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While it is well known that every nearly periodic Hamiltonian system possesses an
adiabatic invariant, extant methods for computing terms in the adiabatic invariant series
are inefficient. The most popular method involves the heavy intermediate calculation
of a non-unique near-identity coordinate transformation, even though the adiabatic
invariant itself is a uniquely defined scalar. A less well-known method, developed by
S. Omohundro, avoids calculating intermediate sequences of coordinate transformations
but is also inefficient as it involves its own sequence of complex intermediate calculations.
In order to improve the efficiency of future calculations of adiabatic invariants, we
derive generally applicable, readily computable formulas for the first several terms in the
adiabatic invariant series. To demonstrate the utility of these formulas, we apply them to
charged-particle dynamics in a strong magnetic field and magnetic field-line dynamics
when the field lines are nearly closed.
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1. Introduction

Adiabatic invariance historically played an essential role in the development of plasma
physics, especially in the theory of charged-particle motion in strong magnetic fields.
See Cary & Brizard (2009) for an in-depth review of the latter topic. While an adiabatic
invariant is not a true conserved quantity, it is approximately conserved over large intervals
of time, and is therefore just as good as a true invariant for many practical purposes. In this
article we will derive a new general formula for the adiabatic invariant associated with a
nearly periodic Hamiltonian system. Such systems, along with their adiabatic invariants,
were previously studied systematically in Kruskal (1962).

Today the most popular method for computing adiabatic invariants involves near-identity
coordinate transformations. First ‘nice’ coordinates are found in which the expression
for the adiabatic invariant becomes simple. Then the inverse coordinate transformation
is applied to find an expression for the adiabatic invariant in a simpler, more desirable
coordinate system. This approach is exemplified by Littlejohn’s work on Hamiltonian
formulations of guiding centre dynamics in Littlejohn (1981, 1982, 1983, 1984). Speaking
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more generally, at present there are (involved) procedures for computing adiabatic
invariants, but general-use formulas for adiabatic invariants are unavailable.

The formula that we will obtain does not involve coordinate transformations. Instead
it builds upon the coordinate-free ideas developed in Omohundro (1986) concerning the
so-called roto-rate vector. The roto-rate vector was first introduced in Kruskal (1962) as
a vector field R that generates an approximate U(1) (the group of complex numbers with
unit modulus) symmetry for nearly periodic systems. Kruskal recognized the physical and
conceptual significance of the roto-rate vector, but did not know how to compute R without
first introducing an infinite sequence of near-identity coordinate transformations. Over
twenty years later, Omohundro (1986) showed that, in principle, R can be computed in any
coordinate system without introducing near-identity coordinate transformations, and even
gave an algorithm for carrying out the calculation order by order in perturbation theory.
However, Omohundro’s results stop short of providing general formulas for R, presumably
as a result of the cumbersome nature of his algorithm.

Our approach to deriving a general formula for a nearly periodic Hamiltonian
system’s adiabatic invariant starts by improving Omohundro’s algorithm for computing
the roto-rate. The key to the improvement is recognizing that the messiest element
of Omohundro’s algorithm, namely enforcing that the integral curves of the roto-rate
vector are 2π-periodic, may be reimagined as a straightforward application of the famous
Baker–Campbell–Hausdorff formula for the logarithm of composed exponentials. Using
this improved algorithm we will push past Omohundro’s results by deriving general-use,
coordinate-independent formulas for the roto-rate. We will then feed these formulas into
Noether’s theorem for presymplectic Hamiltonian systems (see, e.g. Munteanu 2013) in
order to identify coordinate-independent formulas for the adiabatic invariant.

Our principal motivation for deriving this new formula is a desire for computing
adiabatic invariants in infinite-dimensional Hamiltonian systems. While coordinate
transform methods (e.g. perturbative changes of dependent variables) can be applied
to such systems, the complexity of the required calculations easily gets out of hand.
Coordinate-independent formulas for a system’s adiabatic invariant would bypass much
of this tedium, and therefore comprise a more efficient route to the desired result.

That said, we will not present any infinite-dimensional example applications in this
article. Instead we will first use our new formula to reproduce the first two terms in the
adiabatic invariant series for non-relativistic strongly magnetized charged particles. Then
we will use our formula to calculate a coordinate-free expression for the field-line adiabatic
invariant associated with a magnetic field whose lines of force are nearly closed. This
adiabatic invariant defines approximate flux surfaces for this special class of magnetic
fields, which includes near-axisymmetric-vacuum fields, and more generally any field
that is close to an integrable field with constant rational rotational transform. It is worth
remarking from the outset that this approximate flux function is not provided by standard
Kolmogorov–Arnold–Moser (KAM) theory, which crucially relies on unperturbed fields
with non-vanishing shear.

As we derive the general formula we will make liberal use of the standard
machinery for performing calculus on manifolds, which includes Lie derivatives, flows,
pullbacks, differential forms and Stokes’ theorem. A complete and rigorous description
of this machinery, along with a vast amount of useful information concerning the
coordinate-independent approach to Hamiltonian systems, is given in Abraham & Marsden
(2008). The recent tutorial (MacKay 2020) on differential forms for plasma physicists is
also an invaluable resource. Throughout the article we will adopt the notation

ffl
Q(θ) dθ =

(2π)−1
´ 2π

0 Q(θ) dθ for averages over an angular variable θ ∈ U(1).
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General formulas for adiabatic invariants 3

The systems that exhibit the adiabatic invariants we would like to compute have
two essential features: (a) they are nearly periodic, and (b) they possess a Hamiltonian
structure. Property (a) ensures the existence of the roto-rate vector, which may be thought
of as an approximate U(1)-symmetry of the equations of motion. Property (b) enables the
application of Noether’s theorem to find an approximate conservation law, i.e. an adiabatic
invariant, associated with this approximate symmetry. In order to explain and expand
upon these points we will first discuss nearly periodic systems that are not necessarily
Hamiltonian. In particular we will derive a coordinate-free formula for the roto-rate vector
associated with such a system. This discussion will form the content of § 2. Then we will
specialize to nearly periodic systems that happen to possess (presymplectic) Hamiltonian
structure. This specialization will ultimately lead to the formulas for the adiabatic invariant
series in § 3. As a way of illustrating the application of our formula we will use it in § 4
to compute the charged-particle adiabatic invariant, and again in § 5 to derive a field-line
adiabatic invariant for magnetic fields with field lines that are nearly closed.

Readers who are interested in expressions for adiabatic invariants, but who are not
interested in the derivation of such expressions may skip directly to Theorem 3.5. The
relevant formulas are (3.14)–(3.17). Appendix A provides the details of how to work with
these formulas using index notation.

2. Nearly periodic systems and the roto-rate vector

A nearly periodic system is a two time scale dynamical system whose short time scale
dynamics is characterized by strictly periodic motion. Examples include masses conjoined
by a stiff spring hung on the free end of a pendulum, and a charged particle in a strong
magnetic field. For the sake of clarity the following definition of nearly periodic systems
will be useful.

DEFINITION 2.1 (Nearly periodic system). A nearly periodic system is a (possibly
infinite-dimensional) ordinary differential equation of the form ż = ε−1Vε(z) with the
following properties.

(i) The vector field Vε depends smoothly on ε in a neighbourhood of 0 ∈ R.
(ii) The limiting vector field V0 = ω0ξ0. Here ξ0 is a vector field with integral curves

that are strictly periodic with period 2π, and the frequency function ω0 is a smooth,
positive function that is constant along ξ0 integral curves.

Remark 2.2. While the frequency function is not allowed to pass through zero, the vector
field ξ0 may do so. Therefore the limiting short time scale dynamics described by V0
may have fixed points. In contrast, Kruskal (1962) requires that V0 is nowhere vanishing.
We have chosen to relax Kruskal’s stronger assumption because his theory really only
requires a non-vanishing frequency function. Moreover zeros of V0 do occur in practice,
and indicate the presence of a so-called slow manifold (cf. MacKay 2004).

Away from the zeros of ξ0, nearly periodic systems exhibit a time scale separation that
increases as ε tends to 0. This suggests that averaging over the fast periodic motion
described by V0 ought to be permissible for small ε. In more geometric terms, it is
reasonable to expect that the equations of motion ż = ε−1Vε(z) defining a nearly periodic
system possess an approximate U(1)-symmetry whose infinitesimal generator is given by
ξ0 to leading order in ε.

If the equations of motion possessed a true U(1)-symmetry then there would be a vector
field ξε on z-space, which we will call Z, with the following properties.
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(a) The integral curves of ξε , i.e. the solutions of the ordinary differential equation
(ODE) ż = ξε(z), must each be periodic with period 2π. Note that this condition
does not preclude ξε from having fixed points, which may be assigned any period.
Nor does it rule out integral curves with period 2π/n, n ∈ Z, which arise when the
integral curves form a Seifert fibration. (See the appendix in Arnold (1989).)

(b) The flows of ξε and Vε must commute. Equivalently, [ξε,Vε] = 0, where [·, ·] denotes
the vector field commutator.

Such a ξε is referred to as the infinitesimal generator of a U(1)-symmetry.
Given a nearly periodic system the existence of such a ξε is typically too much to hope

for. On the other hand it is always possible to find a formal power series,

ξε = ξ0 + εξ1 + ε2ξ2 + · · · ,
whose coefficients ξk are vector fields on Z, and that satisfies the properties (a) and (b) to
all orders in ε. Such a formal power series is known as a roto-rate vector. Existence of a
roto-rate vector is one way to precisely define the notion of approximate U(1)-symmetry.

DEFINITION 2.3. Given a vector field U on a manifold Z with integral curves that exist
for all time, the exponential of U is the unique mapping exp(U) : Z → Z such that
exp(U)(z) = z(1), where z(t) is the solution of ż = U(z) with z(0) = z. If φ : Z → Z is
a map and there is some vector field W such that φ = exp(W) then we write W = ln(φ)
and say W is a logarithm of φ.

Remark 2.4. There may be several logarithms of a map φ, or none at all. For smooth
families of mappings φλ, λ ∈ R, with φ0 = idZ , ln(φλ)may be defined uniquely as a formal
power series in λ.

DEFINITION 2.5 (Roto-rate vector). Given a nearly periodic system ż = ε−1Vε(z), a
roto-rate vector is a formal power series ξε = ξ0 + εξ1 + ε2ξ2 + · · · with vector field
coefficients such that ξ0 = V0/ω0 and

(i) [ξε,Vε] = 0;
(ii) ln(exp(−2π ξ0) ◦ exp(2π ξε)) = 0;

where the previous two equalities are understood in the sense of formal power series.

Remark 2.6. The integral curves of a vector field ξε will be 2π-periodic if and only if the
exponential exp(2πξε) is equal to the identity map on z-space. If ξ0 happens to already have
this property then it must be the case that idZ = exp(2π ξ0) ◦ exp(−2πξ0) ◦ exp(2πξε) =
exp(−2πξ0) ◦ exp(2πξε). By the Baker–Campbell–Hausdorff (BCH) formula there is a
formal power series vector field Zε such that

exp(Zε) = exp(−2πξ0) ◦ exp(2πξε),

i.e. Zε = ln(exp(−2πξ0) ◦ exp(2πξε)). Because ξ0 is ε-close to ξε Zε must be ε-small.
The only formal power series Zε = Z0 + εZ1 + · · · that is ε-small and that formally
exponentiates to the identity is Zε = 0. This explains the second property in the
definition.

Roto-rate vectors are remarkable due to the following.
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THEOREM 2.7 (Existence and uniqueness of the roto-rate vector). Given a nearly periodic
system ż = ε−1Vε(z) with V0 = ω0ξ0 there is a unique roto-rate vector ξε .

Proof. This result follows from minor modifications of the arguments in Kruskal (1962),
which does not allow ξ0 to have fixed points. Therefore we will only outline the main steps
in the proof.

The first step is show that there is a (non-unique) formally defined near-identity
diffeomorphism Tε : Z → Z such that V̄ε = (Tε)∗Vε takes the form V̄ε = ω̄ε ξ0 + εδV̄ε ,
where Lξ0ω̄ε = 0 and [ξ0, δV̄ε] = 0. Note that (formally) pulling back this expression for
V̄ε along Tε implies Vε = ωε ξε + ε δVε , where ωε = T∗

ε ω̄ε , ξε = T∗
ε ξ0 and δVε = T∗

ε V̄ε .
This establishes the existence of at least one roto-rate vector because ξε apparently has
2π-periodic integral curves, satisfies ξ0 = ξ0, and

[ξε,Vε] = Lξε (ωεξε)+ εLξε δVε = 0.

A procedure for finding the diffeomorphism Tε is the most commonly quoted result from
Kruskal (1962). The reason the procedure still works when ξ0 has fixed points is that
solvability of the differential equations defining Tε only requires periodicity of the ξ0-flow
and ω0 to be nowhere vanishing.

The second step is to show that if ξ ′
ε is any other roto-rate vector field then ξ ′

ε = ξε .
While it is less well-known, this argument is also contained in Kruskal (1962). It proceeds
along the following lines. Let ξ̄ ′

ε = Tε∗ξ ′
ε . Introduce the decomposition ξ̄ ′

ε = 〈ξ̄ ′
ε〉 + (ξ̄ ′

ε)
osc,

where 〈ξ̄ ′
ε〉 = (2π)−1

´ 2π
0 exp(θ ξ0)

∗ξ̄ε dθ . Because [ξ̄ ′
ε, V̄ε] = 0 it must also be the case

that [(ξ̄ ′
ε)

osc, V̄ε] = 0, which in turn is equivalent to the sequence of conditions

[(ξ̄ ′
0)

osc, ω0ξ0] = 0, (2.1)

[(ξ̄ ′
1)

osc, ω0ξ0] + [(ξ̄ ′
0)

osc, V̄1] = 0,
. . .

(2.2)

The first condition (2.1) is satisfied if and only if (ξ̄ ′
0)

osc = 0. Substituting this in the second
condition (2.2) therefore implies [(ξ̄ ′

1)
osc, ω0ξ0] = 0, which requires (ξ̄ ′

1)
osc = 0. This

pattern continues to all orders in ε and shows that (ξ̄ ′
ε)

osc = 0. Now the argument may be
completed as follows. Because ξ̄ ′

ε = 〈ξ̄ ′
ε〉 is S1-invariant the difference ξ̄ ′

ε − ξ0 must also be
S1-invariant. Moreover because ξ̄ ′

ε and ξ0 agree when ε = 0 there must be an S1-invariant
O(1) vector field wε such that ξ̄ ′

ε − ξ0 = εwε . Therefore exp(2πξ̄ ′
ε) = exp(2πξ0 +

2πεwε) = exp(2πξ0) ◦ exp(2πεwε) = exp(2πεwε) = idZ in order for the integral curves
of ξ̄ ′

ε to each be 2π-periodic. (Note that we have made use of the commutativity [ξ0,
wε] = 0.) This identity may only be satisfied if wε = 0. �

The preceding Theorem establishes the useful fact that by expanding the pair of
conditions from Definition 2.5 in power series it should be possible to find the coefficients
of the expansion ξε = ξ0 + εξ1 + · · · order-by-order. We will now follow this line of
reasoning to derive explicit formulas for ξ0, ξ1, ξ2, and ξ3 in terms of Fourier harmonics of
Vε relative to ξ0.

As a preparatory step we will establish the following variant of the BCH formula that is
well suited to perturbation theory in ε.

LEMMA 2.8 (Perturbative BCH formula). Let A and B be vector fields on the manifold Z
and ε a small real parameter. The logarithm Zε = ln(exp(−A) ◦ exp(A + εB)) exists as a
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formal power series in ε, Zε = Z0 + εZ1 + ε2Z2 + · · · . The formulas

Z0 = 0, (2.3)

Z1 =
ˆ 1

0
Bτ1 dτ1, (2.4)

Z2 = 1
2

ˆ 1

0

ˆ τ1

0
[Bτ2,Bτ1 ] dτ2 dτ1, (2.5)

Z3 = 1
6

ˆ 1

0

ˆ τ1

0

ˆ τ2

0
([Bτ3, [Bτ2,Bτ1 ]] + [[Bτ3,Bτ2 ],Bτ1 ]) dτ3 dτ2 dτ1, (2.6)

with Bτ = exp(τA)∗B, give the first few coefficients Zk. More generally

Zε = ε

ˆ 1

0
ψ (exp(λLA+εB) exp(−λLA)) exp(λA)∗B dλ, (2.7)

with ψ(z) = z ln z/(z − 1), gives Zε to all orders in ε.

Proof. The proof proceeds by first solving a seemingly more-difficult problem, namely
finding an asymptotic series representation for Zε,λ = ln(exp(−λA) ◦ exp(λ[A + εB])). To
that end, first consider the λ-derivative of exp(Zε,λ) = exp(−λA) ◦ exp(λ[A + εB]),

∂λ exp(Zε,λ) = −A ◦ exp(Zε,λ)+ T exp(−λA) ◦ [A + εB] ◦ exp(λ[A + εB])

= (−A + exp(λA)∗[A + εB]) ◦ exp(Zε,λ).

In other words

∂λ exp(Zε,λ) ◦ exp(−Zε,λ) = ε exp(λA)∗B. (2.8)

We will eventually obtain (2.7) by integrating (2.8) in λ, but first we need an expression
for ∂λ exp(Zε,λ) ◦ exp(−Zε,λ) in terms of ∂λZε,λ. One way to find such an expression is the
following. Let Cλ be any λ-dependent vector field and set ψs,λ = exp(sCλ). By the equality
of mixed partials the vector fields Vs,λ = ∂λψs,λ ◦ ψ−1

s,λ and ξs,λ = ∂sψs,λ ◦ ψ−1
s,λ = Cλ must

be related by the condition

∂sVs,λ + LCλVs,λ = ∂λCλ. (2.9)

Thinking of the last condition as a differential equation for Vs,λ, it can be solved using the
method of variation of parameters. The solution for Vs,λ is given by

Vs,λ = exp(−sCλ)∗
ˆ s

0
exp(s̄Cλ)∗∂λCλ ds̄. (2.10)

Because V1,λ = ∂λψ1,λ ◦ ψ−1
1,λ = ∂λ exp(Cλ) ◦ exp(−Cλ) (2.10) implies the general formula

∂λ exp(Cλ) ◦ exp(−Cλ) = exp(−Cλ)∗
ˆ 1

0
exp(s̄Cλ)∗∂λCλ ds̄

= φ(−LCλ)∂λCλ, (2.11)
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where φ(z) = [exp(z)− 1]/z. Applying this formula to (2.8) then gives

φ(−LZε,λ)∂λZε,λ = ε exp(λA)∗B,

⇒∂λZε,λ = ε
1

φ(−LZε,λ)
exp(λA)∗B,

⇒Zε,λ =
ˆ λ

0
ε

1
φ(−LZε,λ̄)

exp(λ̄A)∗B dλ̄.

(2.12)

While (2.12) may not seem helpful because Zε,λ appears under the integral sign, in fact it
implies (2.7) for the following reason. Because

exp(LZε,λ) = (exp(−λA) ◦ exp(λ[A + εB]))∗ = exp(λLA+εB) exp(−λLA),

the Lie derivative LZε,λ may be written

LZε,λ = ln (exp(λLA+εB) exp(−λLA)) .

If a ≡ exp(λLA+εB) exp(−λLA) it therefore follows that

1
φ(−LZε,λ)

= 1
φ(− ln a)

= − ln a
exp(− ln a)− 1

= ψ(a). (2.13)

Substituting (2.13) in (2.12) gives (2.7), as desired.
In order to obtain the formulas (2.3)–(2.6) it is sufficient to expand the formal expression

(2.7) as a power series in ε. This rather tedious calculation proceeds as follows. First it is
useful to find the power series expansion of the operator aε,λ = exp(λLA+εB) exp(−λLA).
Let f : Z → R be any scalar on Z and introduce fλ = exp(λLA+εB)f . The scalar fλ obeys
the differential equation ∂λfλ = LA+εBfλ. Introducing the variation-of-parameters ansatz
fλ = exp(λLA)f̄λ, the scalar f̄λ therefore satisfies ∂λ f̄λ = εLexp(−λA)∗Bf̄λ, or in integral form

f̄λ = f + ε

ˆ λ

0
LB−s1

f̄s1 ds1

= f + ε

ˆ λ

0
LB−s1

f ds1 + ε2
ˆ λ

0

ˆ s1

0
LB−s1

LB−s2
f ds2 ds1 + O(ε3), (2.14)

where we have introduced the shorthand notation Bs = exp(sA)∗B. This shows that aε,λ
has the asymptotic expansion

aε,λ = exp(λLA)
(
1 + εā1,λ + ε2ā2,λ + · · · ) exp(−λLA),

where

ā1,λ =
ˆ λ

0
LB−s1

ds1, (2.15)

ā2,λ =
ˆ λ

0

ˆ s1

0
LB−s1

LB−s2
ds2 ds1. (2.16)
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Combining this observation with the series representation of ψ(1 + x) = 1 + 1
2 x − 1

6 x2 +
1
12 x3 + · · · therefore implies

Z0 = 0, (2.17)

Z1 =
ˆ 1

0
exp(λA)∗B dλ =

ˆ 1

0
exp(τ1A)∗B dτ1, (2.18)

Z2 = 1
2

ˆ 1

0
exp(λA)∗ā1,λB dλ = 1

2

ˆ 1

0

ˆ λ

0
exp(λA)∗[B−s1,B] ds1 dλ

= 1
2

ˆ 1

0

ˆ τ1

0
[Bτ2,Bτ1 ] dτ2 dτ1, (2.19)

Z3 = −1
6

ˆ 1

0
exp(λA)∗ā2

1,λB dλ+ 1
2

ˆ 1

0
exp(λA)∗ā2,λB dλ. (2.20)

These expressions for Z0,Z1,Z2 clearly reproduce (2.3)–(2.5). To see that (2.20)
reproduces (2.6) notice first that

Z3 = −1
6

ˆ 1

0
exp(λA)∗

ˆ λ

0

ˆ λ

0
[B−s1, [B−s2,B]] ds2 ds1 dλ

+ 1
2

ˆ 1

0
exp(λA)∗

ˆ λ

0

ˆ s1

0
[B−s1 [B−s2,B]] ds2 ds1 dλ. (2.21)

Next, observe that if g(s1, s2) = [B−s1, [B−s2,B]] then by Fubini’s theorem
ˆ λ

0

ˆ λ

0
g(s1, s2) ds2 ds1 =

ˆ λ

0

ˆ s1

0
g(s1, s2) ds2 ds1 +

ˆ λ

0

ˆ s1

0
g(s2, s1) ds2 ds1. (2.22)

It follows that

Z3 = −1
6

ˆ 1

0
exp(λA)∗

ˆ λ

0

ˆ s1

0
([B−s1, [B−s2,B]] + [B−s2, [B−s1,B]]) ds2 ds1 dλ

+ 1
2

ˆ 1

0
exp(λA)∗

ˆ λ

0

ˆ s1

0
[B−s1 [B−s2,B]] ds2 ds1 dλ

=
ˆ 1

0

ˆ λ

0

ˆ s1

0
exp(λA)∗

(
1
3

[B−s1, [B−s2,B]] − 1
6

[B−s2, [B−s1,B]]
)

ds2 ds1 dλ

=
ˆ 1

0

ˆ λ

0

ˆ s1

0
exp(λA)∗

(
1
6

[B−s1, [B−s2,B]] + 1
6

[[B−s1,B−s2 ],B]]
)

ds2 ds1 dλ

= 1
6

ˆ 1

0

ˆ τ1

0

ˆ τ2

0
([Bτ3, [Bτ2,Bτ1 ]] + [[Bτ3,Bτ2 ],Bτ1 ]) dτ3 dτ2 dτ1,

where we have applied the Jacobi identity [B−s2, [B−s1,B]] = [[B−s2,B−s1 ],B] +
[B−s1, [B2,B]] on the second-to-last line, and we changed integration variables to τ1 = λ,
τ3 = λ− s1, and τ2 = λ− s2 on the last line. �

With the modified BCH formula from Lemma 2.8 in hand it is now straightforward to
derive formulas for the coefficients of ξε = ξ0 + ε ξ1 + ε2 ξ2 + · · · as follows.
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DEFINITION 2.9 (Mean and oscillating subspaces). Given a nearly periodic system with
roto-rate vector ξε , the space of limiting mean vector fields 〈X(Z)〉 or just mean vector
fields for short is the subspace of vector fields A on Z that are equal to their U(1)-average
along ξ0. In symbols A ∈ 〈X(Z)〉 means A = 〈A〉(2π)−1

´ 2π
0 exp(θ ξ0)

∗A dθ . The space of
limiting oscillating vector fields X(Z)osc, or just oscillating vector fields for short, is the
subspace of vector fields on Z that average to zero along ξ0. That is, A ∈ X(Z)osc if 〈A〉 = 0.

Remark 2.10. Standard results on Fourier series imply that the mean and fluctuating
subspaces are complementary subspaces of X(Z), the space of vector fields on Z. A
projection onto 〈X(Z)〉 is π̄ : A �→ 〈A〉 and a projection onto X(Z)osc is π̃ = 1 − π̄. If A
is any vector field on Z then the notations A = 〈A〉 + Aosc and A = 〈A〉 + Ã will be used
interchangeably to denote the decomposition of A into its mean, 〈A〉 = π̄A, and fluctuating
parts, Aosc = Ã = π̃A.

THEOREM 2.11 (Formula for the roto-rate vector). The first four coefficients of the
roto-rate vector ξε associated with a nearly periodic system ż = ε−1Vε(z) are given in
terms of the power series expansion of Vε = ω0ξ0 + εV1 + ε2V2 + · · · as follows.

ξ0 = V0/ω0, (2.23)

ξ1 = Lξ0 I0Ṽ1, (2.24)

ξ2 = Lξ0 I0Ṽ2 + Lξ0 I0[I0Ṽ1, 〈V1〉] + 1
2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1], (2.25)

ξ3 = Lξ0

(
I0Ṽ3 + I0[I0Ṽ1, 〈V2〉]osc + I0[I0Ṽ2, 〈V1〉]osc

+ 1
2

I0[I0Ṽ2, Ṽ1]osc + 1
2

I0[I0Ṽ1, Ṽ2]osc + 1
3

I0[I0Ṽ1, [I0Ṽ1, Ṽ1]]osc

+ I0[I0[I0Ṽ1, 〈V1〉], 〈V1〉] + 1
2

I0[I0[I0Ṽ1, Ṽ1]osc, 〈V1〉]

+1
2

I0[I0Ṽ1, [I0Ṽ1, 〈V1〉]]osc

)

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2] + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]

+ [I0[Lξ0 I0Ṽ1,V1]osc, I0Ṽ1] + I0[〈[Lξ0 I0Ṽ1, Ṽ1]〉, I0Ṽ1]

+ 1
3

[I0Ṽ1, [Lξ0 I0Ṽ1, I0Ṽ1]]. (2.26)

Here, I0 is the inverse of LV0 restricted to the fluctuating subspace regarded as a linear
map Xosc(Z) → Xosc(Z).

Proof. The proof proceeds by directly analysing the conditions in Definition 2.5
order-by-order in ε. First Lemma 2.8 will be applied with A = 2πξ0 and B = 2π(ξ1 +
εξ2 + ε2ξ3 + · · · ) in order to identify the coefficients of the formal power series

Zε = ln (exp(−2πξ0) ◦ exp(2πξε)) .

Then the power series coefficients of [ξε,Vε] and Zε will each be set equal to zero.
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After changing integration variables from τk to θk = 2πτk and accounting for the
fact that B = 2π(ξ1 + εξ2 + ε2ξ3 + · · · ) is itself a formal power series, the first several
coefficients of Zε given by Lemma 2.8 are

Z0 = 0, (2.27)

Z1 = 2π〈ξ1〉, (2.28)

Z2 = 2π〈ξ2〉 + 1
2

ˆ 2π

0

ˆ θ1

0
[ξ θ2

1 , ξ
θ1
1 ] dθ2 dθ1, (2.29)

Z3 = 2π〈ξ3〉 + 1
2

ˆ 2π

0

ˆ θ1

0
[ξ θ2

1 , ξ
θ1
2 ] dθ2 dθ1 + 1

2

ˆ 2π

0

ˆ θ1

0
[ξ θ2

2 , ξ
θ1
1 ] dθ2 dθ1

+1
6

ˆ 2π

0

ˆ θ1

0

ˆ θ2

0
([ξ θ3

1 , [ξ θ2
1 , ξ

θ1
1 ]] + [[ξ θ3

1 , ξ
θ2
1 ], ξ θ1

1 ]) dθ3 dθ2 dθ1, (2.30)

where ξ θj

k = exp(θj ξ0)
∗ξk. Each of these coefficients must vanish, but we will not examine

the consequences of this vanishing now. Instead we will examine the vanishing of the
Zk and the coefficients of [ξε,Vε] incrementally and simultaneously in the following
paragraphs.

The O(1) coefficients of the series Zε and [ξε,Vε] are given by (2.27) and [ξ0,V0],
respectively. The former is obviously zero, while the latter vanishes because Lξ0ω0 = 0.
Thus no constraints are placed on the ξk at this order. Note that ξ0 = V0/ω0 by definition
of the roto-rate vector.

The O(ε) coefficients of Zε and [ξε,Vε] are given by (2.28) and [ξ0,V1] + [ξ1,V0],
respectively. Vanishing of these coefficients is equivalent to the joint satisfaction of the
three conditions

0 = 〈ξ1〉, (2.31)

0 = [ξ0,V1] + [ξ1,V0]osc, (2.32)

0 = 〈[ξ1,V0]〉. (2.33)

We claim that the conditions (2.31) and (2.32) uniquely determine ξ1, and that when ξ1
is so determined the condition (2.33) is satisfied automatically. As for the first part of
our claim, notice that condition (2.32) is equivalent to the linear equation LV0 ξ̃1 = Lξ0 Ṽ1,
which has the unique solution ξ̃1 = Lξ0 I0Ṽ1. Because condition (2.31) says that ξ1 has
zero average, the last observation implies that in fact ξ1 = Lξ0 I0Ṽ1, which is precisely the
desired formula (2.24). As for the second part of our claim, it is enough to observe that,
because ξ1 = ξ̃1, 〈[ξ1,V0]〉 = 〈[ξ̃1,V0]〉 = [〈ξ̃1〉,V0] = 0.

The O(ε2) coefficients of Zε and [ξε,Vε] are given by (2.28) and [ξ0,V2] + [ξ1,V1] +
[ξ2,V0], respectively. Vanishing of these coefficients is equivalent to

0 = 〈ξ2〉 + 1
2

 ˆ θ1

0
[ξ θ2

1 , ξ
θ1
1 ] dθ2 dθ1, (2.34)

0 = [ξ0,V2] + [ξ1,V1]osc + [ξ2,V0]osc, (2.35)

0 = 〈[ξ1,V1]〉 + 〈[ξ2,V0]〉. (2.36)

As was the case with the O(ε) coefficients, we claim that conditions (2.34) and (2.35)
uniquely determine ξ2, and that, with ξ2 so determined, condition (2.36) is satisfied
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automatically. First observe that condition (2.34) completely determines 〈ξ2〉. Indeed,
using (2.24) inside of the integral and recognizing Lξ0 I0Ṽθ2

1 = ∂θ2 I0Ṽθ2
1 leads to

〈ξ2〉 = −1
2

 ˆ θ1

0
[Lξ0 I0Ṽθ2

1 ,Lξ0 I0Ṽθ1
1 ] dθ2 dθ1

= −1
2

 ˆ θ1

0
[∂θ2 I0Ṽθ2

1 ,Lξ0 I0Ṽθ1
1 ] dθ2 dθ1

= −1
2

 
[I0Ṽθ1

1 ,Lξ0 I0Ṽθ1
1 ] dθ1 + 1

2

 
[I0Ṽ1,Lξ0 I0Ṽθ1

1 ] dθ2 dθ1

= 1
2
〈[Lξ0 I0Ṽ1, I0Ṽ1]〉. (2.37)

Next observe that condition (2.35) is equivalent to the linear equation

LV0 ξ̃2 = [ξ0,V2] + [ξ1,V1]osc

= Lξ0 Ṽ2 + Lξ0 [I0Ṽ1, 〈V1〉] + [Lξ0 I0Ṽ1, Ṽ1]osc, (2.38)

which has the unique solution

ξ̃2 = Lξ0(I0Ṽ2 + I0[I0Ṽ1, 〈V1〉])+ I0[Lξ0 I0Ṽ1, Ṽ1]osc

= Lξ0

(
I0Ṽ2 + I0[I0Ṽ1, 〈V1〉] + 1

2
I0[I0Ṽ1, Ṽ1]osc

)
+ 1

2
[Lξ0 I0Ṽ1, I0Ṽ1]osc. (2.39)

On the second line of (2.39) we have used the identity

I0[Lξ0 I0Ṽ1, Ṽ1]osc = 1
2

[Lξ0 I0Ṽ1, I0Ṽ1]osc + 1
2
Lξ0 I0[I0Ṽ1, Ṽ1]osc, (2.40)

which follows from the non-trivial recursive relationship

I0[Lξ0 I0Ṽ1, Ṽ1]osc = I0[Lξ0 I0Ṽ1,LV0 I0Ṽ1]osc

= [Lξ0 I0Ṽ1, I0Ṽ1]osc − I0[Lξ0 Ṽ1, I0Ṽ1]osc

= [Lξ0 I0Ṽ1, I0Ṽ1]osc + Lξ0 I0[I0Ṽ1, Ṽ1]osc − I0[Lξ0 I0Ṽ1, Ṽ1]osc. (2.41)

Adding (2.37) and (2.39) demonstrates the first part of our claim, in addition to giving the
desired formula (2.25) for ξ2. As for the second part of our claim, the expression (2.37) for
〈ξ2〉 implies

〈[ξ1,V1]〉 + 〈[ξ2,V0]〉 = 〈[Lξ0 I0Ṽ1, Ṽ1]〉 + 〈[〈ξ2〉,V0]〉

= 〈[Lξ0 I0Ṽ1, Ṽ1]〉 + 1
2
〈[[Lξ0 I0Ṽ1, I0Ṽ1],V0]〉

= 〈[Lξ0 I0Ṽ1, Ṽ1]〉 − 1
2
〈[Lξ0 Ṽ1, I0Ṽ1]〉 − 1

2
〈[Lξ0 I0Ṽ1, Ṽ1]〉

= 0, (2.42)

as claimed.
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The pattern established at the previous orders in ε continues with the O(ε3) coefficients
of Zε and [ξε,Vε]. Vanishing of the third-order coefficients is equivalent to the trio of
conditions

〈ξ3〉 = −1
2

 ˆ θ1

0
[ξ θ2

1 , ξ
θ1
2 ] dθ2 dθ1 − 1

2

 ˆ θ1

0
[ξ θ2

2 , ξ
θ1
1 ] dθ2 dθ1

−1
6

 ˆ θ1

0

ˆ θ2

0
([ξ θ3

1 , [ξ θ2
1 , ξ

θ1
1 ]] + [[ξ θ3

1 , ξ
θ2
1 ], ξ θ1

1 ]) dθ3 dθ2 dθ1, (2.43)

0 = [ξ0, Ṽ3] + [ξ1,V2]osc + [ξ2,V1]osc + [ξ3,V0], (2.44)

0 = 〈[ξ1,V2]〉 + 〈[ξ2,V1]〉 + [〈ξ3〉,V0]. (2.45)

To see that (2.43) determines 〈ξ3〉 first use Fubini’s theorem and the Lie derivative formula
to simplify the double integrals as

〈ξ3〉 = 〈[ξ̃2, I0Ṽ1]〉 + [I0Ṽ1, 〈ξ2〉]

− 1
6

 ˆ θ1

0

ˆ θ2

0
([ξ θ3

1 , [ξ θ2
1 , ξ

θ1
1 ]] + [[ξ θ3

1 , ξ
θ2
1 ], ξ θ1

1 ]
)

dθ3 dθ2 dθ1. (2.46)

Next use the same techniques to perform the θ3 and θ1 integrations in the triple integral
according to

〈ξ3〉 = 〈[ξ̃2, I0Ṽ1]〉 + [I0Ṽ1, 〈ξ2〉]

= 〈[ξ̃2, I0Ṽ1]〉 + [I0Ṽ1, 〈ξ2〉] − 1
3
〈[[Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1]〉

− 1
3

 ˆ θ1

0
([I0Ṽθ2

1 , [ξ θ2
1 , I0Ṽ1]] + [[I0Ṽθ2

1 , ξ
θ2
1 ], I0Ṽ1]) dθ3 dθ2. (2.47)

Finally apply the identity

[I0Ṽθ2
1 , [ξ θ2

1 , I0Ṽ1]] = 1
2
∂θ2 [I0Ṽθ2

1 , [I0Ṽθ2
1 , I0Ṽ1]] − 1

2
[[Lξ0 I0Ṽθ2

1 , I0Ṽθ2
1 ], I0Ṽ1] (2.48)

to obtain

〈ξ3〉 = 〈[ξ̃2, I0Ṽ1]〉 + [I0Ṽ1, 〈ξ2〉] − 1
3
〈[[Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1]〉

+ 1
2

[〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, I0Ṽ1]

= 〈[ξ̃2, I0Ṽ1]〉 − 1
3
〈[[Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1]〉

= 〈[Lξ0 I0Ṽ2, I0Ṽ1]〉 + 〈[Lξ0 I0[I0Ṽ1, 〈V1〉], I0Ṽ1]〉

+ 1
2
〈[Lξ0 I0[I0Ṽ1, Ṽ1]osc, I0Ṽ1]〉 + 1

6
〈[[Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1]〉. (2.49)

For the oscillating part of ξ3 use (2.44) to obtain the general formula

ξ̃3 = I0[ξ0, Ṽ3] + I0[ξ1,V2]osc + I0[ξ2,V1]osc. (2.50)

Using (2.24) for ξ1 and (2.25) for ξ2 this formula for ξ̃3 may be added to (2.49) and then
manipulated so as to yield (2.26). The details of this tedious calculation may be found in
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appendix B. The proof will now be complete as soon as we show that if ξ1, ξ2, and ξ3
are given by (2.24)–(2.26), respectively, then condition (2.45) is satisfied automatically.
This may be seen by the following direct calculation with I = 〈[ξ1,V2]〉 + 〈[ξ2,V1]〉 +
[〈ξ3〉,V0],

I = 〈[Lξ0 I0Ṽ1, Ṽ2]〉

+ 〈[Lξ0 I0Ṽ2 + Lξ0 I0[I0Ṽ1, 〈V1〉] + 1
2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1],V1]〉

− LV0(〈[Lξ0 I0Ṽ2, I0Ṽ1]〉 + 〈[Lξ0 I0[I0Ṽ1, 〈V1〉], I0Ṽ1]〉)

− LV0

(
1
2
〈[Lξ0 I0[I0Ṽ1, Ṽ1]osc, I0Ṽ1]〉 + 1

6
〈[[Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1]〉

)

= 〈[Lξ0 I0Ṽ1, Ṽ2]〉 + 1
2
〈[[Lξ0 I0Ṽ1, I0Ṽ1], 〈V1〉]〉 + 1

2
〈[[Lξ0 I0Ṽ1, I0Ṽ1], Ṽ1]〉

− 1
6
〈[[Lξ0 Ṽ1, I0Ṽ1], I0Ṽ1]〉 − 1

6
〈[[Lξ0 I0Ṽ1, Ṽ1], I0Ṽ1]〉 − 1

6
〈[[Lξ0 I0Ṽ1, I0Ṽ1], Ṽ1]〉

+
〈[(

Ṽ2 + [I0Ṽ1, 〈V1〉] + 1
2

[I0Ṽ1, Ṽ1]osc

)
,Lξ0 I0Ṽ1

]〉

= 1
3
〈[[Lξ0 I0Ṽ1, I0Ṽ1], Ṽ1]〉 − 1

6
〈[[Lξ0 Ṽ1, I0Ṽ1], I0Ṽ1]〉 − 1

6
〈[[Lξ0 I0Ṽ1, Ṽ1], I0Ṽ1]〉

+ 1
2

〈[
[I0Ṽ1, Ṽ1]osc,Lξ0 I0Ṽ1

]〉
= 1

3
〈[[Lξ0 I0Ṽ1, I0Ṽ1], Ṽ1]〉 − 1

3
〈[[Ṽ1, I0Ṽ1],Lξ0 I0Ṽ1]〉 + 1

3
〈[[Ṽ1,Lξ0 I0Ṽ1], I0Ṽ1]〉

= 0. (2.51)

�

3. Noether’s theorem and adiabatic invariants

In the previous section we explained that all nearly periodic systems admit a roto-rate
vector. In this sense every nearly periodic system has an approximate U(1) symmetry.
In this subsection we will show that if a nearly periodic system happens to have a
Hamiltonian structure as well then there is an approximate conserved quantity με =
μ0 + εμ1 + ε2μ2 + · · · associated with its approximate U(1) symmetry. In effect we will
prove an asymptotic version of Noether’s theorem that applies to Hamiltonian nearly
periodic systems. We will work in the setting of presymplectic Hamiltonian systems
with ε-dependent exact presymplectic structures. In the setting of ε-independent exact
symplectic Hamiltonian systems Kruskal (1962) gave an abstract proof of an analogous
result, in the sense that formulas were not provided for the approximate conserved quantity.
Here, we will improve Kruskal’s results by providing (the first several terms of) the
missing formulas, and by allowing for a much broader class of nearly periodic Hamiltonian
systems. In particular we will provide formulas for μ0, μ1, μ2, and μ3. For a discussion
of some of the subtleties associated with adiabatic invariants for nearly periodic Poisson
systems, see Omohundro (1986).

Before discussing the asymptotic version of Noether’s theorem it is useful to discuss the
usual Noether’s theorem in a coordinate-independent manner. We will focus our attention
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on Noether’s theorem for Hamiltonian systems on presymplectic manifolds that admit a
U(1) symmetry.

To that end, suppose X is a vector field on a manifold Z and assume that there is a 1-form
ϑ and a smooth function H such that ιXdϑ = −dH. The dynamical system defined by X is
then known as a (presymplectic) Hamiltonian system, the 2-form ω = −dϑ is called the
presymplectic form and the scalar H is called the Hamiltonian. Noether’s theorem applies
to such systems. In particular if Φθ : Z → Z is a U(1)-action (θ ∈ U(1) = R/2π) on Z
that leaves the Hamiltonian invariant, Φ∗

θH = H, and that leaves the presymplectic form
invariant, Φ∗

θ ω = ω, then the scalar μ = ιξ 〈ϑ〉 is a constant of motion for X. Here, ξ =
∂θΦθ |θ=0 is the infinitesimal generator for the U(1)-action and 〈ϑ〉 = (2π)−1

´ 2π
0 Φ∗

θ ϑ dθ .
The scalar μ is the Noether-invariant associated with the U(1)-action Φθ . The proof that
μ is a conserved quantity for X follows from the following simple calculation: LXμ =
ιXdιξ 〈ϑ〉 = ιXLξ 〈ϑ〉 − ιXιξd〈ϑ〉 = ιXLξ 〈ϑ〉 − LξH = 0.

Now suppose that ż = ε−1Vε(z) defines a nearly periodic system that happens to be
Hamiltonian. Concretely this means the following.

DEFINITION 3.1 (Nearly periodic Hamiltonian system). A nearly periodic system ż =
ε−1Vε(z) is a nearly periodic Hamiltonian system if there is some 1-form ϑε and some
function Hε such that ιVεdϑε = −dHε . Hε and ϑε are required to depend smoothly on ε in
a neighbourhood of ε = 0.

By mimicking the key parts of the U(1) Noether theorem from the previous paragraph
we will now prove that there exists a formal power series με = μ0 + εμ1 + · · · that is
constant along integral curves of Vε to all-orders in ε. In other words LVεμε = 0 in the
sense of formal power series. The proof will be consistent with this article’s goal of
avoiding the well-known coordinate transform-based methods.

Before giving the proof it is useful to first give a variant of a technical Lemma originally
proved in Kruskal (1962). (Kruskal refers to his ‘Theorem of Phase Independence’ in
Section C.1.)

LEMMA 3.2 (Bootstrapping of U(1) averages). Fix a nearly periodic system ż = ε−1Vε(x).
Suppose that τε is any differential form on Z that depends smoothly on ε. If τε is constant
along the flow of Vε , i.e. LVε τε = 0, and is almost U(1)-invariant in the sense that
Lξ0τ0 = 0, then in fact τε satisfies Lξε τε = 0 to all orders in ε.

Proof. As mentioned earlier in the proof of Theorem 2.7, Kruskal (1962) shows that there
is a formal near-identity diffeomorphism Tε : Z → Z such that Tε∗ξε = ξ0. (In fact there
are many such Tε .) Set V∗

ε = Tε∗Vε and τ ∗
ε = Tε∗τε .

Since τε is constant along the Vε-flow it is also true that τ ∗
ε is constant along the V∗

ε -flow,
i.e. LV∗

ε
τ ∗
ε = 0. In light of the fact that [ξ0,V∗

ε ] = Tε∗[ξε,Vε] = 0 this implies LV∗
ε
Lξ0τ

∗
ε =

0. The O(1) coefficient of this formal power series identity is LV0Lξ0τ0 = 0, which is
trivially satisfied because τε is nearly U(1)-invariant by hypothesis. On the other hand, the
O(ε) coefficient is LV0Lξ0τ

∗
1 = 0, which says that Lξ0τ

∗
1 is constant along the V0-flow. We

claim that this can only be true if Lξ0τ
∗
1 = 0. To see this set α̃ = Lξ0τ

∗
1 . The Lie derivative

of α̃ along V0 is given by

LV0 α̃ = ω0ιξ0 dα̃ + d(ω0ιξ0 α̃)

= ω0Lξ0 α̃ + dω0 ∧ ιξ0 α̃ = 0. (3.1)

Contracting this formula with ξ0 therefore implies ω0Lξ0 ιξ0 α̃ = 0. Because the
U(1)-average of α̃ is zero and ω0 is nowhere vanishing this requires ιξ0 α̃ = 0. But by (3.1)
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this implies ω0Lξ0 α̃ = 0, which can only be satisfied if α̃ = 0, as desired. This shows, in
particular, that Lξ0τ

∗
ε = O(ε2).

To complete the proof we will now show that if, for some integer n ≥ 2, Lξ0τ
∗
ε =

O(εn) then in fact Lξ0τ
∗
ε = O(εn+1). If this is true then, by induction, Lξ0τ

∗
ε = 0 as

a formal power series, which would imply the desired result since T∗
ε (Lξ0τ

∗
ε ) = Lξε τε .

Because Lξ0τ
∗
ε = O(εn) the differential forms Lξ0τ

∗
k for k ∈ {0, 1, . . . , n − 1} must each

vanish. Therefore Lξ0τ
∗
ε = εn Lξ0τ

∗
n + O(εn+1). But since LV∗

ε
Lξ0τ

∗
ε = 0 to all orders in

ε this means LV0Lξ0τ
∗
n = 0. Repeating the argument from the previous paragraph with

α̃ = Lξ0τ
∗
n then shows that in fact Lξ0τ

∗
n = 0. Therefore Lξ0τ

∗
ε = εnLξ0τ

∗
n + O(εn+1) =

O(εn+1), as claimed. �

Next we will show that the limiting roto-rate vector ξ0 associated with a nearly periodic
Hamiltonian system is itself Hamiltonian.

LEMMA 3.3 (Hamiltonian structure of the limiting roto-rate). If ż = ε−1Vε(z) is a nearly
periodic Hamiltonian system with frequency function ω0, limiting roto-rate ξ0,
presymplectic form −dϑε , and Hamiltonian Hε then there exists a function μ0 : Z → R

such that ω−1
0 dH0 = dμ0. In particular, the limiting roto-rate ξ0 satisfies ιξ0 dϑ0 = −dμ0,

and is therefore Hamiltonian with presymplectic form −dϑ0 and Hamiltonian μ0.

Proof. Because ιVεdϑε = −dHε and everything depends smoothly on ε it must also be
true thatω0ιξ0 dϑ0 = −dH0. Contracting both sides of this identity with ξ0 implies Lξ0 H0 =
0. Pulling back the identity along exp(θ ξ0) and then averaging over θ therefore implies
ω0ιξ0 d〈ϑ0〉 = −dH0. It follows that the function μ0 = ιξ0〈ϑ0〉 satisfies

dμ0 = dιξ0〈ϑ0〉 = −ιξ0 d〈ϑ0〉 = ω−1
0 dH0. (3.2)

�

Finally we will prove the existence of an adiabatic invariant for any nearly periodic
Hamiltonian system.

THEOREM 3.4 (Existence of the adiabatic invariant). Let ż = ε−1Vε(z) be a Hamiltonian
nearly periodic system with presymplectic form −dϑε and Hamiltonian Hε . If ξε denotes
the associated roto-rate vector and ϑ̄ε = (2π)−1

´ 2π
0 exp(θ ξε)∗ϑε dθ denotes the formal

U(1) average of ϑε associated with ξε , then the formal power series

με = ιξε ϑ̄ε (3.3)

satisfies LVεμε = 0.

Proof. First observe that the 0-form Hε and the 2-form dϑε are each constant along the
flow Vε . Indeed, LVεHε = ιVεdHε = −ιVε ιVεdϑε = 0, and LVεdϑε = dιVεdϑε = −ddHε =
0. (This is actually a general fact about presymplectic Hamiltonian systems.) Each of these
forms is also nearly U(1)-invariant in the sense that Lξ0 H0 = 0 and Lξ0 dϑ0 = 0. This can
be seen by appealing to Lemma 3.3 and computing as follows:

Lξ0 H0 = ιξ0 dH0 = ιξ0ω0dμ0 = −ω0ιξ0 ιξ0 dϑε = 0, (3.4)
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Lξ0 dϑ0 = dιξ0 dϑ0 = −ddμ0 = 0. (3.5)

Therefore Lemma 3.2 implies

LξεHε = 0, (3.6)

Lξεdϑε = 0, (3.7)

as formal power series.
It is now possible to directly compute LVεμε using the formula

LVε ιξε ϑ̄ε = ιVεdιξε ϑ̄ε = ιVεLξε ϑ̄ε + ιξε ιVεdϑ̄ε. (3.8)

The first term on the right-hand side vanishes to all orders in ε because

Lξε ϑ̄ε = 1
2π

ˆ 2π

0
exp(θξε)∗Lξεϑε dθ

= 1
2π

ˆ 2π

0

d
dθ

exp(θξε)∗ϑε dθ

= exp(2πξε)
∗ϑε − exp(0 ξε)∗ϑε

= ϑε − ϑε = 0. (3.9)

The second term on the right-hand side also vanishes to all orders because, by (3.7),

dϑ̄ε =
 

exp(θ ξε)∗dϑε dθ = dϑε, (3.10)

which implies

ιξε ιVεdϑ̄ε = ιξε ιVεdϑε = −ιξεdHε = −LξεHε = 0, (3.11)

by (3.6). �

According to this Theorem the quantity με = ιξε ϑ̄ε is an adiabatic invariant associated
with any given nearly periodic Hamiltonian system. In fact με is equivalent to the
adiabatic invariant discussed in Kruskal (1962) when the presymplectic form −dϑε is
globally equivalent to the canonical symplectic form dqi ∧ dpi. (Note that no degenerate
presymplectic form is even locally equivalent to the canonical symplectic form.) Therefore
the first four coefficients of the expansion με = μ0 + εμ1 + ε2μ2 + · · · , expressed in
terms of Vε , comprise the main objective of this article. In principle the computation
of these coefficients may be achieved using Theorem 2.11, which gives explicit formulas
for ξ0, ξ1, ξ2, ξ3 in terms of Vε . Indeed, with knowledge of ξε the one-form ϑ̄ε may be
computed directly by expanding exp(θ ξε) in its formal power series in ε. Once ϑ̄ε has
been computed με can be obtained by merely forming the contraction ιξε ϑ̄ε .

The following Theorem and its proof performs such a calculation and records the
resulting formulas forμ0, μ1, μ2, μ3. However, the proof does not proceed along the direct
route of first computing ϑ̄ε . Instead it employs a method that reveals a striking feature of the
series με = ιξε ϑ̄ε: if ϑε is subject to the gauge transformation ϑε �→ ϑε + αε = ϑ ′

ε , with αε
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closed, then με changes by at most a constant. This property may be seen abstractly using
the following simple calculation,

dιξε ϑ̄
′
ε = d

 
ιξε exp(θ ξε)∗(ϑε + αε) dθ

=
 

exp(θ ξε)∗dιξε (ϑε + αε) dθ

=
 

exp(θ ξε)∗Lξε (ϑε + αε) dθ −
 

exp(θ ξε)∗ιξεd(ϑε + αε) dθ

=
 

d
dθ

exp(θ ξε)∗(ϑε + αε) dθ −
 

exp(θ ξε)∗ιξεdϑε dθ

= −
 

exp(θξε)∗ιξεdϑε dθ, (3.12)

which shows that dμε is unchanged when ϑε is subject to a gauge transformation. In other
words dμε depends on ϑε only through the presymplectic form −dϑε . The statement and
proof of the following Theorem make this important property manifestly clear, order by
order in ε.

THEOREM 3.5 (Formulas for the adiabatic invariant). Suppose ż = ε−1Vε(z) is a nearly
periodic Hamiltonian system with presymplectic form −dϑε , Hamiltonian Hε and limiting
roto-rate vector ξ0. The system’s roto-rate vector ξε is Hamiltonian in the sense that

ιξεdϑε = −dμε, (3.13)

where με is the system’s adiabatic invariant. Moreover, the first four coefficients of the
series με = μ0 + εμ1 + ε2μ2 + · · · are given by

μ0 = ιξ0〈ϑ0〉, (3.14)

μ1 = ιξ0〈ϑ1〉 − LI0Ṽ1
μ0, (3.15)

μ2 = ιξ0〈ϑ2〉 + 1
2

〈
dϑ0(Lξ0 I0Ṽ1, I0Ṽ1)

〉
+
 (

1
2
LZ1,θ (μ1 + μθ1)+ LZ2,θ μ0

)
dθ, (3.16)

μ3 = ιξ0〈ϑ3〉 + 2
3
〈dϑ2(I0Ṽ1, ξ0)〉 − 2

3
〈dϑ2〉(I0Ṽ1, ξ0)− 1

3
〈dϑ1(Lξ0 I0Ṽ1, I0Ṽ1)〉

+ 1
3

〈
ιLξ0 I0Ṽ1

dϑ1

〉
(I0Ṽ1)− 1

6
〈dϑ0([Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1)〉

+ 1
6

dϑ0(〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, I0Ṽ1)+ 1
3
〈dϑ0(Lξ0 I0Ṽ1, I0Ṽ2)〉

+ 1
3
〈dϑ0(Lξ0 I0Ṽ1, I0[I0Ṽ1, 〈V1〉])〉 + 1

6
〈dϑ0(Lξ0 I0Ṽ1, I0[I0Ṽ1, Ṽ1]osc)〉

+ 1
6
〈〈dϑ1〉(Lξ0 I0Ṽ1, I0Ṽ1)〉 − 1

6
LI0Ṽ1

〈dϑ0(Lξ0 I0Ṽ1, I0Ṽ1)〉
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+
 (

2
3
LZ2,θ μ1 + 1

3
LZ2,θ μ

θ
1 + 1

6
L2

Z1,θ
μθ1 + 1

3
LZ1,θ μ2

)
dθ

+
 

LZ3,θ+(1/6)[Z1,θ ,Z2,θ ]μ0 dθ, (3.17)

where the vector fields Z1,θ ,Z2,θ ,Z3,θ are given by

Z1,θ = I0{Ṽ1}, (3.18)

Z2,θ = I0{Ṽ2} + I0[I0{Ṽ1}, 〈V1〉] + 1
2

I0{[I0Ṽ1, Ṽ1]}osc − 1
2

[I0Ṽ1, I0Ṽθ
1 ], (3.19)

Z3,θ = −1
2

ˆ θ

0
I0[〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, Ṽθ1

1 ] dθ1

+ I0{Ṽ3} + I0[I0{Ṽ1}, 〈V2〉]osc + I0[I0{Ṽ2}, 〈V1〉]osc

+ 1
2

I0{[I0Ṽ2, Ṽ1]}osc + 1
2

I0{[I0Ṽ1, Ṽ2]}osc + 1
3

I0{[I0Ṽ1, [I0Ṽ1, Ṽ1]]}osc

+ I0[I0[I0{Ṽ1}, 〈V1〉], 〈V1〉] + 1
2

I0[I0{[I0Ṽ1, Ṽ1]}osc, 〈V1〉]

+ 1
2

I0{[I0Ṽ1, [I0Ṽ1, 〈V1〉]]}osc + 1
12

[I0(Ṽθ
1 + Ṽ1), [I0Ṽ1, I0Ṽθ

1 ]] + 1
2
{[I0Ṽ1, I0Ṽ2]}

+ 1
2

[
I0{Ṽ2} + I0[I0{Ṽ1}, 〈V1〉] + 1

2
I0{[I0Ṽ1, Ṽ1]}osc, I0(Ṽ1 + Ṽθ

1 )

]
, (3.20)

where {A} = Aθ − A for any vector field A.

Proof. In order to establish (3.13) it is sufficient to compute the exterior derivative of
με = ιξε ϑ̄ε directly:

dμε = dιξε ϑ̄ε = Lξε ϑ̄ε − ιξεdϑ̄ε = −ιξεdϑε, (3.21)

where we have made use of (3.9) and (3.10) from the proof of Lemma 3.4.
In order to obtain formulas for the μk we will proceed in two steps. First we will use

Stokes’ theorem to identify an alternative all-orders expression for με that obviates how
με changes when ϑε is subject to the gauge transformation ϑε �→ ϑε + αε with αε closed.
Then we will use the perturbative BCH formula (cf. Lemma 2.8) to expand the resulting
expression as a power series in ε.

Fix z ∈ Z and define the mapping S : S1 × [0, ε] → Z : (θ, λ) �→ exp(θ ξλ)(z). Choose
an orientation for S1 × [0, ε] by declaring that the ordered basis (∂θ , ∂λ) is positively
oriented. By Stokes’ theorem

ˆ
S1×[0,ε]

dS∗ϑε =
ˆ

S1×{0}
S∗ϑε −

ˆ
S1×{ε}

S∗ϑε, (3.22)

where S1 × {0} and S1 × {ε} are each oriented in the sense of increasing θ ∈ S1.
Accounting for these orientation conventions, (3.22) may be re-written in terms of definite
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integrals as
ˆ ε

0

ˆ 2π

0
[S∗dϑε](∂θ , ∂λ) dθ dλ =

ˆ 2π

0
[ϑε(ξ0)](exp(θ ξ0)(z)) dθ

−
ˆ 2π

0
[ϑε(ξε)](exp(θ ξε)(z)) dθ

= 2πιξ0〈ϑε〉(z)− 2πιξε ϑ̄ε(z), (3.23)

which shows that the adiabatic invariant με = ιξε ϑ̄ε may be expressed as

με(z) = ιξ0〈ϑε〉(z)+
 ˆ ε

0
[S∗dϑε](∂λ, ∂θ ) dθ dλ. (3.24)

Note that the second term on the right-hand side is in a somewhat unwieldy form. To
rectify this issue first observe that the partial derivatives of exp(θξλ) may be expressed as

∂θ exp(θξλ) = ξλ ◦ exp(θξλ), (3.25)

∂λ exp(θξλ) = (exp(−θξ0)
∗φ(−LZλ,θ )∂λZλ,θ ) ◦ exp(θ ξλ), (3.26)

where Zλ,θ = ln(exp(−θξ0) ◦ exp(θξλ)), φ(z) = (exp(z)− 1)/z, and we have made use of
(2.11). Therefore the scalar [S∗dϑε](∂λ, ∂θ ) may be written

[S∗dϑε](∂λ, ∂θ ) = exp(θξλ)∗(dϑε(exp(−θ ξ0)
∗φ(−LZλ,θ )∂λZλ,θ , ξλ))(z)

= [exp(Zλ,θ )∗dϑθε ](exp(Zλ,θ )∗φ(−LZλ,θ )∂λZλ,θ , ξλ)(z)

= [exp(Zλ,θ )∗dϑθε ](φ(LZλ,θ )∂λZλ,θ , ξλ)(z). (3.27)

An all-orders formula for the adiabatic invariant με is therefore

με = ιξ0〈ϑε〉 +
 ˆ ε

0
[exp(Zλ,θ )∗dϑθε ](φ(LZλ,θ )∂λZλ,θ , ξλ) dλ dθ. (3.28)

This is the formula we will use to compute the coefficients of the series με . As promised,
if ϑε is subject to the gauge transformation ϑε �→ ϑε + αε , with αε closed, the formula
(3.28) shows that με transforms as με �→ με + ιξ0〈αε〉. The change in με , �με = ιξ0〈αε〉,
evaluated at z ∈ Z may therefore be written as the closed loop integral

�με(z) = 1
2π

˛
γz

αε, (3.29)

where the z-dependent curve γz is given by γz(θ) = exp(θξ0)(z). Because αε is closed the
integral

¸
γz
αε depends only on the homotopy class of γz. Since γz depends continuously on

z this means �με is constant on path-connected components of Z. In particular, because
the path-components are open subsets of Z, d�με = 0, as inferred earlier from the abstract
argument related to (3.12). In fact, this argument shows that the change in με induced by
a gauge transformation is equal to (1/(2π) times) the cohomology class of αε paired with
the cycle defined by the ξ0-orbit γz. In particular if either (a) the first deRham cohomology
group of Z is trivial, or (b) the ξ0-orbits are each homologous to a point then με is gauge
independent.
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Expanding (3.28) in a power series is facilitated by first recording the more elementary
power series expansions involving the coefficients of Zλ,θ = εZ1,θ + ε2Z2,θ + ε3Z3,θ + · · ·
given by

exp(Zλ,θ )∗dϑθε = dϑθε + λLZ1,θdϑ
θ
ε + λ2

(
LZ2,θ + 1

2
L2

Z1,θ

)
dϑθε + O(λ3), (3.30)

φ(LZλ,θ )∂λZλ,θ = Z1,θ + λ 2Z2,θ + λ2

(
3Z3,θ + 1

2
[Z1,θ ,Z2,θ ]

)
+ O(λ3). (3.31)

Substituting these expansions into (3.28) and performing the λ-integrals then gives

με = ιξ0〈ϑε〉 + ε

 
dϑθε (Z1,θ , ξ0) dθ

+ ε2
 (

1
2

[LZ1,θdϑ
θ
ε

]
(Z1,θ , ξ0)+ 1

2
dϑθε (Z1,θ , ξ1)+ dϑθε (Z2,θ , ξ0)

)
dθ

+ ε3
 (

2
3

[LZ1,θdϑ
θ
ε

]
(Z2,θ , ξ0)+ 2

3
dϑθε (Z2,θ , ξ1)+ 1

3

[LZ1,θdϑ
θ
ε

]
(Z1,θ , ξ1)

+ 1
3

[
LZ2,θdϑ

θ
ε + 1

2
L2

Z1,θ
dϑθε

]
(Z1,θ , ξ0)+ dϑθε

(
Z3,θ + 1

6
[Z1,θ ,Z2,θ ], ξ0

)

+1
3

dϑθε (Z1,θ , ξ2)

)
dθ + O(ε4). (3.32)

The task of finding formulas for the μk is therefore reduced to the problem of finding
expressions for the Zk,θ and then substituting them into (3.32).

In order to compute terms in the series Zλ,θ it is helpful to reuse the perturbative BCH
formula provided by Lemma 2.8. Setting ε = λ, A = θξ0 and B = θ(ξ1 + λ ξ2 + λ2ξ3 +
· · · ) the first several coefficients of Zλ,θ given by Lemma 2.8 may be expressed in integral
form as

Z0,θ = 0, (3.33)

Z1,θ =
ˆ θ

0
ξ
θ1
1 dθ1, (3.34)

Z2,θ =
ˆ θ

0
ξ
θ1
2 dθ1 + 1

2

ˆ θ

0

ˆ θ1

0
[ξ θ2

1 , ξ
θ1
1 ] dθ2 dθ1, (3.35)

Z3,θ =
ˆ θ

0
ξ
θ1
3 dθ1 + 1

2

ˆ θ

0

ˆ θ1

0
[ξ θ2

1 , ξ
θ1
2 ] dθ2 dθ1 + 1

2

ˆ θ

0

ˆ θ1

0
[ξ θ2

2 , ξ
θ1
1 ] dθ2 dθ1

+1
6

ˆ θ

0

ˆ θ1

0

ˆ θ2

0

(
[ξ θ3

1 , [ξ θ2
1 , ξ

θ1
1 ]] + [[ξ θ3

1 , ξ
θ2
1 ], ξ θ1

1 ]
)

dθ3 dθ2 dθ1. (3.36)

Remarkably, most of the integrations indicated here may be carried out explicitly. First
consider Z1,θ . By inserting (2.24) for ξ1 into (3.34) the vector field Z1,θ may be expressed
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as

Z1,θ =
ˆ θ

0
Lξ0 I0Ṽθ1

1 dθ1

= I0Ṽθ
1 − I0Ṽ1, (3.37)

which no longer contains any integrals. Similarly, by inserting (2.24) and (2.25) into (3.35)
the vector field Z2,θ becomes

Z2,θ =
ˆ θ

0

(
Lξ0 I0Ṽθ1

2 + Lξ0 I0[I0Ṽθ1
1 , 〈V1〉] + 1

2
Lξ0 I0[I0Ṽθ1

1 , Ṽθ1
1 ]osc

)
dθ1

+ 1
2

ˆ θ

0
[Lξ0 I0Ṽθ1

1 , I0Ṽθ1
1 ] dθ1 + 1

2

ˆ θ

0

ˆ θ1

0
[Lξ0 I0Ṽθ2

1 ,Lξ0 I0Ṽθ1
1 ] dθ2 dθ1

= I0Ṽθ
2 + I0[I0Ṽθ

1 , 〈V1〉] + 1
2

I0[I0Ṽθ
1 , Ṽθ

1 ]osc

− I0Ṽ2 − I0[I0Ṽ1, 〈V1〉] − 1
2

I0[I0Ṽ1, Ṽ1]osc + 1
2

ˆ θ

0
[Lξ0 I0Ṽθ1

1 , I0Ṽθ1
1 ] dθ1

+ 1
2

ˆ θ

0
[I0Ṽθ1

1 ,Lξ0 I0Ṽθ1
1 ] dθ1 − 1

2

ˆ θ

0
[I0Ṽ1,Lξ0 I0Ṽθ1

1 ] dθ1

= I0Ṽθ
2 + I0[I0Ṽθ

1 , 〈V1〉] + 1
2

I0[I0Ṽθ
1 , Ṽθ

1 ]osc

− I0Ṽ2 − I0[I0Ṽ1, 〈V1〉] − 1
2

I0[I0Ṽ1, Ṽ1]osc − 1
2

[I0Ṽ1, I0Ṽθ
1 ], (3.38)

where the integrals that could not be evaluated by recognizing a total derivative have
cancelled, apparently fortuitously. Finally consider Z3,θ , which is the sum of a single
integral, a pair of double integrals and a triple integral. The triple integral may be partially
simplified by making use of (2.24) for ξ1 and recognizing total derivatives according to

1
6

ˆ θ

0

ˆ θ1

0

ˆ θ2

0
([ξ θ3

1 , [ξ θ2
1 , ξ

θ1
1 ]] + [[ξ θ3

1 , ξ
θ2
1 ], ξ θ1

1 ]) dθ3 dθ2 dθ1

= 1
3

ˆ θ

0
[[Lξ0 I0Ṽθ2

1 , I0Ṽθ2
1 ], I0Ṽθ2

1 ] dθ2

+ 1
6

ˆ θ

0

(
1
2
∂θ2 [I0Ṽθ2

1 , [I0Ṽθ2
1 , I0(Ṽθ

1 + Ṽ1)]] − 3
2

[[Lξ0 I0Ṽθ2
1 , I0Ṽθ2

1 ], I0(Ṽθ
1 + Ṽ1)]

)
dθ2

+ 1
6

[I0Ṽ1, [I0Ṽ1, I0Ṽθ
1 ]] − 1

6
[[I0Ṽ1, I0Ṽθ

1 ], I0Ṽθ
1 ]

= 1
3

ˆ θ

0
[[Lξ0 I0Ṽθ2

1 , I0Ṽθ2
1 ], I0Ṽθ2

1 ] dθ2

− 1
4

ˆ θ

0
[[Lξ0 I0Ṽθ2

1 , I0Ṽθ2
1 ], I0(Ṽθ

1 + Ṽ1)] dθ2

+ 1
12

[I0(Ṽθ
1 + Ṽ1), [I0Ṽ1, I0Ṽθ

1 ]], (3.39)
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where we have used the identity

[I0Ṽθ2
1 , [Lξ0 I0Ṽθ2

1 , I0(Ṽθ
1 + Ṽ1)]] = 1

2
∂θ2 [I0Ṽθ2

1 , [I0Ṽθ2
1 , I0(Ṽθ

1 + Ṽ1)]]

− 1
2

[[Lξ0 I0Ṽθ2
1 , I0Ṽθ2

1 ], I0(Ṽθ
1 + Ṽ1)]. (3.40)

The double integrals may be partially simplified in a similar manner upon making use of
(2.24) and (2.25) according to

1
2

ˆ θ

0

ˆ θ1

0
[ξ θ2

1 , ξ
θ1
2 ] dθ2 dθ1 + 1

2

ˆ θ

0

ˆ θ1

0
[ξ θ2

2 , ξ
θ1
1 ] dθ2 dθ1

+ 1
2

ˆ θ

0
[ξ θ2

2 , I0Ṽθ
1 ] dθ2 − 1

2

ˆ θ

0
[ξ θ2

2 , I0Ṽθ2
1 ] dθ2

=
ˆ θ

0
[I0Ṽθ1

1 , ξ
θ1
2 ] dθ1 + 1

2

ˆ θ

0
[ξ θ1

2 , I0(Ṽ1 + Ṽθ
1 )] dθ1

= 1
2

[
I0Ṽθ

2 + I0[I0Ṽθ
1 , 〈V1〉] + 1

2
I0[I0Ṽθ

1 , Ṽθ
1 ]osc, I0(Ṽ1 + Ṽθ

1 )

]
+ 1

2
[I0Ṽθ

1 , I0Ṽθ
2 ]

− 1
2

[
I0Ṽ2 + I0[I0Ṽ1, 〈V1〉] + 1

2
I0[I0Ṽ1, Ṽ1]osc, I0(Ṽ1 + Ṽθ

1 )

]
− 1

2
[I0Ṽ1, I0Ṽ2]

+ 1
4

ˆ θ

0
[[Lξ0 I0Ṽθ1

1 , I0Ṽθ1
1 ], I0(Ṽ1 + Ṽθ

1 )] dθ1

+ 1
2

ˆ θ

0
[I0Ṽθ1

1 ,Lξ0 I0Ṽθ1
2 ] dθ1 + 1

2

ˆ θ

0
[I0Ṽθ1

2 ,Lξ0 I0Ṽθ1
1 ] dθ1

+ 1
2

ˆ θ

0
[I0Ṽθ1

1 , 〈[Lξ0 I0Ṽ1, I0Ṽ1]〉] dθ1 +
ˆ θ

0
[I0Ṽθ1

1 , I0[Lξ0 I0Ṽθ1
1 ,Vθ1 ]osc] dθ1.

(3.41)

Adding expressions (3.41) and (3.39) to
´ θ

0 ξ
θ1
3 dθ1 with ξ3 given by (2.26), and accounting

for the various fortuitous cancellations that occur, the net result for Z3,θ is (3.20).
Finally, we can substitute (3.18), (3.19), and (3.20) into the formula (3.32) in order to

obtain explicit expressions for μ0, μ1, μ2, and μ3. The O(1) terms in (3.32) give the result
μ0 = ιξ0〈ϑ0〉, which is consistent with Lemma 3.3 and (3.14). Note that Lemma 3.3 says
dμ0 = ω−1

0 dH0, which generalizes the commonly encountered expression that gives the
adiabatic invariant as (energy)/(frequency). The O(ε) terms in (3.32) give the result

μ1 = ιξ0〈ϑ1〉 +
 

dϑ0(Z1,θ , ξ0) dθ

= ιξ0〈ϑ1〉 +
 

LZ1,θ μ0 dθ

= ιξ0〈ϑ1〉 − LI0Ṽ1
μ0, (3.42)
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which reproduces (3.15). The O(ε2) terms of (3.32) give

μ2 = ιξ0〈ϑ2〉 +
 

dϑθ1 (Z1,θ , ξ0) dθ

+
 (

1
2

[LZ1,θdϑ0
]
(Z1,θ , ξ0)+ 1

2
dϑ0(Z1,θ , ξ1)+ dϑ0(Z2,θ , ξ0)

)
dθ,

which may be simplified by making use of the identities

dϑθ1 + LZ1,θdϑ0 = dϑ1, (3.43)

ιξ1 dϑ0 + ιξ0 dϑ1 = −dμ1. (3.44)

In particular,

μ2 = ιξ0〈ϑ2〉 +
 

dϑθ1 (Z1,θ , ξ0) dθ

+
 (

1
2

[
dϑ1 − dϑθ1

]
(Z1,θ , ξ0)+ 1

2
(dμ1 + ιξ0 dϑ1)(Z1,θ )+ dϑ0(Z2,θ , ξ0)

)
dθ

= ιξ0〈ϑ2〉 + 1
2

 
dϑθ1 (Z1,θ , ξ0) dθ +

 (
1
2
LZ1,θ μ1 + LZ2,θ μ0

)
dθ

= ιξ0〈ϑ2〉 + 1
2

 
dϑ0(ξ

θ
1 ,Z1,θ ) dθ +

 (
1
2
LZ1,θ (μ1 + μθ1)+ LZ2,θ μ0

)
dθ

= ιξ0〈ϑ2〉 + 1
2

〈
dϑ0(Lξ0 I0Ṽ1, I0Ṽ1)

〉
+
 (

1
2
LZ1,θ (μ1 + μθ1)+ LZ2,θ μ0

)
dθ, (3.45)

which reproduces (3.16). Lastly, the O(ε3) terms in (3.32) give

μ3 = ιξ0〈ϑ3〉 +
 

dϑθ2 (Z1,θ , ξ0) dθ

+
 (

1
2

[LZ1,θdϑ
θ
1

]
(Z1,θ , ξ0)+ 1

2
dϑθ1 (Z1,θ , ξ1)+ dϑθ1 (Z2,θ , ξ0)

)
dθ

+
 (

2
3

[LZ1,θdϑ0
]
(Z2,θ , ξ0)+ 2

3
dϑ0(Z2,θ , ξ1)+ 1

3

[LZ1,θdϑ0
]
(Z1,θ , ξ1)

+ 1
3

[
LZ2,θdϑ0 + 1

2
L2

Z1,θ
dϑ0

]
(Z1,θ , ξ0)+ dϑ0

(
Z3,θ + 1

6
[Z1,θ ,Z2,θ ], ξ0

)

+1
3

dϑ0(Z1,θ , ξ2)

)
dθ, (3.46)

which can again be simplified using

dϑθ2 + LZ1,θdϑ
θ
1 + LZ2,θdϑ0 + 1

2
L2

Z1,θ
dϑ0 = dϑ2, (3.47)

ιξ2 dϑ0 + ιξ1 dϑ1 + ιξ0 dϑ2 = −dμ2 (3.48)

https://doi.org/10.1017/S002237782000080X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000080X


24 J. W. Burby and J. Squire

together with the identities (3.43)–(3.44), leading to

μ3 = ιξ0〈ϑ3〉 + 2
3

 
dϑ2(Z1,θ , ξ0) dθ

+ 1
3

 
dϑθ1 (Z1,θ , ξ

θ
1 ) dθ − 1

6

 
dϑ1(Z1,θ , ξ

θ
1 ) dθ

− 1
3

 
dϑ0(Z2,θ , ξ

θ
1 ) dθ − 1

6

 
dϑ0(Z1,θ ,LZ1,θ ξ

θ
1 ) dθ

+
 (

2
3
LZ2,θ μ1 + 1

3
LZ2,θ μ

θ
1 + 1

6
L2

Z1,θ
μθ1 + 1

3
LZ1,θ μ2

)
dθ

+
 

LZ3,θ+ 1
6 [Z1,θ ,Z2,θ ]μ0 dθ. (3.49)

Using the identity
 

dϑ0([I0Ṽ1, I0Ṽθ
1 ],Lξ0 I0Ṽθ

1 ) dθ = −1
2
LI0Ṽ1

〈dϑ0(Lξ0 I0Ṽ1, I0Ṽ1)〉

− 1
2

dϑ̃1 ·
〈
Lξ0 I0Ṽ1 ∧ I0Ṽ1

〉
, (3.50)

together with (2.25) and (3.38), the first five integrals in (3.49) may be evaluated explicitly,
resulting in the desired expression (3.17). �

4. Example 1: charged particle in a magnetic field

As an example and verification test for the formulas provided by Theorem 3.5, we will
now use Theorem 3.5 to recover the first two terms of the well-known adiabatic invariant
series for a charged particle in a magnetic field. The nearly periodic Hamiltonian system
that describes such charged particles is the ODE on Q × R

3 given by

v̇ = 1
ε
v × B(x),

ẋ = v,

⎫⎬
⎭ (4.1)

where Q ⊂ R
3 is an open subset representing the spatial domain, and B = ∇ × A is a

magnetic field on Q. If b = B/|B| denotes the unit vector along the magnetic field then
V0 = v × B · ∂v; V1 = v · ∂x; the limiting roto-rate vector is given by ξ0 = v × b · ∂v; the
frequency function ω0 = |B|; and the Hamiltonian structure is specified by the one-form
ϑε = A · dx + εv · dx and the Hamiltonian Hε = ε 1

2 |v|2. The exponential of the limiting
roto-rate vector is given by

exp(θξ0)(x, v) = (x, v · bb + sin θv × b + cos θb × (v × b)), (4.2)

where b should be evaluated at x. Note that we have introduced the useful shorthand
notation u · ∂x = ui∂xi and w · ∂v = wi∂vi ; ∂x and ∂v may be interpreted as 3-component
vectors whose components are partial derivative operators. Also note that the limiting
roto-rate ξ0, and therefore the full roto-rate ξε , is well defined for all particles, including
those with field-aligned velocity vectors. This is a significant point because the usual
coordinate system (x, v‖, |v⊥|, θ) used to study guiding centre dynamics has a singularity
where |v⊥| = 0.
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Consider first μ0, which according to Theorem 3.5 is given by (3.14). Because the
flow of ξ0 leaves x unchanged the average 〈ϑ0〉 = ϑ0 = A · dx. Therefore μ0 = ιξ0ϑ0 =
(A · dx)(v × b · ∂v) = 0. This says that the adiabatic invariant series for this system is
degenerate to leading order.

Next consider μ1, which according to Theorem 3.5 is given by (3.15). Sinceμ0 vanishes,
the general formula simplifies to μ1 = ιξ0〈ϑ1〉, where ϑ1 = v · dx. The average of this
one-form is given by

〈ϑ1〉 =
 

exp(θξ0)
∗ϑ1 dθ =

 
(vθ · dx) dθ = (v · b)b · dx, (4.3)

where we have introduced the shorthand vθ = v · bb + sin θv × b + cos θb × (v × b).
Therefore the first-order term in the adiabatic invariant series is μ1 = ((v · b)b · dx)(v ×
b · ∂v) = 0. A double degeneracy!

The calculation starts to get interesting with μ2. Due to the double degeneracy, and the
fact that ϑ2 = 0, the general formula (3.16) simplifies to μ2 = 1

2 〈dϑ0(Lξ0 I0Ṽ1, I0Ṽ1)〉. For
the sake of evaluating this expression it is useful to record the following formulas for Vθ

1 ,
I0Ṽθ

1 and Lξ0 I0Ṽθ
1 ,

Vθ
1 = (v · bb) · ∂x + 1

2
{([v × b] · ∇b)× v + 2(v · b)(b × κ)

×v − (b × [v⊥ · ∇b])× v} · ∂v

+ cos θ (v⊥ · ∂x + {(b × [v⊥ · ∇b])× v − (v · b)(b × κ)× v} · ∂v)

+ sin θ (v × b · ∂x + {(v · b)κ × v + (b × [[v × b] · ∇b])× v} · ∂v)

− 1
2

cos 2θ {([v × b] · ∇b)× v + (b × [v⊥ · ∇b])× v} · ∂v

+ 1
2

sin 2θ {(v⊥ · ∇b)× v − (b × [[v × b] · ∇b])× v} · ∂v, (4.4)

I0Ṽθ
1 = −|B|−1[v⊥ cos θ + v × b sin θ ] · ∇ ln |B|(v × b) · ∂v

+ |B|−1 sin θ (v⊥ · ∂x + {(b × [v⊥ · ∇b])× v − (v · b)(b × κ)× v} · ∂v)

− |B|−1 cos θ (v × b · ∂x + {(v · b)κ × v + (b × [[v × b] · ∇b])× v} · ∂v)

− 1
4
|B|−1 sin 2θ {([v × b] · ∇b)× v + (b × [v⊥ · ∇b])× v} · ∂v

− 1
4
|B|−1 cos 2θ {(v⊥ · ∇b)× v − (b × [[v × b] · ∇b])× v} · ∂v, (4.5)

Lξ0 I0Ṽθ
1 = −|B|−1[v × b cos θ − v⊥ sin θ ] · ∇ ln |B|(v × b) · ∂v

+ |B|−1 cos θ (v⊥ · ∂x + {(b × [v⊥ · ∇b])× v − (v · b)(b × κ)× v} · ∂v)

+ |B|−1 sin θ (v × b · ∂x + {(v · b)κ × v + (b × [[v × b] · ∇b])× v} · ∂v)

− 1
2
|B|−1 cos 2θ {([v × b] · ∇b)× v + (b × [v⊥ · ∇b])× v} · ∂v

+ 1
2
|B|−1 sin 2θ {(v⊥ · ∇b)× v − (b × [[v × b] · ∇b])× v} · ∂v, (4.6)
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where κ = b · ∇b is the field-line curvature and v⊥ = b × (v × b) is the projection of the
velocity into the plane perpendicular to the magnetic field. If U = Ux · ∂x + Uv · ∂v and
W = Wx · ∂x + Wv · ∂v are any two vector fields on Q × R

3 then dϑ0(U,V) = B · Ux ×
Wx. In particular, when U is given by (4.6) and W is given by (4.5) the expression becomes
dϑ0(Lξ0 I0Ṽθ

1 , I0Ṽθ
1 ) = |B|−1|v × b|2 for each θ ∈ S1. It follows that μ2 = 1

2 |B|−1|v × b|2,
which is the familiar expression for the leading term in the magnetic moment series. Note
that because μ2 is the first non-trivial term in the adiabatic invariant series for this system
standard convention is to refer to this quantity as μ0 rather than μ2. We have not adopted
this convention in this article because not all nearly periodic Hamiltonian systems exhibit
the double degeneracy μ0 = μ1 = 0.

Finally, consider μ3, which should give the first correction to the magnetic moment.
Because ϑ2 = ϑ3 = 0, V2 = 0, μ0 = 0 and μ1 = 0 the general formula (3.17) reduces to

μ3 = −1
3
〈dϑ1(Lξ0 I0Ṽ1, I0Ṽ1)〉

+ 1
3

〈
ιLξ0 I0Ṽ1

dϑ1

〉
(I0Ṽ1)− 1

6
〈dϑ0([Lξ0 I0Ṽ1, I0Ṽ1], I0Ṽ1)〉

+ 1
6

dϑ0(〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, I0Ṽ1)

+ 1
3
〈dϑ0(Lξ0 I0Ṽ1, I0[I0Ṽ1, 〈V1〉])〉 + 1

6
〈dϑ0(Lξ0 I0Ṽ1, I0[I0Ṽ1, Ṽ1]osc)〉

+ 1
6
〈〈dϑ1〉(Lξ0 I0Ṽ1, I0Ṽ1)〉 − 1

3
LI0Ṽ1

〈dϑ0(Lξ0 I0Ṽ1, I0Ṽ1)〉. (4.7)

In order to eliminate the possibility of human error in evaluating each of the terms in (4.7)
we used the vector calculus simplification tool VEST to perform the calculation. VEST
was originally developed in Squire, Burby & Qin (2014) for the purpose of implementing
the automatic calculation of the guiding centre calculation in Burby, Squire & Qin (2013),
and is therefore admirably suited to the present calculation. The final result is

μ3 = μ0
(b × v) · ∇|B|

|B|2 + 1
4
(v · b) v · ∇b · (v × b)

|B|2

− 3
4
(v · b) (v × b) · ∇b · v

|B|2 − 5
4
(v · v)2 κ · (v × b)

|B|2 , (4.8)

which agrees with the formula from Weyssow & Balescu (1986).

5. Example 2: an adiabatic invariant for nearly periodic magnetic fields

KAM theory reveals much about the structure of toroidal magnetic fields used for
the purpose of magnetic confinement fusion. Perhaps most significantly it provides the
following stability result. If the true magnetic field within a device is close to a fiducial
field with nested toroidal flux surfaces, and the magnetic shear of the fiducial field is
bounded away from zero, then the true field will have nearly the same measure of flux
surfaces as the fiducial field. In the narrow gaps between the surviving flux surfaces,
deterministic chaos reigns.

On the other hand, KAM theory has less to say when the fiducial, unperturbed field has
vanishing shear, particularly when the rotational transform is constant and rational. For
example, Moser (1973) requires perturbations to be small relative to shear. Herman (1983)
allows for small shear, but requires strongly irrational rotational transform and introduces

https://doi.org/10.1017/S002237782000080X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000080X


General formulas for adiabatic invariants 27

an external parameter as a substitute for the non-vanishing shear condition. (The external
parameter trick is due to Rússmann, and explained for example in Rüssmann (1976).)
Non-vanishing shear ensures that many of the unperturbed flux surfaces possess strongly
non-resonant (i.e. strongly irrational) rotational transform. Such non-resonant tori survive
perturbations with relative ease, and provide the true, perturbed magnetic field with a
source of KAM tori. When all of the fiducial field lines are closed, however, this well
of non-resonant unperturbed flux surfaces runs dry. Even though the unperturbed field
contains many (non-unique) flux surfaces, each of these is strongly resonant. It would
therefore seem that closed-line fields should easily be blown apart by most perturbations.

In order to examine the susceptibility of closed field lines to magnetic perturbations,
suppose that Bε = ∇ × Aε is a non-vanishing magnetic field for each ε ∈ R. The field
Bε has nearly closed field lines if Aε depends smoothly on ε and each field line of B0 is
closed. A remarkable property of such a magnetic field is that the associated field-line
dynamical system ẋ = ε−1Bε(x) comprises a nearly periodic Hamiltonian system on Z =
Q, the field-line container. The frequency function is given by

1
ω0(x)

= 1
2π

˛
�0(x)

d�
|B| , (5.1)

where �0(x) is the unique B0-line that contains the point x ∈ Q; the limiting roto-rate
vector is ξ0 = B0/ω0; the presymplectic form is −d(Aε · dx) = −ιBεd3x; and the
Hamiltonian is Hε = 0. Therefore the general theory outlined in Kruskal (1962), as well
as the rest of this article, guarantees the existence of a field-line adiabatic invariant με for
Bε when ε is small. Since such an adiabatic invariant defines approximate flux surfaces
(surfaces that field lines traverse many times before possibly wandering away), magnetic
fields with nearly closed lines of force enjoy much more stability than KAM theory, and in
particular that theory’s assumption of non-vanishing shear, suggests. Note, in particular,
that existence of the field-line adiabatic invariant με does not require the perturbation
Bε − B0 to be non-resonant.

The robustness of magnetic fields with nearly closed field lines is consistent with
previous experimental and theoretical analyses of magnetic fields and fluid flows with
regions of low or sign-reversing shear. See for example Firpo & Constantinescu (2011) for
a fusion-oriented study and del Castillo-Negrete & Morrison (1992) for an investigation
of analogous ideas in the context of sheared fluid flow. In any low-shear region, a rational
number q/p may be found that uniformly approximates the unperturbed field’s rotational
transform ι(ψ). By writing ι(ψ) = q/p + (ι(ψ)− q/p), the unperturbed magnetic field
may then be expressed as a field with closed lines plus a correction that is proportional
to the shear. Because the shear is small by hypothesis it is therefore natural to lump
the correction term δι(ψ) = ι(ψ)− q/p together with any magnetic perturbations that
may be present. In this manner the magnetic field within a region of small shear may be
expressed as a magnetic field with nearly closed field lines. The field-line dynamics within
a low-shear region therefore possesses an adiabatic invariant με . Moreover, approximate
level sets of με may be used to quickly predict the field-line transport effects, deleterious
or not, of the perturbation. This approach to understanding the impacts of perturbations on
low-shear magnetic fields appears to have gone largely unnoticed; the preferred approach
has been the more cumbersome and obtuse action-angle formalism.

In order to gain insight into the significance of the adiabatic flux surfaces defined
by με , consider the formulas for με provided by Theorem 3.5. According to (3.14)
the coefficient μ0 = const. since dμ0 = −ιξ0 dϑ0 = ω−1

0 ιB0 ιB0 d
3x = 0. Therefore the first

possibly non-trivial coefficient is μ1 = ιξ0〈ϑ1〉. Apparently the value of μ1 at x ∈ Q
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may be written as the line integral μ1(x) = (2π)−1
¸
�0(x)

A1 · dx, with �0(x) defined as
above and oriented so that B(x) is a positive basis for Tx�0(x). This quantity can be
understood as a magnetic flux as follows. Suppose that Q is path connected, fix x0 ∈ Q and
define the constant μ∗

ε = (2π)−1
¸
�0(x0)

Aε · dx. The quantity μ̄ε = με − μ∗
ε is an adiabatic

invariant since it differs from με by a constant. The first non-zero coefficient of μ̄ε is
μ̄1(x) = μ1(x)− μ∗

1, which is, up to a constant, the same as μ1. Let x(λ) be a curve
in Q with, ∂λx(λ) �= 0, x(0) = x0, and x(1) = x. Set R0(x) = ⋃

λ∈[0,1] �0(x(λ)). Note that
R0(x) is a flux ribbon for B0 because it is a union of B0-lines. Now apply Stokes’ theorem
according to

μ̄1(x) = 1
2π

˛
�0(x)

A1 · dx − 1
2π

˛
�0(x0)

A1 · dx

= 1
2π

ˆ
R0(x)

B1 · dS, (5.2)

where R0(x) is oriented so that (∂λx(λ),B(x(λ)) is a positive basis for Tx(λ)R0(x). This
shows that, up to an unimportant additive constant, μ1(x) is equal to the (normalized) flux
of B1 through any flux ribbon R0(x) whose boundary is ∂R0(x) = �0(x) ∪ �0(x0). If B0
contains a single magnetic axis L then it is permissible to set �0(x0) = L. In this special
case 2πμ̄1 is a perturbed poloidal flux.

The approximate flux surfaces defined by the level sets of μ1 (or equivalent μ̄1)
determine how well field lines are confined within Q. The most favourable case for
confinement occurs when the μ1-surfaces are nested tori contained in Q, but more exotic
foliations may occur depending on the form of the perturbation B1. For example, let
Bε = B0 + ε B1 with B0 = B0(R0/R)eφ a tokamak vacuum field and B1 = α∇ψ × ∇φ.
Here, (R, φ,Z) are standard cylindrical coordinates, ψ is an arbitrary function, and α is a
constant. The function μ1 is then

μ1(R, φ,Z) = α
1

2π

ˆ 2π

0
ψ(R, φ̄,Z) dφ̄ = α〈ψ〉(R,Z), (5.3)

where the angle brackets denote an azimuthal average. In this example adiabatic flux
surfaces are surfaces of revolution with poloidal cross-sections given by level sets of
〈ψ〉(R,Z). If ψ(R,Z) = (R − R0)

2 + Z2 the poloidal cross-sections are nested circles
centred at (R,Z) = (R0, 0), indicating confinement. However, if ψ(R,Z) = (R − R0)Z the
cross-sections are hyperbolas, indicating no such confinement.

6. Conclusion

In this article, we have derived and verified general coordinate-independent expressions
for the adiabatic invariant associated with a nearly periodic Hamiltonian system. These
formulas are summarized in Theorem 3.5. As a byproduct of our derivation, we have
also derived coordinate-independent expressions for the roto-rate vector associated with
a possibly non-Hamiltonian nearly periodic system. These formulas are summarized
in Theorem 2.11. Using these formulas, adiabatic invariants may be computed more
efficiently and directly than prior procedure-based methods. It is worth emphasizing that
none of our results imply convergence of the formal power series that define the roto-rate
vector and the adiabatic invariant. In fact, Krikorian (2019) has recently proved that the
Birkhoff normal form near a diophantine KAM torus generically diverges.

A goal of future work will be to apply our results to infinite dimensional systems,
especially systems with slow manifolds such as ideal magnetohydrodynamics, Burby
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(2017), kinetic magnetohydrodynamics, Burby & Sengupta (2018) and Lorentz loop
dynamics, Burby (2020). See Burby & Klotz (2020) for an in-depth discussion of the
role of slow manifolds in plasma physics. Just as Cotter & Reich (2004) shows that the
long-time persistence of quasigeostrophic balance in non-dissipative geophysical fluid
flows may be explained by finding an appropriate adiabatic invariant, adiabatic invariants
in these plasma-dynamical systems may explain subtle notions such as the persistence
time scale for gyrotropy in strongly magnetized plasmas. The key concept underlying the
results of Cotter & Reich (2004) is the identification of quasigeostrophic dynamics with
motion on a slow manifold. We remark that the relationship between slow manifolds and
quasigeostrophic balance was established previously in Lorenz (1986, 1992) and Lorenz
& Krishnamurthy (1987).

Acknowledgements

Research presented in this article was supported by the Los Alamos National Laboratory
LDRD program under project number 20180756PRD4. Support for J.S. was provided
by Rutherford Discovery Fellowship RDF-U001804 and Marsden Fund grant UOO1727,
which are managed through the Royal Society Te Apārangi.
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Appendix A. How-to guide for the new formulas

In this appendix we provide explicit details on how to practically compute the various
terms in (3.14)–(3.17).

As written, these formulas involve vector fields like V , one-forms like ϑ , and two-forms
like dϑ . For those unfamiliar with exterior calculus, the index-notation equivalents of
these objects are summarized as follows:

V ↔ Vi (vector fields), (A 1)

ϑ ↔ ϑi (one-forms), (A 2)

dϑ ↔ (dϑ)ij (two-forms). (A 3)

The components of a two-form like dϑ are related to the components of ϑ according to

(dϑ)ij = ∂iϑj − ∂jϑi, (A 4)

and are therefore anti-symmetric. Actually all two-forms are antisymmetric. A one-form
ϑ can be contracted with a single vector field V in order to produce a scalar field ϑ(V).
A two-form dϑ can be contracted with two vector fields V1,V2 in order to produce a
scalar field, dϑ(V1,V2). In index notation these contraction operations are summarized as
follows,

ϑ(V) = ϑiVi, (A 5)

dϑ(V1,V2) = (dϑ)ijVi
1V j

2 . (A 6)

A two-form dϑ may also be contracted on the left with a single vector field V to obtain a
one-form ιVdϑ given by

(ιVdϑ)i = V j(dϑ)ji. (A 7)
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As for calculus, there are two important operations that must be handled. The
commutator of two vector fields [V1,V2] is given by

[V1,V2]i = V j
1∂jVi

2 − V j
2∂jVi

1. (A 8)

The Lie derivative of a scalar μ along a vector field V , LVμ, is given by

LVμ = Vi∂iμ. (A 9)

One non-trivial operation that must be performed when evaluating the formulas
(3.14)–(3.17) is the U(1)-average, denoted 〈·〉. In order to carry out this operation
analytically it is necessary to have an explicit expression for the phase-space mappings ζθ :
z �→ exp(θξ0)(z) ≡ ζθ (z). Practically speaking, the value of exp(θξ0)(z) is z(θ), where z(θ)
is the unique solution of the ODE ∂θz(θ) = ξ0(z(θ)) with z(0) = z. Therefore knowledge
of the mapping ζθ is tantamount to knowledge of the general solution of the ODE
defined by ξ0. Notice that ξ0-trajectories are just reparameterizations of the leading-order
dynamical trajectories ż = V0(z). It may be helpful to find a coordinate system where ξ0
is simple in order to find an explicit expression ζθ . Two examples of ζθ (z) were given in
the text. Once ζθ (z) is known, the U(1)-average can be applied to any tensor, in particular
vector fields V and one-forms ϑ . In components, the relevant formulas are

〈V〉i(z) =
 

V j(ζθ (z)) ∂jζ
i
−θ (ζθ (z)) dθ, (A 10)

〈ϑ〉i(z) =
 
ϑj(ζθ (z)) ∂iζ

j
θ (z) dθ. (A 11)

Because the U(1)-average commutes with the exterior derivative, d, the average of a
two-form like dϑ may be computed by first finding 〈ϑ〉 using (A 11) and then computing
d〈ϑ〉 = 〈dϑ〉 using (A 4).

The least non-trivial operation encountered in (3.14)–(3.17) is the operator I0 = (LV0)
−1.

In a rough sense this operator ‘integrates along unperturbed orbits’. The easiest way to
compute I0Ṽ for a fluctuating vector field Ṽ is to use the following Fourier-series-based
trick. First compute Ṽθ = ζ ∗

θ Ṽ , which in components is given by

Ṽθ i(z) = Ṽ j(ζθ (z))∂jζ
i
−θ (ζθ (z)). (A 12)

Because ζθ (z) is 2π-periodic in θ the component Ṽθ i(z) must have a Fourier series
expansion

Ṽθ i(z) =
∑
n∈Z

Ṽ i
n(z) einθ , (A 13)

where the Fourier coefficients Ṽ i
n(z) are complex-valued functions of z. We can use

these Fourier coefficients to help solve the problem LV0 Ũ = Ṽ for Ũ given Ṽ . Note
that finding Ũ is equivalent to finding I0Ṽ . To see how, apply the pullback ζ ∗

θ to
the equation LV0 Ũ = Ṽ to obtain LV0 Ũ

θ = Ṽθ . The LHS of this equation simplifies
considerably by noting LV0 Ũ

θ = −LŨθV0 = −LŨθ (ω0ξ0) = −ξ0 LŨθ ω0 + ω0Lξ0 Ũ
θ =
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−ξ0LŨθ ω0 + ω0∂θ Ũθ . In components this identity may be written

(LV0 Ũ
θ )i = −Ũθ j∂jω0ξ

i + ω0∂θ Ũθ i. (A 14)

Therefore the Fourier components of the equation LV0 Ũ
θ = Ṽθ read

− Ũj
n∂jω0ξ

i + inω0Ũi
n = Ṽ i

n. (A 15)

This infinite sequence of algebraic equations may be solved by hand, leading to the
following formula for Ũi

n,

Ũi
n = ξ i Ṽ j

n∂jω0

(inω0)2
+ Ṽ i

n

inω0
. (A 16)

Since Ũθ is equal to Ũ = I0Ṽ when θ = 0, it follows that I0 is determined by the formula

(I0Ṽ)i =
∑
n∈Z

ξ i Ṽ j
n∂jω0

(inω0)2
+

∑
n∈Z

Ṽ i
n

inω0
, (A 17)

which can always be used to compute I0.

Appendix B. Derivation of the formula for ξ3

In the proof of Theorem 2.11 we derived the general formula (2.50) for ξ̃3, but did
not show how that formula can be manipulated in order to produce (2.26) for ξ3. In this
appendix we will complete the demonstration. The required manipulations are based on
recursive applications of the Leibniz rule for the bracket of vector fields, i.e. the Jacobi
identity. In spirit, such identities are similar to the well-known recursive Leibniz identity

ex sin x = − d
dx
(ex cos x)+ ex cos x = − d

dx
(ex cos x − ex sin x)− ex sin x.

Starting from the general formula for ξ̃3 from Theorem 2.11,

ξ̃3 = Lξ0 I0Ṽ3 + I0[Lξ0 I0Ṽ1,V2]osc + I0[Lξ0 I0Ṽ2,V1]osc

+ I0

[
Lξ0 I0[I0Ṽ1, 〈V1〉] + 1

2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1],V1

]osc

= Lξ0 I0Ṽ3 + Lξ0 I0[I0Ṽ1, 〈V2〉]osc + Lξ0 I0[I0Ṽ2, 〈V1〉]osc

+ 1
2
Lξ0 I0[I0Ṽ2, Ṽ1]osc + 1

2
Lξ0 I0[I0Ṽ1, Ṽ2]osc

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc
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+ I0

[
Lξ0 I0[I0Ṽ1, 〈V1〉] + 1

2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1],V1

]osc

= Lξ0

(
I0Ṽ3+I0[I0Ṽ1, 〈V2〉]osc+I0[I0Ṽ2, 〈V1〉]osc + 1

2
I0[I0Ṽ2, Ṽ1]osc + 1

2
I0[I0Ṽ1, Ṽ2]osc

)

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc

+ I0

[
Lξ0 I0[I0Ṽ1, 〈V1〉] + 1

2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1], 〈V1〉

]osc

+ I0

[
Lξ0 I0[I0Ṽ1, 〈V1〉] + 1

2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1], Ṽ1

]osc

= Lξ0

(
I0Ṽ3+I0[I0Ṽ1, 〈V2〉]osc+I0[I0Ṽ2, 〈V1〉]osc + 1

2
I0[I0Ṽ2, Ṽ1]osc + 1

2
I0[I0Ṽ1, Ṽ2]osc

)

+ Lξ0 I0

[
I0[I0Ṽ1, 〈V1〉] + 1

2
I0[I0Ṽ1, Ṽ1]osc, 〈V1〉

]

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc + 1
2

I0

[
[Lξ0 I0Ṽ1, I0Ṽ1]osc, 〈V1〉

]
+ I0

[
Lξ0 I0[I0Ṽ1, 〈V1〉] + 1

2
Lξ0 I0[I0Ṽ1, Ṽ1]osc + 1

2
[Lξ0 I0Ṽ1, I0Ṽ1], Ṽ1

]osc

= Lξ0

(
I0Ṽ3 + I0[I0Ṽ1, 〈V2〉]osc + I0[I0Ṽ2, 〈V1〉]osc + 1

2
I0[I0Ṽ2, Ṽ1]osc + 1

2
I0[I0Ṽ1, Ṽ2]osc

)

+ Lξ0 I0

[
I0[I0Ṽ1, 〈V1〉] + 1

2
I0[I0Ṽ1, Ṽ1]osc, 〈V1〉

]

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc + 1
2

I0

[
[Lξ0 I0Ṽ1, I0Ṽ1]osc, 〈V1〉

]
+ I0

[
Lξ0 I0[I0Ṽ1, 〈V1〉] + I0[Lξ0 I0Ṽ1, Ṽ1]osc, Ṽ1

]osc

= Lξ0

(
I0Ṽ3 + I0[I0Ṽ1, 〈V2〉]osc + I0[I0Ṽ2, 〈V1〉]osc + 1

2
I0[I0Ṽ2, Ṽ1]osc + 1

2
I0[I0Ṽ1, Ṽ2]osc

)

+ Lξ0 I0

[
I0[I0Ṽ1, 〈V1〉] + 1

2
I0[I0Ṽ1, Ṽ1]osc, 〈V1〉

]
+ 1

2
Lξ0 I0[I0Ṽ1, [I0Ṽ1, 〈V1〉]]osc

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc + [Lξ0 I0[I0Ṽ1, 〈V1〉], I0Ṽ1]osc

+ [I0[Lξ0 I0Ṽ1, Ṽ1]osc, I0Ṽ1]osc + 1
3

[I0Ṽ1, [Lξ0 I0Ṽ1, I0Ṽ1]osc]osc

− 1
3

I0[〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, Ṽ1] + 1
3

I0[〈[Lξ0 I0Ṽ1, Ṽ1]〉, I0Ṽ1]

+ 1
3
Lξ0 I0[I0Ṽ1, [I0Ṽ1, Ṽ1]]osc, (B 1)
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where we have used the identities

I0[Lξ0 I0Ṽ1,V2]osc + I0[Lξ0 I0Ṽ2,V1]osc

= Lξ0 I0[I0Ṽ1, 〈V2〉]osc + Lξ0 I0[I0Ṽ2, 〈V1〉]osc

+ 1
2
Lξ0 I0[I0Ṽ2, Ṽ1]osc + 1

2
Lξ0 I0[I0Ṽ1, Ṽ2]osc

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc, (B 2)

Lξ0 I0[I0Ṽ1, Ṽ1]osc = 2I0[Lξ0 I0Ṽ1, Ṽ1]osc − [Lξ0 I0Ṽ1, I0Ṽ1]osc, (B 3)

I0[Lξ0 I0[I0Ṽ1, 〈V1〉], Ṽ1]osc = 1
2
Lξ0 I0[I0Ṽ1, [I0Ṽ1, 〈V1〉]]osc + [Lξ0 I0[I0Ṽ1, 〈V1〉], I0Ṽ1]osc

− 1
2

I0[[Lξ0 I0Ṽ1, I0Ṽ1]osc, 〈V1〉], (B 4)

and

I0[I0[Lξ0 I0Ṽ1, Ṽ1]osc, Ṽ1]osc = [I0[Lξ0 I0Ṽ1, Ṽ1]osc, I0Ṽ1]osc + 1
3

[I0Ṽ1, [Lξ0 I0Ṽ1, I0Ṽ1]osc]osc

− 1
3

I0[〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, Ṽ1] + 1
3

I0[〈[Lξ0 I0Ṽ1, Ṽ1]〉, I0Ṽ1]

+ 1
3
Lξ0 I0[I0Ṽ1, [I0Ṽ1, Ṽ1]]osc. (B 5)

Continuing to group similar terms together,

ξ̃3 = Lξ0

(
I0Ṽ3+I0[I0Ṽ1, 〈V2〉]osc+I0[I0Ṽ2, 〈V1〉]osc + 1

2
I0[I0Ṽ2, Ṽ1]osc + 1

2
I0[I0Ṽ1, Ṽ2]osc

)

+ Lξ0 I0

[
I0[I0Ṽ1, 〈V1〉] + 1

2
I0[I0Ṽ1, Ṽ1]osc, 〈V1〉

]
+ 1

2
Lξ0 I0[I0Ṽ1, [I0Ṽ1, 〈V1〉]]osc

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc + [Lξ0 I0[I0Ṽ1, 〈V1〉], I0Ṽ1]osc

+ [I0[Lξ0 I0Ṽ1, Ṽ1]osc, I0Ṽ1]osc + 1
3

[I0Ṽ1, [Lξ0 I0Ṽ1, I0Ṽ1]osc]osc

− 1
3

I0[〈[Lξ0 I0Ṽ1, I0Ṽ1]〉, Ṽ1] + 1
3

I0[〈[Lξ0 I0Ṽ1, Ṽ1]〉, I0Ṽ1]

+ 1
3
Lξ0 I0[I0Ṽ1, [I0Ṽ1, Ṽ1]]osc

= Lξ0

(
I0Ṽ3 + I0[I0Ṽ1, 〈V2〉]osc + I0[I0Ṽ2, 〈V1〉]osc

+ 1
2

I0[I0Ṽ2, Ṽ1]osc + 1
2

I0[I0Ṽ1, Ṽ2]osc + 1
3

I0[I0Ṽ1, [I0Ṽ1, Ṽ1]]osc

+ I0[I0[I0Ṽ1, 〈V1〉], 〈V1〉] + 1
2

I0[I0[I0Ṽ1, Ṽ1]osc, 〈V1〉]
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+1
2

I0[I0Ṽ1, [I0Ṽ1, 〈V1〉]]osc

)

+ 1
2

[Lξ0 I0Ṽ1, I0Ṽ2]osc + 1
2

[Lξ0 I0Ṽ2, I0Ṽ1]osc + [Lξ0 I0[I0Ṽ1, 〈V1〉], I0Ṽ1]osc

+ [I0[Lξ0 I0Ṽ1, Ṽ1]osc, I0Ṽ1]osc + I0[〈[Lξ0 I0Ṽ1, Ṽ1]〉, I0Ṽ1]

+ 1
3

[I0Ṽ1, [Lξ0 I0Ṽ1, I0Ṽ1]]osc. (B 6)

Combining this expression with (2.49) for 〈ξ3〉 and again using the identity (B 3) gives
(2.26), as desired.
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