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FAMILIES OF GENERALIZED WEIGHING MATRICES 

GERALD BERMAN 

Generalized weighing (GW) matrices are orthogonal matrices whose non
zero entries are roots of unity. Several families are constructed with the aid of 
finite geometries which include as special cases interesting examples of con
ference matrices and weighing matrices. The concept of negacyclic matrices 
is generalized to co-circulant matrices where co ^ 1 is a rf-th root of unity and 
it is shown that the rows and columns of a family of GW matrices constructed 
from EG(t, pn) can be permuted so that the resulting matrices are co-circulant. 
It is also shown that these matrices correspond to a family of relative difference 
sets. A second family oi GW matrices is constructed from the projective geo
metry PG(t, pn) which are co-circulant but which do not correspond to difference 
sets. The method gives a simple construction for a ju-fold spread of (t — 2)-
spaces of PG(t, pn). Finally another family of GW matrices is constructed from 
EG(t, pn) in a different way. It is conjectured that these are not equivalent to 
co-circulant matrices. 

1. Introduction. A generalized weighing {GW) matrix W(d, k, m) is a 
square m X m matrix all of whose non-zero entries are d-th roots of unity such 
that A A* = kl where A* = (a*/) is the conjugate transpose of A and / = In. 
It follows t h a t \ / ^ 4 is a unitary matrix so that A*A = kl and every row and 
column of A has exactly k nonzero entries. 

Weighing matrices, the special case W(2, k, m), have been studied exten
sively. The name comes from their application in accuracy of measurements by 
Yates [17]. They have recently been studied in connection with combinatorial 
designs by Mullin [9], Mullin and Stanton [10], and Berman [2; 3]. An applica
tion ot coding theory has been considered by Pless [12]. Related negacyclic 
codes were first studied by Berlekamp [1]. Hadamard matrices are the special 
cases W(2, k, k) in which there are no zero entries. Generalized Hadamard 
matrices W(d, k, k) were considered by Butson [4; 5]. These matrices have also 
been studied in connection with combinatorial designs by Shrikhande [15] and 
in connection with codes by Delsarte and Goethals [6]. The special case 
W(2, m — 1, m) are C-matrices or conference matrices which were studied by 
Goethals and Seidel [8]. Negacyclic C-matrices were considered by Delsarte, 
Goethals and Seidel [7]. 

Many of the properties of weighing matrices and generalized Hadamard 

matrices also hold for GW matrices. Equivalent matrices are obtained by 

permutations of rows and columns. If a row or column of W(d, k, m) is multi-
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plied by a d-th root of unity the resulting matrix is an equivalent W(d, k, m). 
This implies t ha t a normalized form can be defined in which the first ent ry of 
each row and column is 1 and if the first 1 in the j - t h column (row) occurs in 
position \j, then X;- ^ X̂  for j ^ k. 

New GM matrices can be constructed from known matrices just as in the 
case of Hadamard matrices or weighing matrices. For example, if a row or 
column of W(d, k, m) is multiplied by an e-th root of uni ty the result is a 
W(LCM(d, e), k, m). New GW matrices can also be obtained in terms of the 
Kronecker product: if A\ is a W(du ki, Mi) and A2 is a W(d2f k2, m2) then 
A i X A2 is a W(LCM(di, d2), kik2, mxm2). Such constructions may be used to 
obtain new GM matrices from those constructed in this paper. 

In Section 2 collineations of order r in EG(t, pn) are used to construct GW 
matrices W(d, p(t~1)n, (ptn — l)/r) for every divisor of r, where r is any factor 
of pn — 1. If p is odd, and d = t = 2, r = pn — 1, the corresponding GW 
matrix W(2, pn, pn + 1) is a conference matrix. The weighing matrices con
structed in [2] are also a special case. 

In Section 3 co-circulant matrices are defined which generalize negacyclic 
matrices. I t is shown tha t the rows and columns of the matrices constructed in 
Section 2 can be permuted into this form. The ideas are illustrated by con
structing a number of co-circulant matrices associated with EG(2, 11) including 
a W(2, 11, 12). I t is shown in Section 4 tha t this family of GW matrices is in 
1-1 correspondence with a family of cyclic relative difference sets which param
eters (q, s, p(t~1)n, pv-vn/r) where q = (ptn - l)/(pn - 1) and rs = pn - 1 
analogous to those constructed by Butson [5] for generalized Hadamard 
matrices. 

In Section 5 it is shown tha t a similar construction can be carried out in 
PG(t, pn) to obtain another family of GW matrices W(d, p(t~^n, q/(pn + 1)) 
where / is odd and d\pn + 1, which are also co-circulant but are not associated 
with relative difference sets as in the case of the family of Section 3. Instead it is 
shown tha t these matrices correspond to /x-fold spreads of (/ — 2)-spaces of 
PG(t, pn). As an example the co-circulant matr ix W(3, 15, 21) associated with 
P G ( 5 , 2) is constructed. This leads to the determination of a 5-fold spread of 
the 3-spaces of PG(5, 2) in a different way than tha t given in Rao [13]. 

In Section 6 any subgroup of the additive group of GF(pn) is used to con
struct a GW matr ix W(p, p^-l)n, ptn~a) for any a, 1 ^ a ^ n. The construction 
is a generalization of the method used by Vanstone and Alullin [16] to con
struct weighing matrices in the special case p = 2. I t is conjectured tha t the 
rows and columns of these matrices cannot be permuted so tha t the resulting 
matrix is co-circulant. 

2. Affine GW m a t r i c e s . The ptr points of the Euclidean geometry E = 
EG(t, pn) can be represented by the /-tuples or column vectors 

x = (xi, x2, . . . , xt)
T, xt G F, i = 1, 2, . . . , t 
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where F = GF(pn). The hyperplanes of E are the sets of points which satisfy 
linear equations and coefficients in F. Let P' denote the set of pin — 1 points 
not including the origin 0 = (0, 0, . . . , 0 ) T and let H' denote the set of 
ptn _ 1 hyperplanes which do not include 0. Every hyperplane u £ H' satisfies 
a linear equation which can be expressed in the form U\X\ + u^Xi + . . . + utx t 

= 1 with not all u^ zero, so that the elements of H' can be represented by the 
set of /-tuples or row vectors 

u = (ui, U2, . . . , u t) j Ui Ç F, i = 1, 2, . . . , / 

with u 9^ (0, 0, . . . , 0). Using matrix notation the equation satisfied by 
u G H' can be written as 

(2.1) ux = 1, x G P', u 6 H\ 

and we say that the point x is on the hyperplane u or u contains the point x 
and write x £ w if the pair x, w satisfies (2.1). It follows that a point x £ P ' is 
on pv-u*1 hyperplanes of i P and a hyperplane w £ H' contains pv-u*1 points 
o fP ' . 

A collineation 0 is a transformation of E which preserves collinearity. The 
order of </> is the smallest integer r such that fa is the identity transformation. 
Let fa denote the mapping defined by 

(2.2) fax = Xx = (Xxi, Xx2, . . . ,\xt) 

where X is a nonezro element of F. 

LEMMA 2.1. Fhe mapping fa, \ £ P, X =̂  0 is a collineation of E which maps 
the hyperplane u onto the hyperplane \~lu, i.e., 

(2.3) fau = \~lu = (X-1^!, X-^2 , . . . , X-1^)-

If \ 5* 1 there are no fixed points in P' or fixed hyperplanes in H' under the map
ping fa. The order rx of fa is a factor of pn — 1, and if r\pn — 1 there is a X such 
that r\ = r. 

The points x, y, z of P' are collinear if there exists elements a, b, c £ F not 
all zero such that ax + by + cz = 0, a -\- b + c = 0. It follows that 

a (fax) + b(fay) + c(<M) = Max + fry + cs) = 0 

so that </>x is a collineation. For every x G w, (X-1x)(Xw) = 1 so that \~ht con
tains fax, that is $xz/; = \~lu. The mapping <£x has no fixed points or hyper
planes since very point x £ P' and every u ^ H' has at least one nonzero com
ponent implying that fax ^ x, fau ^ w provided X ̂  1. Finally fakx = \kx 
so that the order of fa is the same as the multiplicative order of X in F, which 
divides pn — 1. Further if r\pn — 1 there are elements of F of order r. For these 
elements rx = r. 

Let fa have order rx and set 

[x] = {fakx,k = 0, 1 , . . . ,rx - 1}, x G P ' . 
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I t is immediate tha t} / Ç [x] if and only if x £ [y] so tha t we can choose elements 

x\ x2, . . . , xm 6 P ' , rxm = £ / m - 1 such tha t [x1] U [x2] U . . . U [xm] is a 

part i t ion of P r . Similarly if we set 

[u] = {(j>xku, k = 0, 1, . . . , rx - 1} , u £ H' 

there exist elements u1, u2, . . . , um such tha t [ul] \J [u2] U . . . U [wm] is a 
part i t ion of i f . Since the hyperplanes 0 \ V are parallel the point xj lies on a t 
most one of them. If xj is a point of <t>x

lu\ i.e., {4>\lui)xj = 1, then (\~*(</>xV)) 
(A*xJ) = 1 so tha t ^ x - 7 is a point of <t>\l+ku\ k = 0, 1, . . . , rx — 1. If points of 
[x;] are on hyperplanes of [w2] we shall write [xj] £ [wf] f ° r convenience. I t 
follows from the above remarks tha t if [xj] £ {ur\ there exists a unique integer 
h = v{u\ xj) say, such tha t (t>x

hxJ is a point of w1'; otherwise xj is not a point of 
any of the hyperplanes of [V]. 

Let d > 1 denote any divisor of rx and let co ^ 1 be a d-th root of unity. 
Let A(<j)\, x1, x2, . . . , xw, zi1, zz2, . . . , um, co) denote the m X m matr ix (a7j) 
defined by 

(2.4) atj = | Q 
fœ'iui'xi) if [x*] 6 M 

otherwise 

for i,j = 1, 2, . . . , m where fxra = ptn — 1. 

T H E O R E M 2.2. Let </>x denote a collineation of order rx of EG(t, pn) as defined by 
2.2 (and (2.3)). Let d\rx and let w ^ 1 be a d-/& r<?0̂  o/ unity. Then the matrix 
A = A(<f>x, x1, x2, . . . , xm, w1, u2, . . . , ^m) w a GIF wa/ftx W(d, p^-^n, 
(ptn _ \)/n). 

From the construction A is an m X m matrix, rxm = ptn — 1, whose non
zero elements are d-t\\ roots of unity. Since there are p^~l)n points on every 
hyperplane and every set [xj] can contain at most one of these points, every 
row of A contains exactly p^-^n nonzero entries. 

I t remains to be shown tha t A is orthogonal, i.e., tha t the sum 

(2.5) Q = X Uijakj 
j 

equals 0 for i ^ k. If u\ uk are parallel, then none of the hyperplanes of [ul] 
have points in common with hyperplanes of [uk] so tha t Q = 0. If u\ uk inter
sect there are nonzero terms in the sum Q corresponding to every point x3 

which is common to a hyperplane of [u*] and a hyperplane of [uk]. F rom the 
previous discussion the hyperplane ul intersects each of the hyperplanes 
<t>x

nuk, h = 0, 1, . . . , rx — 1 in pv-vn points so tha t the sum (2.5) contains 
rxp

(t~2)n nonzero terms. For any point <t>\lxj on u' and <t>\huj we have 

u'ifaW) = 1, (<hhuk)(4>\lxj) = uk(<t>x
l-hxj) = 1 

so t ha t v(u\ xj) = /, v(uk, xj) — I — h and by (2.4) atj = <al
} akj = œl~h, 

ttijâ/cj = co\ This means tha t for every h = 0, 1, . . . , rx — 1 there are p^-2^n 
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terms of Q which have value œh and we have 

Q = p('-v*(l + co + co2 + . . . + a/*-1) = 0 

since co is a d-ih root of uni ty and d\r\. 

COROLLARY 2.3. Let p, t, r, d denote any positive integers such that p is prime, 
d\r and r\pn — 1. Then there exists a GW matrix W(d, p{t~l)n, (ptn — \)/r). 

By Lemma 2.1 there exists a X such tha t the collineation <f>\ is of order r for 
any r which is a factor of pn — 1. T h e required matr ix is given by Theorem 2.2. 

3. o - c i r c u l a n t m a t r i c e s . Let co ^ 1 denote a d-th root of uni ty . A GW 

matr ix A is o^-circulant if the i-th row of A is 

( 3 . 1 ) œan-i+2i C0aw_$+3, • • • , <̂ &n> ftl> a2, • • • , # n - i + l 

where a\, a2, . . . , an is the first row of A. In the special case d = 2, A is a 
negacyclic matrix as defined in [7]. In this section it will be shown t h a t the rows 
and columns of any GW matr ix W(d, k, m) constructed in Section 2 can be 
permuted so t ha t the resulting matr ix is an co-circulant matr ix. 

Let K denote GF(ptn) considered as an extension field of F = GF(pn) and 
let x denote a primitive element of K. The points of P' (the points of EG(t, pn) 
7e 0) can be represented by the powers x, x2, . . . , xvf = I, v' = ptn — 1. I t is 
easy to verify t ha t the mapping x defined by xxj — xj+l is a collineation. 
Rao [13] showed tha t x is also transi t ive on the hyperplanes of H' (the hyper-
planes of EG(t, pn) which do not contain 0) . 

Let a = (ptn — l)/(pn — 1) ; then the nonzero elements of F have the unique 
representation xjQ, j = 0, 1, . . . , pn — 2. Let r be a factor of pn — 1, rs = 
pn — 1; then xSQ G F and the mapping \pT = (x)sq is a collineation of order r 
and is a mapping <f>\ of Section 2 with X = xsq. Set m = sq and let xj = xjx, 
j — 1, 2, . . . , m. If u is any hyperplane of i / r set wz = xz^ — {xj+i, xj Ç wj, 
i = 1, 2, . . . , m. (Note t ha t the superscript in x3 is also a power of x in this 
case). 

T H E O R E M 3.1. Let r\pn — 1, rs = pn — 1, m = sq, and let \pr, xl, x2, . . . , xm, 

u1, u2, . . . , um be defined as above. Let d\r, co ^ 1 be a d-th root of unity, and let 
B = (°tj) = {-M^SJ x1, x2, . . . , xm, u1, u2, . . . , um) as defined in Section 2. Then 
B is a œ-circulant GW matrix W(d, p(l-vn, m). 

Let \pr
hxj be a point of ul so t ha t v(u\ xj) = h and btj = co\ Then x'*Prkxj is 

a point of yfu1. If 7 < m, x^rhxj = $rhx'xj — ^r
hxj+l so t ha t bi+iJ+i = œh. 

If j = m then \f/r
hxj+1 = \ps

h+1x is in ui+1 and bi+iti = œh+1. This implies 3.1 so 
tha t B is co-circulant. 

Several corollaries are immediate. 

COROLLARY 3.2. If p, t, r and d are positive integers such that p is prime, d\r and 
r\pn — I there exists an œ-circulant matrix W(d, p(t~1)n, (ptn — 1)/V). 
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COROLLARY 3.3. If p is an odd prime there exists a negacyclic matrix 

W(2,p^~l)n. (ptn - l)/r) for every even factor r of pn - 1. 

COROLLARY 3.4. There exists an ^-circulant conference matrix W(d, pn, pn + 1) 
for every divisor d of pn — 1. 

The first corollary is a restatement of the theorem. The second corollary is 
obtained by taking d — 2 where r = 2rf and the third corollary by taking 
r — pn — 1. If p is odd the matrix in Corollary 3.4 becomes a negacyclic 
conference matrix if we take d = 2 (which is a divisor of pn — 1). 

The above ideas are illustrated in the following example. Consider EG(2, 11). 
The polynomial x2 = 10x + 4 is a primitive polynomial so tha t the 120 points 
7± 0 can be represented by the powers x, x2, . . . , x120 = 1. Using the tables 
given in Rao [13] it is easy to verify t ha t the points in the hyperplane u = 
(0, 1) Ç H' are given by 

(3.2) u = {1, 6, 22, 62, 68, 69, 71, 88, 99, 103, 113} 

recording only the powers of x. Since the divisors ^ 1 of pn — 1 = 10 are 

10, 5, 2 the collineations which determine GW matrices are \pm = x'12> ^5 = 

x'24 and fa = x /60. 
The collineation i/'io determines three generalized conference matrices. If we 

write the points of u in terms of ^io we have 

u = {1, ^io52, ^ o 8 3 , ^io64, ^io95, 6, ^ o 8 7 , ^ 1 0
5 8 , ^io59, , M 0 , ^io5 l l} 

and if we let coio ^ 1 be a 10-th root of unity the first row of the corresponding 
coio-circulant generalized conference matrix 1^(10, 11, 12) is 

0, 1, coio5, coio8, coio6, coio9, 1, coio8, coio5, coio5, coio, coio5. 

If cos T^ 1 is a 5-th root of unity, the first row of the co5-circulant generalized 
conference matr ix W(5, 11, 12) is 

0 , 1 , 1 , C 0 5 8 , CO5, COS4, 1 , C 0 5
3 , 1 , 1 , CO5, 1 

and if we take œ = — 1 we obtain the conference matrix with first row 

0 , 1 , - 1 , 1 , 1 , - 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1 . 

In terms of the collineation \f/5 (3.2) can be rewritten as 

u = {1, ^ 5
4 3 , 6, ^ 5

4 7, ^5
214, ^5316, ^5417, i^5220, ^ 5

2 2 1 , 22, ^ 5
2 23 j . 

Let co5 7e 1 be a 5-th root of uni ty as before. Then the first row of a second 
co5-circulant matrix, this t ime a W(5, 11, 24), has first row 

0, 1, 0, CO54, 0, 0, 1, a>54, 0, 0, 0, 0, 0, 0, a>5
2, 0, CO53, CO54, 0, 0, a;5

2, co5
2, 1, co5

2. 

Similarly, using \p2, (3.1) becomes 

u = {1, ^ 2 2 , 6, ^ 2 9, ^ 2 1 1 , 22, ^ 228, ^ 2 9 , ^239, ^ 2 43 , ^ 5 3 } 

which leads to a weighing matrix W(2, 12, 60). 
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4. Cycl ic re lat ive difference s e t s . A cyclic relative difference (CRD) set 
R(q, v, k, X) is a subset of k integers D = {du d2, . . . , dk} modulo qv such t ha t 
di — dj ^ 0 mod q for any du dj, i ^ j , and for every d ?*• 0 mod g there are 
exactly X pairs dt, dj for which dt — dj = d mod qv. A CRZ) set is a special case 
of a difference set of a group G of order gy relative to a normal subgroup i f of 
order v in which G is cyclic. If y = 1, R is an ordinary cyclic difference set with 
parameters q, k, X. The parameters of D satisfying the ident i ty k(k — 1). 
= \(q - Iv. 

T h e following lemma is required. 

L E M M A 4.1. Let r be a factor of v, rs = v and let d/ denote the integer dt reduced 

modulo qs, i = 1, 2, . . . , & where D = {d\, d2, . . . , dk} is an R(q, v, k, X). Then 

D' = {di\ d2', . . . , dh') is anR(q, s, k, Xr). 

Each of the integers d + hqs, h = 0, I, . . . , r — 1 occurs X times among the 
differences dt — dj. Each of these integers equals d modulo qs, so t ha t d occurs 
r\ t imes among the integers d( — d/ t aken modulo qs. 

A CRD set can be associated with every co-circulant matr ix constructed in 
Section 3. 

T H E O R E M 4.2. Let B = (btj) be the ^-circulant matrix W(d, p{t~l)n, sq), where 
d\r rs = pn — 1, qrs = ptn — 1, constructed in Section 3, and let 

D i = {j\bij T^ 0} mod qs, i = 1, 2, . . . , qs 

Then Dt is a CRD set R(q, s, p^-»», pv-»nr) i = 1, 2, . . . , qs. 

Consider the set of integers 

Sh = {j\x
j Ç uh\ mod q(pn - 1). 

We shall show tha t this set is a CRD set R(q, pn - 1, p^~l)n, p^~2)n). Firs t note 
t ha t Sf contains p(~un integers so t ha t k = p^l~l)n. Suppose i — j = d and 
x\ xj Ç w\ Then X ' V ' = x* so t ha t x* £ x'dw* = w*+d. I t follows t h a t dt - dj 
has a solution in ^ whenever x1 is on the hyperplanes uh, uh+d. Since these 
hyperplanes are not parallel they have p^-2)n points in common and X = 
p(t-2)n^ ^JQ difference c a n D e a multiple of q. For if i — j = kq the points xz = 

X;+A;<Z _ a X ; a n c ] x ; a r e m ^ where a G -F. I t follows tha t ul contains the origin 
and so could not be in H', a contradiction. The hyperplanes uh and uh+lQ are 
parallel for every /. 

Now consider Dt. If r = 1, i.e., \î s = pn — 1 the above remarks show tha t 
the theorem holds. If r ^ 1, then D7 can be obtained from St by reducing the 
integers of St modulo qs. To see this note t h a t the ith row of B corresponds to 
the set [uf]. If btj = coh then u' contains the point xi+hSQ. T h a t is, if xl is a point 
of u\ I = j + /w<? so tha t / £ 5 f , btj ^ 0 and j £ Dt. T h e result now follows 
from Lemma 4.1 since j = / mod sq. 
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COROLLARY 4.3. Let p, t, n be positive integers such that p is prime and t > 1. 
Then there exists an ordinary cyclic difference set with parameters ((ptn — 1)/ 
(pn- l)}p^-^\p^-^n(pn- 1)). 

This follows from the theorem by taking r = pn — 1, s = I. 

5. Project ive o - c i r c u l a n t m a t r i c e s . In this section a cyclic collineation 
in PG(t, pn) is used to construct co-circulant matrices which do not correspond 
to relative difference sets as in the case of affine co-circulant matrices of Section 3. 

The set of qt points of PG(t, pn), where q, = (p(>+i>* - l)/{pn - 1), can 
be represented by the powers x, x2, . . . , xQt = 1 of a primitive element of 
K = GF(p(t+1)n). The points of a cr-flat are the points linearly dependent on 
c + 1 linearly independent elements with respect to the subfield F = GF(pn), 
(7 = 0, 1, . . . , / — 1. A point is a 0-flat and a hyperplane is a (t — l)-flat. A 
collineation of PG(t, pn) is a transformation of the set of points P which maps 
cr-spaces on cr-spaces for all <J = 1, 2, . . . , / — 1. Singer [14] showed t ha t the 
mapping % defined by xxj = xi+l is a collineation which is transit ive on the 
set H of hyperplanes as well as transitive on the set P, i.e., if u is any hyper
plane, the hyperplanes xfu, i — 1, 2, . . . , qt are distinct and thus represent all 
elements of H. 

A fjL-fold spread 2 of a-spaces is a collection of cr-spaces such tha t each point 
of P occurs in exactly ju cr-spaces of 2 . Rao [13] proved tha t if / + 1 and a + 1 
have p + 1 as a common factor, then a ju-fold spread of cr-flats in PG(t, pn) 
exists, where JU = q<r/qP. I t is also shown tha t the c-flats of 2 have period 
v = qt/qP, (under the collineation x) and if 5 is a c-space of 2 , then all the 
cr-spaces of 2 can be represented in the form S, \S, • • • » X"-1*^ 

LEMMA 5.1. If t is odd, every (/ — 1) space of PG(t, pn) contains a (t — 2)-
space which is invariant under the collineation \v, where v = qt/q\. 

Since t is odd a = t — 2 is odd so tha t t + 1 and a + 1 have a factor p + 1 
where p = 1. I t follows from Rao 's theorem tha t there is a p-fold spread 2 
of (/ — 2)-spaces of period v = qt/qi where /x = qt-2/qi. Let 5 be a member of 
2 . Suppose it lies in the hyperplane u; then the hyperplane ul = x*u contains 
the cr-spaces St = x^ G 2 . I t follows tha t every hyperplane contains a 
member of 2 . Fur ther xv$i = X"(x^) = XÙX^) = x ^ = Si since v is the 
period of S, showing tha t Si G u1 is invariant under xv-

Let / be odd and r a factor of q\ = pn + 1, say q\ — rs. Then qt = q\v = 
r(sv). Let 0r = xs" so tha t 6r is a collineation of period r which leaves the 
(/ — 2)-spaces of 2 fixed. Let 

[*'] = {xj, 6rx\ dr
2xj, . . .} j = 0, 1, . . . , qt - 1. 

The set [xj] contains r distinct elements for every j and the sets [x], [x2], . . . , 
[xSv] are disjoint and determine a part i t ion of P. Similarly for every u G H set 

[u] = {uy 6ru, 6r
2u, . . . } . 
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The set [u] contains r elements and if we set ul = x*u, i = 1, 2, . . . , sv, then 

the sets [u1], [u2], . . . , [uSv] are disjoint and determine a par t i t ion of H. 

These sets have properties similar to the corresponding sets defined in 

Section 2. If xj is a point of Bfu1 then 6r
kxj is a point of Br

k+hu\ However the 

hyperplanes of [u*] are not parallel. Instead they have the proper ty t ha t if xj 

is on more than one hyperplane of [u*] it is on every hyperplane. This follows 

immediately from Lemma 5.1 since every pair of hyperplanes of [u1] intersect 

in a unique (/ — 2)-space which must be the (/ — 2)-space of 2 invar iant 

under \v-

We now define a matr ix C(6r, co) = {cif) as follows. Let d > 1 be a factor of r 

and co ^ 1 a d-t\\ root of unity. Set 

r u _ V iffl,V<E Tt 
koA) CiJ - | Q o t h e r w i s e 

where T { is the set of points of ul not in Si, the invariant (/ — 2)-space of 2. 

THEOREM 5.2. Letr > 1 be a factor of qi = pn + 1, qi = rs say, and let à ^ 1 
be a factor of r and co a d-th root of unity. Let C = C{0T, co) denote a matrix con
structed as above. Then C is an ^-circulant matrix W(d, p^-^n

} qt/r). 

The number of points of Tt is qt-\ — qt-2 = p(l-vn so t ha t the number of 
nonzero elements in each row is p^~^n. Also m = sv = sqt/q\ = qt/r. T o show 
tha t C is orthogonal, consider rows i and k and let Q = 2^ c^-c^Janalogous to 
(2.5). If [V], [uk] intersect in a (/ — 2)-space of 2 then every term of Q is zero. 
Otherwise a term will be equal to coh only if ctj = œl+h, ckj = œl for some /. 
This implies t ha t the hyperplanes dfu1 and uk contain a common point 6r

lxj 

(for some j) which is not a point of St or Sk (the subspaces of 2 ) . T h e hyper
planes 6T

hul and uj contain qt_2 common points (i.e., a (/ — 2)-space). T h e 
spaces Si} Sk are (/ — 2)-spaces which each intersect this common space in 
(/ — 3)-spaces having a (/ — 4)-space in common and hence determine 
2ç;_3 — qt_A distinct points which correspond to zero terms of Q. T h u s the 
number of common points of dfu1 and uj which correspond to terms wh in Q 
is qt-2 — 2g.t-z + Qt-4- Since this is t rue for each h = 0, 1, . . . , r — 1, the sum 
Q is equal to 

(g,_2 - 2<Z;_3 + qt-,)(l + co + . . . + co'"1). 

This is zero since co ^ 1 is a ci-th root of uni ty and d\r. 

COROLLARY 5.3. If p, t, n, d and r are positive integers greater than one such that 
p is prime, d\r, r\pn + 1, then there exists an ^-circulant matrix W(d, / ? ( i - 1 ) w , 
(P(t+l)n _ l)/r(pn _ 1)) . 

COROLLARY 5.4. There exists an ^-circulant generalized conference matrix 
W{d, p2n, p2n + 1) for every divisor d of pn + 1. 

Corollary 5.3 is a res ta tement of the theorem and Corollary 5.4 is the special 
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case / = 3, r = pn + 1. If p is odd, the special case d = 2 is a negacyclic 
conference matrix. 

To illustrate the above ideas consider PG(3, 3). Using the primitive poly
nomial x4 = 2xs + 1 and the tables in Rao [13] we find tha t the hyperplane 
u = (0, 0, 0, 1) contains the points 

(5.2) u = {1, 2, 3, 9, 17, 19, 24, 26, 29, 30, 35, 38, 39} 

recording only powers of x. In this case pn + 1 = 4. Taking r = 2, 02 = x20> 
w can be rewritten as 

(5.3) u = {1, 2, 3, 024, 026, (9, 029), 021O, 0215, 17, 0218, (19, 0219)} 

from which we deduce the negacyclic matrix W{2, 19, 20) whose first row is 
given by 

0, 1, 1, 1, - 1 , 0, - 1 , 0, 0, 0, - 1 , 0, 0, 0, 0, - 1 , 0, 1, - 1 , 0. 

Taking r = 4 04 = x10> (5.2) can be rewritten as 

(5.4) u = {04
3O, 1, 2, 3, 04

24, 04
35, 04

26, 047, 04
38, (9, 049, 04

29, 04
39)| 

corresponding to the co4-circulant generalized conference matrix W(4, 9, 10) 
with first row 

co4
3, 1, 1, 1, a>4

2, co4
3, co4

2, C04, co4
3, 0 

or if we prefer 

0, CO43, 1, 1, 1, co4
2, co4

3, CO42, co4, co4
3 

where co4 T^ 1 is a 4-th root of unity. Taking d = 2 we have as a special case 
the negacyclic matr ix with first row 

0, - 1 , 1 , 1 , 1 , 1 , - 1 , 1 , - 1 , - 1 . 

In this caes S is a spread of lines with JU = 1 v — 10. The invariant line / 
in u given by (5.2) is immediate from (5.4) (or 5.3), / = {9, 19, 29, 39} = 
{9, 049, 04

29, 04
39} and S is the set of lines lj = x

jh j = 0, 1, . . . , 9. 
This method provides a simple al ternative method for obtaining S in case 

a = t — 2. To illustrate the case fx ^ 1 we find the 5 fold spread of 3-spaces of 
PG(5, 2) . 

Again using the tables in Rao and using the hyperplane u = (1, 0, 1, 0, 0, 0) 
we find the points of u are given by 

(5.5) u = {0, 1, 2, 4, 9, 10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27, 28, 

35, 37, 39, 42, 43, 46, 50, 53, 55, 56, 58, 59} 

where this time the integers are taken modulo 63 and r = 3, 03 = x21> M — 5, 
v — 21. In term of 03, (5.5) has the representation 

(5.6) u = {(0, 03O, 03
2O), (1, 031, 032, 1), 2, 033, (4, 034, 03

24), 035, 036, 037, 03
28, 

9, 10, 03
211, 12, 03

213, (14, 0314, 03
214), 15, (16, 0316, 03

216), 17, 0318, 19, 20} 
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T h e 3-spaces of 2 are immediate. If we set M = {0, 1, 4, 14, 16}, II = M U 
dzM U 03

2M, the 3-spaces of S are given by Ut = x ' n , j = 0, 1, . . . , 20. 
The representation (5.6) also provides us with the first row of the correspond

ing co3-circulant matr ix W(3, 16, 21), namely 

0, 0, 1, co, 0, co, co, co, co2, 1, 1, co2, 1, co2, 0, 1, 0, 1, co, 1, 1. 

6. Non-circulant affine GW matrices. A collineation in EG(t, pn) was 
used in Section 2 to construct a family of G W matrices which were shown to be 
co-circulant in Section 3. In this section a different method is used to construct 
another family of GW matrices related to EG(t, pn). 

Let the ptn points of EG(t> pn) be represented as pairs (%, y) where x = 

(xi, x2, . . . , xt-i)
T, Xi, x2, . . . , xt-i, y G F = GF(pn). Let the pairs (u, v), 

u = (u\j U2, . . . , ut-i)i U\, U2, . . . , ut-i, v G F represent the hyperplanes 

(6.1) y = ux + v 

i.e., the point z = (x, 3;) is on the hyperplane w = (u, v) if (6.1) is satisfied. 
Let G denote any subgroup of order pa (1 g a ^ n) of the addit ive group F+ 

of F. If z is in the hyperplane w then z -\- g = (x, y + g) is on the hyperplane 
w + g = (w, z; + g) for all g (z G. Fu r the r the hyperplanes w + g are parallel 
for all g £ G. 

Let P " denote the set of points z of EG(t, pn) and i P ' the set of hyperplanes 
w satisfying (6.1). Let 

W = {z + g,ge G}, [w] = {w + g,ge G). 

This mapping z —-> [2] clearly determines a par t i t ion of P " and the mapping 
w —• [w] a part i t ion of H". Let 21, z2, . . . , z&, (3 = ptn~a denote any set of points 
such t ha t the sets [21], [z2], . . . , [z^] are disjoint and determine a par t i t ion of 
F" and similarly let wl, w2, . . . , w& denote hyperplanes such tha t [w1], [w2], 
. . . , [w&] is a part i t ion of if". 

If a point 2 is on a hyperplane w -\- g then 2 + g' is on the hyperplane 
w + g + g'. Since the hyperplanes w + g, w + g + g' are parallel the point 
z + gf cannot lie on the hyperplane w. T h u s only one point of [z] can be on 
any hyperplane of [w], and if z lies on a hyperplane of [u] as also does z + g 
for every g G G. 

T h e elements of G can be represented as g = (gu g2, . . . , ga) where gj, 
j = 1, 2, . . . , a are residue classes of integers modulo p. Let 7(g) = gi + g2 + 
. . . + ga mod >̂ and let co ^ 1 denote a ^>-th root of uni ty. Let D (G) denote the 
13 X P matr ix (d l 7) defined by 

(6.2) du={f' «-'€»< + * 
v ' " l 0 otherwise 

f o r t , j = 1,2, . . . ,18. 
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T H E O R E M 6.1. Let G denote a subgroup of F+ or order pa (1 ^ a ^ n) and let 

D(G) be a (3 X P matrix constructed as above. Then D(G) is a GW matrix 

W(j>,pw,P). 

From the above remarks the number of nonzero entries in any row equals 
the number p(l-vn of points on a hyperplane of EG(t, pn). To prove D(G) is 
orthogonal consider the i-th and k-th rows and the sum Q = U ;- dijdkj where 
dij} dhj are denned by (6.2). Each term is 0 or wh for 0 ^ h ^ p — 1. Suppose 
g £ G and y (g) = h.lîw1 + g and w* intersect in a point s j + g' with y(gf) = 
h', then zj £ w* + g — g', zj £ wk —J^yig — gf) = h — h' and Y ( — g') = — fe' 
so t ha t d0- = c/~A ', d^- = œ~h', d j / / / c i = co\ Since the hyperplanes w' + g, wk 

intersect in p^~^n points there are pe-u* terms of Q equal to œh corresponding 
to g. But there are pn~1 elements of g G G such tha t y (g) — h so tha t there are 
pn-\p(t-2)n _ p(t~\)n - i t e rms of Q equal to co\ Since this number is the same for 
all h = 0, 1, . . . ,p - 1, 

Q = pV-l)n-l(l + œ + _ f + ^ - 1 ) = 0. 

COROLLARY 6.2. If p, t, n and a are positive integers such that p is prime t > 1 
and 1 ^ a ^ n, then there exists a GW matrix W(p} p^~l^n

} pm~a). 

Notice t ha t if Ga denotes a subgroup of order pa then there is a nest of 
subgroups 

Gi C G2 C . . . C G» = /"". 

I t follows tha t the corresponding matrices D(Gi), D(G2), . . . , D(Gn) can be 
constructed sequentially. Each element of D(Gj) corresponds in an abvious 
way to a p X p submatr ix of D(Gj-i), j = 2, . . . , n. 

I t is conjectured tha t the GW matrices D(G) constructed in this way are not 
equivalent to co-circulant matrices. 
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