5.
On the second branch, SN2 appears for Ll,SN2 ≈ 0.0263 at Rac ≈ 2818.4.

the saddle node bifurcation SN2 (decreasing threshold given by the green solid curve in
figure 7c).

3.4.3. Change of the flow characteristics
We analyse the change of the flow characteristics at a fixed Ra (Ra = 5000) for a
shear-thinning fluid with n = 0.5, when the parameter L is increased from 0 to 0.1. The
maximum absolute values of the vertical velocity and the Nusselt number for both stable
flows on branches B1 and B2 are given as a function of L in figure 8. The curves of velocity
(figure 8a) are very similar for both branches (with a parallel evolution, the curve for the
branch B1 remaining above) and they correspond to an increase of |umax| with L. The
increase is weak close to L = 0 (horizontal tangent), but progresses then quickly with a
maximum slope of the curve for L of approximately 0.024. Beyond this value, the increase
becomes less steep, with a slope slowly varying in the vicinity of L = 0.1. The curves of
Nu− 1 (figure 8b) increase in a similar way as the velocity curves. Note that the curve
increases slightly more quickly for the branch B1 than for the branch B2, inducing an
increased difference between them when L is increased.

Contours of the vertical velocity and of the viscosity are given for both flow
configurations on branches B1 and B2 in figures 9 and 10. Two values of L are chosen,
L = 0.01 for which the flow, although increased in intensity, has a similar structure as in
the Newtonian case, and L = 0.1 for which the change of the viscosity has remarkable
effects. On branch B1, the flow corresponds to a two transverse rolls structure, which, in
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Figure 8. For a shear-thinning fluid with n = 0.5 (increasing curves) and a shear-thickening fluid with n = 1.5
(decreasing curves), change of |u|max (a) and Nu− 1 (b) with L for the flow solutions on the branches B1 (black)
and B2 (red) at Ra = 5000.

figure 9, is up along the endwalls and down in the central part of the cavity. In addition to
the increase of the flow intensity, the change of L from 0.01 to 0.1 induces the development
of boundary layers along the walls of the cavity. For the vertical velocity u plotted here,
these boundary layers are visible along all the vertical boundaries. The maxima of the
velocity also appear to occur closer to the walls. All these changes are connected with
the change of the viscosity. The viscosity μc/μ0 = 1+ μ, plotted in figure 9, is 1 in the
Newtonian case and already decreases below 0.74 in some boundary layers for L = 0.01,
while values close to 1 remain in the core. Such viscosity becomes very small (below
0.15) in the boundary layers for L = 0.1 and the core is also affected, with values in the
range [0.3, 0.8] and more specifically below 0.45 in the zone at the interface of the two
counter-rotating rolls. Similar observations can be made for the one longitudinal roll flow
structure on the B2 branch when L is increased from 0.01 to 0.1 (figure 10): increase of
the flow intensity with maxima closer to the vertical walls, development of thin boundary
layers along the walls, in zones where the viscosity is found to decrease strongly. The
main difference from the B1 branch is that there is no zone of lower viscosity in the core
because of the single roll flow structure of branch B2. The plots of the viscosity in the
vertical transverse midplane in figure 10 (cross-section of the longitudinal roll) clearly
show the zones of smaller viscosity along the four walls, with values smaller than 0.15 for
L = 0.1. Such lower viscosity zones are visible in figure 20(a) of Bouteraa et al. (2015),
but only along the upper and lower walls, as the other boundaries are periodic boundaries.
In contrast, the zones of stronger viscosity appear in the corners of the cavity and in the
core of the roll. Interestingly, the maxima in the core principally occur in four places, each
one being closer to one of the walls, similarly to what can be seen in figure 13 of Jenny
et al. (2015) along the upper and lower no-slip walls.

Some more precise profiles of velocity and viscosity are given for the flow on branch
B2 along the horizontal transverse y-axis (x = 0, z = 0) in figure 11. We see the strong
increase of the flow when L is increased from 0 to 0.1, together with the shift of the
velocity maxima towards the walls at y = −0.5 and y = 0.5 determining smaller boundary
layers. Concerning the viscosity, at L = 0.01, we get decreased values (down to below 0.7)
along the walls in the sheared boundary layers while the core remains close to 1, with a
slight minimum at the centre connected with the shear at the centre of the roll. When L
is increased, the minimum values of viscosity along the walls strongly decrease and the
core becomes affected by a significant decrease of the viscosity. In this zone, for the larger
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Figure 9. Stable solution on the first branch B1 at Ra = 5000 for two values of L, 0.01 and 0.1 for a
shear-thinning fluid with n = 0.5. Different contours in the horizontal midplane are shown. The flow is given
by the vertical velocity u and the viscosity by its normalized value corresponding to μc/μ0 = 1+ μ (this value
is 1 in the Newtonian case).

values of L (L = 0.06 and 0.1), besides the minimum at the centre, minima are also found
closer to the velocity peaks.

The shape of the viscosity profiles obtained in figure 11(b) can be related to the velocity
profiles plotted in figure 11(a). Indeed, for the smallest value of L (L = 0.01), only the
stronger velocity gradients along the walls have an effect and decrease the viscosity in
these zones. When L is further increased (L = 0.02, 0.03, 0.04), both gradients along the
walls and near the centre (around y = 0) have an effect on the viscosity, so that minima of
viscosity are found along the walls and at the centre. For still larger values of L (L = 0.06,
0.1), there is a change in the velocity gradients: instead of decreasing from the value at the
centre towards zero at the velocity peak, they now increase beyond about |y| > 0.2 above
the value at the centre, before decreasing to zero at the velocity peak, which creates the
new viscosity minimum just below |y| = 0.3.

As the viscosity in the Carreau model is connected with the shear rate, it is interesting
to consider the shear rate in the cavity. For the branch B2, we give shear rate and shear
stress norms contours in the vertical transverse midplane (cross-section of the longitudinal
roll) and along the wall at y = 0.5 for the flows at L = 0.01 and 0.1 in figure 12, together
with profiles along the horizontal transverse y-axis in figure 13. As expected, the shear
rate |γ̇u| is particularly important along the walls and, in these zones, it increases strongly
with L, from maximum values just above 200 for L = 0.01 to maximum values beyond
1200 for L = 0.1, whereas it remains rather weak (between 10 and 40) in the core of the
cavity for the different values of L. In contrast, the shear stress (μc/μ0)|γ̇u| evolves in the
same range for the different values of L. This is due to the fact that the stronger values of
|γ̇u| along the boundaries for the strongest values of L are multiplied by lower values of
the viscosity (μc/μ0). The shear stress reaches even smaller maximum values along the
boundaries for L = 0.1 than for L = 0.01. Despite the small variations of the shear stress
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Figure 10. Stable solution on the second branch B2 at Ra = 5000 for two values of L, 0.01 and 0.1 for a
shear-thinning fluid with n = 0.5. Different contours in characteristic planes are shown. The flow is given by
the vertical velocity u and the viscosity by its normalized value corresponding to μc/μ0 = 1+ μ (this value is
1 in the Newtonian case).

(a) (b)

0

–10

u

µ
c/

µ
0

–20

–30

–40

10

30

40

20

0 0.2–0.2

y
–0.4 0.4 0 0.2–0.2

y
–0.4 0.4

0

0.2

0.4

0.6

0.8

1.0

Figure 11. Profiles of vertical velocity u and viscosity μc/μ0 = 1+ μ along the transverse direction y at
mid-height and mid-length (x = 0, z = 0) for solutions on the second branch B2 at Ra = 5000 for different
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L = 0). The velocity increases when L is increased, whereas the viscosity decreases.
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Figure 12. Isocontours in different planes for the shear rate |γ̇u| (a–b,e–f ) and shear stress (μc/μ0)|γ̇u|
(c–d,g–h) for a stable solution on the second branch B2 at Ra = 5000 for a shear-thinning fluid with n = 0.5,
L = 0.01 or L = 0.1. The norms of these fields are given in the vertical transverse midplane and along the
lateral wall at y = 0.5.

with L, the profiles presented in figure 13(b) evolve with L due to the thinner boundary
layers obtained when L is increased. Note finally that the contours of viscosity in the
vertical transverse midplane (figure 10) reproduce quite well those of the shear rate and
shear stress (figure 12).

3.4.4. Order of magnitude analysis of the subcritical convection onset
For this order of magnitude analysis, we come back to a very simplified 2-D inertialess
approach, in a plane perpendicular to the rolls axis. We will use a dimensionless
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Figure 13. Profiles of shear rate |γ̇u| (a) and shear stress (μc/μ0)|γ̇u| (b) along the transverse direction y at
mid-height and mid-length (x = 0, z = 0) for solutions on the second branch B2 at Ra = 5000 for different
values of L (0.01, 0.02, 0.03, 0.04, 0.06, 0.1) for a shear-thinning fluid with n = 0.5. The shear rate increases
on the boundaries when L is increased, whereas the shear stress does not change much.

formulation as that given by (2.6), (2.8) and (2.9). A common idea is that rolls are observed
when the heat diffusion time across the domain, τdiff ≈ 1/π2, is equivalent to the heat
convection time when rolls are present, τconv ≈ 1/u, where u is a vertical velocity. The
characteristic speed of the rolls at onset at the saddle-node point can then be estimated as
uSN ≈ π2, which is consistent with what is observed for n = 0.5 in figures 5 and 6.

To get an order of magnitude expression for the velocity, we first eliminate the pressure
in (2.8) by taking the curl of this equation. In a steady inertialess approach, we get

∇ × (∇ · ((1+ μ)γ̇u))+ Ra ∇ × (Tex) = 0. (3.1)

Between two rolls, in the middle plane of the cavity, the order of magnitude of the first
(viscous) term, denoted as Qvisc, can be obtained by focusing on the horizontal variations
(considered along z) of the vertical velocity (along x)

Qvisc = ∇ × (∇ · ((1+ μ)γ̇u)) ≈ ∂2

∂z2

(
(1+ μ)

∂u
∂z

)
. (3.2)

An additional assumption is that the subcritical onset corresponds to a strong enough
convective state for the fluid to behave as a power-law fluid (γ̇u 	 L, see figure 14(b)
for an estimate of γ̇u justifying this assumption). Using (2.6), we can then write

(1+ μ) = [1+ (L|γ̇u|)2](n−1)/2 ≈ (L|γ̇u|)n−1 ≈
(

L|∂u
∂z
|
)n−1

. (3.3)

Then Qvisc can be estimated as

Qvisc ≈ ∂2

∂z2

((
L
∣∣∣∣∂u
∂z

∣∣∣∣
)n−1

∂u
∂z

)
≈ Ln−1 uSN

n

ξn+2 ≈
π2n

ξn+2 Ln−1, (3.4)

where a flow shape factor ξ has been introduced to account for several effects enhancing
dissipation in the system (size of the rolls smaller than 1, shear due to the sidewalls);
ξ is expected to be smaller than one and to depend on the power-law index n of the
Carreau model. Concerning the buoyant term in (3.1), denoted as Qbuoy, it can be estimated
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Figure 14. Variation of the critical Rayleigh number Rac (a) and of the maximum shear rate |γ̇u| (b) for the
saddle-node point on the first branch as a function of L for a shear-thinning fluid with different values of n.
In (a), the numerically obtained variations of RaSN1 with L (black solid lines) are compared with different
approximations: RaSN1 |L=1Ln−1 (Ln−1 variation given by the model, adjusted with the data for L = 1) (red
dashed lines); RaP1 n2.25Ln−1 (3.7) (green dashed lines).

as

Qbuoy = Ra ∇ × (Tex) = Ra
∂T
∂z
≈ Ra

2
, (3.5)

if we assume a horizontal temperature gradient between the rolls ∂T/∂z ≈ 1
2 . From the

balance of the viscous and buoyant terms given by (3.1), an estimation of the subcritical
Rayleigh number RaSN can finally be obtained

RaSN ≈ 2π2n
(

1
ξ(n)

)n+2

Ln−1. (3.6)

Let us recall that this very crude approach is known, when applied to the Rayleigh–Bénard
problem featuring a Newtonian fluid, to underestimate the threshold value for the onset of
convection, though it provides a practical interpretation for the expression of the Rayleigh
number. Here, choosing n = 1, we recover the approximated value for the Newtonian case.

In figure 14, for the saddle-node point on the branch B1, we present the variation of the
critical Rayleigh number RaSN1 and of the maximum shear rate |γ̇u| as a function of L
for different values of the power-law index n. In figure 14(a), we have first compared the
curves giving the critical value of Ra (black solid lines) with the Ln−1 variation given by
the order of magnitude analysis by adjusting the curves at L = 1 for each value of n (red
dashed lines). We see that RaSN1 depends on n, but varies quite well as Ln−1 at fixed value
of n. In a 2-D periodic cavity, Jenny et al. (2015) also obtained a close to Ln−1 variation by
fitting their data by a power-law behaviour. The subsequent dependence on n of their data
was then well fitted by a power of n, precisely n2.2411, the multiplicative constant being
close to the Newtonian threshold. Note also that for a shear-thinning fluid described by a
power-law model (Turan et al. 2014), the minimum Ra for 2-D convection to occur was
also expressed as a function of the power-law index n by characteristic laws, RaNewt

c n2.5

and RaNewt
c n2 (where RaNewt

c is the Newtonian value), for prescribed temperature and
prescribed flux at the horizontal boundaries, respectively. Following these ideas to fit the
variations with a power of n with a prefactor equal to the Newtonian threshold, we also
plot the curves RaP1n2.25Ln−1 (green dashed lines) in figure 14(a). We see that the fit is
not perfect, indicating that the proposed expression is too simple to perfectly catch the
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observed variations. This law, however, gives a reasonable estimation of the threshold
variation for SN1, except closer to the limit Ll,SN1 where clearly overestimated values will
be obtained compared with the expected RaP1 value. We verified that the proposed law
also fitted well the data for the saddle-node SN2 on branch B2. We then got the following
approximate expressions for the saddle-node critical Rayleigh numbers:

RaSN1 ≈ RaP1n2.25Ln−1, (3.7)

and
RaSN2 ≈ RaP2n2.25Ln−1. (3.8)

Concerning the shear rate, the order of magnitude analysis simply gives

γ̇u ≈ ∂u
∂z
≈ uSN

ξ(n)
≈ π2

ξ(n)
. (3.9)

In figure 14(b), we see that the maximum shear rate quickly tends to a constant when L is
increased and that this constant strongly depends on n, changing from 40 for n = 0.9 to
approximately 230 for n = 0.5. Interestingly, the expression (3.9) obtained with the model
gives a shear rate which does not depend explicitly on L, featuring the constant values
reached by the data in figure 14(b). Moreover, assuming as previously that ξ depends on n
and takes values smaller than 1, this shear rate is expected to reach values of several dozen,
in agreement with the data.

3.4.5. Perturbation kinetic energy budgets at the transitions
Some information at the flow transitions can be obtained from the calculation at threshold
of the perturbation kinetic energy budget associated with the perturbations (critical
eigenvector). The basic steady solution at threshold [ui, T](xi) and the critical eigenvector
[up,i, Tp](xi) both enter the equation of energy budget giving the rate of change of the
perturbation kinetic energy defined as ek = Re(up,iūp,i/2) (Re and the overbar denote
the real part and the complex conjugate, respectively). After integration on the volume
of the cavity, an equation for the rate of change of the total perturbation kinetic energy
(Ek =

∫
Ω

ek dΩ) can be obtained
∂Ek

∂t
= Eshear + Ebuoy + Evisc,0 + Evisc,c + Evisc,p, (3.10)

where

Eshear = Re
(
−
∫

Ω

up,j
∂ui

∂xj
ūp,i dΩ

)
, (3.11)

Ebuoy = Re
(

Pr Ra
∫

Ω

Tpūp,iδi1 dΩ

)
, (3.12)

Evisc,0 = Re
(
−Pr

∫
Ω

∂up,i

∂xj

∂ ūp,i

∂xj
dΩ

)
, (3.13)

Evisc,c = Re
(
−Pr

∫
Ω

μγ̇up,ij
∂ ūp,i

∂xj
dΩ

)
, (3.14)

Evisc,p = Re
(
−Pr

∫
Ω

(∂μ/∂u)upγ̇u,ij
∂ ūp,i

∂xj
dΩ

)
. (3.15)

Here, Eshear represents the production of perturbation kinetic energy by shear of the basic
flow (inertia term), Ebuoy the production of perturbation kinetic energy by buoyancy, Evisc,0

936 A24-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.68


D. Henry and others

(a) (b)

L
0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

L
0 0.2 0.4 0.6 0.8 1.0

E
n
er

g
y
 c

o
n
tr

ib
u
ti

o
n
s

0.2

0.4

0.6

0.8

1.0

1.2

E
n
er

g
y
 f

ac
to

rs

Figure 15. Perturbation kinetic energy budgets at the secondary bifurcation point S2 on the branch B2 as a
function of L for a shear-thinning fluid with n = 0.5. Variation of the perturbation kinetic energy terms (a).
The different contributions are normalized by the viscous dissipation associated with the Newtonian viscosity:
the inertia term E′shear (red), the buoyancy term E′buoy (green), the viscous contribution associated with the
extra Carreau viscosity E′visc,c (blue) and the viscous contribution associated with the perturbation of the
Carreau viscosity E′visc,p (pink). Energetic contributions to the critical Rayleigh number, Rvisc and Rbuoy such
that Rac/Ra0 = Rvisc/Rbuoy (b). The viscous factor Rvisc is given as a blue line, the buoyancy factor Rbuoy as a
green line and the Rayleigh number ratio Rac/Ra0 as a red line.

the viscous dissipation of perturbation kinetic energy associated with the Newtonian
viscosity, Evisc,c the viscous contribution associated with the extra Carreau viscosity μ and
Evisc,p the viscous contribution associated with the perturbation of the Carreau viscosity.
At threshold, the critical eigenvector is associated with an eigenvalue with zero real part.
This implies that ∂Ek/∂t is equal to zero at marginal stability. Finally, we normalize (3.10)
by −Evisc,0 = |Evisc,0|, which is always positive, to get an equation involving normalized
energy terms E′ = E/|Evisc,0| at threshold

E′shear + E′buoy + E′visc,c + E′visc,p = 1. (3.16)

Finally, the critical Rayleigh number can also be expressed as a function of energetic
contributions. For that, we use the fact that the expression of E′buoy linearly depends on Ra.
At the threshold, we can write E′buoy = RacE′′buoy. And from (3.16), we get RacE′′buoy = 1−
E′shear − E′visc,c − E′visc,p which, in the Newtonian case, gives Ra0E′′buoy,0 = 1− E′shear,0,
where the subscript 0 refers to the Newtonian case. Finally, if we assume that the shear
contributions remain small and can be neglected (as we will see later), the ratio of these
two equations gives

Rac

Ra0
=

Rvisc︷ ︸︸ ︷
(1− E′visc,c − E′visc,p)

(E′′buoy/E′′buoy,0)︸ ︷︷ ︸
Rbuoy

, (3.17)

which indicates that the variation of Rac with the non-Newtonian properties (as the value
of L) can be expressed through the ratio of the two factors, Rvisc and Rbuoy, the first factor
being connected to the global viscous contributions and the second factor to the buoyancy
contributions. Without non-Newtonian contributions, Rvisc and Rbuoy are equal to 1 and
Rac = Ra0.

The different contributions to the perturbation kinetic energy expressed in (3.16) are first
given as a function of L for the secondary bifurcation S2 on the branch B2 in figure 15(a).
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Figure 16. Perturbation kinetic energy budgets at the saddle-node point SN1 on the branch B1 as a function of
L for a shear-thinning fluid with n = 0.5. Variation of the perturbation kinetic energy terms (a). The different
contributions are normalized by the viscous dissipation associated with the Newtonian viscosity: the inertia
term E′shear (red), the buoyancy term E′buoy (green), the viscous contribution associated with the extra Carreau
viscosity E′visc,c (blue) and the viscous contribution associated with the perturbation of the Carreau viscosity
E′visc,p (pink). Energetic contributions to the critical Rayleigh number, Rvisc and Rbuoy such that Rac/Ra0 =
Rvisc/Rbuoy (b). The viscous factor Rvisc is given as a blue line, the buoyancy factor Rbuoy as a green line and
the Rayleigh number ratio Rac/Ra0 as a red line.

At L = 0, the shear contribution E′shear has only a very weak destabilization effect so
that the destabilization is mainly due to the buoyancy contribution E′buoy. When L is
increased, this shear contribution decreases so as to become negligible, whereas the two
extra viscous contributions connected with the shear-thinning properties increase and give
destabilizing contributions. They, however, remain rather small (approximately 0.13 for
the extra Carreau viscosity contribution E′visc,c and 0.03 for the contribution of the Carreau
viscosity perturbation E′visc,p) and E′buoy keeps the larger destabilizing values. Note that all
these quantities quickly reach asymptotic values (for L larger than about 0.3), as it was
already observed for the threshold RaS2 in figure 7(b). The variation of the energy factors
Rvisc and Rbuoy in this case is given in figure 15(b), together with the variation of Rac/Ra0.
We observe that the decrease of the critical Rayleigh number is due to the decrease of the
viscous ratio Rvisc, but is accentuated by the increase of the buoyancy ratio Rbuoy.

The energy contributions are also plotted for the saddle-node point SN1 in figure 16(a).
The evolution of these quantities with L is very similar for the two saddle-node points and
very different from what was previously observed for S2. As soon as the saddle-node point
SN1 is created at Ll,SN1 , the energy contributions evolve very quickly from their values
at the primary bifurcation point P1 (E′shear = E′visc,c = E′visc,p = 0, E′buoy = 1). The two
extra viscous contributions connected with the shear-thinning properties increase first very
quickly in a similar way, but the contribution of the Carreau viscosity perturbation E′visc,p
reaches quickly a maximum before a regular decrease, whereas the extra Carreau viscosity
contribution E′visc,c continues to regularly increase. The shear contribution E′shear also
increases, but remains really weak. As a consequence of (3.16), the buoyancy contribution
E′buoy must decrease. It decreases, first very quickly and then more gently and, surprisingly,
follows the decrease of E′visc,p in this second stage. We did not succeed in explaining this
behaviour, although it does not seem to be incidental as it is observed for both saddle-node
points. If we finally add the different viscous contributions, we find then that the global
stabilizing viscous contribution expressed by 1− E′visc,c − E′visc,p has strongly decreased
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Figure 17. Modification of the first primary branches of the bifurcation diagram (branch B1 in a and branch
B2 in b) in the case of a shear-thickening fluid with n = 1.5 for an increase of L from 0 to 0.1 (0, 0.01, 0.02,
0.03, 0.05, 0.1). The branch in the Newtonian case (L = 0) is given as a dashed line. The path of the secondary
bifurcation point S2 (blue solid circles) is also given in (b).

(mainly due to the extra Carreau viscosity contribution) and is equilibrated by a decreased
buoyancy contribution and a weak shear contribution.

The variations with L of Rvisc and Rbuoy for the saddle-node point SN1, together with the
variations of Rac/Ra0, are given in figure 16(b). For both saddle-node points, we observe a
simultaneous strong decrease of Rvisc and Rbuoy. This decrease, however, slows down more
rapidly for Rbuoy than for Rvisc, so that Rvisc remains smaller than Rbuoy with an increased
difference between them when L is increased and Rac/Ra0, less than 1, decreases then with
the increase of L. We can finally state that the decrease of the critical Rayleigh number for
the saddle-node points SN1 and SN2 is a consequence of the decrease of the viscous factor
Rvisc due to the shear-thinning properties of the fluid, but this effect is attenuated by the
decrease of the buoyancy factor Rbuoy.

3.5. Shear-thickening Carreau fluid
In this section, we will now study the influence of the shear-thickening properties on
the bifurcation diagram. We choose a power-law index n = 1.5 and vary the parameter
L. As indicated in § 3.4, the primary thresholds are not modified by the non-Newtonian
properties and are the same as in the Newtonian case.

3.5.1. Bifurcation diagrams
The change of the bifurcation diagram with L for a shear-thickening fluid is illustrated by
the evolution of the two branches B1 and B2 in figure 17. Different values of L have been
chosen between 0 and 0.1 for which the branches have been followed up to Ra = 5000.
Both branches keep evolving supercritically when L is increased, but correspond to weaker
flow intensities. Such decrease of the flow intensity for a shear-thickening fluid is depicted
in figure 8 where the variation of |umax| with L at Ra = 5000 is given for both branches.
For the branch B2, we have also followed the path of the secondary bifurcation point S2
by continuation when increasing L. In figure 17(b), we see the quick displacement of S2,
even for small values of L. More information is given in figure 18 with the plots of |umax|
and Rac as a function of L for this point S2. Both values increase with L, but the major
fact is the strong increase of Rac (almost linear beyond L = 0.04), which indicates that the
stabilization of the branch B2 beyond S2 is delayed to larger thresholds when L is increased.
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Figure 18. For a shear-thickening fluid with n = 1.5, paths of the bifurcation point S2 as a function of L,
expressed through the variation of |u|max in (a) and Rac in (b).

y

F
lo

w

1.0–1.0 0.5–0.5 0 1.0–1.0 0.5–0.5 0

0.4

–0.4

0.2

–0.2

0

0.4

–0.4

0.2

–0.2

0

Horizontal midplane

V
is

co
si

ty

y

L = 0.01 L = 0.1

z
1.0–1.0 0.5–0.5 0

z
1.0–1.0 0.5–0.5 0

0.4

–0.4

0.2

–0.2

0

0.4

–0.4

0.2

–0.2

0

00

1
0

9 2

–
6

–
1
2

2

–
1
4

8 4 –
2

–
8 8

1
0 4

9

–
4

–
1
0

1

2

–
4

–
1

1 3

2

3 –
2

–
3–
5

4–
6

4

00

1.10
1.05

1
.0

5

1
.1

5

1.05

1
.1

0

1.05
1.10

1
.1

0

1.05

1.05

1
.0

5

1
.1

5

1.05

1.5

1.
6

1.4

1
.9

1
.1

1.
2

1.4

1
.4

1
.5

1.5 1.5

1
.7

1
.3

1
.2

1
.8

1.4

1.6

1.3

1.1 1
.1

1.2

1.4

1.1

1
.2

1.3

1
.3 1
.7

1
.5

1.5

1
.8

1.4
1.4

1.6
1.5

1.5

1
.6

1
.4

1
.9

Figure 19. Stable solution on the first branch B1 at Ra = 5000 for a shear-thickening fluid with n = 1.5 and
two values of L, 0.01 and 0.1. Different contours in the horizontal midplane are shown. The flow is given by the
vertical velocity u and the viscosity by its normalized value corresponding to μc/μ0 = 1+ μ (this value is 1
in the Newtonian case).

3.5.2. Change of the flow characteristics
Contours of the vertical velocity and of the viscosity are given for both branches B1 and B2
for a shear-thickening fluid with n = 1.5 in figures 19 and 20 for Ra = 5000 and two values
of L, 0.01 and 0.1. The profiles along the horizontal transverse y-axis are also given for B2
for different values of L in figure 21. The change of the flow structure is less marked than
for shear-thinning fluids. The increased viscosity along the boundaries, which can reach
values up to 2, slows down the flows, but does not change the flow structure much, except
that the maximum vertical velocity occurs slightly farther from the boundaries. Profiles of
shear stress and shear rate are also presented in figure 22. The shear rate |γ̇u| decreases
with the increase of L, from maximum values along the walls above 100 for L = 0.01 to
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Figure 21. Profiles of vertical velocity u (a) and viscosity μc/μ0 = 1+ μ (b) along the transverse direction
y at mid-height and mid-length (x = 0, z = 0) for solutions on the second branch B2 at Ra = 5000 for a
shear-thickening fluid with n = 1.5 and different values of L (0, 0.01, 0.02, 0.03, 0.05, 0.1) (the viscosity is
1 for L = 0). The velocity decreases when L is increased, whereas the viscosity increases.

40 for L = 0.1. This moderate decrease is connected with the moderate increase of the
viscosity, which is due to the fact that the expected change of viscosity related to the
change of L (2.4) is attenuated by the decrease of |γ̇u| due to the decreased flow intensity.
As expected, the shear stress (μc/μ0)|γ̇u| is still less contrasted between the two values
of L, due to the fact that the smaller values of |γ̇u| obtained along the boundaries for the
larger values of L are multiplied by larger values of the viscosity (μc/μ0).
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Figure 22. Profiles of shear rate |γ̇u| (a) and shear stress (μc/μ0)|γ̇u| (b) along the transverse direction
y at mid-height and mid-length (x = 0, z = 0) for solutions on the second branch B2 at Ra = 5000 for a
shear-thickening fluid with n = 1.5 and different values of L (0.01, 0.02, 0.03, 0.05, 0.1). The shear rate and
shear stress decrease when L is increased.
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Figure 23. Perturbation kinetic energy budgets at the secondary bifurcation point S2 on the branch B2 as a
function of L for a shear-thickening fluid with n = 1.5. Variation of the perturbation kinetic energy terms (a).
The different contributions are normalized by the viscous dissipation associated with the Newtonian viscosity:
the inertia term E′shear (red), the buoyancy term E′buoy (green), the viscous contribution associated with the
extra Carreau viscosity E′visc,c (blue) and the viscous contribution associated with the perturbation of the
Carreau viscosity E′visc,p (pink). Energetic contributions to the critical Rayleigh number, Rvisc and Rbuoy such
that Rac/Ra0 = Rvisc/Rbuoy (b). The viscous factor Rvisc is given as a blue line, the buoyancy factor Rbuoy as a
green line and the Rayleigh number ratio Rac/Ra0 as a red line.

3.5.3. Perturbation kinetic energy budgets at S2
The different contributions to the perturbation kinetic energy expressed in (3.16) are given
as a function of L for the secondary bifurcation S2 on the branch B2 in figure 23(a).
The shear contribution E′shear with a very weak destabilization remains negligible. The
destabilization is due to the buoyancy contribution E′buoy, which increases when L is
increased, in connection with the increased stabilizing extra viscous contributions. Here
also the extra Carreau viscosity contribution E′visc,c is really larger than the contribution
of the Carreau viscosity perturbation E′visc,p. The variation of the energy factors Rvisc and
Rbuoy in this case is given in figure 23(b), together with the variation of Rac/Ra0. We
observe that the strong increase of the critical Rayleigh number is due to the increase of
the viscous ratio Rvisc, but is accentuated by the decrease of the buoyancy ratio Rbuoy, in
connection with the change of the perturbation structure.
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Figure 24. Critical Rayleigh number at the saddle-node point SN1 as a function of the Prandtl number Pr for
n = 0.5 and two values of L. The scale for the red curve (L = 1) is on the right side of the figure and the scale
for the black curve (L = 0.1) is on the left side.

3.6. Influence of the Prandtl number
As shear-thinning fluids may have high Prandtl number values, we want to quantify the
influence of an increase of the Prandtl number Pr on our results. For that, we consider the
critical Rayleigh number at the saddle-node point SN1 for n = 0.5 and follow its variation
by continuation when Pr is increased from 1 to 10. The results are shown in figure 24 for
two values of L, 0.1 and 1. We see that there is a clear influence of Pr on RaSN1 when Pr
is increased above 1, with a first steep decrease and then a slower evolution leading to an
asymptotic regime, which is already well approached for Pr = 10. However, looking to the
scales which are on the right side of the figure for L = 1 and on the left side for L = 0.1,
we see that the variations remain moderate. For L = 0.1, RaSN1 is changed from 1788.96
for Pr = 1 to 1749.76 for Pr = 10, corresponding to a 2.2% decrease, whereas for L = 1,
RaSN1 is changed from 610.15 to 565.70, corresponding to a 7.3% decrease. This indicates
that the overall description of the phenomena obtained for Pr = 1 remains valid for larger
Prandtl numbers, with only moderate changes of the critical parameters.

4. Discussion

As shown in the introduction, different authors have considered Rayleigh–Bénard
convective rolls in shear-thinning fluids obeying the Carreau law, either in extended 3-D
cavities by weakly nonlinear analyses (Bouteraa et al. 2015) or in 2-D cavities (Benouared
et al. 2014; Jenny et al. 2015). It is interesting to compare our results concerned with rolls
in a 3-D confined cavity with some of those results.

Concerning the change of the primary bifurcation to rolls from supercritical to
subcritical in shear-thinning fluids, Bouteraa et al. (2015), considering small amplitude
disturbances, have shown that, for an extended cavity with upper and lower walls at fixed
temperature and rigid, this change occurs at a critical value of the degree of shear-thinning
parameter α (2.5). For Pr ≥ 1, they give αc = 2.15× 10−4. In order to compare with this
value, for both branches B1 and B2 and the different values of n, we have looked for the
value of L corresponding to the limit of existence of the corresponding saddle-node point
(as was done for n = 0.5 in figure 7) and deduced the critical value of α. The results are
shown in table 3. We see that the critical value of α is almost constant for a given branch,
i.e. a given flow structure, indicating that the shear-thinning character of the fluid is well
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Branch B1 Branch B2

n Ll,SN1 104 αl,SN1 Ll,SN2 104 αl,SN2

0.5 0.0278 1.932 0.0263 1.729
0.6 0.0312 1.947 0.0295 1.741
0.7 0.0360 1.944 0.0340 1.734
0.8 0.0441 1.945 0.0416 1.731
0.9 0.0624 1.947 0.0587 1.723

Table 3. Critical values of the rheological parameters corresponding to the transition between supercritical
and subcritical behaviours for both B1 and B2 branches (limit of existence of the corresponding saddle-node
point). Critical values of L for different power-law indexes n, and deduced critical values of the degree of
shear-thinning parameter α. The critical value of α is approximately 1.94× 10−4 for the branch B1 and 1.73×
10−4 for the branch B2, compared with the value αc = 2.15× 10−4 given for rolls in extended cavities by
Bouteraa et al. (2015).

quantified by the parameter α at this supercritical/subcritical transition in our 3-D cavity.
More precisely, we obtain αc ≈ 1.94× 10−4 for the branch B1 (two transverse rolls) and
αc ≈ 1.73× 10−4 for the branch B2 (one longitudinal roll). These values are a little below
the critical value given by Bouteraa et al. (2015), but really of the same order of magnitude,
despite the confinement existing in our 3-D rigid cavity.

Concerning the saddle-node points appearing on the subcritical branches in
shear-thinning fluids, for a 2-D periodic square cavity Jenny et al. (2015) showed that
the corresponding Nusselt number Nu expressed as a function of the Parmentier–Rayleigh
number Rap belongs to a single curve for any value of the shear-thinning parameters and
that this curve is the Nu vs Ra curve obtained in the Newtonian case. We recall that the
Parmentier–Rayleigh number Rap is defined with the use of a specific volume-average
viscosity, weighted by the square of the shear rate. This viscosity, called Parmentier’s
viscosity, is then defined, in its dimensionless form, as

μp =

∫
V
(μc/μ0)|γ̇u|2 dV∫

V
|γ̇u|2 dV

, (4.1)

where V denotes the volume of the cavity. For all the saddle-node points determined in
our study (for the different n and L values and for both branches), we have calculated the
Nusselt number and the Parmentier–Rayleigh number and the results expressed as Nu− 1
vs Rap are shown in figure 25, together with the primary bifurcation curves obtained for
a Newtonian fluid. For each branch, there exists a master curve, clearly depicted by the
green short dashed lines, but this master curve departs from the Newtonian curve and is
close to it only for weakly shear-thinning fluids (values of n close to 1 or small values of
L). Moreover, for the smallest values of n, the data even depart from the master curves,
particularly for values of L above 0.1 (black and red solid lines for branches B1 and B2,
respectively). It then seems that the collapse of the saddle-node data on a single curve, as
observed by Jenny et al. (2015), is not obtained in our 3-D confined cavity. Note that this
previous study (Jenny et al. 2015) concerned 2-D almost square cavities with horizontal
periodicity, whereas our 3-D cavity is a rigid cavity with no-slip conditions on all the
boundaries, thus inducing the presence of boundary layers.

936 A24-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.68


D. Henry and others

0

0.1

0.2

0.3

0.4

0.5

2500 3000 3500 4000 4500

Rap

Nu–1

0.9

0.8

0.7

0.6

n = 0.5

P1 P2

Figure 25. Reduced Nusselt number (Nu− 1) vs the Parmentier–Rayleigh number (Rap) for the convective
flows at the saddle-node points SN1 and SN2. All the values of L up to 1 and of n (0.5, 0.6, 0.7, 0.8, 0.9) are
considered. For SN1, the results for each n value are plotted as black solid lines for 0.1 ≤ L ≤ 1, continued by
green short dashed lines for L ≤ 0.1 (down to RaP1 ). For SN2, the results for each n value are plotted as red
solid lines for 0.1 ≤ L ≤ 1, continued by green short dashed lines for L ≤ 0.1 (down to RaP2 ). The primary
bifurcation curves for a Newtonian fluid are given as long dashed lines, in black for branch B1 and in red for
branch B2.

Branch B1 Branch B2 Benouared et al. (2014)

n RaSN1 Ratio RaSN2 Ratio Ratio (no-slip) Ratio (slip)

0.6 1221 0.448 1241 0.440 0.433 0.468
0.8 1964 0.720 2018 0.716 0.696 0.732

Table 4. For a shear-thinning fluid with L = 0.4 and two values of n (0.6 and 0.8), values of the critical
Rayleigh number at the saddle-node bifurcation and its ratio to the corresponding primary threshold for both
B1 and B2 branches. Comparison with the ratio given by Benouared et al. (2014) for a 2-D square cavity with
either no-slip or slip vertical walls.

Benouared et al. (2014) determined the critical Rayleigh number RaSN for the onset
of finite amplitude convection (corresponding to our saddle-node point) for a 2-D square
cavity. In their Table VI, for L = 0.4 and different values of n, they give the ratio of RaSN
to the linear primary threshold for a cavity with either no-slip or slip vertical walls. We
give these ratios for n = 0.6 and 0.8 in table 4, together with our corresponding results for
both branches B1 and B2. We see that the ratios we obtain for the two branches are very
close. Moreover, these ratios are also close to those obtained by Benouared et al. (2014),
in fact located between their no-slip and slip ratios.

Jenny et al. (2015) proposed defining different dimensionless viscosities at the
saddle-node points: the Parmentier viscosity μp (4.1), the bulk-average viscosity

μm =

∫
V
(μc/μ0) dV∫

V
dV

(4.2)

and an effective viscosity such that the saddle-node Rayleigh number constructed on
its dimensional value is constant, equal to the Newtonian critical value. This effective
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Figure 26. Average and equivalent viscosities for the convective flow at the saddle-node points SN1 (a) and
SN2 (b) in a shear-thinning fluid. Here, ©: equivalent viscosity; �: Parmentier’s viscosity; +: bulk-average
viscosity. These viscosities are given as a function of L for three values of the power-law index n: 0.9 (blue),
0.7 (red) and 0.5 (black).

viscosity, in its dimensionless form, is then defined by

μe = RaSN

RaNewt
c

, (4.3)

which, in our case, will give μe = RaSN1/RaP1 for branch B1 and μe = RaSN2/RaP2 for
branch B2. These different viscosities at the saddle-node points are plotted in figures 26(a)
and 26(b) for branches B1 and B2, respectively. For clarity, we only plot the results for three
values of n, 0.9, 0.7 and 0.5. We use the same notations as in Jenny et al. (2015), circles for
the effective viscosity, squares for Parmentier’s viscosity and crosses for the bulk-average
viscosity. As in Jenny et al. (2015), we observe that the Parmentier viscosity is clearly
below the effective viscosity, whereas the bulk-average viscosity μm remains close to the
effective viscosity μe for both branches and in all the range of n and L values studied. The
maximum departure is obtained for the branch B2 and n = 0.5, but it remains quite weak
and constant with L. As Jenny et al. (2015), using the expressions (3.7) and (3.8), we can
finally express the bulk-average viscosity μm at the saddle-node points in our 3-D cavity
as

μm ≈ μe ≈ n2.25Ln−1. (4.4)

We finally discuss the variation of the flow intensity and viscosity with the increase of L
at constant n for the saddle-node points. In their 2-D periodic cavity, for n = 0.7 and rather
large values of L (from 1 to 100, see their figure 13), Jenny et al. (2015) indicate a rather
constant flow intensity associated with increasing variations of the viscosity. In our 3-D
cavity, the variation of the flow intensity can be observed in figure 7(a) for n = 0.5. We see
that, after the strong initial increase at Ll,SN1 and Ll,SN2 and the subsequent slow decrease,
the curves of |umax| seem effectively to evolve towards asymptotic values. To have more
information, we plot the transverse profiles of the vertical velocity and of the viscosity
for solutions at the saddle-node point SN2 in figure 27. As expected from figure 7(a),
the velocity profiles first increase in intensity and then slightly decrease as L is increased
(figure 27a). The profiles also change shape with maxima closer to the walls. In contrast,
the viscosity profiles continuously decrease as L is increased (figure 27b), in agreement
with (4.4). In the asymptotic large L regime, the flow will then be almost constant,
sustained by a decreased buoyant force (decrease of Ra) associated with decreased viscous
forces.
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Figure 27. Profiles of vertical velocity u and viscosity μc/μ0 = 1+ μ along the transverse direction y at
mid-height and mid-length (x = 0, z = 0) for solutions at the saddle-node point SN2 on the second branch B2
for a shear-thinning fluid with n = 0.5 and different values of L (0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.5, 1). With
the increase of L, the viscosity is found to decrease, whereas the velocity extrema first increase and then slightly
decrease.

5. Conclusion

The shear-thinning effect has been found to have a strong influence on the transition to
instability in the considered 3-D truncated square duct. Stable convective flows exist at
really lower values of the Rayleigh number than in the case of Newtonian fluids. These
flows appear at saddle-node (SN) points on branches which evolve subcritically from
the primary points, so that they cannot be reached with infinitesimal perturbations. For
sufficiently large L, however, the subcritical parts of these branches correspond to very
weak flows, so that it could be easy with small perturbations of the diffusive solution to
reach the stable solutions on the part of the branches beyond the SN points. This is the case
for both branches, i.e. even for the branch B2 which became stable in the Newtonian case
beyond the secondary bifurcation point S2. Because of this advanced onset, the flow also
becomes much more intense at a given Ra value when L is increased, in connection with
the strongly decreased viscosity in the sheared zones, particularly along the boundaries.

The SN point on each branch emerges from the primary bifurcation of the branch at a
specific value of the parameter L, which has been determined precisely for different values
of n from 0.5 to 0.9 for both branches. The transition of the branches from supercritical to
subcritical occurs at these specific values of L for a given n, but can also be expressed as a
function of the degree of shear-thinning parameter α, as proposed in Bouteraa et al. (2015).
Constant values of α are obtained for this transition for each branch in our case. These
values are close to 2× 10−4, as was found in Bouteraa et al. (2015). The flow intensity
and the Nusselt number at the SN points increase very quickly with L before a further
slight decrease, whereas their threshold expressed by the RaSN value, after a strong initial
decrease, keeps decreasing with a L−1 behaviour, as predicted by an order of magnitude
analysis. The global variation of RaSN with both L and n can be well approximated by
an expression involving the primary or Newtonian threshold and a power of n, RaSN ≈
RaNewt

c n2.25Ln−1, similarly to what was obtained in a 2-D periodic cavity (Jenny et al.
2015). The collapse of the SN curves to a single curve when expressed as the Nusselt
number vs the Parmentier–Rayleigh number (Jenny et al. 2015) was, however, not obtained
in our 3-D case.

In contrast with the SN points, the threshold for the secondary S2 point decreases
towards a quickly reached asymptotic value, associated with a very weak flow intensity.
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The stabilization of the branch B2, however, quickly does not occur any more at this S2
point as in the Newtonian case, but beyond the SN point SN2.

Finally, the energy analysis at the thresholds points out the destabilization induced by
the non-Newtonian viscous contributions, particularly the contribution associated with the
extra Carreau viscosity. The decrease of the thresholds is connected with the decrease of
the global viscous effect, but is also influenced by the change of the buoyancy contribution,
favouring the decrease for S2 and limiting it for the SN points.

The shear-thickening effect has a less dramatic effect, as the branches evolve
supercritically as in the Newtonian case. The branch B1 appears as a stable branch at the
same primary bifurcation P1. The branch B2, however, is stabilized beyond S2 at strongly
increasing values of Rac when L is increased, making the access to this stable flow solution
still more difficult. In these shear-thickening fluids, the flow becomes less intense at a given
Ra value when L is increased, in connection with the increased viscosity in the sheared
zones. Concerning the threshold of S2, the energy analysis shows that its increase, which,
after an initial transient, is almost linear with L, is due to the increase of the global viscous
effect, but is accentuated by the change of the buoyancy contribution.
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