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Characterizing the Absolute Continuity of
the Convolution of Orbital Measures in a
Classical Lie Algebra

Sanjiv Kumar Gupta and Kathryn Hare

Abstract. Let g be a compact simple Lie algebra of dimension d. It is a classical result that the
convolution of any d non-trivial,G-invariant, orbital measures is absolutely continuouswith respect
to Lebesgue measure on g, and the sum of any d non-trivial orbits has non-empty interior. _e
number d was later reduced to the rank of the Lie algebra (or rank +1 in the case of type An). More
recently, the minimal integer k = k(X) such that the k-fold convolution of the orbital measure
supported on the orbit generated by X is an absolutely continuous measure was calculated for each
X ∈ g.

In this paper g is any of the classical, compact, simple Lie algebras. We characterize the tuples
(X1 , . . . , XL), with X i ∈ g, which have the property that the convolution of the L-orbital measures
supported on the orbits generated by the X i is absolutely continuous, and, equivalently, the sum
of their orbits has non-empty interior. _e characterization depends on the Lie type of g and the
structure of the annihilating roots of the X i . Such a characterization was previously known only for
type An .

1 Introduction

Let G be a compact, connected, simple Lie group and let g be its Lie algebra. Given
X ∈ g, we let µX denote the G-invariant orbital measure supported on OX , the orbit
generated by X under the adjoint action ofG. Geometric properties of the Lie algebra
ensure that if a suitable number of non-trivial orbits are added together the resulting
subset of g has non-empty interior and if a suitable number of orbital measures are
convolved together the resulting measure is absolutely continuouswith respect to the
Lebesgue measure on g. From the work of Ragozin in [18] it can be seen that the
dimension of the Lie algebra is a “suitable number”.

In a series of papers (see [9, 10] and the papers cited therein) the authors, with
various coauthors, improved upon Ragozin’s result determining, for each X ∈ g, the
integer k(X) with the property that µk

X is absolutely continuous for all k ≥ k(X) and
µk
X is singular to Lebesgue measure otherwise (where µk

X denotes the k-fold convo-
lution). Furthermore, the k-fold sum of OX has non-empty interior if k ≥ k(X), and

Received by the editors October 22, 2014.
Published electronically April 18, 2016.
_e ûrst author would like to thank the Dept. of Pure Mathematics at the University of Waterloo

and the second author the School of Mathematics and Statistics at St. Andrews University for their
hospitality while some of this research was done. _is research was supported in part by the Edinburgh
Math. Society, NSERC and Sultan Qaboos University.

AMS subject classiûcation: 43A80, 17B45, 58C35.
Keywords: compact Lie algebra, orbital measure, absolutely continuous measure.

841

https://doi.org/10.4153/CJM-2015-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-018-2


842 S. K. Gupta and K. Hare

otherwise has measure zero. A formula was given for k(X) depending on combina-
torial properties of the annihilating roots of X. In particular, it was shown that the
convolution of any r orbital measures is absolutely continuous if and only if r is at least
the rank of the Lie algebras when g is of type Bn , Cn , or Dn , and r is at least rank+1
for the Lie algebras of type An . _e proofs relied heavily upon representation theory
and harmonic analysis.
By taking a geometric approach,Wright [22] extended these results in the special

case of the classical Lie algebra g = su(n) (type An−1), proving that µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL

is absolutely continuous with respect to Lebesgue measure if and only if ∑L
i=1 s i ≥

n(L − 1), where s i is the dimension of the largest eigenspace of the n × n matrix X i ,
provided it is not the case that L = 2, n ≥ 4 is even, and X1 , X2 each have two distinct
eigenvalues, both ofmultiplicity n/2.

Using primarily algebraicmethods,Gracyzk and Sawyer (cf. [4,5]), addressed anal-
ogous problems in the setting of a non-compact symmetric space, improving upon
other work of Ragozin, [17]. In particular, they characterized when the convolution
of two (possibly diòerent) bi-invariant measures is absolutely continuous in the sym-
metric spaces sl(n, F)/su(n, F) (where the restricted root system is also type An−1).

Inspired by theirmethods, in this paperwe characterize the L-tuples, (X1 , . . . , XL)

with X i ∈ g, such that the convolution µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL is absolutely continuous when
the Lie algebra is any one of the classical Lie algebras (those of type An , Bn , Cn or
Dn), leaving only one pair in Dn , where we have been unable to decide the answer.
Aswell, this characterizes the L-tuples such that∑L

i=1 OX i has non-empty interior in g
as opposed to measure zero. As Wright found with type An , the characterization can
be expressedmost simply as a function of the dimensions of the largest eigenspaces of
the X i when these are viewed as matrices in the classical matrix Lie algebras (see Sec-
tion 3 for the precise statement). _e characterization can also be described in terms
of the root structure of the set of annihilating roots of the X i , as was done in the pre-
vious study of convolutions of a single orbital measure. Our argument is completely
diòerent from that used by Wright and from the harmonic analysis/representation
theory approach used by the authors previously. It relies heavily upon the (algebraic)
Lie theory of roots and root vectors.

Using these results, we also obtain a similar characterization of the absolute con-
tinuity of the convolution products of G-invariant measures, µx i , supported on con-
jugacy classes Cx i in G , for the elements x i ∈ G whose annihilating roots agree with
those of a preimage of x i in g under the exponential map. _is extends thework of [8]
where theminimal integer k(x)with the property that µk(x)

x is absolutely continuous
was determined.

In a future paper, we will adapt our general strategy to improve upon Gracyzk and
Sawyer’s symmetric space results.
Finding the density function, or RadonNikodym derivative, of the absolutely con-

tinuousmeasure µX1∗⋅ ⋅ ⋅∗µXL is a challenging problem. In the case of the convolution
of two orbital measures in su(n), this has been computed in [2]. A general formula for
the convolution of two orbital measures in terms of the projection of such measures
to maximal tori was found in [1]. _e density function for the analogous problem on
non-compact symmetric spaceswas studied in [3] (see also the references cited there).
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In [15], the sum of two adjoint orbits in su(n) is explicitly described in terms of a sys-
tem of linear equations, but for more than 2-fold sums this too seems very diõcult.
Otherwork investigating the smoothness properties of convolutions ofmeasures sup-
ported on manifolds whose product has non-empty interior was carried out by Ricci
and Stein in [19,20].

_e paper is organized as follows. In Section 2 we review backgroundmaterial in
Lie theory and introduce basic notation. In Section 3 we state the main result. _e
necessity of our characterization is proved in Section 4. In Section 5 we establish the
general strategy for tackling the absolute continuity problem and then complete the
proof of themain theorem in Section 6. In Section 7 we discuss consequences of our
result and deduce the absolute continuity result for convolutions of orbital measures
on Lie groups mentioned above.

2 Notation and Background

2.1 Notation

We begin by establishing notation and reviewing basic facts about roots and root vec-
tors. Assume Gn is a classical, compact, connected simple Lie group of rank n, one of
type An , Bn , Cn , or Dn . We denote by gn its (real) Lie algebra, by tn amaximal torus
of gn , and byW theWeyl group.

We write [ ⋅ , ⋅ ] for the Lie bracket action. _e map ad∶gn → gn is given by
ad(X)(Y) = [X ,Y]. _e exponential function, exp is a surjection of gn onto Gn ,
and Gn acts on gn by the adjoint action, denoted Ad( ⋅ ). Recall that for M ∈ gn ,

Ad(expM) = exp(ad(M)) = Id+
∞
∑
k=1

adk
(M)

k!
,

where adk
(M) is the k-fold composition of ad(M).

By an orbit of an element X ∈ gn , wemean the subset

OX ∶= {Ad(g)(X) ∶ g ∈ Gn} ⊆ gn .

_ere is no loss in assuming X belongs to tn , since every orbit contains a torus ele-
ment. Orbits are compactmanifolds of proper dimension in gn and hence of Lebesgue
measure zero. If X = 0, then OX = {0} is a singleton, but otherwise, OX has positive
dimension.
By the orbital measure, µX , wemean the probability measure invariant under the

adjoint action of Gn and compactly supported on OX . It integrates bounded contin-
uous functions f on gn by the rule

∫
gn
f dµX = ∫

Gn
f (Ad(g)X)dg ,

where dg is the Haar measure on Gn . _e orbital measures are singular to Lebesgue
measure, since their supports have Lebesguemeasure zero. Except in the special case
when X = 0, µX is an example of a continuous measure,meaning the µX-measure of
any singleton is zero.

_e classical Lie groups and algebras are said to be of typeAn for n ≥ 1, Bn for n ≥ 2,
Cn for n ≥ 3, or Dn for n ≥ 4. _is means that the root system of the complexiûed
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Lie algebra with respect to the complexiûed torus, denoted Φn , is of that Lie type. It
is o�en convenient to refer to type An as type SU(n + 1) for reasons that will become
clear later.
For the convenience of the reader we describe Φn below for each of the classical

types. Note that by e j wemean the j-th standard basis vector ofRn (or inRn+1 in the
case of type An). _e real span ofΦn , denoted spΦn , is equal toRn (or the subspace
of Rn+1 spanned by the standard vectors e j − en+1 for j = 1, . . . , n in the case of type
An).

Lie algebra Root system Φn
An {±(e i − e j) ∶ 1 ≤ i < j ≤ n + 1}
Bn {±e i ,±e i ± e j ∶ 1 ≤ i ≠ j ≤ n}
Cn {±2e i ,±e i ± e j ∶ 1 ≤ i ≠ j ≤ n}
Dn {±e i ± e j ∶ 1 ≤ i ≠ j ≤ n}

In the case of type An , theWeyl group is the group of permutations on the letters
{1, . . . , n + 1}. For types Bn , Cn (and Dn), theWeyl groups are the group of permu-
tations on {1, . . . , n}, together with (an even number of) sign changes.

_ese Lie algebras and groups can be identiûed with the classical matrix algebras
and groups listed below. All compact, connected, simpleLie groups arehomomorphic
images by ûnite subgroups of these classical matrix groups.
● su(n): _e set of n×n skew-Hermitian, trace zeromatrices is themodelwe use for

the Lie algebra of type An−1. _en SU(n), the n × n special unitary matrices, is a
compact Lie group of type An−1.

● so(p): _e set of p × p real, skew-symmetric matrices. When p = 2n it is the Lie
algebra of type Dn and when p = 2n + 1 it is of type Bn . SO(p) - the p × p special
orthogonal matrices are associated compact Lie groups.

● sp(n): _e set of 2 n × 2n matrices of the form [ A B
−B A ] , where A, B are complex

n × n matrices with B symmetric and A skew-Hermitian is the Lie algebra of type
Cn . _e n-th order symplectic group, Sp(n), is the set of 2n × 2n unitary matrices
U satisfying U tr JU = J , where J = [ 0 −I

I 0 ] with I being the n × n identity matrix.
Sp(n) is a compact Lie group of type Cn .
For each root α ∈ Φn , we let Eα denote a corresponding root vector so that if

H ∈ tn , then

(2.1) [H, Eα] = iα(H)Eα .

(We make the convention that roots are real valued.) We will choose a collection of
root vectors, {Eα}, that form a Weyl basis (see [11, p. 421] or [21, p. 290]). In par-
ticular, this ensures that if α, β and α + β are roots, then there are non-zero scalars
Nα ,β satisfying Nα ,β = N−α ,−β and [Eα , Eβ] = Nα ,βEα+β . If α + β is not a root, then
[Eα , Eβ] = 0.

_e root vector, Eα , can be written in a unique way as Eα = REα + iIEα , where
REα and IEα both belong to the (real) Lie algebra gn . We refer to these as the real
and imaginary parts of the root vector. We write FEα if wemean either REα or IEα .
One can easily see that E−α = REα − iIEα . Furthermore, REα = (Eα + E−α)/2 and
IEα = (Eα − E−α)/(2i).
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_e vector space spanned by REα and IEα over various sets of roots α will be im-
portant to us. In particular, we put

Vn = {REα , IEα ∶ α ∈ Φ+
n} ⊆ gn ,

where Φ+
n denotes the subset of positive roots. With this notation the Lie algebra can

be decomposed as

gn = tn⊕ α∈Φ+
n sp{REα , IEα} = tn⊕ spVn ,

where sp denotes the real span. _us, the dimension of gn is equal to n + ∣ Φn ∣.
From (2.1) it follows that

[H, REα] = −α(H)IEα and [H, IEα] = α(H)REα .

It is also well known that

[REα , IEα] =
−1
2i

[Eα , E−α]

is a non-zero element of themaximal torus. It should be noted that if {α j ∶ j ∈ J} ⊆ Φn
is a spanning set for spΦn , then {[REα j , IEα j] ∶ j ∈ J} spans tn .

Since {Eα} is aWeyl basis, we have

[REα , REβ] = cREα+β + dREβ−α ,
[REα , IEβ] = cIEα+β + dIEβ−α
[IEα , IEβ] = −cREα+β + dREβ−α ,

(2.2)

where REγ and IEγ should be understood to be the zero vector if γ is not a root and
c = Nα ,β/2, d = Nα ,−β/2.

We refer the reader to [12, 14, 21] for proofs of these well known facts and further
details on the representation theory of Lie algebras.

2.2 Annihilating Roots

We call a root, α, an annihilating root of X ∈ tn if α(X) = 0, and we call α a non-
annihilating root of X otherwise. _e set of annihilating roots of X,

ΦX ∶= {α ∈ Φ ∶ α(X) = 0},

is a root subsystemofΦn . Aswewill see, these root subsystems are critical for under-
standing properties of orbits and orbital measures, as are the associated root vectors.
We will denote by

(2.3) NX ∶= {REα , IEα ∶ α ∉ ΦX} ⊆ Vn ,

the linearly independent subset of Vn consisting of the real and imaginary parts of
the root vectors corresponding to the non-annihilating roots of X. It is known that
dimOX = ∣NX ∣ [16, VI.4]. Indeed, the tangent space at X to OX is spanned by the
vectors in NX , and these are linearly independent (see the proof of Proposition 3.8).
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2.3 Type of an Element

_e torus of su(n), the classical Lie algebra of type An−1 (or type SU(n)) consists of
the diagonal matrices in su(n). A�er applying a suitableWeyl conjugate, any X in the
torus can be identiûed with the n-vector of the real parts of the diagonal elements,

X = (a1 , . . . , a1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1

, . . . , am , . . . , am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sm

),

where the a j ∈ R are distinct and∑m
j=1 s ja j = 0. _is means that ia j is an eigenvalue

of the n × n matrix X with multiplicity s j . _e set of annihilating roots of X is ΦX =

Ψ1 ∪ ⋅ ⋅ ⋅ ∪ Ψm , where

Ψ1 = {e i − e j ∶ 1 ≤ i ≠ j ≤ s1},
Ψl = {e i − e j ∶ s1 + ⋅ ⋅ ⋅ + s l−1 < i ≠ j ≤ s1 + ⋅ ⋅ ⋅ + s l} for l > 1.

Following [9], we say that X is type SU(s1) × ⋅ ⋅ ⋅ × SU(sm), as this is the Lie type of
its set of annihilating roots.

_e torus of so(2n+ 1), the classical Lie algebra of type Bn , consists of block diago-
nal matrices,with n 2×2 blocks of the form [

0 b j
−b j 0 ] having b j ≥ 0, and a 0 in the ûnal

diagonal position. We identify X in the torus with the n-vector (b1 , . . . , bn) ∈ R+n .
Up to aWeyl conjugate, X can thus be identiûed with the n-vector

X = (0, . . . , 0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

J

, a1 , . . . , a1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1

, . . . , am , . . . , am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sm

),

where the a j > 0 are distinct. One can see that 0 is an eigenvalueof the (2n+1)×(2n+1)
matrix X with multiplicity 2J + 1 and ±ia j are eigenvalues with multiplicity s j .

_e set of annihilating roots ΦX = Ψ0 ∪Ψ1 ⋅ ⋅ ⋅ ∪Ψm where

Ψ0 = {±ek ,±e i ± e j ∶ 1 ≤ i , j, k ≤ J , i ≠ j},
Ψl = {e i − e j ∶ J + s1 + ⋅ ⋅ ⋅ + s l−1 < i ≠ j ≤ J + s1 + ⋅ ⋅ ⋅ + s l}

for l = 1, . . . ,m. We will say that X is type

BJ × SU(s1) × ⋅ ⋅ ⋅ × SU(sm),

as this is the Lie type of ΦX . Here by B1 we mean the root subsystem {±e1}, while
SU(1), B0 and SU(0) are empty (and typically omitted in the description).

Similarly, if X belongs to the torus of the Lie algebra of type Cn or Dn then, up to
aWeyl conjugate, X can be identiûed with the n-vector

X = (0, . . . , 0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

J

, a1 , . . . , a1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1

, . . . , am , . . . , (±)am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sm

),

where the a j > 0 are distinct. We remark that the minus sign is needed only in type
Dn and only if J = 0. (_is is because the Weyl group in type Dn changes only an
even number of signs.) Viewing X as an 2n × 2n matrix in sp(n) or so(2n), this
means that 0 is an eigenvalue of X with multiplicity 2J , and ±ia j are eigenvalueswith
multiplicity s j .
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_e set of annihilating roots of X can again be written as ΦX = Ψ0 ∪ Ψ1 ⋅ ⋅ ⋅ ∪ Ψm .
In this case

Ψ0 = {±2ek ,±e i ± e j ∶ 1 ≤ i , j, k ≤ J , i ≠ j}
when the Lie algebra is type Cn and

Ψ0 = {±e i ± e j ∶ 1 ≤ i , j ≤ J , i ≠ j}

when the Lie algebra is type Dn . For l ≥ 1, the Ψl are as in type Bn , except when
X = (a1 , . . . , a1 , . . . , am , . . . ,−am) in Dn when

Ψm = {±(e i − e j),±(e i + en) ∶ n − sm < i ≠ j ≤ n − 1}.

We will say X is type

CJ × SU(s1) × ⋅ ⋅ ⋅ × SU(sm) or DJ × SU(s1) × ⋅ ⋅ ⋅ × SU(sm)

respectively, as these are the Lie types of ΦX . Here C1 is the subsystem {±2e1}, C2 is
{±2e1 ,±2e2 ,±e1± e2}, D2 is {±e1± e2} (or type A1×A1), D3 is deûned in the obvious
way, and D1, D0 , C0 are empty (and o�en omitted).

Note that there are two distinct subsystems (up toWeyl conjugacy) of annihilating
roots of elements of type SU(n) in Dn .

Deûnition 2.1 Suppose X is in the torus of the Lie algebra of type Bn and is type
BJ × SU(s1)× ⋅ ⋅ ⋅ × SU(sm). We will say that X is dominant B type if 2J ≥ max s j , and
is dominant SU type, otherwise. We deûne dominant C and D type similarly for X in
Cn or Dn .

Itwas shown in [9,_m. 8.2] that for eachnon-zero X ∈ gn , there is an integer k(X)

such that for k ≥ k(X), µk
X ∈ L1

⋂ L2(gn) (in particular, µk
X is absolutely continuous

with respect to Lebesguemeasure) and µk
X is purely singular if k < k(X). A formula

was given for k(X) depending only on the type of X and the type of the Lie algebra.
For example, if X is dominant SU type in the Lie algebra of type Bn , Cn or Dn , and
not of type SU(n) when the Lie algebra is type Dn , then k(X) = 2. If X is type Bn−1
(Cn−1, Dn−1, or SU(n − 1)) in the Lie algebra of type Bn (Cn , Dn or SU(n)), then
k(X) = n, and this is themaximal choice required for k(X).

3 Statement of the Main Result

3.1 Eligible and Exceptional Tuples

We introduce the following terminology.

Notation 3.1 If X is of type SU(s1)×⋅ ⋅ ⋅×SU(sm) in the Lie algebra of type SU(n+1)
(equivalently, type An), put SX = max s j .

If X is type BJ × SU(s1) × ⋅ ⋅ ⋅ × SU(sm) in the Lie algebra of type Bn , put

SX =

⎧⎪⎪
⎨
⎪⎪⎩

2J if X is dominant B type,
max s j else.

Deûne SX similarly when X belongs to the Lie algebras of type Cn or Dn .
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If X ∈ so(2n + 1) is dominant B type, then the dimension of the largest eigenspace
of thematrix X is SX + 1, while if X is dominant SU type, then the dimension of the
largest eigenspace is SX . In all the other Lie algebras, SX is the dimension of the largest
eigenspace when X is viewed as amatrix in the appropriate classical matrix algebra.

Deûnition 3.2
(i) We will say that the L-tuple (X1 , X2 , . . . , XL) of elements in the torus of a Lie

algebra of type SU(n + 1) is eligible in gn if
L

∑
i=1

SX i ≤ (L − 1)(n + 1).

(ii) We will say that the L-tuple (X1 , X2 , . . . , XL) of elements in the torus of a Lie
algebra of type Bn , Cn , or Dn is eligible in gn if

L

∑
i=1

SX i ≤ (L − 1)2n.

Deûnition 3.3 We will say that (X1 , X2 , . . . , XL) ∈ t
L is an exceptional tuple if it is

any one of the following:
● g is type SU(2n), L = 2, n ≥ 2, and X1 and X2 are both of type SU(n)× SU(n); i.e.,

X i = (a i , . . . , a i
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

,−a i , . . . ,−a i
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

);

● g is type Dn , L = 2, X1 is type SU(n) and X2 is either type SU(n) or type SU(n− 1)
(more precisely, type SU(n − 1) × D1 or SU(n − 1) × SU(1));

● g is type D4, L = 2, X1 is type SU(4) and X2 is either type SU(2)× SU(2), andΦX2

is Weyl conjugate to a subset of ΦX1 , or X2 is type SU(2) × D2;
● g is type D4, L = 3, and X1 , X2 , X3 are all of type SU(4) with Weyl conjugate sets

of annihilators.

Deûnition 3.4 We will call (X1 , X2 , . . . , XL) an absolutely continuous tuple if µX1 ∗

µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL is an absolutely continuous measure.

Our main result is that other than for the exceptional tuples, eligibility character-
izes absolute continuity of the convolution product. _e proof of this theorem will
occupymost of the remainder of the paper. Here is the formal statement of the theo-
rem.

3.2 Main Result

_eorem 3.5 Let gn be one of the classical, compact, connected Lie algebras of type
An with n ≥ 1, Bn with n ≥ 2, Cn with n ≥ 3, or Dn with n ≥ 4. Assume that non-zero
X i , i = 1, 2, . . . , L for L ≥ 2, belong to the torus of gn .

(i) Suppose (X1 , X2 , . . . , XL) is not an exceptional tuple. _emeasure, µX1 ∗ µX2 ∗

⋅ ⋅ ⋅ ∗ µXL , is absolutely continuous with respect to Lebesguemeasure on gn if and only if
(X1 , X2 , . . . , XL) is an eligible tuple.
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(ii) If (X1 , X2 , . . . , XL) is an exceptional tuple, other than a pair (X1 , X2) of type
(SU(n), SU(n − 1)) 1 in a Lie algebra of type Dn with n ≥ 6, then the measure µX1 ∗

µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL is not absolutely continuous.

Remark 3.6 _e characterization of absolute continuity in type An was previously
established by Wright [22]. We will include a proof in this paper as our approach is
completely diòerent and requires little additional eòort.

Remark 3.7 (i) We conjecture that a pair of type (SU(n), SU(n − 1)) in Dn
with n ≥ 6 also fails to be absolutely continuous.

(ii) Notice that unlike the case for convolutions of the same orbital measure ([9,
_m. 8.2]), the property of being absolutely continuous does not depend only upon
the type of the annihilating root systems of the underlying elements, but also, in some
cases, upon their Weyl conjugacy class.

In proving both absolute continuity and its failure we will rely crucially upon the
following known geometric properties.

_e notation TZ(OX) will denote the tangent space to OX at Z ∈ OX .

Proposition 3.8 _e measure µX1 ∗ µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL on gn is absolutely continuous
with respect to Lebesguemeasure if and only if any of the following hold:
(i) ∑

L
i=1 OX i ⊆ gn has non-empty interior;

(ii) ∑
L
i=1 OX i ⊆ gn has positive Lebesguemeasure;

(iii) there exists g i ∈ Gn with g1 = Id, such that

sp{Ad(g i)(NX i ) ∶ i = 1, . . . , L} = gn ,

(iv) there exists g i ∈ Gn with g1 = Id, such that
L

∑
i=1

TAd(g i)(X i)(OX i ) = gn .

Furthermore, if the identity holds in (iii) or (iv) for one choice of (g2 , . . . , gL) ∈ GL−1
n ,

then it holds for all (g2 , . . . , gL) in an open dense subset of GL−1
n of full measure.

Remark 3.9 We note that (ii) implies that if µX1 ∗ µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL is not absolutely
continuous, then µX1 ∗ µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL is a purely singular measure.

Proof _is proposition is a compilation of arguments that can be found in [6,9, 18].
We include a sketch here for the convenience of the reader. We will show that (iii)
and (iv) are equivalent and then demonstrate the implications (ii)⇒ (iv)⇒ absolute
continuity and (iv)⇒ (i). If µX1 ∗ µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL is absolutely continuous or (i) holds,
then (ii) clearly holds so this completes the equivalence.

(iii)⇔ (iv). It is well known (see [6], [16, VI.4]) that

TX(OX) = {[Y , X] ∶ Y ∈ gn} .

1When we say a pair (X ,Y) is of type (∗, ∗∗), wemean that X is of type ∗ and Y is of type ∗∗.
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Writing Y = ∑ aαREα + bα IEα + t for some t ∈ tn and aα , bα real, it is easily seen
that TX(OX) = spNX . Further, TAd(g)X(Ox) = Ad(g)(TX(OX)) = sp{Ad(g)Nx},
proving the equivalence of (iii) and (iv).

_e ûnal comment is an analyticity argument. Assume (iii) holds, for example,
with g = (Id, g2 , . . . , gL). For any h = (h1 , h2 , . . . , hL) ∈ GL

n , h1 = Id, consider the
collection Ad(h j)Y for Y ∈ NX j and j = 1, . . . , L, as vectors in Rdim gn , and form the
associated matrix M(h). As (iii) holds with g, there is a suitable square submatrix
of M(g) with non-zero determinant. By analyticity of the determinant map, the de-
terminant of the corresponding square submatrix of M(h) must be non-zero for an
open, dense subset of h ∈ GL−1

n of full measure. _e same argument applies to (iv).
(ii) ⇒ (iv). Consider the addition map F∶OX1 × ⋅ ⋅ ⋅ × OXL → gn given by

F(Y1 , . . . ,YL) = ∑
L
j=1 Yj . _e image of F is ∑L

j=1 OX j . If the rank of F is not full at
any point in its domain, then Sard’s theorem ([13, p. 286]) implies the measure of
the image of F is zero. _us the diòerential of F at some point Y = (Y1 , . . . ,YL),
where Yj = Ad(g j)X j , has full rank. But the range of the diòerential of F at Y is
∑

L
j=1 TYj(OX j) and hence this sum must be gn .
(iv) ⇒ (i). _e hypothesis of (iv) guarantees that the map F deûned above has

full rank at some point Y . By the Implicit function theorem, F is an open map in a
neighbourhood of Y , and thus Im F has non-empty interior.

(iv) ⇒ absolute continuity. _is is similar again. To see that the measure µ =

µX1 ∗ µX2 ∗ ⋅ ⋅ ⋅ ∗ µXL is absolutely continuous with respect to m, we should show that
µ(E) = 0 whenever m(E) = 0. Deûne f ∶ GL

n → gn by

f (g1 , . . . , gL) = F(Ad(g1)X1 , . . . , Ad(gL)XL).

By deûnition, µ(E) = mGL
n
( f −1(E)). By (iv), the diòerential of f has full rank at

some point. An analyticity argument ensures that this is true on a subset of g ∈ GL
n of

full measure. An application of the Implicit function theorem shows that f −1(E) has
mGL

n
-measure zero. For more details, see [18,_m. 2.2].

_e following is an immediate corollary of this proposition and themain theorem.

Corollary 3.10 Suppose (X1 , X2 , . . . , XL) is eligible and not exceptional. _en
∑

L
i=1 OX i has non-empty interior. If (X1 , X2 , . . . , XL) is either not eligible or is excep-

tional and not type (SU(n), SU(n − 1)) in Dn , then∑L
i=1 OX i has measure zero.

_ere is a suõcient condition for absolute continuity, established byWright in [22],
thatwewill use in the proof of themain theorem to establish the absolute continuity of
certain convolution products of orbital measures in small rank Lie algebras. We state
this result below. By the rank of a subsystem we mean the dimension of the vector
space it spans.

_eorem 3.11 ([22,_m. 1.3]) Let X1 , . . . , XL belong to the torus of gn . Assume

(3.1) (L − 1)( ∣Φ∣ − ∣Ψ∣) − 1 ≥
L

∑
i=1

( ∣ΦX i ∣ −min
σ∈W

∣ΦX i ∩ σ(Ψ)∣)
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for all root subsystems Ψ ⊆ Φ of rank n−1 and having the property that sp(Ψ)∩Φ = Ψ.
_en µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL is absolutely continuous.

4 Tuples That Are Not Absolutely Continuous

We begin by establishing the necessity of the conditions that give absolute continuity.

4.1 Eligibility is a Requirement for Absolute Continuity

Lemma 4.1 If (X1 , . . . , XL) is an absolutely continuous L-tuple, then (X1 , . . . , XL)

is eligible.

Proof Suppose the L-tuple, (X1 , . . . , XL) ∈ g
L
n , is not eligible; that is,

L

∑
i=1

SX i ≥ (L − 1)2n + 1 (or (L − 1)(n + 1) + 1 if gn is type An .)

Let α i be the eigenvalue of X i with greatest multiplicity (where we view each X i as
a complex matrix of the appropriate size depending on the Lie type of gn) and let
g i belong to the associated Lie group, Gn . Let Vi be the eigenspace of Ad(g i)(X i)

corresponding to the eigenvalue α i .
If gn is of type Cn or Dn , then Ad(g i)(X i) are 2n × 2n matrices and dimVi = SX i ,

so
L

∑
i=1
dimVi =

L

∑
i=1

SX i ≥ (L − 1)2n + 1.

We deduce that

dim
L
⋂
i=1

Vi

=
L

∑
i=1
dimVi − (dim(V1 + V2) + dim((V1 ∩ V2) + V3) + ⋅ ⋅ ⋅ + dim(

L−1
⋂
i=1

Vi + VL))

≥ (L − 1)2n + 1 − 2n(L − 1) ≥ 1,

and hence thematrices, Ad(g i)(X i), have a common eigenvector, v. As
L

∑
i=1
Ad(g i)(X i)(v) =

L

∑
i=1
α iv ,

it follows that ∑i α i is an eigenvalue of ∑i Ad(g i)(X i). Since ∑i Ad(g i)(X i) is an
arbitrary element of OX1 + ⋅ ⋅ ⋅ + OXL , one can see that every element of ∑i OX i has
eigenvalue ∑i α i . _is is impossible if OX1 + ⋅ ⋅ ⋅ + OXL has non-empty interior, thus
an application of Proposition 3.8(i) allows us to conclude that µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL is not
absolutely continuous.

_e argument is similar if gn is type An , viewing X i asmatrices in su(n+1), acting
on Rn+1.

In the case when gn is type Bn , we require a slight variation on the argument,
since every matrix in the Lie algebra so(2n + 1) (the model for type Bn) has 0 as
an eigenvalue. We use the same notation as above and ûrst observe that if all X i are
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dominant B type, then all α i = 0 and dimVi = SX i +1. _us,∑L
i=1 dimVi ≥ (L − 1)2n+

L + 1. Since the vector spaces Vi are subspaces of R2n+1, it follows that

dim
L
⋂
i=1

Vi ≥ (L − 1)2n + L + 1 − (2n + 1)(L − 1) ≥ 2.

Consequently, 0 is an eigenvalue of every element of OX1 + ⋅ ⋅ ⋅ + OXL of multiplicity
at least two. Again, we can conclude that OX1 + ⋅ ⋅ ⋅ + OXL has empty interior, and
therefore (X1 , . . . , XL) is not an absolutely continuous tuple.

If, instead, precisely one X i is dominant SU type, with eigenvalue α ≠ 0 of max-
imum multiplicity, then ∑dimVi ≥ (L − 1)2n + L. _is shows that dim⋂L

i=1 Vi has
dimension at least one, and hence every element of OX1 + ⋅ ⋅ ⋅ +OXL has α as an eigen-
value, again a contradiction if (X1 , . . . , XL) is an absolutely continuous tuple.

If two or more X i are dominant SU type, then (X1 , . . . , XL) is automatically eligi-
ble.

4.2 Exceptional Tuples That are not Absolutely Continuous

Lemma 4.2 Suppose (X1 , . . . , XL) is an exceptional tuple and is not a pair (X1 , X2)

of type (SU(n), SU(n− 1)) in Dn where n ≥ 6. _en (X1 , . . . , XL) is not an absolutely
continuous tuple.

Proof We will need separate arguments for the various exceptional tuples.
(i) Suppose X1 and X2 are both type SU(n) in the Lie algebra Dn . Observe that

dim( sp{Ad(g i)(NX i ) ∶ i = 1, 2}) ≤ ∣NX1 ∣ + ∣NX2 ∣.

In this case, ∣NX i ∣ = ∣Φn ∣/2. As the dimension of the Lie algebra is ∣Φn ∣ + n it is
clearly impossible for sp{Ad(g i)(NX i ) ∶ i = 1, 2} to be the full Lie algebra. _us
Proposition 3.8(iii) proves that this pair is not absolutely continuous.

(ii) Suppose X1 and X2 are of types SU(n) and SU(n− 1), respectively, in Dn with
n = 4 or 5. For this problem, we will use the fact that a root system of type SU(4) is
isomorphic to one of type D3. We will explain the argument for n = 4 and leave n = 5
as an exercise.

Let π be an automorphismof the root systemof typeD4 (an isomorphism that pre-
serves the Cartanmatrix) thatmaps the annihilating roots of X1 (those of type SU(4))
onto a root subsystem of type D3. _is automorphism extends to an automorphism
on the torus of D4 that maps X1 to the element π(X1) whose set of annihilating roots
is the D3 root subsystem, and it maps X2 to the element π(X2) whose set of annihi-
lating roots is isomorphic to those of X2 and hence is type SU(3) (as this is unique
up to Lie isomorphism). It induces a Lie algebra isomorphism that we also call π. We
have π(OX j) = Oπ(X j) and

π(TAd(g j)(X j)(OX j)) = TAd(π(g j))(π(X j))(Oπ(X j)),

where if g j = expH j , then π(g j) = exp π(H j).
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_e pair (π(X1), π(X2)) is not eligible in D4 as Sπ(X1) = 6 and Sπ(X2) = 3, so by
our previous lemma it is not an absolutely continuous pair. Consequently, Proposi-
tion 3.8(iv) implies that

dim(
2

∑
i=1

TAd(π(g i))π(X i)(Oπ(X i))) < dimDn

for any choices of g1 , g2. But then a similar statement holds for∑2
i=1 TAd(g j)X j(OX j),

and thus (X1 , X2) is not an absolutely continuous pair.
(iii) When (X1 , X2) is a pair of type (SU(4), SU(2) × D2) in D4 the arguments

are similar. _e Lie isomorphism, π, thatmaps the subsystemof type SU(4) onto one
of type D3 must preserve the type of the root subsystem of type SU(2) × D2. But the
pair (π(X1), π(X2)) is not eligible, and hence neither it, nor the original pair, can be
absolutely continuous.

Next, suppose X1 is type SU(4) and X2 is type SU(2) × SU(2) in D4 with the
subsystem, ΦX2 , Weyl conjugate to a subset of the subsystem ΦX1 . Since any Weyl
conjugate of X2 generates the same orbit as X2, there is no loss of generality in assum-
ingΦX2 ⊆ ΦX1 . Consider the same Lie isomorphism π again. _en π(ΦX2) ⊆ π(ΦX1)

has the same Lie type as ΦX2 . But the only subsystems of type D3 that are isomorphic
to type SU(2) × SU(2) are of the form {±e i ± e j} for some i ≠ j, and hence are type
D2. Being of type (D3 ,D2), the pair (π(X1), π(X2)) is not eligible, and therefore
(X1 , X2) is not absolutely continuous.

(iv) Assume X1 , X2 , X3 are each of type SU(4) in D4, with Weyl conjugate sets of
annihilators. As the annihilators areWeyl conjugate, for each i = 1, 2, 3 there exist h i
in the Lie group of type D4 such that Ad(h i)(NX1) = NX i . _erefore, there exist g i
in the group such that

sp{Ad(g i)(NX i ) ∶ i = 1, 2, 3} = g

if and only if

sp{Ad(g ih i)(NX1) ∶ i = 1, 2, 3} = g.

But the latter was shown to be impossible in the proof of [9,_m. 8.2].
(v) _e argument is similar if X1 and X2 are both type SU(n) × SU(n) in the Lie

algebra of type SU(2n). In this case, NX1 and NX2 are Weyl conjugate and it was
shown in [9, Prop. 5.1] that there is no g ∈ SU(2n) such that sp{Ad(g)NX1 ,NX1} =

su(2n).

5 Proving Absolute Continuity - Main Ideas

5.1 General Strategy

Our proof that the eligible, non-exceptional tuples are absolutely continuouswill pro-
ceed by induction on the rank of the Lie algebra. _e reduction is based upon the
following idea.
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Notation 5.1 Suppose X in the torus of the Lie algebra of type SU(n), Bn , Cn , or
Dn is identiûed (a�er a suitableWeyl conjugate) with the n-vector

(0, . . . , 0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

J

, a1 , . . . , a1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1

, . . . , am , . . . , (±)am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sm

),

where s1 = max s j and J = 0 in the case of type SU(n). Deûne the element X′ ∈ tn−1
by

(5.1) X′
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0, . . . , 0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

J−1

, a1 , . . . , a1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1

, . . . , am , . . . , (±)am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sm

) if 2J ≥ s1,

(0, . . . , 0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

J

, a1 , . . . , a1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1−1

, . . . , am , . . . , (±)am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sm

) if 2J < s1.

_is means, for example, that if X has type BJ × SU(s1) × ⋅ ⋅ ⋅ × SU(sm), where
s1 = max s j , then X′ has type BJ−1 × SU(s1) × ⋅ ⋅ ⋅ × SU(sm) if X is dominant B type
and X′ has type BJ × SU(s1 − 1) × ⋅ ⋅ ⋅ × SU(sm) if X is dominant SU type. If X in
SU(n) has type SU(s1) × ⋅ ⋅ ⋅ × SU(sm), then SX′ = SX − 1 if s1 > max j≥2 s j , and
SX′ = SX otherwise. In the latter case, SX ≤ n/2.

We can embed tn−1 into tn by taking the standard basis vectors e1 , . . . , en in Rn

(or e1 − en+1 , . . . , en − en+1 in Rn+1 in the case of type SU(n + 1)) as the basis for
tn and taking the vectors e2 , . . . , en (resp., e2 − en+1 , . . . , en − en+1) as the basis for
tn−1. _is also gives a natural embedding of Φn−1 into Φn , and together these give an
embedding of gn−1 into gn , an embedding of Vn−1 into Vn and an embedding of Gn−1
into Gn . We will also view X′ as an element of tn in the natural way.
An induction argument will be applicable because of the following lemma.

Lemma 5.2 If (X ,Y) is an eligible pair in gn and X ,Y are not both of type SU(m)×

SU(m) in the Lie algebra of type SU(2m), then the reduced pair, (X′ ,Y ′), is eligible in
gn−1.

Proof Case 1: gn is type Bn , Cn or Dn .
Observe that we always have SX′ ≤ SX , since the dimensions of the eigenspaces of

X′ can only be at most the dimensions of those of X .
If both X and X′ are dominant B, C or D type, then SX′ = SX −2. If X′ is dominant

SU type, then SX′ ≤ n − 1, regardless of the type of X. Finally, if X is dominant SU
type while X′ is dominant B, C or D type, then SX = s1 > 2J = SX′ ≥ s1 − 1. Since it is
always true that J + s1 ≤ n, one can check that s1 ≤ (2n + 1)/3 and hence SX′ ≤ n − 1.

_us, if either X and X′ or Y and Y ′ are both dominant B, C, or D type, then

SX′ + SY ′ ≤ SX + SY − 2 ≤ 2(n − 1).

Otherwise, both SX′ and SY ′ ≤ n − 1 and again we conclude that SX′ + SY ′ ≤ 2(n − 1).

Case 2: gn is type SU(n + 1).
If either SX′ < SX or SY ′ < SY , then SX′ + SY ′ ≤ SX + SY − 1, and thus (X′ ,Y ′) is

eligible. Otherwise, SX′ = SX and SY ′ = SY and in that case SX′ , SY ′ ≤ (n + 1)/2. If n
is even, then we must have SX′ , SY ′ ≤ n/2 giving SX′ + SY ′ ≤ n. If n is odd, it is still
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true that SX′ + SY ′ ≤ n unless SX′ = SY ′ = (n + 1)/2. But that happens only when X
and Y are both type SU((n + 1)/2) × SU((n + 1)/2), which is not permitted.

Remark 5.3 It is easy to see that if X and X′ are of opposite dominant types, then
X is type BJ , (CJ or DJ)× SU(s1)× ⋅ ⋅ ⋅ × SU(sm), where 1 ≤ J < ∑ s i . It follows from
[9,_m. 8.2] that µ2

X ∈ L2.

We record here a well-known fact from elementary linear algebra that is a con-
sequence of the continuity of the determinant function and will be quite useful for
us.

Lemma 5.4 If {v1 , . . . , vn} is a set of linearly independent vectors in vector space V
and w1 , . . . ,wn ∈ V , then for suõciently small ε > 0, the collection {v1 + εw1 , . . . , vn +

εwn} is also linearly independent.

Notation 5.5 Given X′ as deûned above, let NX′ = {REα , IEα ∶ α ∉ ΦX′}, (as in
(2.3)), but viewed as embedded into Vn . Let ΩX = NX Ó NX′ .

We will refer to the next result as our general strategy. It will enable us to establish
that Proposition 3.8(iii) holds for a given tuple.

Proposition 5.6 (General Strategy) Let X i ∈ tn , i = 1, . . . , L for L ≥ 2, and assume
(X′

1 , . . . , X′
L) is an absolutely continuous tuple in gn−1. SupposeΩ is a subset ofVn/Vn−1

that contains all ΩX i and has the property that ad(H)(Ω) ⊆ spΩ whenever H ∈ gn−1.
Fix Ω0 ⊆ ΩXL .
Assume there exists g1 , . . . gL−1 ∈ Gn−1 andM ∈ gn such that

(i) sp{Ad(g i)(ΩX i ),ΩXL/Ω0 ∶ i = 1, . . . , L − 1} = spΩ;
(ii) adk

(M)∶NXL/Ω0 → sp{Ω, gn−1} for all positive integers k;
(iii) the span of the projection of Ad(exp sM)(Ω0) onto the orthogonal complement

of sp{gn−1 ,Ω} in gn is a surjection for all small s > 0.
_en (X1 , . . . , XL) is an absolutely continuous tuple.

Proof As (X′
1 , . . . , X′

L) is an absolutely continuous tuple, Proposition 3.8(iii) tells us
that

sp{Ad(h i)(NX′i ),NX′L ∶ i = 1, . . . , L − 1} = gn−1

for a dense set of (h1 , . . . , hL−1) ∈ GL−1
n−1 . Given ε > 0, choose such h i = h i(ε) ∈ Gn−1

with ∥Ad(h i) −Ad(g i)∥ < ε, where the elements g i ∈ Gn−1 are the ones given in the
hypothesis of the proposition. (_e norm can be taken to be the operator norm.)

Lemma 5.4, together with assumption (i), shows that for suõciently small ε > 0,

dim(spΩ) = dim( sp{Ad(g i)(ΩX i ),ΩXL/Ω0 ∶ i = 1, . . . , L − 1})

= dim( sp{Ad(h i)(ΩX i ),ΩXL/Ω0 ∶ i = 1, . . . , L − 1}) .

Since ad(H)(Ω) ⊆ sp(Ω) for all H ∈ gn−1 and h i = expH i for some H i ∈ gn−1, we
have

Ad(h i)(Ω) = Ad(expH i)(Ω) = exp(ad(H i))(Ω) ⊆ spΩ
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for all h i ∈ Gn−1. _us, for suõciently small ε > 0,

sp{Ad(h i)(ΩX i ),ΩXL/Ω0 ∶ L = 1, . . . , L − 1} = spΩ.

For such a choice of ε (herea�er ûxed), we have

sp{Ad(h i)(NX i ),NXL/Ω0 ∶ i = 1, . . . , L − 1} =

sp{Ad(h i)(NX′i ), Ad(h i)ΩX i ,NX′L ,ΩXL/Ω0} = sp{Ω, gn−1}.

Assumption (ii), and the fact thatNXL/Ω0 ⊆ sp{Ω, gn−1}, implies that for any real
number s, exp(s ⋅ adM) = Ad(exp sM) maps NXL/Ω0 to sp{Ω, gn−1}. Moreover,
∥ Id−Ad(exp sM)∥→ 0 as s → 0, thus similar reasoning to that above shows that for
all small enough s > 0,

sp{Ω, gn−1} = sp{Ad(h i)(NX i ),NXL/Ω0 ∶ i = 1, . . . , L}

= sp{Ad(h i)(NX i ), (Ad(exp sM))(NXL/Ω0) ∶ i = 1, . . . , L − 1} .

Combined with assumption (iii), this proves that for suõciently small s > 0,

sp{Ad(h i)(NX i ), Ad(exp sM)(NXL) ∶ i = 1, . . . , L − 1} = gn .

Another application of Proposition 3.8(iii) shows that µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL is absolutely
continuous.

We will occasionallymake use of the following speciûc application of the elemen-
tary linear algebra property in order to verify the hypothesis of the general strategy.

Lemma 5.7 Suppose Ω is a subset of Vn/Vn−1 that contains both ΩX and ΩY , and
has the property that ad(H)(Ω) ⊆ spΩ whenever H ∈ gn−1. Fix Ω0 ⊆ ΩX . Assume
Ω1 ⊆ (ΩY ∩ΩX)Ó Ω0 and the vectors in {adH(Ω1), ΩY Ó Ω1 , ΩX Ó Ω0} span Ω
for some H ∈ gn−1. _en for suõciently small t > 0,

sp{Ad(exp tH)(ΩY),ΩX/Ω0} = spΩ.

Proof _e arguments are similar to that of the general strategy. Since

∥ ad(H) − 1
t (Ad(exp tH) − Id)∥ and ∥ Id−Ad(exp tH)∥,

both tend to 0 as t → 0, and adk
(H)(Ω) ⊆ spΩ for all k, the same argument as used

above shows that

sp{(Ad(exp tH) − Id)(Ω1), Ad(exp tH)(ΩY/Ω1),ΩX/Ω0} = spΩ.

But sinceΩ1 ⊆ ΩX/Ω0, we can replace (Ad(exp tH)− Id)(Ω1) in the span on the le�
hand side by Ad(exp tH)(Ω1). Hence,

sp{Ad(exp tH)(ΩY),ΩX/Ω0} = spΩ.
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5.2 Applying the General Strategy with L = 2

_e following proposition, the “induction step”, is the most important ingredient in
the proof of themain theorem.

We continue to use the notation ΩX = NX Ó NX′ , where X′ is deûned as in (5.1).

Proposition 5.8 Suppose (X ,Y) is an eligible pair in gn other than X ,Y both of type
SU(n) in Dn or type SU(n/2) × SU(n/2) in SU(n). Assume also that the reduced
pair, (X′ ,Y ′), is an absolutely continuous pair in gn−1. _en (X ,Y) is an absolutely
continuous pair in gn .

Proof _emain task of the proof is to show that any eligible pair, other than one of
the two exceptional pairsmentioned, satisfy properties (i)–(iii) of the general strategy,
Proposition 5.6.

Part I: gn is type Bn , Cn , or Dn . _e proof is divided into three cases depending on
the dominant types of X and Y .
Case 1: Neither X nor Y are of dominant SU type.

With the notation as before, we have SX = 2J and SY = 2K (meaning X is dom-
inant BJ (CJ or DJ) type and Y is dominant BK (CK or DK) type). Applying aWeyl
conjugate, if necessary, we can assume without loss of generality that

ΩX = {FEe1 ± e j ∶ J < j ≤ n, F = R, I}

and similarly
ΩY = {FEe1 ± e j ∶ K < j ≤ n, F = R, I}.

Case 1(a): gn is type Dn .
Recall that Vn is the set of all real and imaginary parts of the chosenWeyl basis of

root vectors of gn . Put

Ω = Vn Ó Vn−1 = {FEe1 ± e j ∶ j = 2, . . . , n, F = R, I}

and
Ω0 = {REe1 + en , IEe1 + en}.

If H ∈ gn−1, then H is a linear combination of a torus element of gn−1, and the
vectors REe i ± e j , IEe i ± e j with 2 ≤ i < j ≤ n. It follows easily from (2.2) that
ad(H)(Ω) ⊆ spΩ.

Take g ∈ Gn−1 to be theWeyl conjugate that permutes the letters 1+ j and K + j for
j = 1, . . . , J − 1. _is is well deûned and leaves the letter n unchanged as the eligibility
condition ensures J +K − 1 ≤ n− 1. Consequently, Ad(g)(FEe1 ± eK+ j) = FEe1 ± e1+ j
for j = 1, . . . , J − 1, and all other vectors in Ω are ûxed, including FEe1 ± en . _us,

{Ad(g)(ΩY), ΩX Ó Ω0} = {FEe1 ± ek ∶ k = 2, . . . , n},

proving that (i) of the general strategy, Proposition 5.6 (with L = 2) is satisûed.
Let M = REe1+en ∈ gn . Applying (2.2) again,we see that ifH = FEe1±e j for some

j < n, then ad(M)(H) = cFEe j ∓ en ∈ gn−1 for a non-zero constant c depending on
j, n and F. If H = FEe i ± en , then ad(M)(H) = cFEe1 ∓ e i ∈ sp(Ω Ó Ω0). Finally,
note that ad(M)(H) = 0 ifH = FEe i±e j for 1 < i , j < n or H = FEe1−en . _is proves

https://doi.org/10.4153/CJM-2015-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-018-2


858 S. K. Gupta and K. Hare

adk
(M)∶NX/Ω0 → sp{Ω, gn−1} for all positive integers k, so that property (ii) of the

general strategy is satisûed.
As sp{Ω, gn−1} is of co-dimension one, its orthogonal complement is spanned by

the projection onto any element in the complement of sp{Ω, gn−1}. _e torus element

ad(M)(IEe1 + en) = [REe1 + en , IEe1 + en] ∶= t1

is such an element. Since

ad(M)(t1) = [REe1 + en , t1] = cIEe1 + en

for some c ≠ 0 (see 2.1), it follows that

Ad(exp sM)(IEe1 + en) = a(s)IEe1 + en + sb(s)t1 ,

where a(s), b(s)→ 1 as s → 0. _erefore, Proposition 5.6(iii) is also fulûlledwith any
s > 0. Applying that proposition, we conclude that µX ∗ µY is absolutely continuous.

Case 1(b): gn is type Bn .
Again, we will apply the general strategy, but here with

Ω = Vn/Vn−1 = {FEe1 ± e j , FEe1 ∶ j = 2, . . . , n, F = R, I},
Ω0 = {REe1 + en , IEe1 + en}.

_e fact that ad(H)(Ω) ⊆ Ω whenever H ∈ gn−1 follows easily from properties of
the roots, as with the case Dn .
For t > 0, let gt = (exp tREen)g where g ∈ Gn−1 corresponds to theWeyl conjugate

that permutes the letters 1+ j and K+ j for j = 1, . . . , J−1 as in the previous case. Since
REen ∈ gn−1, gt ∈ Gn−1. Observe that

[REen , FEe1] = cFEe1 + en + c′FEe1 − en ,

[REen , FEe1 ± e j] =
⎧⎪⎪
⎨
⎪⎪⎩

c(±)FEe1 if j = n,
0 else,

with c, c′ and c(±) non-zero constants. In particular, this implies that

Ad(exp tREen)(FEe1 ± e j) = FEe1 ± e j for j ≠ n.

Since Ad(g)(FEe1±eK+ j) = FEe1±e1+ j for j = 1, . . . , J−1 and the eligibility condition
ensures Ad(g) ûxes FEe1 ± en , it follows that for j = 1, . . . , J − 1 we have

Ad(gt)(FEe1 ± eK+ j) = Ad(exp tREen)(FEe1 ± e1+ j) = FEe1 ± e1+ j

and

Ad(gt)(FEe1 ± en) = Ad(exp tREen)(FEe1 ± en)
= a(t)FEe1 ± en + tb(t)FEe1 + t2c(t)FEe1 ∓ en ,
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where a(t) → 1 as t → 0, and b(t) and c(t) converge to non-zero scalars.2 All other
choices of FEe1 ± e j are ûxed by Ad(gt). Hence,

sp{FEe1 − en , Ad(gt)(FEe1 ± en) ∶ F = R, I} =

sp{FEe1 − en , FEe1 + en + tb′(t)FEe1 , FEe1 + tc′(t)FEe1 + en ∶ F = R, I} ,

where b′(t) and c′(t) converge to non-zero limits as t → 0. Since

{FEe1 ± en , FEe1 ∶ F = R, I}
is a set of six linearly independent vectors, so too is the collection

{FEe1 − en , FEe1 + en + tb′(t)FEe1 , FEe1 + tc′(t)FEe1 + en ∶ F = R, I}
for suõciently small t, and therefore they span the same space. Because ΩX/Ω0 con-
tains FEe1 − en , it follows that

sp{Ad(gt)(ΩY),ΩX/Ω0}

= sp{Ad(gt)(FEe1 ± ek), FEe1 ± e j , FEe1 − en ∶ k > K , J < j < n, F = R, I}
= sp{FEe1 ± e j , FEe1 ± en , FEe1 ∶ j ≤ n, F = R, I} = spΩ.

Again, putM = REe1+en ∈ gn . Aswith typeDn , adk
(M)(FEe1±e j) ∈ sp{gn−1 ,Ω}

for all k and j < n, and ad(M)(FEe1 − en) = 0. Furthermore, ad(M)(FEe j) = 0 if
j ≠ 1, n, ad(M)(FEen) = cFEe1, and ad(M)(FEe1) = cFEen , so property (ii) of the
general strategy holds. As in the ûrst case, sp{gn−1 ,Ω} is of co-dimension one in gn ,
and just as in type Dn , property (iii) holds, so we deduce the absolute continuity of
µX ∗ µY by appealing to Proposition 5.6.
Case 1(c): gn is type Cn .

Here we will use a variant on the general strategy. As with type Dn , we begin with

Ω = {FEe1 ± e j ∶ j = 2, . . . , n, F = R, I}
and g theWeyl conjugate permuting the letters 1+ j and K + j for j = 1, . . . , J − 1. Take

Ω0 = {FEe1 ± en ∶ F = R, I}.
_e eligibility condition gives that sp{Ad(g)(ΩY),ΩX/Ω0} = spΩ.
As with type Dn , ad(FEe i ± e j)(Ω) ⊆ sp{Ω, gn−1} for all 1 < i < j ≤ n and

similarly, ad(FE(2e j))(Ω) ⊆ Ω for j > 1, so ad(H)(Ω) ⊆ sp{Ω, gn−1} whenever
H ∈ gn−1. _us, as in the proof of the general strategy, upon applying the induction
assumption, we can deduce there is some h ∈ Gn−1 such that

(5.2) sp{Ad(h)(NY),NX/Ω0} = sp{Ω, gn−1}.

Once again,wewill put M = REe1+en ∈ gn . Aswith the types Bn andDn , standard
facts about roots show that ad(M)(H) ∈ sp{Ω, gn−1} for all H ∈ NX/Ω0. In fact, for
all k ≥ 1, adk

(M)(H) ∈ sp{Ω, gn−1} for all H ∈ NX/Ω0 except for H = FE(2en) as
adk

(M)(FE(2en)) has a component in FE(2e1). (Recall that FE(2en) ∈ NX , since
the only roots 2e j ∈ ΦX are those with j ≤ J.) It is because of this exception that we
cannot appeal directly to the general strategy.

2a(t), b(t), c(t) depend on F and the choice of ±, as well as t. From here on we will omit noting
this dependence, unless it is important.
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Another diòerence between this set up and the situation for types Bn andDn is that
here sp{Ω, gn−1} has co-dimension three, its orthogonal complement being spanned
by RE(2e1), IE(2e1) and the projection onto the torus element [REe1+ en , IEe1+ en].
_at will also complicatematters.

Let Λ be the subspace spanned by the torus of gn−1 and the vectors REβ and IEβ
where β ranges over all the positive roots except 2e1 , 2en ,

Λ ∶= sp{Ω, gn−1}⊖ sp{RE(2en), IE(2en)}.
Let P be the orthogonal projection onto Λ. Since NX Ó {Ω0 , FE(2en)} ⊆ Λ, prop-
erty (5.2) implies that

sp{P(Ad(h)(NY)),NX Ó {Ω0 , RE(2en), IE(2en)}} = Λ.

Choose Y Fβ ,Yj ∈ Ad(h)NY and XFβ , X j ∈ NX Ó {Ω0 , RE(2en), IE(2en)} such that

(a) Y Fβ + XFβ = FEβ +W
F
β whereWF

β ∈ sp{RE(2en), IE(2en)}, F = R, I and β ranges
over all roots except 2e1 , 2en , and

(b) Yj + X j = t j +Wj where j = 2, . . . , n, {t2 , . . . , tn} is a basis for tn−1 and Wj ∈

sp{FE(2en)}.
Note that if we put t1 = [REe1 + en , IEe1 + en], then {t1 , . . . , tn} is a basis for tn .
_is collection of vectors {Y Fβ +X

F
β ,Yj+X j} is linearly independent and hence for

small enough s > 0, so is the set

{Y Fβ +Ad(exp sM)(XFβ ),Yj+Ad(exp sM)(X j) ∶ β ≠ 2e1 , 2en , j = 2, . . . , n, F = R, I} .

Observe that

Y Fβ +Ad(exp sM)(XFβ ) = Y Fβ + XFβ + (Ad(exp sM) − Id)(XFβ )

= FEβ +WF
β + sQF

β (s),

where the vector QF
β (s) depends on s, but has bounded norm. _e projection of

QF
β (s) onto sp{RE2e1 , IE2e1} is zero, since Ad(exp sM) maps

NX Ó {Ω0 , FE(2en) ∶ F = R, I}
into gn ⊖ sp{RE2e1 , IE2e1}. Also, it is clear from the deûnitions that for β ≠ e1 − en ,
the projection of FEβ +WF

β onto sp{REe1 − en , IEe1 − en} is zero. Similar statements
can bemade for Yj +Ad(exp sM)(X j).

Claim:_e collection of vectors, Y Fβ +Ad(exp sM)(XFβ ), Yj +Ad(exp sM)(X j) over
all positive roots β ≠ 2e1 , 2en , F = R, I, and j = 2, . . . , n, together with the four
vectors Ad(exp sM)(FE(2en)), Ad(exp sM)(FEe1 − en) for F = R, I, are linearly
independent.

To prove this we ûrst observe that

[REe1 + en , FE(2e1)] = c1FEe1 − en
[REe1 + en , FE(2en)] = c2FEen − e1 ,
[REe1 + en , FEe1 − en] = c3FE(2e1) + c4FE(2en),

where c j ≠ 0. _us,

(5.3) Ad(exp sM)(FEe1 − en) = aFs FEe1 − en + sbFs FE(2e1) + scFs FE(2en)
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and

(5.4) Ad(exp sM)(FE(2en)) = sb′Fs FEe1 − en + s2c′Fs FE(2e1) + a′Fs FE(2en),

where the coeõcients, aFs , a′Fs , bFs , b′Fs , cFs , c′Fs , converge to non-zero constants as
s → 0.

_e vectors listed in (5.3) and (5.4), as well as those in sp{gn−1 ,Ω}, belong to
gn ⊖ sp{t1}. We view them as vectors in Rd with d = dimgn − 1, whose coordinates
are given by the basis for gn ⊖ sp{t1} consisting of the torus elements, {t2 , . . . , tn},
together with the real and imaginary parts of theWeyl basis {Eα}, taking as the ûnal
six positions the basis vectors FEe1 − en , FE(2en) and FE(2e1), F = R, I.

With this understanding, consider the square matrix whose rows are given by
the vectors Yj + Ad(exp sM)(X j) for j = 2, . . . , n; followed by the vectors Y Fβ +

Ad(exp sM)(XFβ ), β ≠ 2e1 , 2en , ordered consistently to above so that the ûnal two
come from β = e1 − en ; and then ûnally the four vectors Ad(exp sM)(FE(2en)) and
Ad(exp sM)(FEe1 − en) (for a small, but ûxed, choice of s).

_e calculations above show that this matrix, denoted A = (A i j), has the form

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ Id−6 + O(s)] (d−6)×(d−6) [O(s)](d−6)×2 [∗](d−6)×2 [0](d−6)×2

[O(s)]2×(d−6) [ I2 + O(s)] 2×2 [
∗ ∗

∗ ∗
] [

0 0
0 0]

[0]2×(d−6) [
sb′Rs 0
0 sb′Is

] [
a′Rs 0
0 a′Is

] [
O(s2) 0
0 O(s2)]

[0]2×(d−6) [
aR
s 0
0 aI

s
] [

scRs 0
0 scIs

] [
sbR

s 0
0 sbI

s
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Im denotes the m ×m identity matrix, O(sk) means terms dominated by Csk
for some constant C independent of s, and ∗ denotes terms that may depend on s, but
are bounded independently of s.

We estimate the determinant of this matrix using the Leibniz formula. Since
we have ∣A11A22 ⋅ ⋅ ⋅Add ∣ ≥ C0s2 for some C0 > 0 and all the other products
A1σ(1)A2σ(2) ⋅ ⋅ ⋅Adσ(d), where σ is a permutation of {1, . . . , d}, are dominated in ab-
solute value by C1s3, the determinant is non-zero for suõciently small s > 0. _is
completes the proof of the claim.
As there are the appropriate number of vectors, these vectors form a basis for gn ⊖

sp{t1}. Recall that XFβ , FE(2en) and FEe1 − en all belong to

NX Ó {FEe1 + en ∶ F = R, I},

hence

sp{Ad(h)NY , Ad(exp sM)(NX Ó {FEe1 + en})} = gn ⊖ sp{t1}.

Finally, our familiar calculation shows

Ad(exp sM)(IEe1 + en) = as IEe1 + en + sbs t1

https://doi.org/10.4153/CJM-2015-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-018-2


862 S. K. Gupta and K. Hare

where bs converges to a non-zero constant. It follows that for small enough s,

sp{Ad(h)(NY), Ad(exp sM)(NX)} = gn ,

as desired.
Case 2: Both X and Y are dominant SU type.
First, assume the Lie algebra is type Bn or Cn . According to [9, _m. 8.2] both

µ2
X and µ2

Y belong to L2. Applying Holder’s inequality we see that µX ∗ µY ∈ L2.
Being compactly supported, it follows that µX ∗ µY is in L1, and hence is a measure
that is absolutely continuous with respect to Lebesguemeasure. (Note that the same
argument applies to the Lie algebra of type Dn unless one of X or Y is of type SU(n).)

However,we prefer to give an argument that is independent of [9] as the techniques
will then havemore general application and such an argument will be needed in the
case of type Dn , in any case. For this, in the case of type Bn , put

Ω = {FEe1 , FEe1 ± e j ∶ j ≥ 2, F = R, I} and Ω0 = {REe1 , IEe1},

while in the case of type Cn , put

Ω = {FE(2e1), FEe1 ± e j ∶ j ≥ 2, F = R, I} and Ω0 = {RE(2e1), IE(2e1)}.

In either case, ad(H)(Ω) ⊆ spΩ for all H ∈ gn−1.
As X ,Y are dominant SU type, both ΩX andΩY contain FE(2)e1 and all the roots

FEe1 + e j , j ≥ 2. If g ∈ Gn−1 is theWeyl conjugate that changes the signs of the letters
2, . . . , n, then {Ad(g)(ΩX),ΩY Ó Ω0} = Ω. Now take M = RE(2)e1 and apply the
general strategy.

_e arguments are similar when the Lie algebra is type Dn . Let

Ω = {FEe1 ± e j ∶ j ≥ 2, F = R, I}.

Aswe do not permit both X and Y to be of type SU(n),without loss of generalityΩX
contains all the roots FEe1 + e j for 2 ≤ j ≤ n − 1, as well as both FEe1 ± en , and ΩY
contains either all FEe1 + e j for 2 ≤ j or all FEe1 + e j for 2 ≤ j ≤ n − 1 and FEe1 − en .
Let Ω0 be the choice of {FEe1 + en} or {FEe1 − en}, depending on which belongs to
ΩY . Let g ∈ Gn−1 be theWeyl conjugate that changes the signs 2, . . . , n − 1 (and n if
needed to be an even sign change). _enAd(g)(ΩX) ⊇ {FEe1 − e j , FEe1 ± en ∶ j ≥ 2}
and hence {Ad(g)(ΩX),ΩY Ó Ω0} = Ω. Take M = REe1 ± en with the choice of ±
depending on which belongs to ΩY .

Case 3: X and Y are of diòerent dominant type.
Without loss of generality assume X is dominant SU(m) type and Y is dominant

BJ ,CJ , or DJ type, depending on the type of the Lie algebra. Eligibility implies that
2J +m ≤ 2n.

Let
Ω = {FEe1 ± e j , (FE(2)e1) ∶ j ≥ 2} .

(with the inclusion of FEe1 if the Lie algebra is type Bn or FE(2e1) if the Lie algebra
is Cn). We have

ΩX = {FEe1 + e j , FEe1 − en ∶ j < n, } if X = (a, . . . , a,−a) in Dn ,
ΩX = {FEe1 + e j , FEe1 − ek , (FE(2)e1) ∶ j ≥ 2, k > m, F = R, I} otherwise.
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Put Ω0 = {FEe1 + en−J+1} ⊆ ΩX ∩ ΩY (or Ω0 = {FEe1 − en} if J = 1 and X =

(a, . . . , a,−a) in Dn). Applying aWeyl conjugate from Gn−1, we can assume

ΩY = {FEe1 ± e j ∶ 2 ≤ j ≤ n − J + 1, F = R, I}.
If n − J + 1 ≥ m, then we already have {ΩY ,ΩX Ó Ω0} = Ω, so property (i) of the

general strategy holdswith g = Id .TakeM = REe1+en−J+1 (resp., takeM = REe1−en)
to complete the argument.

Otherwise, m + J − n ≥ 2 (which implies J ≥ 2). Put

Ω1 = {FEe1 + ek ∶ 2 ≤ k ≤ n − J , F = R, I} ⊆ (ΩY ∩ΩX)Ó Ω0

and deûne

H =

⎧⎪⎪
⎨
⎪⎪⎩

∑
J−1
j=2 REe j + en−J+ j + REeJ−en if X = (a, . . . , a,−a) in type Dn ,

∑
m+J−n
j=2 REe j + en−J+ j otherwise.

As J ≠ n, e j + en−J+ j are roots of the Lie algebra gn−1. Let 2 ≤ k ≤ m + J − n.
Observe that k ≠ n − J + j for any j ≥ 2, for if so, then j = k − n + J ≤ m + 2J − 2n
and therefore the eligibility condition would imply j ≤ 0. _us, if 2 ≤ k ≤ m + J − n,
then ad(H)(FEe1 + ek) = ckFEe1 − en−J+k (or ad(H)(FEe1 + eJ) = cJFEe1 + en if
X = (a, . . . ,−a)).

_e eligibility condition also implies

Ω1 ⊇ {FEe1 + ek ∶ 2 ≤ k ≤ m + J − n};
therefore,

sp{ad(H)(Ω1)} ⊇ sp{FEe1 − e j , FEe1 + en ∶ n − J + 2 ≤ j ≤ n − 1, F = R, I}
if X = (a, . . . , a,−a) in type Dn and

sp{ad(H)(Ω1)} ⊇ sp{FEe1 − e j ∶ n − J + 2 ≤ j ≤ m, F = R, I}, otherwise.

Since ΩY Ó Ω1 = {FEe1 − e j , FEe1 + en−J+1 ∶ 2 ≤ j ≤ n − J + 1}, in either case we
have

sp{ad(H)(Ω1),ΩY Ó Ω1 ,ΩX Ó Ω0} = spΩ.
By Lemma 5.7 there is some g ∈ Gn−1 (namely, g = exp tH for suõciently small t)
such that

sp{Ad(g)(ΩY),ΩX Ó Ω0} = spΩ.
Again, take M = REe1 + en−J+1 and apply the general strategy to complete the argu-
ment.

Part II: gn is type SU(n).
_is is very similar to Case 1(a). Let

Ω = {FEe1 − e j ∶ 2 < j ≤ n, F = R, I}.
We have

ΩX = {FEe1 − e j ∶ SX < j ≤ n, F = R, I},
ΩY = {FEe1 − e j ∶ SY < j ≤ n, F = R, I}.

Put Ω0 = {FEe1 − en ∶ F = R, I}. Take g ∈ SU(n − 1) to be the Weyl conjugate
that interchanges the letters SY + j and 1 + j for j = 1, . . . , SX − 1. _e eligibility
condition ensures that this is well deûned and leaves 1 and n unchanged. Clearly,
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{Ad(g)(ΩY),ΩX Ó Ω0} = Ω. Take M = REe1 − en and apply the general strategy
in the usual manner.

6 Proof of the Main Theorem

In this section we will complete the proof of_eorem 3.5.
Necessary conditions forAbsolute continuity: Lemma 4.1 shows that absolutely contin-
uous tuples are eligible, while in Lemma 4.2 we saw that the exceptional tuples, other
than possibly the pairs of type (SU(n), SU(n− 1)) in the Lie algebra of type Dn with
n ≥ 6, are not absolutely continuous.

_e rest of the proof is devoted to establishing that the eligible, non-exceptional
tuples are absolutely continuous.

Suõcient conditions for Absolute continuity for Lie types An , Bn and Cn :

Case L = 2. _e proof proceeds by induction on the rank n of the Lie algebra. We
begin An with n = 1 (type SU(2)) and Bn with n = 2. Although it is customary to
only deûne Cn for n ≥ 3, there is no harm in beginning with C2, meaning the root
system ±{2e1 , 2e2 , e1 ± e2}, which is Lie isomorphic to B2.
According to [9, _m. 8.2], all non-zero pairs (X ,Y) in the Lie algebras of type

SU(2) and B2 have the property that both µ2
X , µ2

Y ∈ L2. _us, µX ∗ µY is a com-
pactly supportedmeasure in L2 and hence is an absolutely continuous measure. _e
existence of g1 , g2 ∈ Gn with

2

∑
i=1

TAd(g i)(X i)(OX i ) = gn

is a Lie isomorphism invariant; thus, from Proposition 3.8 we can also deduce that
µX ∗ µY is an absolutely continuous measure for all non-zero (X1 , X2) in the Lie al-
gebra of type C2.

Now, inductively assume that all eligible, non-exceptional pairs in SU(n−1), Bn−1,
or Cn−1, with n ≥ 3, are absolutely continuous. (Of course, there are no exceptional
pairs in Bn−1 or Cn−1.)

Let (X ,Y) be an eligible, non-exceptional pair in SU(n), Bn , or Cn , and form
the reduced pair (X′ ,Y ′). _e reduced pair is eligible by Lemma 5.2. Notice that
only an element of type SU( n+1

2 ) × SU( n−1
2 ) in SU(n) will reduce to an element of

type SU( n−1
2 ) × SU( n−1

2 ) in SU(n − 1). Furthermore, a pair of elements each of type
SU( n+1

2 )×SU( n−1
2 ) is not eligible in SU(n); thus,we can assume that (X′ ,Y ′) is both

eligible and non-exceptional. By the induction assumption, (X′ ,Y ′) is an absolutely
continuous pair. But then the induction step, Proposition 5.8, implies that (X ,Y) is
absolutely continuous.

Case L ≥ 3. Again,we proceed by induction on n. We remark that as µ∗ν is absolutely
continuous if µ is absolutely continuous and ν is an arbitrary measure, the fact that
the convolution of any two non-zero orbital measures in type SU(2), B2, or C2 is
absolutely continuous, proves that the same is true for the convolution of any L non-
zero orbital measures. _is starts the induction.

https://doi.org/10.4153/CJM-2015-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-018-2


Absolute Continuity 865

First, suppose (X1 , . . . , XL) is an eligible L-tuple in Bn or Cn with n ≥ 3. We will
let Ω be as in Proposition 5.8, depending on whether g is type Bn or Cn ,

Ω = {FEe1 ± e j , FE(2)e1 ∶ j = 2, . . . , n, F = R, I}.

As a pair of elements that is dominant SU type in Bn or Cn is eligible and not ex-
ceptional, the theorem for L = 2 implies the convolution of (even) their two orbital
measures is absolutely continuous. _us, wemay assume that at most one X i is dom-
inant SU type.

Suppose that no X i are dominant SU type and form the corresponding X′
i . If X′

i
and X′

j are dominant SU , then the pair (X i , X j) is eligible (and not exceptional);
thus, µX i ∗ µX j is absolutely continuous. Hence we can assume that at most one X′

i is
dominant SU type.

Since SX′ = SX −2when both X and X′ are dominant B (or C) type, it follows that
L

∑
i=1

SX′i ≤
L

∑
i=1

SX i − 2(L − 1) ≤ 2n(L − 1) − 2(L − 1) = 2(n − 1)(L − 1).

_is shows that (X′
1 , . . . ., X′

L) is eligible in gn−1. As it is not exceptional, the induction
assumption implies it is an absolutely continuous tuple.

Here, for i = 1, . . . , L − 1, ΩX i = {FEe1 ± e j ∶ j > J i}, where 2J i = SX i . Taking g i to
be theWeyl conjugate that switches appropriate letters (and ûxes the letters 1 and n),
we can arrange for

Ad(g i)(ΩX i ) = {FEe1 ± e j ∶ j = (i − 1)n −
i−1

∑
k=1

Jk + 2, . . . , in −
i

∑
k=1

Jk + 1}

(with suitablemodiûcations if any of the speciûed choices of j exceed n).
If (L − 1)n −∑L−1

k=1 Jk + 1 ≥ n, then
L−1
⋃
i=1
Ad(g i)(ΩX i ) = {FEe1 ± e j ∶ j = 2, . . . , n},

and this coincides with the set ΩY for a suitable Y of type B1 (or C1) (meaning type
B1 (or C1) ×SU(1) × ⋅ ⋅ ⋅ × SU(1)). As always, SX ≤ 2(n − 1), and the pair (Y , XL) is
eligible.

Otherwise, if we let m = n − (L − 1)n +∑L−1
i=1 J i and take a suitable choice of Y of

type Bm (or Cm), then
L−1
⋃
i=1
Ad(g i)ΩX i = ΩY .

_e eligibility condition ensures that

SY + SXL = 2(n − (L − 1)n +
L−1

∑
i=1

J i) + 2JL ≤ 2n − 2(L − 1)n +
L

∑
i=1

SX i ≤ 2n,

and thus the pair (Y , XL) is eligible and clearly not exceptional. _e arguments given
in the proof of Proposition 5.8 Case 1 show that there is some g ∈ Gn−1, M ∈ gn and
Ω0 ⊆ ΩXL such that
(a) spΩ = sp{Ad(g)(ΩY),ΩXL/Ω0};
(b) adk

(M)∶NXL/Ω0 → sp{Ω, gn−1} for all positive integers k; and
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(c) _e span of the projection of Ad(exp sM)(Ω0) onto the orthogonal complement
of sp{gn−1 ,Ω} in gn is a surjection for all small s > 0.

Since

sp{Ad(g)(ΩY),ΩXL/Ω0} ⊆ sp{Ad(g g i)(ΩX i ),ΩXL/Ω0 ∶ i = 1, . . . ., L − 1}

we can call upon the general strategy, Proposition 5.6, with g i replaced there by g g i ,
to deduce that (X1 , . . . , XL) is an absolutely continuous tuple. _is completes the
argument when no X i are of dominant SU type.

Otherwise, there is one X i that is of dominant SU type, say XL . If there is another
index j such that X′

j is of dominant SU type, then the pair (XL , X j) is eligible and not
exceptional, hence µXL ∗ µX j is absolutely continuous.

So wemay assume all X′
j with j ≠ L are of dominant B (or C) type. _us,

∑ SX′i ≤∑ SX i − 2(L − 1) ≤ 2(n − 1)(L − 1),

so (X′
1 , . . . , X′

L) is an eligible L-tuple. Again, taking g i to be suitableWeyl conjugates,
we have

L−1
⋃
i=1
Ad(g i)(ΩX i ) = {FEe1 ± e j ∶ j = 2, . . . , (L − 1)n −

L−1

∑
i=1

J i + 1} ,

and if we let Y be of type Bm where m = n − (L − 1)n +∑L−1
i=1 J i , then

L−1
⋃
i=1
Ad(g i)(ΩX i ) = ΩY .

_e eligibility condition ensures that

SY + SXL = 2(n − (L − 1)n +
L−1

∑
i=1

J i) + SXL ≤ 2n,

so the pair (Y , XL) is eligible. Complete the proof using the arguments of Proposi-
tion 5.8, but this time using Case 3, as XL and Y are of opposite dominant types.

_e argument is similar, but easier, if the Lie algebra is type SU(n). We ûrst check
that (X′

1 , . . . , X′
L) is eligible when (X1 , . . . , XL) is eligible. _is is clear if at most one

X i has SX i = SX′i . If two or more X i have SX i = SX′i , then these two satisfy SX i ≤ n/2,
and because all SX′ ≤ n − 2, we have

L

∑
i=1

SX′i ≤ 2(n/2) + (L − 2)(n − 2) ≤ (L − 1)(n − 1),

proving eligibility.
Set Ω = {FEe1 − e j ∶ 2 ≤ j ≤ n}. We have ΩX i = {FEe1 − e j ∶ j > SX i}. Upon

taking g i suitableWeyl conjugates that permute letters, we obtain
L−1
⋃
i=1
Ad(g i)ΩX i = ΩY .

where Y is an element of the torus of SU(n) of type SU(m) with m = n − (L − 1)n +
∑

L−1
i=1 J i . _e eligibility assumption ensures (XL ,Y) is an eligible pair and is clearly not

exceptional. Now complete the argument using the L = 2 case in the samemanner as
for type Bn and Cn .
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_e many exceptional pairs in Dn (n = 4 in particular) cause complications in
proving the theorem for type Dn . Wewill again prove themain theorem by an induc-
tion argument for L = 2, but itwill be convenient to begin the argumentwith type D5.
In the next lemma we will prove that all eligible, non-exceptional pairs in D4 and D5
are absolutely continuous. _is will start the base case for us.

Wewill actually beginwith D3. Usually, Dn is deûned for n ≥ 4, but that is because
D3 is Lie isomorphic to type A3. As the problem of characterizing the L-tuples in
type A3 has already been done, we can use this characterization, together with the
induction step, Proposition 5.8, to handlemost of the eligible, non-exceptional pairs
in D4 and D5. _is approach will work whenever the reduced pair is known to be
an absolutely continuous pair (in D3 or D4, respectively). _ere will still be a few
remaining pairs to consider, and these will be handled directly by verifying Wright’s
criteria for absolute continuity,_eorem 3.11.

Lemma 6.1 All the eligible, non-exceptional pairs in D4 and D5 are absolutely con-
tinuous.

Proof As explained above,we begin the proof by considering D3. Under the Lie iso-
morphism between D3 and A3, any subsystem of type D2 in D3 is isomorphic to one
of type A1 ×A1, type D1 is isomorphic to one of type A0 (or SU(1)), and types SU( j)
for j = 1, 2, 3 are unchanged under such an isomorphism. With this observation and
the criteria for absolute continuity already known for the Lie algebra of type A3, it
is easy to check that all pairs (X ,Y) in D3 are absolutely continuous except those of
type (D2 ,D2), (D2 , SU(3)), (SU(3), SU(3)) and (SU(3), SU(2)); the ûrst two of
these not being eligible and the latter two, exceptional.

Case D4: Proposition 5.8 guarantees that all eligible, non-exceptional pairs, (X ,Y),
in D4 are absolutely continuous, except when the reduced pair, (X′ ,Y ′), is one of
the four pairs listed above. Furthermore, because we have already seen that the pair
(X′ ,Y ′) is eligible whenever (X ,Y) is an eligible, non-exceptional pair, we will only
need to give a special argument for those pairs (X ,Y)where X′ is type SU(3) and Y ′

is either type SU(3) or SU(2) (the latter being type SU(2) × D1 or SU(2) × SU(1)).
_us, we are le� to study the pairs (X ,Y) where X is of type SU(4) and Y is one

of type SU(4), type SU(3) (to be more precise, either type SU(3) × D1 or SU(3) ×
SU(1)), type SU(2) × D2, or SU(2) × SU(2). However, these are all exceptional
pairs except when X is type SU(4), Y is of type SU(2) × SU(2), and ΦY is not Weyl
conjugate to a subset of ΦX .

To prove that this last pair is absolutely continuous, we verify the criteria of _e-
orem 3.11 (with X1 = X and X2 = Y) and follow the notation there. Here we have
∣Φ∣ = 24 and ∣ΦX1 ∣ + ∣ΦX2 ∣ = 12 + 4 = 16. _e rank 3, root subsystems, Ψ of D4, are
those of type D3, SU(4) (two non-Weyl conjugate subsystems) and D2 × SU(2).

When Ψ is type D2 × SU(2), then ∣Ψ∣ = 6. _us, we even have ∣Φ∣ − ∣Ψ∣ − 1 ≥
∣ΦX1 ∣ + ∣ΦX2 ∣, so (3.1) clearly holds. When Ψ is type D3, then ∣Ψ∣ = 12. However,
∣ΦX1 ∩ σ(Ψ)∣ = 6 and ∣ΦX2 ∩ σ(Ψ)∣ ≥ 2 for all choices of σ ∈ W , because σ(Ψ) must
contain ±e i ± e j ,±e i ± ek ,±e j ± ek for three choices of letters i , j, k. _us, the LHS of
(3.1) is 11, while the RHS is at most 8.
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Now assume Ψ is type SU(4). First, suppose Ψ is Weyl conjugate to the set of
annihilators of X. Since we need to calculate the intersection of ΦX j with all Weyl
conjugates of Ψ, there is no loss of generality in assuming ΦX1 = Ψ = {e i − e j ∶ 1 ≤
i ≠ j ≤ 4}. By assumption, ΦX2 is not Weyl conjugate to a subset of ΦX1 , thus there is
also no loss of generality in assuming ΦX2 = {±(e1 − e2),±(e3 + e4)}.

_e reader can check that ∣ΦX1 ∩ σ(Ψ)∣ is minimal when we take the choice of
σ ∈ W that switches two signs and in this case ∣ΦX1 ∩ σ(Ψ)∣ = 4. Similarly, it can be
shown that if σ is any Weyl conjugate, then ∣ΦX2 ∩ σ(Ψ)∣ ≥ 2, so that again the LHS
of (3.1) is 11 and the RHS is at most 10.
Finally, suppose Ψ is not Weyl conjugate to ΦX1 . Without loss of generality we

can assume Ψ is as before and ΦX1 = {e i − e j ,±(e4 + e j) ∶ 1 ≤ i ≠ j ≤ 3}. Again,
∣ΦX1 ∩ σ(Ψ)∣ is minimal when σ is theWeyl element that switches two signs, but in
this case, ∣ΦX1 ∩ σ(Ψ)∣ = 6. _is is already enough to establish (3.1) and completes
the argument that (X ,Y) is an absolutely continuous pair.

Case D5: Again, Proposition 5.8 implieswe only need to study the eligible non-excep-
tional pairs, (X ,Y) in D5 , where the reduced pair has X′ of type SU(4) and Y ′ one of
type SU(4), SU(3), SU(2) × D2, or SU(2) × SU(2). Since the pairs (SU(5), SU(5)
and (SU(5), SU(4)) are exceptional and the pair (SU(5),D3×SU(2)) is not eligible,
this reduces the problem to the study of the pairs (X ,Y) where X is of type SU(5)
and Y is either of type SU(3)×D2 or SU(3)×SU(2). Further, since the set of annihi-
lators of an element of type SU(3)×SU(2) is contained in the set of annihilators of an
element of type SU(3)×D2, itwill suõce to prove that the pair (SU(5), SU(3)×D2)

is absolutely continuous.
For this, we again use _eorem 3.11. In D5, the rank 4 root subsystems Ψ that we

must study are those of type D4, SU(5), D3 × SU(2), and D2 × SU(3), with cardinal-
ities 24, 20, 14, and 10, respectively. _e cardinality of Φ is 40, while ∣ΦX1 ∣ = 20 and
∣ΦX2 ∣ = 10.

Let Λ be a root subsystem of type D2 ,D3, or D4 in D5. It is easy to see that if Λ is a
root subsystem of type D j in D5 , with j = 2, 3, 4, then ∣ΦX1 ∩Λ∣ = 1

2 ∣Λ∣. Furthermore,
∣ΦX2 ∩ Λ∣ = 6 whenever Λ is type D4. Since the action of aWeyl element preserves
the type of a root subsystem, these calculations can be used to show that (3.1) holds if
Ψ is type D4, D3 × SU(2) or D2 × SU(3).

When Ψ is type SU(5), then ∣ΦX1 ∩ σ(Ψ)∣ ≥ 8 for all σ (with theminimum occur-
ring when σ is two sign changes). Moreover, ∣ΦX2 ∩ σ(Ψ)∣ ≥ 4 so that again (3.1) is
satisûed. _is shows that the pair (SU(5), SU(3)×D2) is absolutely continuous and
completes the base case arguments.

Further complications arisewith type Dn because of the fact thatwhen X is of type
SU(n), µ2

X is not absolutely continuous. We have already seen this complication in
the proof of Proposition 5.8 (when L = 2), but it presents further diõculties when
L > 2. To handle this, we introduce the following terminology for the remainder of
the proof.

Deûnition 6.2 We will say that X is almost dominant SU type if X is type DJ ×

SU(s1) × ⋅ ⋅ ⋅ × SU(st), where J ≤ ∑ s i .
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Of course, if X is dominant SU type, then it is almost dominant SU type. However,
X is also almost dominant SU type if X is dominant D type, but X′ is dominant SU
type, for instance. If X is almost dominant SU type and not type SU(n), then [9,
_m. 8.2] implies µ2

X ∈ L2. Here are some additional properties.

Lemma 6.3 Suppose X1 , X2 are almost dominant SU type in Dn and X3 ≠ 0.
(i) If neither X1 nor X2 are type SU(n), then µX1 ∗ µX2 ∈ L2 .
(ii) If X1 and X2 are both type SU(n) and X3 is not, then µX1 ∗ µX2 ∗ µX3 ∈ L2 .
(iii) More generally, if X1 is type SU(n) and X2 is not, then µX1 ∗ µX2 ∗ µX3 ∈ L2 .
(iv) If n ≥ 5 (or n = 4) and X3 (and X4) is almost dominant SU(n) type, then µX1 ∗

µX2 ∗ µX3(∗µX4) ∈ L2 .

Proof (i) follows from [9] as remarked above. _e fact that it is absolutely continu-
ous, which is actually all we will need for our application, also follows from the L = 2
part of the proof of the main theorem, since (X1 , X2) is an eligible, non-exceptional
pair.

(iv) holds similarly from [9], since µ3
X ∈ L2 whenever X is almost dominate SU

type and n ≥ 5, and µ4
X ∈ L2 when n = 4. (Alternatively, absolute continuity can be

checked from _eorem 3.11.)
For (ii) and (iii) we proceed by induction on n, noting that according to themain

theorem, as already established for all L ≥ 2 in the Lie algebras of type An , all triples in
A3 (equivalently, D3) are absolutely continuous, exceptwhen all three are type SU(3).

Now assume n ≥ 4. We put

Ω = {FEe1 ± e j ∶ j = 2, . . . , n, F = R, I}.

(ii): Here X′
1 , X′

2 will be of type SU(n−1) in Dn−1,while X′
3 is not, so the induction

hypothesis applies. Without loss of generality we can assume

ΩX1 = {FEe1 + e j ∶ j ≥ 2, F = R, I}

and ΩX2 either coincides with ΩX1 or

ΩX2 = {FEe1 + e j , FEe1 − en ∶ j ≤ n − 1, F = R, I}.

As X3 is not of type SU(n),ΩX3 contains {FEe1±en}. Let g be theWeyl conjugate
changing the signs of 2, . . . , n − 1 (and n if needed to be an even sign change). _en
ΩX1 ∪ Ad(g)(ΩX2) contains all of Ω except for possibly {FEe1 − en ∶ F = R, I}. If
Ω0 = {FEe1 + en}, we have

ΩX1 ∪Ad(g)(ΩX2) ∪ (ΩX3 Ó Ω0) = Ω.

Taking M = REe1 + en one can verify that the hypotheses of the general strategy,
Proposition 5.6, are all satisûed. Consequently, (X1 , X2 , X3) is absolutely continuous.

(iii):We deûne X′
1 and X′

3 as usual, butwill redeûne X′
2 so that it continues to be of

almost dominant SU type and not type SU(n− 1) (so thatwewill be able to apply the
induction hypothesis). _is can be achieved by deûning X′

2 to be typeDJ−1×SU(s1)×
⋅ ⋅ ⋅ × SU(st) if X2 is type DJ × SU(s1) × ⋅ ⋅ ⋅ × SU(st) with J > 1, or deûning X′

2 to be
type DJ × SU(s1 − 1) × ⋅ ⋅ ⋅ × SU(st) if J = 0 or 1 and s1 = max s j . _e fact that X2 is
almost dominant SU type ensures that J ≤ n/2, so whether X2 is dominant SU type
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or not, SX2 ≤ n and thus (X1 , X2) is an eligible pair. Further, X1 , X2 are not both of
type SU(n).

_e arguments given in Proposition 5.8 (Case 2 or 3 depending on the situation)
can be applied to prove there is some g ∈ Dn−1 such that

sp{ΩX1 Ó Ω0 , Ad(g)(ΩX2)} = spΩ,

where Ω0 is taken to be the choice of FEe1 + en or FEe1 − en that belongs to ΩX1 .
_erefore,

sp{ΩX1 Ó Ω0 , Ad(g)(ΩX2),ΩX3} = spΩ.
Now take M = REe1 ± en (depending on the choice of Ω0) and apply the general
strategy.

We are now ready to conclude the proof of _eorem 3.5 by completing the proof
of suõciency for absolute continuity in type Dn .

Proof of_eorem 3.5, continued
Suõcient conditions for absolute continuity for Lie type Dn :
Case L = 2. Lemma 6.1 starts the induction argument for type Dn . Now, inductively
assume that all eligible, non-exceptional pairs in Dn−1, with n ≥ 6, are absolutely
continuous. By Lemma 5.2, the pair (X′ ,Y ′) is eligible. If it is an exceptional pair,
then it must be either of type (SU(n− 1), SU(n− 1)) or type (SU(n− 1), SU(n− 2))
(where the SU(n − 2) could be type SU(n − 2) × D1 or SU(n − 2) × SU(1)). But
then (X ,Y) must also have been an exceptional pair in Dn , which is a contradiction.
By the induction assumption, (X′ ,Y ′) is an absolutely continuous pair, and hence
Proposition 5.8 implies that (X ,Y) is absolutely continuous.
Case L ≥ 3. Again, we give an induction argument. _e base case, D4, will be dis-
cussed at the conclusion of the proof. So assume n ≥ 5 and (X1 , . . . , XL) is an eligible
L-tuple in Dn . We note that there are no exceptional L-tuples in Dn for n ≥ 5 when
L ≥ 3.

We will take
Ω = {FEe1 ± e j ∶ j = 2, . . . , n}.

More care is needed in this situation than for the Lie algebras of type Bn and Cn ,
since the fact that µ2

X ∉ L2 when X is of type SU(n) means, for example, that we
cannot immediately assume that at most one X i is dominant SU type, as we did in
the argument for those Lie types. Here is where Lemma 6.3 will be useful.

If three ormore X i are dominant SU type, then the induction argument is not even
necessary as Lemma 6.3(iv) implies that their convolution is already in L2 and hence
is absolutely continuous.

If two X i (say, X1 , X2) are both dominant SU type and some X j , say X3 , is not,
then we call upon one of the ûrst three parts of the lemma.

Sowe can assume there is atmost one X i that is dominant SU type, say X1. If there
is some X j , other than X1, with X′

j of dominant SU type, then X j is almost dominant
SU and not type SU(n). Apply the appropriate part of Lemma 6.3 with X1 and X2
equal to this X j , and X3 to any other X i .

If all X′
j , other than j = 1, remain dominant D type, then the calculations used in

the type Bn or Cn case show that (X′
1 , . . . , X′

L) is an eligible, non-exceptional tuple
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in Dn−1. For the induction step we argue in the same fashion as we did for the Lie
algebras of type Bn or Cn in the same situation.
Finally, assume all X j are dominant D type. If two or more X′

j are dominant SU
type, then the corresponding two X j are almost dominant SU type and not of type
SU(n). _eir convolution is even in L2. If at most one X′

j is dominant SU type, then
(X′

1 , . . . , X′
L) is an eligible tuple, so the induction hypothesis applies. _e induction

step is the same as for the corresponding situation with type Bn or Cn .
To conclude, we must establish the base case, n = 4. Since µ4

X ∈ L2 for any non-
trivial X in the Lie algebra of type D4, every L-tuple with L ≥ 4 is an absolutely con-
tinuous tuple.

So we can assume that L = 3. _e induction argument above can be applied to
(X1 , X2 , X3) provided at most one X j is dominant SU type, hence for such triples it
suõces to check that (X′

1 , X′
2 , X′

3) in D3 is an absolutely continuous triple. But this
follows from themain theorem for type An , since all triples in A3 , except when all X i
are type SU(3), are absolutely continuous.

If two or three X j are dominant SU type, but at least one X i is not of type SU(4),
Lemma 6.3 gives the result.

If all three X i are type SU(4) and their annihilating root systems areWeyl conju-
gate, then the triple, (X1 , X2 , X3), is exceptional. _uswe can assume the annihilating
root systems are notWeyl conjugate. As the arguments are symmetric, there is no loss
of generality in assuming that the set of annihilating roots for X1 coincides with that
of X2 and is given by

ΦX1 = ΦX2 = {e i − e j ∶ 1 ≤ i ≠ j ≤ 4},

while

ΦX3 = { e i − e j ,±(e4 + ek) ∶ 1 ≤ i ≠ j ≤ 3, k = 1, 2, 3} .

We will again call upon _eorem 3.11 to check the absolute continuity of the triple.
_e root systems Ψ of rank 3 that wemust consider are those of type D3, SU(4) (two
non-Weyl conjugate root subsystems) and D2 × SU(2).

Of course,∑3
i=1 ∣ΦX i ∣ = 36 and ∣Φ∣ = 24 when Φ is the root system of D4. When Ψ

is type D2 × SU(2), then ∣Ψ∣ = 6, and as Ψ intersects non-trivially any root subsystem
of type SU(4), the inequality (3.1) is clear. When Ψ is type D3 it is easy to see that
∣ΦX i ∩ σ(Ψ)∣ ≥ 6 for each i and any Weyl element σ .

When Ψ is type SU(4), then ∣ΦX i ∩ σ(Ψ)∣ ≥ 4. However, as noted in the L = 2
argument, if Ψ and ΦX i are non-Weyl conjugate subsystems of type SU(4), then this
lower bound can be improved to 6̇. Consequently, 2(∣Φ∣ − ∣Ψ∣) − 1 = 23, while the
right-hand side of (3.1) is at most 36 − (4 + 4 + 6) = 22, so the inequality holds.

_is completes the base case argument and hence the proof of_eorem 3.5.

7 Applications

7.1 Consequences of the Main Theorem

An element X ∈ tn is said to be regular if its set of annihilating roots is empty. _ese
would be the elements of type SU(1)×⋅ ⋅ ⋅×SU(1) (in any Lie algebra) or D1×SU(1)×
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⋅ ⋅ ⋅ × SU(1) in type Dn , and hence have SX = 1 or 2. In [7] it was shown that the con-
volution of the orbital measures of any two regular elements is absolutely continuous.
_e methods used there could be used to prove, more generally, that the convolu-
tion of any orbital measurewith the orbital measure of a regular element is absolutely
continuous. Our theorem shows that more is true.

Corollary 7.1 Let X ,Y be non-zero elements in the Lie algebra of type Bn , Cn , or
Dn . If SY ≤ 2, then µX ∗ µY is absolutely continuous and OX + OY has non-empty
interior, except if (X ,Y) is the exceptional pair (SU(4), SU(2)× SU(2)) in D4 where
the annihilating roots of Y are a subset of aWeyl conjugate of those of X.

Proof _is is immediate from the theorem, since any non-zero X has SX ≤ 2(n − 1)
(with equality only if X is type Bn−1 (Cn−1 or Dn−1 )).

Corollary 7.2 If (X1 , . . . , XL) is an eligible, non-exceptional L-tuple of matrices in
any of the classical Lie algebras, then there are unitarily similar matrices, g−1

i X i g i , with
the property that∑L

i=1 g−1
i X i g i has distinct eigenvalues.

Proof _is follows from the main theorem because any subset of these matrix
groups with non-empty interior must contain an element with distinct eigenvalues.
Indeed, the elements with distinct eigenvalues are dense.

On the other hand, if X i arematrices in one of the classical Lie algebras and there
are unitarily similar matrices, g−1

i X i g i ∈ OX i ,with the property that∑L
i=1 g−1

i X i g i has
distinct eigenvalues, then ∑OX i contains an element Y with SY ≤ 2. (Indeed, Y is
either type SU(1) or type B1, C1, or D1.) As noted in the ûrst corollary, OX + OY has
non-empty interior for any X ≠ 0 and thus µX1 ∗ ⋅ ⋅ ⋅ µXL ∗ µX is absolutely continuous
for any X ≠ 0. It would be interesting to characterize the L-tuples for which ∑OX i

contains amatrix with distinct eigenvalues.
It is known that any n-fold sum of non-trivial orbits in Bn , Cn , or Dn has non-

empty interior. More can be said.

Corollary 7.3 Let n ≥ 5. If X i are non-zero elements in Bn (Cn or Dn) for i =

1, . . . , n − 1, then OX1 + ⋅ ⋅ ⋅ +OXn−1 has empty interior if and only if all X i are type Bn−1
(Cn−1 or Dn−1).

Proof Suppose some X i , say Xn−1, is not type Bn−1. _en SXn−1 ≤ 2(n − 2). As all
SX i ≤ 2(n − 1),

n−1

∑
i=1

SX i ≤ 2(n − 1)(n − 2) + 2(n − 2) ≤ 2n(n − 2).

_us, (X1 , . . . , Xn−1) is eligible and non-exceptional, and hence the sum of the orbits
has non-empty interior. Since all root subsystems of type Bn−1 are Weyl conjugate,
the converse follows from the fact that if X is type Bn−1, then µn−1

X is not absolutely
continuous [9].
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We leave it as an exercise for the reader to determine the choice of n− 1 tuples that
are not absolutely continuous when n ≤ 4 and in type An .

We note that for types An , Bn , and Cn our proof required the use of [9] only to
start the induction process. In the proof given in [9] an induction argument was also
used and the base cases were simply done directly. _at approach could have been
taken here as well. For type Dn our proof also used [9] to establish that when X was
type SU(n), then µ3

X was absolutely continuous for n ≥ 5 and µ4
X was absolutely con-

tinuous when n = 4. In fact, the argument that was given there for these special types
actually showed that _eorem 3.11was satisûed. _us, our theoremgives anotherway
to deduce the formulas of [9]. For example, we have the following corollary.

Corollary 7.4 Suppose g is type Bn and X is type BJ × SU(s1) × ⋅ ⋅ ⋅ × SU(sm).
(i) If X is dominant B type, then µL

X is absolutely continuous (and (L)OX has non-
empty interior) if and only if L ≥ n/(n − J).

(ii) If X is dominant SU type, then µ2
X is absolutely continuous.

Similar statements can bemade for the other types, taking into account the excep-
tional cases.

Remark 7.5 (i) We have not been able to determine if the pair of type (SU(n),
SU(n − 1)) in Dn for n ≥ 6 is absolutely continuous. Computer results suggest that it
is not for at least n = 6, 7. We remark that Proposition 5.8 shows that if such a pair is
absolutely continuous for any n, say n = n0 then, being an eligible pair, it is absolutely
continuous for all n > n0.

(ii) It remains open to solve the analogous problem in the exceptional Lie algebras,
those of type G2, F4, E6, E7, or E8. In [10] the minimal k(X) so that µk(X)

X is abso-
lutely continuouswas determined for each X in the compact exceptional Lie algebras.
Although the abstract root theory machinery can be applied in this setting, there is
no underlying classical matrix algebra fromwhich to derive the necessary conditions.

7.2 Orbital Measures on Conjugacy Classes in Compact Lie Groups

A related, but more challenging, problem is to determinewhich L-tuples (x1 , . . . , xL)

in GL have the property that µx1 ∗ ⋅ ⋅ ⋅ ∗ µxL is absolutely continuous with respect to
Haar measure on the group G, when µx is the probability measure, invariant under
the conjugation action of G on itself, and supported on the conjugacy class generated
by x, Cx = {g−1xg ∶ g ∈ G}. In [8, _m. 9.1], the minimum integer k(x) for which
µk(x)
x is absolutely continuous was determined for all the classical Lie groups. _e

number k(x) depended on the type of the set of annihilating roots of x, where in this
setting by the set of annihilating roots we mean Φx ∶= {α ∈ Φ ∶ α(x) ≡ 0 mod 2π}.
Again, by the type of x, we will mean the type of Φx .

_is was extended by Wright [22] to convolution products of (possibly) diòerent
µx in the case of SU(n), obtaining the same characterization as for the Lie algebra
problem. In this subsection, we will obtain a similar result for all the classical Lie
groups whenever the group elements x i = expX i , where X i ∈ g and x i ∈ G have the
same type.
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We need the following preliminary result, analogous to Proposition 3.8. Given
x ∈ G, we let Nx ∶= {REα , IEα ∶ α(x) ≠ 0 mod 2π}.

Lemma 7.6 (cf. [18,22]) _e measure µx1 ∗ ⋅ ⋅ ⋅ ∗ µxL on Gn is absolutely continuous
with respect to Haar measure on Gn if and only if any of the following hold:
(i) the set∏L

i=1 Cx i ⊆ Gn has non-empty interior;
(ii) the set∏L

i=1 Cx i ⊆ Gn has positivemeasure;
(iii) there exists g i ∈ Gn with g1 = Id, such that

sp{Ad(g i)Nx i ∶ i = 1, . . . , L} = gn .

Proposition 7.7 Let x1 , . . . , xL ∈ Gn and assume x i = expX i for some X i ∈ gn where
x i and X i have the same type. _en µx1∗⋅ ⋅ ⋅∗µxL is absolutely continuouswith respect to
Haarmeasure on Gn if and only if µX1 ∗⋅ ⋅ ⋅∗µXL is absolutely continuouswith respect to
Lebesguemeasure on gn . Moreover,∏L

i=1 Cx i has non-empty interior in Gn if and only
if∑L

i=1 OX i has non-empty interior in gn .

Proof If x i and X i are of the same type, then Nx i = NX i . Consequently,

sp{Ad(g i)Nx i ∶ i = 1, . . . , L} = sp{Ad(g i)NX i ∶ i = 1, . . . , L},

and thus µx1 ∗ ⋅ ⋅ ⋅ ∗ µxL is absolutely continuous if and only if µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL is ab-
solutely continuous. _e latter statement holds, as absolute continuity is equivalent
to non-empty interior of either the product of conjugacy classes or the sum of orbits,
depending on the setting.

Remark 7.8 If x i = expX i and µX1 ∗ ⋅ ⋅ ⋅ ∗ µXL is not absolutely continuous, then it
still follows µx1 ∗⋅ ⋅ ⋅∗µxL is not absolutely continuous. We simply note thatΦX i ⊆ Φx i

always holds.

Consider the Lie group SU(n). Every conjugacy class contains a diagonal matrix,
so in studying the measure µx there is no loss of generality in assuming that x =

diag(exp ia1 , . . . , exp ian), where a j ∈ [0, 2π) and ∑ a j ≡ 0 mod 2π. Notice that
x = expX, where X = diag(ia1 , . . . , ian) belongs to su(n). _e root α = e j − ek acts
on x (and X) by α(x) = a j − ak . _us,Φx = ΦX , and so the Proposition applies to all
L-tuples in SU(n).

_is is not true for the other classical Lie groups. For example, in SO(2n+ 1) (type
Bn) there is an element x with Φx = {e i ± e j ∶ 1 ≤ i ≠ j ≤ n}, i.e., of type Dn . _is
type does not arise in the Lie algebra. Indeed, the only element X ∈ so(2n + 1) with
ΦX ⊇ Φx is X = 0. _e element x has the property that µ2n

x ∈ L1(G), but µ2n−1
x is

singular with respect to Haar measure on G. In contrast, any X with expX = x has
µ2
X ∈ L2(g).
_ese additional (and o�en more complicated) types of elements that can arise

in the Lie groups make the problem of characterizing absolute continuity of orbital
measures on Lie groups more challenging than for Lie algebras.
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