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1. Introduction

Let G be a finitely presented group. A finite presentation 0* of G is said to
have deficiency m — n if it defines G with m generators and n relations. The
deficiency of G is the maximum of the deficiencies of all the finite presentations &
of G. If G is finite the deficiency of G is less than or equal to zero. The only finite
two generator groups of deficiency zero that are known are certain metacyclic
groups given by Wamsley (1970), a class of nilpotent groups given by Macdonald
in (1962) and a class of groups given by Wamsley (1972).

In this paper we consider a class of two generator groups of deficiency zero.
Define the group G(m, n), where m, n are non-zero integers, by

G(m,n) = <a,Z>|[am,ft"1] = a~xbna, ibm,a~1'] = b'^-b}.

The groups G(l,n) are metacyclic groups of order n3 and exponent n2. We
investigate the groups G(2, n) for — 3 ^ n g 5 showing that G(2, — 3) is a group
of order 28.33 and that G(2,3) is a group of order 215.33. These two groups are
neither metabelian nor nilpotent nor are they isomorphic to any of the groups in
the classes defined in Macdonald (1962), and Wamsley (1970), Wamsley (1972).
We also show that G(3,1) is isomorphic to SL(2,5). This answers a question
posed in Campbell (1969) as to whether the groups G(m, 1) are all trivial.

The main tools used in this investigation are the Todd-Coxeter coset enumera-
tion algorithm, see for example Coxeter and Moser (1972), and the modification
to the algorithm described in Benson and Mendelsohn (1966). We would like
to take this opportunity to thank Dr. M. J. Beetham for allowing us to use his
coset enumeration programme Beetham (unpublished). The machine calculations
were carried out on the IBM 360 computer of the University of St. Andrews.

2. The groups G (m,n)

We use the notation Zn for the cyclic group of order n. It is easy to see that,
if G'(m, n) is the derived group of G(m, n), then G(m, n)jG'{m, n) is isomorphic to
Zn x Za if n ^ 1 and to Z_n x Z_n if n ^ 1.
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Consider G(l, n) for n ^ 1. This group has the presentation

G = | 1 ^ 1 1

Hence a"-1b.b"~1a = 1 giving a" = b~". Thus a"eZ(G), the centre of G. Since
G/<a"> ^ Zn x Zn we must have <a"> = G'. Now

bab~l = b"a = a1'".

Hence ft"afe~" = a1""2 and since b"ab~" = a, a"2 = 1. Therefore G has order n3

and is metacyclic of exponent n2. If n g 1 a similar argument holds. We have the
following theorem.

THEOREM 1. If n ^ 1, G(l,«) is a finite metacyclic group of order n3. 77ie
centre o/G(l, n) is eguaZ to f/ie derived group o/G(l, n) and is cyclic of order n.
The group G(l, —n) is isomorphic to G(l,n).

Let d = h.c.f.(m,«). It is easy to see that G(m, n) has a homomorphic image
isomorphic to Zd * Z,,, the free product of two copies of Zd. For, if a* = 1, bd = 1
are added to G(m, n), the relations [am, ft"1] = a-1b"a and [b^cr 1 ] = i r V f t
are then redundant. In the case m = 2 we can prove a slightly stronger result.

THEOREM 2. G(m, n) nas Zd *Zd as a homomorphic image, where
d = h.c.f.(m, n). Therefore G(m, n) is infinite if m and n are not coprime. In
G(2, n),for n even, the subgroup <a2, b2} is normal. G(2, ri)j(a2, b2} is isomorphic
to Dx, the infinite dihedral group.

PROOF. Since Dm ~ Z 2 * Z 2 we need only prove that <a2,b2> is normal in
G(2, n). Since n is even put n = 2k. It is sufficient to prove that ab2a~l e <a2, b2}.
But

b2 = a-lba2kba

= a~\ab2kafb2a

= (JW)'-1*2*^2*!-1)*2.

Hence ab2a-1 e <a2, ft2) as required.
Next we give a result about G(m, n) where m,« are coprime.

THEOREM 3. Let m and n be coprime. Then G(m,n) has G(l,n) as a homo-
morphic image. In particular G( — n,n + 1) is isomorphic to G(l,n + 1).

PROOF. Consider the group

H = <a,6|[a",6-1] = a~lbna, [ft^a"1] = b-yanb,a"bn = 1>.

Clearly H is a homomorphic image of G(m, n).
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Since a" = b~n,a" and b" are in Z(H), the centre of H. Hence

b-mabma-x = a" => a^a'1 = bmb—.

Thus anbma-" = 6m&-"2 and so ft"2 = 1. But

ia,b\a" = 6" = 1, [ y . a - 1 ] = 1, K.fc"1] = 1> ^ Zn x Z.,

since m is coprime to n2 and so [6m, a"1] = 1 implies that a and 6 commute.
Therefore H' = Z(H) = <a") and H is isomorphic to G(l,n).

Now consider

G(-fi,n + l) = <a,b|[a-",6-1] = a-1*"-1"^, [fc—.a"1] = b-1an + lby.

The relation [a—.fe"1] = a'^^^a gives an+lba-'b-1 = fo"+1a. Also
&" + 1ab-"a-1 = a"+16 and so a" + 1ba-"fc-(n + 1) a"1 = an + 1f» giving a - ( n + ] )

= b"+1. Therefore by the first part of the theorem G( — n, n + 1) is isomorphic to
G(l,n + 1).

Let us now consider the infinite groups G(2,2«) for n ^ 1. We have proved
that (a2,b2} is normal inG(2,2n) with G(2,2n)/<a2, b2} isomorphic to D^. We
now give a result which examines defining relations for <a, b2}. This in turn
gives information about <<z2, b2}.

The relations of G(2,2n) are

abb bbaba~1a~1b~1 = 1, and baa aabab~lb~1a~1 = 1.

I 2 n — I I In—I
We use the modified Todd-Coxeter algorithm to find a presentation for the sub-
group (a, b2}. See Beetham and Campbell (to appear) for a proof that the al-
gorithm gives a presentation of the subgroup. We obtain the following table as
in Campbell (1969), where x = a and y = b2.

l.a = x.l
l.b = 1.1
2.6 = y.l
l.a = 1.3
3.a = x^"x.2
3.6 = 1.4
4.b = yx2n.3
4.a = 1.5
5.a = xy"x_yn.4
5.6 = 1.6
6.6 = yx2n(xynx)n.5
6.a = 1.7
7.a = ( x ^ " x 2
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It is easy to check, using induction, that if k is odd

k.a = w(fc).(Jfc-l),

k.b = l.(Jfc+l),

and for k even

k.b = w(k).(k-i),

k.a = l.(fc + l),

where w(fc) is a word in x and y depending on k.
Now w(l) = x, w(2) = y, w(3) = xy"x, w(4) = yx2n and by induction we can

show that

w(k) = w(fc - 2)[w(fc - 3)]"; fc ^ 5.

Each coset gives one relation for the subgroup <x, y}. Denote by R(k) = 1 the
relation obtained from coset k. Then

= (xynx)nyxy-1x-1,

R(2) = O;*2")"*/1*}'*"2^--1,

and by induction we obtain

R(k) = [w(k + 2)]"w(fc + l)w(fc)[w(fc - 1)] "x[w(/c)] " ' ; k ^ 3.

Notice that if « ^ 1 precisely the same argument holds. We have proved the
following theorem.

THEOREM 4. The subgroup H = <a,i>2> o/G(2,2n) has a presentation

H = <x,y\R(k) = \,k = 1,2,3,—>,

w/iere the R(k) are given inductively as above.

3. Examples

In this section we examine the groups G(2, n) for — 3 ;£ n ^ 5 and also the
group G(3,1).
G(2, — 3) This group has the presentation

G(2,-3) = <a,fc|ab2a-1 = ba-3b,ba2b-x = ab~3ay.

Let H be the subgroup of G(2, -3 ) generated by [a'Sfc"1], [a"1,*)], [a,fe].
Clearly H ^ G'(2, -3 ) and in fact |G(2, -3 ) : H\ = 18 so H is a subgroup of
index 2 in G'(2, -3) . Put x = [ a " 1 , ^ 1 ] , y = [a"1, ft], z = [a,b]. Using the
modification of the Todd-Coxeter coset enumeration algorithm we obtain a pre-
sentation for H on the generators x, y, z with the following relations:
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x~2yz~1y~1x2y~izy = 1,

x~iyzx~1y~1z = 1,

yz~1y~1x2zy~1xy~1x = 1,

x~3yzy~1xy~1 x~iyz~1x~1y2 = 1,

x~2yz~1y~1x2z~iy~1xzy~lxyz~iy = 1,

xy~1zy~2x2yx~1yzy~l = 1,

y2xzy~ix2y~2xzyx~1yzxy~1z = 1,

yx-1yz-1x-1yzy~1z-ix-1y2x-2yx-1yz-1x-1yzy-2xy-1x-1yz-1y~1x = 1,

y~iz2y~1x~1yz~ix~1yz = 1,

x~3j'z-1;c~1,y2.x>'~1z,)>~1x~1j> = 1,

x~1yx~1yzy~1x~1yz~2yx~1yzy~2zy~1z~1y = 1,

x~iyx~1yz~2yx~iy2z~2y~1xy~1x~2y = 1,

X_y~2xzyz~1j>~1xz}>~1xj>~1;c2_y~2;cz)>z~1,pc~1>>z_y~1 = 1,

y~ixy~lxy~lzy~1x~1yz~1yz~1y~1xzy~ixy~ix2z~1y~1xzy~1xy~1x2y~2xzy~l

xy~1x2y~2xz = 1.

It would not be a too tedious task to produce these defining relations by hand.
We however used a programme Wilde (1967) to find the words in the subgroup
generators which give the relations between the coset representatives. We wrote
a programme to find from these words a presentation for the subgroup H. Twenty
relations were obtained and the shorter relations used to simplify the longer
ones until the programme Beetham (unpublished) could handle the coset enu-
meration. During the simplifications six of the rrelations were found to be re-
dundant.

The index of <x> in H is 32 and <x> is not a normal subgroup of H. Hence
H is not abelian and since H ^ G'(2, — 3) the group G(2, — 3) is not metabelian.
In fact \H\ = 27.3 and so |G(2, - 3 ) | = 28.33. By Theorem 3 G(2, -3 ) has a
homomorphic image isomorphic to G(l, 3), a group of order 27, and so G(2 ,—3)
is an extension of a 2-group by G(l, 3). Since |G(2, —3) : <a> | = 26.3 the order
of a is 36. Hence a4 has order 9 and so a4 is contained in a Sylow 3-subgroup P.
If G(2, -3) is nilpotent P is normal in G(2, —3). Let N be the normal closure of
<a4> in G(2, -3) . Since P is normal N g P so G(2, -3)/N has order divisible by
28. However |G(2, -3)1 N | = 24, so G(2, -3 ) is not nilpotent.

Next we look at G(2,3), the structure of which is similar to G(2, —3).

G(2,3) This group has the presentation
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G(2,3) = <a,b\ab3a = ba2b~\ba3b = ab2a~ly.

It is easy to deduce the relations (ab)3 = 1 and (ba)3 = 1 which are of some help
in the coset enumerations.

Lettf = <[a,b], [a"1, fe"1], [a"1, &]>. Then H is a subgroup of index 18 in
G(2,3)andhasindex2inG'(2,3).Withx = [a , i ] , y = [ a " 1 ^ " 1 ] ^ = [a"1,*?]
we obtain a presentation of H on x, y, z with eight relations

(1) I*2, /] = 1,

(2) |>2,z2] = 1,

(3) zyx-^-iyx-1 = 1,

(4) (yx)2z-2 = 1,

(5) y-3zx-1z~1x2y2z-1x2y-1zx-1 = 1,

(6) y2z~1x2y~1zx2y2z~ix2yzx2 = 1,

(7) z-V2zx~3>'~2z~1.y~2zx~1;r2 = 1,

(8) x-1z-1y3z-1y2xz-1yx-2z = 1.

The same techniques as used for G(2, — 3) were used to find presentations of
subgroups of G(2,3).

The subgroup <x2,y2,z2> is abelian. For, from (3) [ z 2 , ^ " 1 ] = 1, from
(4)[z2,yx] = 1 and so [z2, x2] = 1. The relations ofH are sufficiently complicated
to make it very difficult to find a presentation of a subgroup L of H of index
greater than two by the modified Todd-Coxeter algorithm. However if the sub-
group of H is known to be abelian the simplification is substantial and so
it might be reasonable to try to find a presentation for <x2, y2, z2>. The index
\H: (x2,y2,z2)\ is 256 which the programme Wilde (1967) cannot handle. We
reduce the problem by rinding a subgroup K of index 2 in H and a larger abelian
subgroup than <x2, y2, z2>.

Let A = (x2,y2,z2,yx2y,yz2y}. Then A is abelian. This can be checked
using the relations (1) to (4). We know x2, y2 and z2 commute. To show [x2, yx2y\
= 1 use(4)to obtain [x2,yxyx] = 1. Since x2 commutes withyxj"1, [X2,J>X2J>-1]

= 1 and so x2 commutes with yx2y as required. Next we show that [z2, J X 2 J ] = 1.
Use (3) to obtain [ z 2 , ^ " 1 ] = 1. But [ z 2 , ^ " 1 ] = 1 gives both [V.x.y-1] = 1
and [z2,j>x] = 1 so [z2,>'x2>'~1] = 1 and the result follows. Now [z2,yx2y] = 1
implies [x2, yz2y\ = 1 and it remains to show that [z2, yz2y\ = 1. But yz2y
= y2xyxy by (4) and z2 commutes with xy since we have shown above that
[z^xy"1] = 1. Hence A is abelian.

Let K = <x2, y, z>. Then H ^ K ^ A and | H : K | = 2 . With r = x2, s = y,
t = z we can find a presentation of K on r, s, t with the fourteen relations which
may be simplified, using the fact that A is abelian, to the following:
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[M2] = 1,

[r,srs] = 1,

[r,sfV] = 1,

[r,s2] = 1,

[s2,*2] = 1,

[r,ts2f] = 1,

rVr'f'r)2 = l,

strs2t~lrs~1trs2t~1r = 1,

s~3ristsr1st = 1,

fsr-'t-^-V-Wr2*-1/--1 = 1,

t~lsrsts~ltsrst~1rsr = 1,

rW1!--1**-1*!-^-1!--1 = l,

s~1ts~1t2r~1s~2t~1s~1tsr~1t = 1,

s3r1rsr1s-1r1rsr1 = l.

Now .4 = (r,s2,t2,srs,st2sy and |K : A | = 32. The modified Todd-Coxeter
algorithm applied to A as a subgroup of K gives a presentation for the abelian
group A from which it can be shown that | ^ | = 768 and r12 = (s2)12 = (f2)12

= (srs)12 = (st2s)4 = 1. This shows that the order of G(2,3) is 215.33. Note that
H is not abelian since <x> is not normal in H and so G(2,3) is not metabelian.
To show G(2,3) is not nilpotent use the fact that aft is an element of order 3, so if
G(2,3) is nilpotent ab is contained in the normal Sylow 3-subgroup. This is
clearly impossible since a and b have order 72.

To complete a study of the finite groups G(2, n) for - 3 | n ̂  5 we must
examine G(2, -1) , G(2,1) and G(2,5). G(2, -1 ) is trivial by Theorem 3 and G(2,1)
is proved to be trivial in Example 2 of Campbell (1969).

G(2,5) The group G(2,5) is isomorphic to G(l, 5). To show this we must prove
that a5 = b~5. The subgroup <a> is normal in G(2,5) and G(2,5)/<a> ^ Z5.
Hence <a5> = <b5> =G'(2,5). Since a5,fc5eZ(G(2,5)), the centre of G(2,5),
we have

a~2ba2 = b6, b~2ab2 = a6.

Then a~2b5a2 = b30 so b25 = 1. Also b~1a-2b = b5a~2 gives b^a'^-h
= b10a-4, so b~lab = b10a. Thus b~2ab2 = b20a and this together with
b~2ab2 = a6 gives a5 = b~5.
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Next consider the three infinite groups G(2, -2) , G(2,2) and G(2,4).
G(2,2) We prove G(2,2) is isomorphic to D^. This follows from Theorem 2

once we have shown a2 = b2 = 1. Now

G(2,2) = <a,b|ab2a"1 = ba2b,ba2b~l = ab2a}.

But ab2a~l = ba2b~xb2 = ab2ab2 and so a'2 = b2. Then ab2a~l = ba2b = 1
and so b2 = 1. Since a~2 = b2 this gives a2 = 1.

G(2, — 2) We show that G(2, — 2) is also isomorphic to D^. Use the relations
of Theorem 4 to give a presentation for H = <a, b2}.

H = <x,y\R(k) = l,k = l , 2 , 3 , - > .

The first four of these relations are

x~2yx~1yxy~1 = 1,

x2y~xxy~1xyx~2y~l = 1,

yx~1yx~1yx~1y~1xy~1x~1yx~1 = 1,

xy~1x3y~1xy~1x~2yxy~1 = 1.

It is straightforward to deduce from these relations that y = 1 and x2 = 1. if is
isomorphic to the cyclic group of order 2 since the relations R(k) = 1 hold in the
group <x,.y|.)> = l,x2 = 1> for k ^ 5. This gives a2 = 1 and therefore f>2 = 1.
Thus G(2, — 2) is isomorphic to the infinite dihedral group by Theorem 2.

G(2,4) Again use Theorem 4. H can easily be shown to have only five rela-
tions. For, w(fe) = w(fe - 2)[w(fc - 3)]2, k ^ 5, and

[w(fc + 2)]2w(fc + l)w(fc)[w(fe - l ) ] - 1 ^ ) ] " 1 = 1, fc ^ 3.

Then w(fc + 2) = w(fe)[w(fe - I)]2 and so w(fc + 2)w(fc + l)w(k)w(fc - 1) = 1,
k ^ 3. Then w(fe + 3) = w(/c - 1), k ^ 3. Hence, for n = 2, H has a presentation

H = <x,j|K(l) = 11(2) = R(3) = 11(4) = R(5) = 1>.

This presentation simplifies to

H = (x,y\y-lxy = x"3, x ^ x " 1 = J"2, J'X'V"1 = ^~5>.

and so H is a group of order 64. Hence <a2, ft2) is a group of order 32 whose
structure is easily exhibited. G(2,4) is an extension of this group of order 32 by DB

G(3,1) This group has the presentation

) = <a,b\ab3 = b2aba, ba3 = a2bab}.

The order of G(3,1) is 120. For, using the modified Todd-Coxeter algorithm on the
subgroup <a> gives |G(3,1) : <a> | = 12 and the presentation for <a> obtained i;

| l o
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SL(2,5) is generated by the two matrices A and B where

But AB3 = B2ABA and BA3 = A2BAB and so SL(2,5) is a homomorphic image
of G(3,1). However | SL(2,5) | = 120 and so G(3,1) is isomorphic to SL(2,5).
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