Compatible tight Riesz orders on groups of integer-valued functions

Gary Davis

A construction due to Reilly is extended to show that there is a correspondence between compatible tight Riesz orders on Z^X and non-principal filters on X. The maximal compatible tight Riesz orders are in one-to-one correspondence with non-principal ultra-filters, and are dual prime subsets of the positive set of Z^X . Conversely every dual prime algebraic Riesz order is maximal.

The lattice-ordered group Z^X of all functions defined on the set X and taking values in the totally-ordered group of rational integers Z admits no compatible tight Riesz order when X is finite. This can be seen by induction or, more conceptually the fact that Z^X then has no order-dense homomorphic image, and also from the fact that when X is finite all ultrafilters on X are principal. When X is infinite, however, there are compatible tight Riesz orders on Z^X : in the countably infinite case Reilly [4] has a construction that gives a compatible tight Riesz order for each non-principal ultrafilter on X.

For the definition of a compatible tight Riesz order on a latticeordered group see Wirth [5], where the following characterization occurs: a subset T of an abelian lattice-ordered group (G, \preccurlyeq) is the strict positive set for a compatible tight Riesz order on G if and only if the following three conditions are satisfied:

(1) T is a proper dual ideal of $G^+ = \{g \in G : g \ge 0\}$;

Received 24 January 1975.

383

- (2) T = T + T;
- (3) if $0 \leq nx \leq y$ for all $y \in T$, for all integers $n \geq 1$, then x = 0.

Throughout this paper a compatible tight Riesz order on Z^X will be identified with its strict positive set.

The positive set of Z^X (namely, the set of $f \in Z^X$ satisfying $f(x) \ge 0$ for all $x \in X$) is denoted by Z_+^X , and that of Z by Z_+ .

We define the mapping $\phi : Z^X \times Z \to Z^X$ by $\phi(f, m) = (|f|-m) \vee 0$, where |f| is the function $x \to |f(x)|$ and m also denotes the constant function whose value at each point of X is $m \in Z$. For each $f \in Z^X$ the zero set of f is $Z(f) = \{x \in X : f(x) = 0\}$. The complement $X \setminus Z(f)$ of the zero set of f is the support of f, denoted by $\operatorname{supp}(f)$.

LEMMA 1. If (f, m), $(g, n) \in \mathbb{Z}_{+}^{X} \times \mathbb{Z}_{+}$ then

$$\phi(f, m) \land \phi(g, n) \ge \phi(f \land g, \max(m, n))$$

with equality if m = n.

Proof. For (f, m), $(g, n) \in \mathbb{Z}_{+}^{X} \times \mathbb{Z}_{+}$,

$$\phi(f, m) \land \phi(g, n) = ((f-m)\lor 0) \land ((g-n)\lor 0) = ((f-m)\land (g-n)) \lor 0 \\ \geq ((f-p)\land (g-p)) \lor 0 = ((f\land g)-p) \lor 0 = \phi(f\land g, p)$$

where $p = \max(m, n)$. If m = n then

$$\phi(f, n) \wedge \phi(g, n) = ((f - n) \wedge (g - n)) \vee 0 = ((f \wedge g) - n) \vee 0 = \phi(f \wedge g, n) .$$

In the following result the term "adjunction" is used in the sense of Mac Lane [3] (and in preference to the equivalent "dual Galois correspondence").

THEOREM 2. There is an adjunction $\alpha \vdash \beta$ from the set of compatible tight Riesz orders on Z^X (ordered by inclusion) to the set of non-principal filters on X (ordered by inclusion).

Proof. If F is a non-principal filter on X then $\beta(F)$ is defined to be the set $\left\{f \in \mathbb{Z}_{+}^{X} : \operatorname{supp}\phi(f, m) \in F \text{ for all } m \in \mathbb{Z}_{+}\right\}$. Since supp(0, 0) is empty the set $\beta(F)$ is properly contained in Z_{+}^{X} . Since F is non-principal there is a sequence S_{-1}, S_0, S_1, \ldots of subsets $S_i \in F$ with $S_{-1} = X$, S_{i+1} properly contained in S_i , and $\bigcap_{i=0}^{\infty} S_i = \Box$. If $f: X \to Z$ is defined by f(x) = n if $x \in S_{n-1} \setminus S_n$, $n \ge 0$, then f is everywhere defined and

$$supp\phi(f, m) = \{x \in X : f(x) > m\} = \bigcup_{i=m-1}^{\infty} S_i \in F$$

for all $m \in \mathbb{Z}_+$, so that $\beta(F)$ is not empty.

If $f \in \beta(F)$ and $g \ge f$ then for each $m \in \mathbb{Z}_+$, supp $\phi(g, m) \supseteq$ supp $\phi(f, m) \in F$ so supp $\phi(g, m) \in F$ and $g \in \beta(F)$. If $f, g \in \beta(F)$ and $m \in \mathbb{Z}_+$ then

$$\begin{split} & \operatorname{supp} \varphi(f \wedge g, \, m) \, = \, \operatorname{supp} \varphi(f, \, m) \, \wedge \, \varphi(g, \, m) \, = \, \operatorname{supp} \varphi(f, \, m) \, \cap \, \operatorname{supp} \varphi(g, \, m) \, \in \, F \\ & \text{so} \quad f \, \wedge \, g \, \in \, \beta(F) \, \text{. That is, } \, \beta(F) \, \text{ is a proper dual ideal of } \, \mathsf{Z}^X_+ \, . \end{split}$$

The criterion (3) for $\beta(F)$ to be a compatible tight Riesz order is satisfied since Z^X is archimedean. It remains to see that $\beta(F) = \beta(F) + \beta(F)$. One inclusion is immediate since

$$supp\phi(f+g, m) \ge supp\phi(f, m) \cap supp\phi(g, m)$$

for all $f, g \in Z_+^X$ and all $m \in Z_+$. If, on the other hand, $f \in \beta(F)$ then we define $g \in Z^X$ by g(x) = [f(x)/2] + 1, where, for a rational number ξ , $[\xi]$ is the integral part of ξ . Suppose that $m \in Z_+$ and $m \ge 2$. If $x \in \operatorname{supp}\phi(f, 2m-2)$ then f(x) > 2m - 2 so that f(x)/2 > m - 1 and $[f(x)/2] \ge m - 1$. In this case $g(x) \ge m > m - 1$ so that $\operatorname{supp}\phi(f, 2m-2) \subseteq \operatorname{supp}\phi(g, m-1)$ and, since F is a filter, $\operatorname{supp}\phi(g, m-1) \in F$ for all $m \ge 2$. Then $\operatorname{supp}(g, 0) \supseteq \operatorname{supp}(g, 1) \in F$ so that $g \in \beta(F)$. Now we have to see that $h = f - g \in \beta(F)$. It follows, as above, that $\operatorname{supp}\phi(f, 2m+2) \subseteq \operatorname{supp}\phi(h, m-1)$ for $m \ge 1$ so that $h \in \beta(F)$. This establishes $\beta(F)$ as a compatible tight Riesz order on z^{X} .

Suppose that T is a compatible tight Riesz order on Z^X and $\alpha(T) = \{S \subseteq X : S \supseteq \operatorname{supp}\phi(f, m) \text{ for some } f \in T, m \in Z_+\}$. Then $\alpha(T)$ is a filter on X since $\operatorname{supp}\phi(f, m) \cap \operatorname{supp}\phi(g, n) = \operatorname{supp}\phi(f, m) \wedge \phi(g, n) \supseteq \operatorname{supp}\phi(f \wedge g, \max(m, n))$ for $f, g \in Z_+^X$ and $m, n \in Z_+$. If $\alpha(T)$ is a principal filter then there is an $x \in X$ such that f(x) > m for all $m \in Z_+$, which is absurd.

Finally we see that the mappings α , β , which are clearly orderpreserving, provide us with an adjunction. Suppose that $\alpha(T) \subseteq F$, where T is a compatible tight Riesz order and F is a non-principal filter on X. If $f \in T$ then $\operatorname{supp}\phi(f, m) \in \alpha(T)$ for all $m \in \mathbb{Z}_+$ by definition of $\alpha(T)$, so $\operatorname{supp}\phi(f, m) \in F$ for all $m \in \mathbb{Z}_+$. That is, $f \in \beta(F)$. On the other hand, suppose that $T \subseteq \beta(F)$. If $S \in \alpha(T)$ then $S \supseteq \operatorname{supp}\phi(f, m)$ for some $f \in T$, $m \in \mathbb{Z}_+$. Since $f \in \beta(F)$ we have $\operatorname{supp}\phi(f, n) \in F$ for all $n \in \mathbb{Z}_+$. In particular, $S \in F$ so we have $\alpha(T) \subseteq F$ if and only if $T \subseteq \beta(F)$.

We shall assume that the adjunction $\alpha \vdash \beta$ between the set of compatible tight Riesz orders on Z^X and the set of non-principal filters on X is the one described in Theorem 2.

DEFINITION 3. A compatible tight Riesz order T on Z^X is prime if for all $f, g \in Z_+^X$, $f \lor g \in T$ implies $f \in T$ or $g \in T$. Further we say that T is algebraic if $T = \beta \alpha(T)$ (of course, $T \subseteq \beta \alpha(T)$ in any case).

THEOREM 4. There is a one-to-one correspondence between nonprincipal ultrafilters on X and maximal compatible tight Riesz orders on Z^X . In particular, every maximal compatible tight Riesz order on Z^X is of the form $Z_+^X \ P_U$ where P_U is a non-minimal prime subgroup of Z^X defined in terms of the non-principal ultrafilter U, so every maximal compatible tight Riesz order is algebraic and prime. Conversely every

386

prime algebraic compatible tight Riesz order is maximal.

Proof. The one-to-one correspondence between ultrafilters on X and maximal compatible tight Riesz orders follows immediately from the existence of the adjunction $\alpha \vdash \beta$ so does the fact that maximal compatible tight Riesz orders are algebraic. If U is a non-principal ultrafilter on X then $P = \left\{ f \in \mathbb{Z}^X : Z\phi(f, m) \in U \text{ for some } m \in \mathbb{Z}_+ \right\}$ is a proper convex sublattice subgroup of \mathbb{Z}^X which is prime but not minimal prime since P_U properly contains the prime subgroup $P_0 = \{f \in \mathbb{Z}^X : Z(f) \in U\}$. Then

$$\beta(U) = \left\{ f \in \mathbb{Z}_{+}^{X} : \operatorname{supp}\phi(f, m) \in U \text{ for all } m \in \mathbb{Z}_{+}^{X} \right\} = \mathbb{Z}_{+}^{X} \vee \mathbb{P}_{U}$$

and $\beta(\textit{U})$ is prime since $\textit{P}_{\textit{U}}$ is a join sublattice of $Z^{\textit{X}}$.

Suppose conversely that T is a prime algebraic compatible tight Riesz order on Z^X . We shall see that $\alpha(T)$ is a prime, and therefore maximal, filter on X. It is sufficient to show that if $A \cup B \in \alpha(T)$, where $A, B \subseteq X$ and $A \cap B = \Box$, then $A \in \alpha(T)$ or $B \in \alpha(T)$. Suppose $A \cup B \supseteq \operatorname{supp}\phi(f, m)$ for some $f \in T$, $m \in \mathbb{Z}_+$, but $A, B \notin \alpha(T)$. Then the sets $A' = \{x \in A : f(x) > m\}$, $B' = \{x \in B : f(x) > m\}$ are nonempty. We define $g, h : X \to \mathbb{Z}$ as follows:

$$g(x) = \begin{cases} 0 & \text{if } x \in A' \\ & & , h(x) = \\ f(x) & \text{if } x \notin A' \end{cases}, h(x) = \begin{cases} 0 & \text{if } x \in B' \\ \\ f(x) & \text{if } x \notin B' \end{cases}$$

Then

$$\operatorname{supp}\phi(g, m) = \{x \in X : g(x) > m\} = B' \subseteq B$$

and

$$\operatorname{supp}\phi(h, m) = \{x \in X : h(x) > m\} = A' \subseteq A$$

Further, $g \lor h = f \in T$ so either $g \in T$ or $h \in T$ (since $g, h \in \mathbb{Z}_{+}^{X}$). Thus $B \in \alpha(T)$ or $A \in \alpha(T)$. Since $\alpha(T)$ is a prime filter on X it is an ultrafilter, and $T = \beta\alpha(T)$ is a maximal compatible tight Riesz order. COROLLARY 5. If X has cardinality $k \ge \aleph_0$ then there are 2^{2^k} maximal compatible tight Riesz orders on Z^X .

Proof. There are 2^{2^k} non-principal ultrafilters on Z^X (Bell and Slomson [1], p. 108).

COROLLARY 6. If T is an algebraic tight Riesz order on Z^X then $T = Z^X_+ \cup \{P_{U_i} : i \in I\}$ for some class $\{U_i : i \in I\}$ of non-principal ultrafilters on X.

For a given ultrafilter U on X the totally-ordered group $Z^{X/P}_{0}$ has the same first-order properties as Z, since this group is an ultrapower of Z. If U is a non-principal ultrafilter the totally-ordered group $Z^{X/P}_{U}$ must be dense however, since $Z^{X}_{+} \backslash P_{U}$ is a compatible tight Riesz order.

THEOREM 7. Let G be an abelian lattice-ordered group and I a convex sublattice subgroup of G. Then $T = G^+ \setminus I$ satisfies T = T + T if and only if G/I is a dense lattice-ordered group.

Proof. Suppose that G/I is dense. If $t \in T$ and t + I > 0 in G/I then there is an $x \in G$ satisfying t + I > x + I > 0. With $y = (xv0) \land t$ we have t > y > 0 so $y \in G^+ \backslash I$, $t-y \in G^+ \backslash I$ and $t = y + (t-y) \in T + T$. The reverse inclusion is immediate. On the other hand suppose that T = T + T and x + I > 0 in G/I. Then $x \in I$ and x + y > 0 for some $y \in I$ so $x + y = t_1 + t_2$ where $t_1, t_2 \in T$. Then $0 < t_1 + I < x + I$ so G/I is dense.

The problem of characterizing the groups Z^{X}/P_{U} , for U a nonprincipal ultrafilter on X does not seem to be easy. Without something like Gödel's axiom of constructability even the cardinality of Z^{X}/P_{U} is unclear. As a group we can write Z^{X}/P_{U} as $\left(Z^{X}/P_{0}\right)/P_{U}/P_{0}$ and then use known results on the cardinality of ultrapowers in an attempt to determine the cardinality of Z^X/P_U .

When X is countable (non-finite) the cardinality of the ultrapower Z^{X}/P_{0} is $2^{\aleph_{0}}$, for each ultrafilter U on X (Bell and Slomson [1], p.129). As Reilly [4] has remarked the prime subgroup P_{U} covers P_{0} in Z^{X} so P_{U}/P_{0} is isomorphic with a subgroup of the real numbers.

The totally-ordered groups Z^X/P_U admit more interpolation than that implied by density. A result of Gillman and Jerison [2] (Lemma 13.7), is valid with the real numbers R replaced by Z and then says that if A, B are countable subsets of Z/P_U with A < B then $A \leq g \leq B$ for some $g \in Z^X/P$. We summarize these properties of Z^X/P_U in the following statement.

PROPOSITION 8. If X is a countable set and U is a non-principal ultrafilter on X then the group $G_{U} = Z^{X}/P_{U}$ has the following properties:

- (1) $\aleph_0 \leq |G_{U}| \leq 2^{\aleph_0}$;
- (2) G_{II} is dense;
- (3) if $A, B \subseteq G$, $|A \cup B| \leq \aleph_0$ and A < B then $A \leq g \leq B$ for some $g \in G_{11}$;
- (4) G_{II} is a quotient of an ultrapower of Z by a real group.

References

- [1] J.L. Bell and A.B. Slomson, Models and ultraproducts: an introduction (North-Holland, Amsterdam, London, 1969).
- [2] Leonard Gillman and Meyer Jerison, Rings of continuous functions (Van Nostrand, Princeton, New Jersey; Toronto; London; New York; 1960).

- [3] S. Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).
- [4] N.R. Reilly, "Compatible tight Riesz orders and prime subgroups", Glasgow Math. J. 14 (1973), 145-160.
- [5] Andrew Wirth, "Compatible tight Riesz orders", J. Austral. Math. Soc. 15 (1973), 105-111.

Department of Mathematics, La Trobe University, Bundoora, Victoria.