BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 383-387

PROPER EMBEDDABILITY

OF INVERSE SEMIGROUPS

A. Shehadah

Let S be an inverse semigroup. We prove that there is a ring with a proper involution * in which S is *-embeddable. The ring will be a natural one, R[S], the semigroup ring of S over any formally complex ring R; for example \mathbb{R} , \mathcal{C} .

1. Introduction

In [5] we gave a negative answer to a question in [3]: Given a semigroup S with a proper involution, does there exist a ring R with a proper involution in which S is *-embeddable. In this paper we answer the same question in the affirmative if S happens to be an inverse semigroup with an involution equal to its inverse map.

2. Preliminaries

DEFINITIONS: Let S be a semigroup. An involution on S is a map *: $S \rightarrow S$ such that, for $a, b \in S, a^{**} = a, (ab)^* = b^*a^*$. The involution * is proper if, for $a, b \in S, aa^* = ab^* = bb^*$ implies a = b. A proper *-semigroup (S,*) is a *-semigroup (S,*) in which * is proper.

Let R be a unital ring. An involution on R is a map $*:R \rightarrow R$ such that, for A, $B \in R$, $A^{**} = A$, $(AB)^* = B^*A^*$, and $(A + B)^* = A^* + B^*$. Received 2 January 1986. This article is a part of my Ph.D thesis [4], I would like to thank Professor M. Drazin, my advisor. Copyright Clearance Centre, Inc. Serial-fee code: C004-9727/86 \$A2.00 + 0.00.

A. Shehadah

The involution * is proper if, for $A \in R$, $AA^* = 0$ implies A = 0. A *-ring (R,*) is a ring R with an involution * . A proper *-ring is a *-ring (R,*) in which * is proper.

Let (S, *) be a *-semigroup and (R, *) be a *-ring. A *-embedding of (S, *) into (R, *) is a l-l map $f:S \rightarrow R$, such that, for $a, b \in S$, f(ab) = f(a)f(b), and $f(a^*) = (f(a))^*$. If such a map exists then we say that (S, *) is *-embeddable in (R, *).

Let (R, *) be a *-ring. If for every $A_1, \ldots, A_n \in R, i=1 A_i A_i^* = 0$ implies all $A_i = 0$, then (R, *) will be called a formally complex ring. A formally complex ring is a proper *-ring: We take n = 1 in the definition.

Given a *-semigroup (S,*) and a *-ring (R,*), the *-semigroup ring (R[S],*) with involution * defined by $(\Sigma r_i s_i)^* = \Sigma r_i^* s_i^*$ is a *-ring in which (S,*) is *-embeddable. If (S,*) is a proper *-semigroup, there may not exist a proper *-ring (R,*) in which (S,*)is *-embeddable [5].

3. The results

LEMMA. Let S be an inverse semigroup and let a, b, c be three elements of S such that $aa^{-1} = bc^{-1}$. Then $a^{-1}b = a^{-1}c$.

Proof. We have $aa^{-1} = bc^{-1} = cb^{-1}$. Therefore $bb^{-1}.aa^{-1} = bb^{-1}.bc^{-1} = bb^{-1}b.c^{-1} = bc^{-1} = aa^{-1}$. Thus $bb^{-1}aa^{-1}a = aa^{-1}a$; therefore, $bb^{-1}a = a$. Now we have $a^{-1}b(a^{-1}b)^{-1} = a^{-1}b.b^{-1}a = a^{-1}.bb^{-1}a = a^{-1}.bb^{-1}a = a^{-1}a$, and $a^{-1}b(a^{-1}c)^{-1} = a^{-1}b.c^{-1}a = a^{-1}.bc^{-1}.a = a^{-1}.aa^{-1}.a = a^{-1}a$. Thus $a^{-1}b \le a^{-1}c$ in the Vagner - Preston partial ordering. Similarly $a^{-1}c \le a^{-1}b$ and so $a^{-1}b = a^{-1}c$.

THEOREM. Let S be an inverse semigroup and (R, *) be any formally complex ring. Then the involution * induced on the semigroup ring R[S] is proper. Proof. We have to show, for every m, for every finite subset $\{s_1, \ldots, s_m\} \subseteq S$ and for every $A = \prod_{i=1}^m a_i a_i \in R[S]$, that $AA^* = 0$ only if $a_i = 0$ $(i = 1, \ldots, m)$. We prove this by complete induction on m. The case m = 1 is trivial, since here $aa.a^*s^{-1} = aa^*.ss^{-1}$, and so $(as).(as)^* = 0$ only if $aa^* = 0$ so that a = 0 (since R is a proper *-ring).

Given any positive integer n, assume the result is true for all $m \le n$. Choose any subset $\{s_1, \ldots, s_n\} \le S$, and let $a_1, \ldots, a_n \in R$ be such that $A = \sum_{i=1}^n a_i s_i$ satisfies $AA^* = 0$. Pick from the set $\{s_1, \ldots, s_n\}$ any s_j maximal with respect to the Vagner - Preston order, without loss of generality assume it is s_n , that is, $s_n \ne s_i$ $(i = 1, \ldots, n-1)$. We distinguish the following two cases, which exhaust all other possibilities:

Case 1. $s_n s_n^{-1} = s_u s_v^{-1}$ implies $u = v (\forall u, v = 1, ..., n)$. Case 2. $s_n s_n^{-1} = s_u s_v^{-1}$ for some pair (u, v) such that $u \neq v$. We treat each case separately.

In Case 1 the only $s_u s_v^{-1}$ which are equal to $s_n s_n^{-1}$ are of the form $s_i s_i^{-1}$. Without loss of generality, let these be $s_k s_k^{-1}, \ldots, s_n s_n^{-1}$ for some k in the range $1 \le k \le n$. Then by collecting the coefficients of $s_n s_n^{-1}$ in AA^* , we have that $a_k a_k + \ldots + a_n a_n^* = 0$. Hence, since Ris formally complex, $a_k = \ldots = a_n = 0$. Thus $A = \sum_{i=1}^{k-1} a_i s_i$.

In Case 2, apart from $s_n s_n^{-1}$ itself, there can be no $s_n s_v^{-1}$ or $s_v s_n^{-1}$ equal to $s_n s_n^{-1}$ since either would imply $s_n \leq s_v$ contrary to our choice of s_n . Also $s_n^{-1} s_n \neq s_n^{-1} s_v$ for otherwise $s_n = s_v$.

Now
$$s_n^{-1}A(s_n^{-1}A) * = s_n^{-1}AA*s_n = 0$$
 where $s_n^{-1}A = \frac{n}{i=1}a_is_n^{-1}s_i$.

A. Shehadah

Also $s_n s_n^{-1} = s_u s_v^{-1}$ for at least one pair (u,v) with u,v,n all different, and for all such (u,v) we have $s_n^{-1} s_u = s_n^{-1} s_v$, by the Lemma. Thus, in the formal sum $s_n^{-1} A = \frac{n}{i \ge 1} a_i s_n^{-1} s_i$, there is at least one "collapsing" $s_n^{-1} s_u = s_n^{-1} s_v \neq s_n^{-1} s_n$ with u,v,n all different. In other words $s_n^{-1} A$ can be written in the form $s_n^{-1} A = b_n s_n^{-1} s_n + b_2 s_2' + \ldots + b_i s_i'$ for some $s_{2'}' \ldots s_i' \in S$, where $b_n = a_n, b_2, \ldots, b_i \notin R$ and i < n. Since $s_n^{-1} A (s_n^{-1} A)^* = 0$, by the induction hypothesis, $a_n = b_n = 0$. Thus $A = \frac{n-1}{i \ge 1} a_i s_i$. We have shown that, in both Case 1 and Case 2, A is a formal sum with fewer than n terms. By the induction hypothesis it follows that all $a_i = 0$.

PROPOSITION. Let S be any inverse semigroup and let R be any formally complex *-ring. Then the semigroup ring R[S] contains no nonzero nil ideal. (Equivalently, R[S] has a zero nil radical).

PROOF. The map $A = \Sigma r_i s_i \rightarrow A^* = \Sigma r_i^* s_i^{-1}$ defines an involution on R[S]. From the Theorem, R[S] is a proper *-ring. Let I be any nil ideal in R[S] and let $A \in I$. Now $AA^* \in I$ and hence, for some $n \ge 1$, $(AA^*)^n = 0$. By *-cancellation [2] A = 0. Thus I = 0.

References

- [1] A. Clifford and G. Preston, The Algebraic Theory of Semigroups, Math. Surveys, Amer. Math. Soc., Providence, R.I. 7 (1969).
- [2] M. Drazin, "Regular Semigroups with Involution", Symposium on Regular Semigroups, Northern Illinois University (1979), 29-48.
- [3] M. Drazin, "Natural Structures on Rings and Semigroups with Involution", (To appear).
- [4] A. Shehadah, Embedding Theorems for Semigroups with Involution, Ph.D Thesis, Purdue University, West Lafayette, Indiana, (1982).

Embeddability of Inverse Semigroups

[5] A. Shehadah, "A Counter Example on *-embeddability into Proper *-rings", (To appear).

Department of Mathematics Yarmouk University Irbid Jordan