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An increasing number of reference stations have been established, leading to a sharp increase
in the workload of Double-Difference (DD) baseline solutions, which are not appropriate for
the integrated processing of denser networks. Correlations among the ambiguities in DD
models are complex, and it is difficult to get precise solutions. This paper improves the DD
ambiguity resolution performance over a long baseline, using a modified strategy based on
an Un-Differenced (UD) and Un-Combined (UC) model. The satellite clocks are estimated
as parameters, which are properly constrained by real-time satellite clock products for improv-
ing the smoothness of ambiguities. We use data from the Earth Scope Plate Boundary
Observatory to examine the presented method in Global Positioning System (GPS) networks.
Our method obtained more obviously centralised distributions. The successful fixed rate was
96·4% for the DD baseline solution, and 98·4% for the UD method. The proposed strategy is
appropriate for the distributed architecture of extensive systems and avoids a heavy computa-
tional burden.
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1. INTRODUCTION. Awide range of Continuous Operating Reference Stations
(CORS) have been established, and are now part of an important infrastructure that
supports high-precision positioning applications. Real-Time Kinematics (RTK)
users can easily obtain centimetre-accurate user positions in real-time.
In current Network RTK (NRTK) implementations, we must guarantee correct

integer Double-Differenced (DD) carrier phase ambiguities, so that the network cor-
rections of systematic errors can be calculated and interpolated (Vollath et al., 2000;
Landau et al., 2003). The most common errors can be eliminated or reduced using a
DD scheme (Zhang and Lachapelle, 2001). Hence the DD baseline solution is used
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in most CORS systems as a network Ambiguity Resolution (AR) solution (e.g., Leica
Spider (Brown et al., 2006) and Trimble GPSNet (Herbert et al., 2009)). However,
the differential baseline solution is limited by the baseline length, because the
DD AR becomes increasingly unreliable when the baselines exceed 50 km owing
to tropospheric and ionospheric errors. Researchers have developed many data pro-
cessing strategies that consider atmospheric delays to expand the station separation
beyond 100 km (Wielgosz et al., 2005; Takasu and Yasuda, 2010; Li et al., 2014b).
Furthermore, with independent baseline selection, efficient data use is also restricted
by the common tracking satellites (Wübbena et al., 2005). The computational work-
load of the DD baseline solution increases sharply with the number of stations, so
the DD baseline solution cannot benefit from a distributed system architecture, and
the extensive CORS software is difficult to implement for practical use.
To overcome the above problems, Precise Point Positioning (PPP) has been studied

by many researchers (Zumberge et al., 1997; Kouba and Héroux, 2001). As a very
pragmatic tool for achieving millimetre positioning accuracy in static mode, the
co-variances among the parameters of different stations are not of interest.
The main disadvantage of PPP, when compared to differential processing, is that the
integer property of the UD ambiguities deteriorates because of phase bias absorption.
The solutions generally take longer to converge than ambiguity-resolved differential
solutions, and it requires precise satellite orbits and corresponding clock products.
PPP-RTK extends the PPP concept by providing single-receiver users information
about the satellite phase biases, and the “integerness” of a user’s single-receiver ambi-
guities could be recovered (Ge et al., 2008; Collins, 2008; Laurichesse et al., 2008). The
goal of this contribution is to present the principles of PPP-RTK, together with our
view of the different mechanisations. However, these ambiguity resolution approaches
based on ionosphere-free observations also need a long convergence time to separate
the Un-calibrated Phase Delay (UPD) and integer ambiguities (Geng et al., 2011; Li
and Zhang, 2012). Teunissen et al. (2010) described the PPP-RTK concept by re-para-
meterising the un-differenced GNSS observation equations, and proved that the
integer ambiguity resolution at the PPP-RTK user side is always that of double-differ-
enced ambiguities (Teunissen and Khodabandeh, 2014). Based on fixed DD ambigu-
ities, Un-differenced RTK (URTK) was proposed by Ge et al. (2008). The key idea of
URTK is to transform fixed DD ambiguities of the reference network into UD ambi-
guities, thus achieving position solutions equivalent to the current NRTK method
(Zou et al., 2013). In contrast, there have been few studies of DD ambiguities for
the UD model. The following challenges also arise when applying the UD model in
CORS systems.

1.1. Application of the real-time PPP product. The satellite clock offsets are
highly correlated with other GNSS biases if they are estimated in the model. In DD
data processing, the satellite clock offsets can be cancelled. In UD data processing,
there are too many parameters compared to observations for the estimation process,
if the satellite clock offsets must be estimated. With the support of the Real-Time
Pilot Project (RTPP) launched by the International GNSS Service (IGS), the vigorously
promoted real-time Global Navigation Satellite System (GNSS) products have been
provided to ensure real-time applications of the PPP technology (Dow et al., 2009).
To weaken the high correlations between satellite clock offsets and other GNSS
biases, the real-time satellite clock products can be used as quasi observations. Their
uncertainties should be considered in the data processing steps.
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1.2. Robustness of AR. As mentioned by Li et al. (2014a), the accuracy of ambi-
guities may be affected by the underlying model strength and inadequately modelled
biases. Most unknown parameters can be eliminated in the DD method, but correla-
tions among the ambiguities and Zenith tropospheric Wet Delays (ZWD) of two sta-
tions are inevitably introduced (Hofmann-Wellenhof et al., 2001). With the UDmodel
in network RTK, we only estimate one ZWD. The correlation between ambiguities
and ZWD is smaller than the DD method.

1.3. Unification of UD and DD model. UD and DD data processing methods are
logically equivalent. They use the network data to recover the integer property of the
DD ambiguities (Xu, 2003). Any combination of the DD observation equations can be
obtained from the UD original equations using the relevant linear transformation
matrix. De Jonge (1998) introduced the advantages and disadvantages of the un-
differenced and differenced methods. More research efforts are needed to explore
the advantages of the UD and DD models.
Considering these three challenges, we propose a modified method that extracts UD

ambiguities and improves the performance of the network AR. In the data processing
steps, we estimate the unknown parameters (receiver and satellite clock offsets, iono-
spheric slant delay, ZWD, and basic UD ambiguities) epoch by epoch at each reference
station. Because of the uncertainties of IGS real-time clock products, we use real-time
clock products as quasi-observations. According to the user location, several adjacent
stations are selected to recover the DD integer ambiguities. The ambiguities remain in
DD form and the covariance matrix retains fewer correlations. Meanwhile, the method
effectively helps to establish distributed structures in the extensive CORS system.
The remainder of this paper is organised as follows. Section 2 introduces the gener-

ation method for UD ambiguities. We also discuss the ill-posedness of the proposed
model. In Section 3, we describe details of the network solution for the UD ambigu-
ities. Section 4 presents our results, including a comparison of the Wide-Lane (WL)
and L1 ambiguity bias results for the DD and proposed methods. The final section
contains a summary of our findings.

2. THE OBSERVATION EQUATIONS. The un-combined model was proposed
by Keshin et al. (2006). Four types of UD GNSS measurements are used to reflect
the influence of atmospheric changes. The code and phase observations from satellite
s to receiver k at frequency j are

Ps
j;k ¼ ρsk þ cδtk � cδts þ Ts

k þ αjI sk þ dk;Pj
� ds

Pj
þ εsk;others þ εsk;Pj

ð1aÞ
Φs

j;k ¼ ρsk þ cδtk � cδts þ Ts
k � αjI sk þ bk;Φj

� bsΦj
þ εsk;others þ λjNj þ εsk;Φj

ð1bÞ
where P denotes a raw code observation, Φ is a raw phase observation, ρsk is the geo-
metric range between the satellite and receiver antenna phase centres (m). δtk and δts

are the receiver and satellite clock offsets, respectively. Ts
k is the troposphere delay. I sk

represents the ionospheric delays, which are related to the signal frequency. αi is the
frequency scaling, set to αj ¼ f 21 =f

2
j . dk;Pj

and ds
Pj

are receiver and satellite code hard-

ware biases. It is important to note that the bias is related to the frequency. εsk;others is the
remaining error that can be modelled (and combines tidal corrections, plate motions,
etc.). bsΦj

is the receiver and satellite carrier phase fractional bias at a set frequency. λj is

the carrier wavelength and Nj is the carrier-phase ambiguity (cycle). εsk;Pj
and εsk;Φj

are
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the phase multipath and phase noise. The multipath effect has less influence on the
carrier phase compared with the code observation. Theoretically, the maximum multi-
path effect on carrier phase observables is about 4·8 cm for the GPS L1 carrier and can
be accomplished by averaging over a sufficiently long period of observation (Lau et al.,
2007).
Overall, the code’s hardware bias can be divided into three parts. First, the satellite

ionosphere-free Differential Code Biases (DCB) can be eliminated by the satellite
clock bias released by IGS. Second, the receiver ionosphere-free DCB is absorbed
into the receiver clock bias. Third, the remaining part of the hardware delay is
related to the frequency of the data processing, and is absorbed by each satellite iono-
spheric delay (Zhang et al., 2011a). That is,

cδtk 0 ¼ cδtk þ dk;Pif
; cδtsIGS ¼ cδts þ ds

Pif
; I s0k ¼ I sk þ

f 22
f 21 � f 22

ðBk � BsÞ ð2Þ

where cδtsIGS is the satellite clock offset obtained from IGS data, and I sk is the true iono-
spheric delay between the satellite and receiver. I sk

0 is the ionospheric delay that con-
tains a code bias. Bk and Bs are the receiver and satellite differential code biases
between P1and P2. Bk ¼ dk;P2

� dk;P1
and Bs ¼ ds

P2
� ds

P1
. dk;Pif

and ds
Pif

are the re-

ceiver and satellite differential code ionosphere-free biases (Zhang et al., 2013).
Note that the receiver clock offset and slant ionospheric delay is not decoupled for

code and phase observations, and the code and phase biases from the receiver and
satellites are absorbed into the ambiguities (Geng et al., 2010). The estimated N1

and N2 ambiguities are defined as

λjNj
0 ¼ λjNj � αj

f 22
f 21 � f 22

ðBk � BsÞ � bsΦj
þ ds

PIF
þ bk;Φj � dk;PIF ð3Þ

The observation and dynamic models use Kalman filters. Using the known coordi-
nates of the reference stations, the estimatable state vector (which includes receiver
and satellite clock offsets, ionospheric slant delay, ZWD, and UD basic ambiguities)
is estimated epoch by epoch at each station. If the receiver collects phase and code
observations from n satellites at epoch i, the Kalman filter is

Xi ¼ Φi;i�1Xi�1 þWi EðWiÞ ¼ 0;CovðWiÞ ¼ Qi

Li ¼ BiXi þ Vi EðViÞ ¼ 0;CovðViÞ ¼ Ri;CovðV ;W Þ ¼ 0

�
ð4Þ

The unknown parameter vector is divided into temporal and non-temporal parts. The
temporal part includes the ZWD, receiver clock offset, n-dimensional state vector of
ionospheric slant delay (STEC), and an n-dimensional state vector of satellite clock
offsets. The non-temporal part is composed of the original UD ambiguities:

Xi ¼ ZTDw;k δtk 0 I s0k δts0 Ns
1 Ns

2

� �T
; ðs ¼ 1 � � � nÞ ð5Þ

The observation vector Li is composed of four UD measurements and the constraints
of satellite clock. The real-time clock products could be interpreted as fictitious obser-
vations or quasi-observations in the observation vector. This leads to the total
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observation equations Li and the design matrix Bi:

Li ¼

Ps
1;k

Ps
2;k

Φs
1;k

Φs
2;k

δtsIGS

2
66664

3
77775;Bi ¼

BMFw Bδtk 0 BI �Bδts0 0 0

BMFw Bδtk 0
f 21
f 22

BI �Bδts0 0 0

BMFw Bδtk 0 �BI �Bδts0 BN1 0

BMFw Bδtk 0 � f 21
f 22

BI �Bδts0 0 BN2

0 0 0 Bδts0 0 0

2
6666666664

3
7777777775

ð6Þ

where

BMFw ¼ MFwðθ1Þ � � � MFwðθnÞ
� �Tzfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n×1

;Bδtk 0 ¼ ½ c � � � c
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{n×1

�T ;Bδts0 ¼ diag½ c � � � c
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{n×n

�T

BI ¼ diagð 1 � � � 1
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{n×n

Þ;BN1 ¼ diagð λ1 � � � λ1
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n×n

Þ;BN2 ¼ diagð λ2 � � � λ2
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n×n

Þ

Here, MFw(θ) is the mapping function of ZWD with satellite elevation θ.
Φi,i−1 is the (4n + 2) × (4n + 2) state transition matrix corresponding to two consecu-

tive epochs, defined as

Φi;iþ1 ¼ diagðΦZTDw;k ;Φδtk 0 ;ΦI s0k
;Φδts0 ;ΦNs

1
;ΦNs

2
Þ ð7Þ

where ΦZTDw;k ¼ expð� Δt
τZTDw;k

Þ,Φδtk 0 ¼ 0,ΦI j0k
¼ expð� Δt

τI j0k
Þ, Φδts0 ¼ expð� Δt

τδts0
Þ, and

ΦNj
1
¼ ΦNj

2
¼ En.

Qi is the (4n + 2) × (4n + 2) dynamic noise correlation matrix, set to

Qi ¼ diagðQZWDk ;Qδtk 0 ;QIs0k
;Qδts0 ;QNs

1
;QNs

2
Þ ð8Þ

The ZWD parameter is considered a first-order Gauss-Markov process, and
QZWDk ¼ qZWDΔt. Δt is the time interval between epochs. The white noise process
can simply and effectively describe the random process of the receiver and the satellite
clock offsets. The ionospheric slant delay parameters are also considered as a random
walk related to the satellite zenith angle (z′) of the position of the ionospheric puncture,
that is, QIs0k

¼ qIonΔt= cosðz0Þ. The ambiguity is regarded as an invariant parameter,

QNs
1
¼ QNs

2
¼ En ⊗ 10�16Δt.

Compared to the short baseline RTK model, the PPP model has a slower conver-
gence speed. This is because of the obvious influence of the model error (which is weak-
ened using the DD-RTK model), and because of the ill-posedness of the entire model.
In the DD model, the DD operator is introduced to reduce the number of unknown

parameters. We ignore the effects of the atmospheric delay and orbital errors. This may
lead to a lower success rate for the fixed ambiguities over long inter-station baselines if
we do not consider atmospheric biases. In the UD model, there are more unknown
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parameters that must be considered, andwe rely on the rapid movements of satellites to
mitigate the ill-posedness.
As a common indicator for measuring or diagnosing ill-conditioned systems, the

condition number is a reflection of the internal relationships between ambiguities in
GNSS high-precision carrier positioning. A smaller condition number corresponds
to a more robust solution. The ratio of code to carrier-phase noise and the precision
of the quasi-observation also affect the condition number. Because of the symmetry
and positivity of the normal matrix of the ambiguity, the condition number can be
written as (Steward, 1973)

condðQN̂N̂Þ ¼ QN̂N̂
�1

�� �� � QN̂N̂

�� �� ¼ jλmaxj
jλminj ð9Þ

where QN̂N̂ is the covariance matrix of the float ambiguities; �j j represents the norm;
and λmax and λmin are the maximum and minimum Eigenvalues.

3. NETWORK SOLUTION. DD L1 and L2 ambiguities are not only used to gen-
erate the users’ local simulated error corrections in the Virtual Reference Station
(VRS) technique. They are also used to estimate the satellite UPD. Typically, we
first fix the DD WL ambiguities, and then determine basic integer ambiguities
based on the ionosphere-free model (Teunissen, 1995). The zenith tropospheric wet
delay parameters of two stations must also be estimated for the long-distance baseline
(Zhang and Lachapelle, 2001). However, there are several PPP integer AR methods
that recover the integer property of the ambiguity based on regional CORS.
Methods include the decoupled clock model (Laurichesse et al., 2008), integer phase
clock model (Collins, 2008), and Single-Difference (SD) between-satellites method
(Ge et al., 2008; Geng et al., 2011). The datum is included to solve the rank deficient
problem using these methods.
In this paper, we selected several adjacent stations to recover the DD integer ambi-

guities based on the user location. The UD basic ambiguities determine the entire net
adjustment, which is beneficial when overcoming the baseline length limit in the CORS
network. The covariance matrix of the DD ambiguity is equivalent to the combined
UD ambiguity, which avoids the correlations between the ambiguities and two tropo-
spheric parameters. Figure 1 shows the concept of the proposed method in terms of a
block diagram.
Using the UD ambiguity estimated for adjacent stations, DD ambiguities of

the entire network can be recovered in a single epoch. We use the different accur-
acies of UD ambiguities with the LAMBDA method (Least-squares AMBiguity
Decorrelation Adjustment) (Teunissen, 1995) to determine the integer ambiguity.
The ratio and success rate of the LAMBDA method are used to evaluate the
quality.
The closest station is selected as the pivot differenced station. First, we determine the

SD ambiguities between the remaining stations and the pivot station. The code and
phase biases of satellites in the UD ambiguity are eliminated by the between-station
differences. Second, the code and phase biases related to the receiver are eliminated
to recover the integer property using the between-satellite difference. By specifying
an appropriate difference matrix, we can determine the DD ambiguity epoch by
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epoch. The between-station differences matrix (Ckd) and between-satellite differences
matrix (Csd) are defined as

Xs
k1

2n×1
¼ ½N1

1;k1 � � � Nn
1;k1 N1

2;k1 � � � Nn
2;k1 �

T
; Qs

k1 ¼
QN̂1N̂1

QN̂1N̂2

QN̂2N̂1
QN̂2N̂2

" #

Csd

2ðn�1Þ×2n
¼ Csd

1

Csd
2

" #
; Csd

1
ðn�1Þ×n

¼ Csd
2

ðn�1Þ×n
¼

�1 1

�1 1

�1 1

2
64

3
75; Ckd

2ðn�1Þ×4ðn�1Þ
¼ I �I½ �

ð10aÞ

Xs;r
k1;k2

2ðn�1Þ×1
¼ Csd � Ckd � Xs

k1
Xs

k2

� �
¼ Ns;r

1;k1;k2 Ns;r
2;k1;k2

� �T ð10bÞ

Qs;r
k1;k2

2ðn�1Þ×2ðn�1Þ
¼ Csd � Ckd � Qs

k1
Qs

k2

� �
� Ckdð ÞT Csd	 
T ð10cÞ

Here, k1 and k2 represent two different receivers; Qs
k1 denotes the covariance matrix of

UD ambiguities (as shown in Section 2); and r refers to the reference satellite. The
“−1” column is determined according to the position of the reference satellite in trans-
fer matrices Csd

1 and Csd
2 .

To improve the searching efficiency of the LAMBDAmethod for the entire network,
we use a step-by-step strategy to reduce the number of ambiguities. The WL ambigu-
ities are less affected by errors and can be easily fixed. The linear transformation
matrix is applied to the observation matrix Xs;r

k1;k2 and covariance matrix Qs;r
k1;k2. The

Figure 1. Data processing scheme.

510 DENGHUI WANG AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315000776 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000776


transformation matrix is defined as

Clinear
2ðn�1Þ×2ðn�1Þ

¼ I �I

I 0

� �
; Xnw;n1 ¼ Clinear × Xs;r

k1;k2 ¼
âNw

âN1

� �

Qnw;n1 ¼ ClinearQ
s;r
k1;k2Clinear

T ¼ QâNw âNw
QâNw âN1

QâN1 âNw
QâN1 âN1

" # ð11Þ

Using the WL ambiguities as known quantities, we determine the N1 ambiguity inte-
gers using

a⌣N1 ¼ âN1 �QâN1 âNw
Q�1

âNw âNw
ðâNw � a⌣NwÞ

Qa⌣N1a
⌣
N1

¼ QâN1 âN1
�QâN1 âNw

Q�1
âNw âNw

QâNw âN1:

ð12Þ

Unlike the DD and conventional UD-PPP methods, we only use the parameters of the
time-invariant ambiguities to adjust the entire network. The length of the baseline and
the effect of the atmospheric delay are less vulnerable to the adjusted result. The
improved computational efficiency of the proposed method means that it can be
used to design and implement large-scale software systems.

4. TEST RESULTS ANDANALYSIS. We used a 24-hour observed data set to in-
vestigate the performance of the UD strategy. We gathered the Receiver Independent
Exchange Format (RINEX) observation data and navigation data, which was received
from the Plate Boundary Observatory (PBO) by University Navstar Consortium
(UNAVCO). The test case consisted of nine reference stations, as shown in Figure 2.
The data sampling rate was 15 s.
To simulate sparse network RTK, we considered PBO site p332 as the pivot station,

and formed eight independent baselines with an average length of approximately 150
km, as shown in Table 1.
We used the UC and UD model, and estimated the satellite clock offsets. Detailed

option settings for the test are given in Table 2.
4.1. Precision analysis of a real-time satellite clock product. The IGS real-time

data were received on 29 August 2014 and included European Space Operations
Centre (ESOC) clock product (CLK50), IGS integrated single epoch product
(IGS01), and IGS integrated filter product (IGS02). We restored the real-time
precise clock offset to analyse its continuity and stability. We used the second-differ-
ence comparison method (Zhang et al., 2011b) to calculate the RMS (Root Mean
Squared error) of the IGS rapid satellite clock product and evaluate the accuracy.
The strategy can be summarised as follows.
(1) First, the IGS final clocks are processed into satellite differenced form based on

the same reference satellite using the IGS rapid satellite clocks. This step eliminates the
difference between two benchmarks.
(2) Second, the difference between the IGS rapid satellite differenced clocks and IGS

final satellite-differenced clock is calculated (Δi). Then, the average value of the differ-
ences from all epochs is calculated (�Δ). The average difference can be considered as the
systematic bias caused by noise in the pseudo-range observations from the starting
epoch. As described previously, this average difference does not influence the position-
ing results.
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(3) Third, we calculate the RMS of the quadratic differential results using

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðΔi � �ΔÞ2

n� 1

vuuut
; ð13Þ

where Δi represents the quadratic differential results; �Δ is the mean of the results; and n
is the number of epochs. The RMS of each satellite clock error is shown in Figure 3.

Table 2. Settings for the offline test to evaluate the proposed strategy.

Option Setting

Frequencies L1 + L2
Earth Tides Correction ON
Troposphere Model GMF+ Sassta
Antenna Model IGS05.ATX
Satellite Ephemeris and Clock IGS real-time products
Elevation Mask 12°
Code/Carrier-Phase Error Ratio 100
Carrier Phase Error 0·003 + 0·003/sin E m

Figure 2. Network distribution for the experiment. The observation data of nine CORS stations on
29 August 2014 were used to analyse the performance of the proposed method.

Table 1. Eight baselines formed by nine stations from PBO.

B1–2 B1–3 B1–4 B1–5 B1–6 B1–7 B1–8 B1–9

Station 1 p332 p332 p332 p332 p332 p332 p332 p332
Station 2 p157 p185 p203 p336 p345 p362 p368 p661
Length (km) 101·8 151·0 187·9 129·7 82·6 204·5 218·0 125·0
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In Figure 3, PRN01 was chosen as the reference satellite. In the navigation ephem-
eris, there were no ephemeris files for PRN03 and the ephemeris of PRN09 was not
healthy. Thus, a precise ephemeris of the two satellites was not available during the ob-
servation period. The RMS of most satellites can be guaranteedwithin 0·25 ns for real-
time data, but there are still large errors for some satellites (0·3 ns for PRN04 and 0·4
ns for PRN08). The time delay for the IGS real-time products was approximately 25 to
30 seconds, and we should consider the extrapolation in real-time applications.
To clearly describe the precision of the real-time satellite clock products, we used

PRN8 (which had the largest RMS) and PRN32 (which has the smallest RMS), as
shown in Figure 4.
In Figure 4, PRN08 follows Δ∼N(0·320, 0·434) and PRN32 follows Δ∼N(0·067,

0·052). These show that there are systematic deviations for different satellites, which
affect the stability of the ambiguities and the positioning result. At the same time,
the missing real-time satellite data flow would affect the application of the real-time
clock, for example, the missing 2·5 hours for PRN 8 (between 19:00 and 22:00).
These uncertain product biases affect the estimates of UD ambiguities, and the
phase biases become time-varying between adjacent epochs. As a result, we must esti-
mate the satellite clock to ensure the time-invariant nature of ambiguities in real-time
applications.
The accuracy of the real-time clock product can found on the IGS website (ftp://

cddis.gsfc.nasa.gov/gps/products/rtpp/).
4.2. Application of the real-time satellite clock product. Based on the above un-

stable satellite clock analysis, the UD and UC observation model can be used with
the estimates of the satellite clock offsets. The real-time satellite clock products are
used as the constraints. The prior variance of real-time satellite clock products
about each satellite should be appropriately set according to the accuracy of the
real-time clock product. We used Equation (9) to compare the condition numbers
for various precisions of quasi-observations. The results are shown in Figure 5.

Figure 3. Sigma clock differences (ns) compared to the IGS rapid product on 29 August 2014. The
blue bar indicates the ESOC clock product (CLK50), the green bar indicates the IGS integrated
single epoch product (IGS01), and the red bar indicates the IGS integrated filter product (IGS02).
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In Figure 5, the 0·3 ns numerical clock precision was obtainedwith the smallest con-
dition number, that is, the most robust model. However, lowering the weight of quasi-
observations can enhance the stability. Note that the blue line had the most unstable
state, which cannot be controlled by changing the observation time span.
Although the quasi-observations can enhance the model stability, they can also

affect the Ambiguity Dilution of the Precision (ADOP). Figure 6 shows the ADOP
values of the four comparative models mentioned above.
ADOP was introduced by Teunissen (1997) as an easy-to-compute scalar diagnostic.

Instead of Position Dilution of Precision (PDOP) (which is commonly used to describe
the impact of receiver-satellite geometry on the positioning precision), ADOPwas used

Figure 5. The condition number of the UD model for varying precisions of quasi-observations.
The blue line represents the model that did not estimate the satellite clock offsets (CondN-NT),
the green line represents the model with the prior precision of real-time satellite products set to
0·1 ns (CondN-0·1 ns), the black line represents the model with a prior precision of 0·2 ns
(CondN-0·2 ns), and the red line represents the model with a prior precision of 0·3 ns
(CondN-0·3 ns).

Figure 4. The clock differences (ns) of PRN08 (left) and PRN32 (right) compared to the IGS rapid
product (IGS01).
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to measure the intrinsic precision characteristics of ambiguities in the filter. It is invari-
ant for the class of admissible ambiguity transformations (Teunissen et al., 2000) and is
defined as

ADOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QN̂N̂

�� ��q 1
n ð14Þ

In Figure 6, more time was needed to ensure 99·9% credibility for the ARwhen the ac-
curacies of the real-time satellite clock products decreased. Generally, higher precision
satellite clock products correspond to higher confidence intervals for the ambiguities.
In the single-station process, the filter residuals of the observation equations from

three different models were compared to validate the performances of the proposed
model with estimated satellite clocks.
In Figure 7, the residual error was bigger for low satellite elevations. This is because

the accuracy of the tropospheric mapping function is related to the satellite elevation.
Overall, the un-combined model reduced the observation noise, and the satellite clock
estimatesmean that themodel is better adapted to unstable real-time satellite clock data.

4.3. Fixed success ratio of the DD ambiguity. To verify the performance of the
proposed UD network RTK strategy, we ran some experiments regarding the DD am-
biguities, using the post-processing mode with various lengths.
The Melbourne-Wübbena (MW) (Wübbena, 1985) linear combination is typically

used to calculate the DD WL ambiguities. The results of the MW and UD-UC
methods were obtained within an observation time span of 15 minutes. There were
4254 groups of WL float ambiguity biases in this set of test data.
The statistical results are shown in Figure 8. Both methods resulted in normally dis-

tributed WL ambiguities, but the UD-UC method performed slightly better. This is
because the UD-UC method uses a geometry-based model and takes full advantage

Figure 6. ADOPs of the UD model for varying precisions of quasi-observations. The blue
line represents the model that did not estimate the satellite clock offsets (ADOP-NT), the green
line represents the model with a prior precision of 0·1 ns (ADOP-0·1 ns), the black line
represents the model with a prior precision of 0·2 ns (ADOP-0·2 ns), and the red line represents
the model with a prior precision of 0·3 ns (ADOP-0·3 ns). The purple dotted line indicates the
0·12 cycle corresponding to an ambiguity success rate of 0·999.
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of the observations from all satellites. TheDD-MWmethod uses a geometry-freemodel
and relies on the quality of observations from a single satellite, especially the quality of
the pseudo range observations. A decrease in the satellite elevation increased the code
errors and multipath effect, resulting in a worse performance in terms of the WL AR.
After the WL ambiguities are fixed, we can calculate the N1 ambiguity. In the UD-

UC method, the N1 ambiguities are derived using Equations (10)–(12).
Based on an accurate WL AR, we used two options for the DD AR: the conven-

tional DD method (where ZWD parameters for each reference station are estimated
for the long-distance baseline), and the UD and UC method proposed in this paper.
Two baselines were used to verify and evaluate the performance of the different long
baselines (82·6 km and 204·5 km).
Figure 9 shows the results of the conventional DD method with AR (ZWD para-

meters for each reference station). During the initialisation phase, the float ambiguities
of all satellites had larger fluctuations. The satellites only receive double difference am-
biguities after 60 epochs (15 minutes). However, the UD and UC method is insensitive
to the baseline length and can obtain the float ambiguities of all the satellites within a

Figure 8. The WL float ambiguity biases for the DD-MW (left) and UD-UC (right) methods. The
successful fixed rate for the DD-MW method was 99·95% (for two sets of ambiguity deviations of
0·6 and 0·65 cycles), and was 100% for UD-UC method.

Figure 7. Filter residuals of the observation equations in PBO site p345 (left) and p332 (right). In
each figure, the horizontal axis represents the elevation of the satellites and the vertical axis represents
the residuals. The top figure is the ionosphere-free model, the middle is the un-combined model
without the satellite clock estimates, and the bottom is the un-combined model with the satellite
clock estimates.
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short time period. This is mainly because the ambiguity correlations were reduced
using the proposed UD model.
To verify the ambiguity correlation problem of different methods, the condition

numbers of the ambiguity covariance matrices are shown in Figure 10.
In Figure 10, it is obvious that the condition number increases at the beginning

of the filter. The condition numbers for the UD method suggest that there are signifi-
cantly lower correlations than in the DD method.
We gathered the results for the eight baselines to generate 4254 groups of N1 float

ambiguity biases. The results are shown in Figure 11.
Figure 11 shows that the DD N1 ambiguities using the UD-UC method are more

concentrated around the N1 float ambiguity bias. The UD and UCmethod performed
better for L1 AR than the DD baseline method.

Figure 9. Float ambiguity bias comparison for different baseline distances and AR methods. The
upper figure represents the experiment with an 82·6 km baseline and the bottom used a 204·5 km
baseline. The top of each sub-figure contains the results for the UD-UC method and the bottom
is the conventional DD method.
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5. CONCLUSIONS. We proposed an alternative method for applying the UD and
UC model to the network RTK. Based on the UD model, the proposed method does
not need common satellites, thus avoiding the loss of observation information.
Additionally, the UD-UCmodel is suitable for the distributed architecture of extensive
CORS systems that result from an increasing number of stations.
We analysed the enhanced UD and UC model with the satellite clocks as para-

meters, which are properly constrained by real-time satellite clock products. The
basic UD ambiguities were used to restore the DD ambiguities. We also reduced the
effect of the correlations between ambiguities by the UD methods. The performance
of the WL ambiguities and basic (N1 or N2) AR was quantitatively evaluated for
NRTK, and compared with the conventional long-distance baseline mode. The UD
and UC method performed slightly better for WL AR than the MW baseline
method. The MW method was 99·95% accurate and the UD and UC method was
100% accurate. Furthermore, the DD N1 ambiguities determined by the UD and
UC method were more concentrated around the float ambiguity biases. The successful
fixed rate was 96·4% for the DD method and 98·4% for the UD-UC method.

Figure 10. The condition numbers of the model for the UD method (CondN-UD, green) and the
DDmethod (CondN-DD, blue). The left figure represents the experiment with an 82·6 km baseline
and the right used a 204·5 km baseline.

Figure 11. The DD N1 float ambiguity biases for the DD-Ionfree (left) and UD-UC (right)
methods. The successful fixed rate for the DD method using the LAMBDA technique was
96·41%, whereas the UD-UC method was 98·40%.
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The following conclusions can be made based on the results. (1) To apply real-time
PPP, it is better to consider the biases of the satellite clock products; (2) the quasi-
observations can improve the method’s robustness to errors; (3) with the support of
IGS real-time satellite products, the UD-UC method better estimates the WL ambigu-
ity and basic ambiguity for network RTK. To improve the PPP-RTK performance, we
will investigate the UD regional atmospheric model in the future.
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