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Stable Discrete Series Characters at
Singular Elements

Steven Spallone

Abstract. Write ΘE for the stable discrete series character associated with an irreducible finite-dimen-

sional representation E of a connected real reductive group G. Let M be the centralizer of the split

component of a maximal torus T, and denote by ΦM (γ,ΘE) Arthur’s extension of |DG
M(γ)|1/2ΘE(γ)

to T(R). In this paper we give a simple explicit expression for ΦM (γ,ΘE) when γ is elliptic in G. We

do not assume γ is regular.

1 Introduction

Let G be a connected reductive group over R and T a maximal torus contained in a
Borel subgroup B of G. Assume that G has a discrete series of representations. Let

A be the split part of T and M the centralizer of A in G. It is a Levi subgroup of G

containing T. Let E be an irreducible finite-dimensional representation of G(C), and
consider the packet ΠE of discrete series representations π of G(R) that have the same

infinitesimal and central characters as E. Write Θπ for the character of π, and put

Θ
E

= (−1)q(G)
∑

π∈ΠE

Θπ.

Here q(G) is half the dimension of the symmetric space associated with G. Note that
ΘE(γ) will not extend to all elements γ ∈ T(R), in particular to γ = 1. Define the

number DG
M(γ) by

DG
M(γ) = det

(

1 − Ad(γ), Lie(G)/ Lie(M)
)

.

Then a result of Arthur and Shelstad [1] states that the function

γ 7→ |DG
M(γ)|

1
2 Θ

E(γ),

defined on the set of regular elements Treg(R) extends continuously to T(R). We de-

note this extension by ΦM(γ, ΘE). The Weyl discriminant DG
M is a well-understood

function, so the extension describes the asymptotic behavior of ΘE at singular ele-
ments.

Moreover this quantity has appeared in recent harmonic analysis, giving the con-

tribution from the real place to the L2-Lefschetz numbers of Hecke operators in [1,3].
An expression for ΦM(γ, ΘE) as essentially a sum over elements in the Weyl group W

Received by the editors March 31, 2007.
AMS subject classification: 22E47.
c©Canadian Mathematical Society 2009.

1375

https://doi.org/10.4153/CJM-2009-065-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-065-x


1376 Steven Spallone

of T in G appears in the proof of Lemma 4.1 in [3]. Although this expression suffices
to prove the lemma, it can be considerably refined when γ is in the maximal elliptic

subtorus Te(R) of T(R).
The following theorem is proved in Section 4.

Theorem If γ ∈ Te(R), then

ΦM(γ, ΘE) = (−1)q(L) · |WL| ·
∑

ω∈W LM

ε(ω) · tr(γ; V M
ω(λB+ρB)−ρB

).

Here we write L for the centralizer of Tc in G, where Tc is the maximal compact

subtorus of T. Also write WL and WM for the Weyl groups of T in L and M. The
latter are subgroups of W which commute and have trivial intersection. Here

W LM
= W L ∩W M ⊆ W

is the set of elements that are simultaneously Kostant representatives for both L and
M relative to B. We write ε for the sign character of W . Finally, by V M

ω(λB+ρB)−ρB
we

denote the irreducible finite-dimensional representation of M with highest weight

ω(λB + ρB) − ρB, where λB is the B-dominant highest weight of E. In particular, we
derive an extremely simple expression,

ΦA(1, ΘE) = (−1)q(G) · |W |,

in the case of a split torus T = A.

We now describe the organization of this paper. In Section 2, we spell out the
relationship between the root systems of G, L, and M. There are two distinct systems

of chambers in X∗(A)⊗Z R obtained from these root systems which are important to
understand.

In Section 3, we take the aforementioned lemma a step further to express

ΦM(γ, ΘE) explicitly as a linear combination of characters. (Actually, we do the com-
putation for any stable virtual character Θ, as it is no more difficult.) The sum over

W simplifies to a sum over Kostant representatives W M .

In Section 4, where we deal specifically with ΦM(γ, ΘE), we distill out the action
of WL. A sum over W LM remains. At a key step we use a result of Section 5, the

computation of an alternating sum of stable discrete series constants.
In Section 5, we prove the above mentioned result in the context of abstract root

systems. It is independent of the rest of the paper.

2 L-Chambers and P-Chambers

Let G be a connected reductive group over R and T a maximal torus of G. Assume
that G has a discrete series, or equivalently, that G has an elliptic maximal torus.

Write Tc , respectively A, for the maximal compact, resp. split, subtori of T with
centralizers L, resp. M, in G. Write R for the root system of T in G, and RL, resp. RM ,

for the set of roots of T in L, resp. M. Then RL is the subset of R consisting of real

roots, and RM is the subset of imaginary roots. Write WL and WM for the respective
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Stable Discrete Series Characters at Singular Elements 1377

Weyl groups. They are commuting subgroups of W with trivial intersection. Note
that WL fixes each root in RM .

Now A is contained as a split maximal torus in Lder, the derived group of L, and
we may identify RL with the set of roots of A in Lder.

Write aM for X∗(A) ⊗Z R. For any α ∈ R\RM the root hyperplane Hα of

X∗(T)R := X∗(T) ⊗Z R

gives a hyperplane in aM . Let us consider two kinds of chambers in aM obtained
from these. Define P-chambers to be those obtained by deleting from aM all the hy-

perplanes Hα, with α ∈ R\RM . Define L-chambers to be those obtained by deleting

all the Hα with α ∈ RL. The latter are the Weyl chambers for A in Lder; therefore WL

acts simply transitively on them.

Observe that RL ⊂ (R\RM). Any additional hyperplanes coming from roots in

R\(RL ∪ RM) divide the L-chambers into P-chambers. Thus every P-chamber is
contained in a unique L-chamber.

Write P(M) for the set of parabolic subgroups of G admitting M as a Levi compo-
nent. There is a one-to-one correspondence between P(M) and the set of P-cham-

bers in aM , obtained as follows: for P = MN ∈ P(M), the corresponding P-chamber

is

a
+
P = {x ∈ aM : 〈α, x〉 > 0, for all α ∈ RN},

where RN denotes the set of roots of T in Lie(N).

Recall that the set of L-chambers is in bijection with the set of Borel subgroups of
L containing T, or equivalently the set of positive root systems R+

L in the root system

RL.

Now let CP be a P-chamber, and let P = MN be the corresponding element of
P(M). It is easy to see that RN ∩RL is a positive system in RL, and this corresponds to

an L-chamber CL. Thus we have defined a map CP 7→ CL from the set of P-chambers

to the set of L-chambers. It is the obvious one that associates CP with the unique
L-chamber containing CP .

3 A Linear Combination of Characters

A stable virtual character is a finite Z-linear combination Θ of characters Θπ such that
Θ(γ) = Θ(γ ′) whenever γ and γ ′ are regular, stably conjugate elements of G(R).

In Lemma 4.1 of [3], it was proved that for a stable virtual character Θ on G(R),

the function γ 7→ |DG
M(γ)|1/2Θ(γ) on Treg(R) extends continuously to T(R). A key

ingredient of the proof is the fact that the expression at the bottom of page 497 of [3]

is a linear combination of irreducible finite-dimensional representations of M. In this

section we will compute explicitly the coefficients and the representations involved in
the case where the element a appearing in the proof is equal to 1.

We translate the setup of the proof in [3] as follows. We take Γ to be the iden-
tity component of T(R). The root system RΓ is then simply RL. Fix a Borel B of

G containing T, and write R+ for the corresponding system of postive roots. Let

R+
L = RL ∩ R+, and write C for the corresponding L-chamber in aM . Pick a parabolic
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subgroup P = MN of G containing B. Note that RL ∩ RN ⊆ R+
L . Since RL ∩ RN is

also a system of positive roots, this implies that actually RL ∩ RN = R+
L . Thus the

P-chamber corresponding to P is contained in C.

Although at the end of our computations we will allow γ to be nonregular, we now
choose γ to be a regular element of Γ = Tc(R) · exp(C̄).

The expression is

(3.1)
∑

B ′

m(B ′)
∆P(γ) · λB ′(γ)

∆B ′(γ)
.

The sum runs over Borels containing T, which correspond to elements of W . Here
λB ′ is the B ′-dominant highest weight of E,

∆B ′ =
∏

α>0

(1 − α−1) and ∆P =
∏

α∈RN

(1 − α−1).

Recall the set of Kostant representatives W M for the Weyl group WM of M, relative
to B. It is the set {w ∈ W | w−1R+

M ⊂ R+}. If w ∈ W , write w ∗ B for wBw−1. We

will use the observation that (ω ∗B)M = BM for ω ∈ W M . (Recall that BM = B∩M.)

Indeed, if α ∈ R+ ∩ RM , then ω−1α ∈ R+, which implies that α ∈ ωR+ ∩ RM .
Our sum (3.1) breaks up as

(3.2)
∑

ω∈W M

m(ω ∗ B) · ∆P(γ) ·
∑

wM∈WM

wM(ωλB)(γ)

∆wMω∗B(γ)
.

We would prefer the denominator inside the sum to be ∆wM∗BM
(γ). Note that

∆P · ∆BM
= ∆B, since R+ is the disjoint union of R+

M and RN . So we consider the

quantity

(3.3)
∆P · ∆wM∗BM

∆wMω∗B
=

∆B · ∆wM∗BM

∆BM
· ∆wMω∗B

.

Observe that if B is a Borel, ∆B = δB · ρ−1
B

, where δB =
∏

α>0(α
1
2 − α− 1

2 ) and ρB

is the usual half sum of positive roots. Since δw∗B = ε(w)δB, we compute that

∆w∗B

∆B

= ε(w) · (ρB − wρB).

Thus (3.3) becomes ε(ω)(wM(ωρB − ρBM
) − ρB + ρBM

).

Next observe that for wM ∈ WM , wM(ρB − ρBM
) = ρB − ρBM

. Indeed, the roots

of R+ not in R+
M are in RN , and are thus normalized by WM . So the above expression

simplifies to ε(ω) · wM(ωρB − ρB).

We can therefore rewrite (3.2) as

∑

ω∈W M

m(ω ∗ B) · ε(ω) ·
∑

wM∈WM

wM(ω(λB + ρB) − ρB)(γ)

∆wM∗BM
(γ)

.
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Since ω is a Kostant representative, the weight ω(λB +ρB)−ρB is positive for BM , and
we may use the Weyl character formula to rewrite this as

(3.4)
∑

ω∈W M

m(ω ∗ B) · ε(ω) · tr(γ; V M
ω(λB+ρB)−ρB

).

Here V M
ω(λB+ρB)−ρB

denotes the irreducible finite-dimensional representation of M

with highest weight ω(λB + ρB) − ρB.

4 A Formula for ΦM(γ, ΘE)

To identify (3.4) with ΦM(γ, ΘE), we replace m(ω∗B) with n(γ, ω∗B) (see [3, p. 500]),

and multiply it by the factor δ
1/2
P (γ):

(4.1) δ
1
2

P (γ) ·
∑

ω∈W M

n(γ, ω ∗ B) · ε(ω) · tr(γ; V M
ω(λB+ρB)−ρB

).

Here δP is the modulus character of P. (We are still only considering regular γ.)

Write AG for the split component of the center of G. Let λ0 ∈ X∗(AG) denote
the character by which AG acts on E. It extends to X∗(T)R in the usual way, and is

W -invariant.
Let Te denote the subtorus of T generated by Tc and AG. It is the maximal subtorus

of T which is elliptic in G.

Write pM for the projection from X∗(T)R to X∗(A)R, and note that it is WL-equi-
variant. The group WL fixes each root of M, thus it acts on W M . For every orbit of

this action, there is a unique member ω so that pM(ω(λB + ρB − λ0)) is dominant

with respect to C. One checks dominance using roots in R+
L , and finds that ω simply

needs to satisfy ω−1R+
L ⊆ R+. Thus ω ∈ W L, the Kostant representatives for WL. We

write W LM = W L ∩W M ; there is one element for each orbit of WL on WM .
If λ ∈ X∗(T) and wL ∈ WL, then plainly wLλ − λ ∈ a

∗
M . Write (χwL,ω,B, CwL,ω,B)

for the one-dimensional representation of M, acting through A, with weight

wLω(λB + ρB) − ω(λB + ρB).

Note that Tc and AG act trivially on CwL,ω,B, thus so does Te. Thus we have

V M
wLω(λB+ρB)−ρB

∼= V M
ω(λB+ρB)−ρB

⊗ CwL,ω,B.

Our formula (4.1) is now (replacing ω ∈ W M with wLω, where ω is now in W LM):

(4.2) δ
1
2

P (γ) ·
∑

ω∈W LM

ε(ω) ·tr(γ; V M
ω(λB+ρB)−ρB

) ·
∑

wL∈WL

ε(wL) ·χwL,ω,B(γ) ·n(γ, wLω∗B).

Of course, we now wish to simplify the inner sum. Recall [3, p. 500] that

n(γ, wLω ∗ B) = c̄(x, pM(wLωλB + wLωρB − λ0)),
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where x is in the interior of C. Here c̄(x, λ) is the integer-valued “stable discrete series
constant” on (X∗(A/AG)R)reg×(X∗(A/AG)R)reg, as defined, for instance, on page 493

of [3]. Recall that λ0 ∈ X∗(T)R is obtained from the character λ0 ∈ X∗(AG) by which
AG acts on E, and is thus W -invariant.

As pM commutes with wL, the inner sum of (4.2) is now

(4.3)
∑

wL∈WL

ε(wL) · c̄(x, wLΛ) · χwL,ω,B(γ),

where Λ = pM(ωλB + ωρB − λ0).

We would like to consider the limit of (4.3) as x approaches 0. Recall we can write
γ = γc · exp(x), with γc ∈ Tc(R) and x in C̄ . Also recall that γ is still regular (but not

for long!). Consider the above formula with γc fixed and x going to 0 along regular

elements of C̄ . Fix some element x0 in the interior of C. The value

c̄(x, wLΛ) = c̄(x0, wLΛ)

is unchanged, but χwL,ω,B(γ) approaches χwL,ω,B(γc) = 1. Thus (4.3) converges to
∑

wL∈WL
ε(wL) · c̄(x0, wLΛ) for some x0 ∈ C.

But this is simply (−1)q(L)|WL|, by Proposition 5.1(ii) in Section 5 below. Here

we use that ω ∈ W LM . Note that −1 is in the Weyl group of the root system by the
argument on [3, p. 499]. It is easy to modify this argument to get the same limit as

x approaches an element of X∗(AG)R. Finally note that δP is a positive character and
therefore trivial on the compact group Tc(R). It is thus trivial on Te(R).

Now consider irregular γ. We take the limit in (4.2) and obtain our theorem.

Theorem 4.1 If γ ∈ Te(R), then

(4.4) ΦM(γ, ΘE) = (−1)q(L) · |WL| ·
∑

ω∈W LM

ε(ω) · tr(γ; V M
ω(λB+ρB)−ρB

).

Recall that W LM is the intersection of the Kostant representatives W L and W M and

depends on the choice of B containing T.

We now evaluate (4.4) for ΦM on the extreme cases for T. If T = A is split, then
M = A, L = G, W LM is trivial, but so is Tc . We conclude that for z ∈ AG(R),

ΦA(z, ΘE) = (−1)q(G) · |W | · λ0(z).

If T is elliptic, then M = G, L = T, W LM is again trivial, and so for γ ∈ T,

ΦG(γ, ΘE) = tr(γ; E).

Note that this agrees with the results of [3, Theorems 5.1, 5.2], since

tr(γ−1; E∗) = tr(γ; E).
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5 The Sum of the Stable Discrete Series Constants

Let (X, X∗, R, Ř) be a root system. Write W for the Weyl group of the root system,

and ε for its sign character. Assume that R generates the real vector space X and that
−1 ∈ W . Write q(R) for (|R+| + dim(X))/2, as in [2]. Let x0 be a regular element

of X, and λ a regular element of X∗. Write C0 for the chamber of X containing x0,
and C∨

0 for its dual chamber in X∗. Recall the stable discrete series constants c̄R(x0, λ)

from [3, §3].

Proposition 5.1 We have the following formulas for sums of discrete series constants:

(i) For all such λ,
∑

w∈W c̄R(wx0, λ) = |W |.

(ii) For λ = λ0 ∈ C∨
0 , we have

∑

w∈W ε(w) · c̄R(wx0, λ0) = (−1)q(R)|W |.

The same formulas hold if we sum over the W -orbit of λ rather than that of x0.

Remark We make a few comments before beginning the proof. The proof begins

by using the “inductive” property of the discrete series constants [3, p. 493, (4)] to
change the sum over chambers into a sum over certain facets of X. Following [4], we

define “panel” to be a facet of codimension 1. Thus a panel is the common face of

two chambers, and spans a root hyperplane of X.
The hyperplanes Y have their own chambers, and we examine the relationship

between the panels and these smaller chambers. Not every panel is equal to such a

chamber, as in the case of B3 when Y is the root hyperplane of a long root. The panels
in Y give a B2 system, but the chambers of RY give an A1 × A1 system.

Finally, induction on the rank of the root system gives the calculation.

Proof The second formula follows from the first by applying Theorem 3.2(2) of [3,

p. 494].

We induce on r = dim X. The proposition is clear when r = 0.
We associate these discrete series constants with the various chambers and panels

of X, and introduce some appropriate notation. Write c(C) for c̄R(x, λ), when x is in

the interior of a chamber C.
Suppose P is a panel in X, y is in the interior of P, and P̄ := span(P) = Y . Then

write c(P) = c̄RY
(y, λY ) (see [3, p. 493]). Thus if P is the common face of distinct

chambers C and C ′, then 2c(P) = c(C) + c(C ′).

Each chamber has r faces, and it follows that

(5.1) r ·
∑

C

c(C) = 2
∑

P

c(P),

where we are summing over all chambers and then all panels. We show the right-

hand side of (5.1) is equal to r · |W | to prove the proposition. Now every panel is on

some root hyperplane Xα = X−α, so we have

2
∑

P

c(P) =

∑

α∈R

∑

P̄=Xα

c(P).

We now work with the inner sum. There is a root system on Xα whose set of

coroots is Ř ∩ Xα, which defines chambers Cα in Xα and constants cα(Cα). Write Wα
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for the Weyl group of Xα. We have

∑

P̄=Xα

c(P) =

∑

Cα

∑

P⊂Cα

cα(Cα) =

∑

Cα

∑

Wα\{P⊂Xα}

cα(Cα) =

∑

Wα\{P⊂Xα}

∑

Cα

cα(Cα).

For the first equality, note that every panel P with P̄ = Xα is contained in some cham-

ber Cα. The second equality follows because Wα acts transitively on the chambers Cα.

Write n(α) for the order of Wα\{P ⊂ Xα}. It is equal to the number of panels of
X in a given chamber Cα. Then by induction the above is merely n(α) · |Wα|, which

is exactly the number of panels in Xα. It follows that (5.1) is simply equal to twice the
total number of panels in X.

Since W has r orbits on the set of panels in X, and the stabilizer in W of any

panel has order 2, we conclude that the total number of panels is half of r · |W |, as
desired.
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