## A COMMUTATIVITY THEOREM FOR RINGS

## Hiroaki Komatsu, Tsunekazu Nishinaka and Hisao Tominaga

We prove the following theorem: Let $R$ be a ring, $l$ a positive integer, and $n$ a non-negative integer. If for each $x, y \in R$, either $x y=y x$ or $x y=x^{n} f(y) x^{l}$ for some $f(X) \in X^{2} Z[X]$, then $R$ is commutative.

Throughout, $R$ will represent a ring with centre $C=C(R)$, and $D=D(R)$ the commutator ideal of $R$. Let $l, m$ be positive integers, and $n$ a non-negative integer. We consider the following conditions:
$\left.{ }^{(*)}\right)_{(l, m, n)}$ For each $x, y \in R$, either $[x, y]=x y-y x=0$ or $x^{m} y=x^{n} f(y) x^{l}$ for some $f(X) \in X^{2} \mathbf{Z}[X]$.
$\left.{ }^{(* *)}\right)_{(l, m, n)}$ For each $x, y \in R$, either $[x, y]=0$ or $x^{m} y-x^{n} f(y) x^{l} \in C$ for some $f(X) \in X^{2} \mathbf{Z}[X]$.
$(\dagger)_{(l, m, n)}$ For each $x, y \in R$, there exists $f(X) \in X^{2} Z[X]$ such that $\left[x, x^{m} y-\right.$ $\left.x^{n} f(y) x^{l}\right]=0$.
(S) For each $x, y \in R$, there exists $f(X, Y) \in \mathbf{Z}\langle X, Y\rangle[X, Y] \mathbf{Z}\langle X, Y\rangle$ each of whose monomial terms is of length $\geqslant 3$ such that $[x, y]=f(x, y)$.
As is easily seen, $(*)_{(l, m, n)}$ implies $(* *)_{(l, m, n)}$, and (**)${ }_{(l, m, n)}$ implies $(\dagger)_{(l, m, n)}$. Recently, Bell [1] announced that every ring $R$ satisfying (*) ${ }_{(1,1,0)}$ is commutative. The next result has been proved in [3, Theorem 1].

Proposition 1. Let $R$ be a ring with 1. If $R$ satisfies $(\dagger)_{(l, m, n)}$ then $R$ is commutative.

Our present objective is to prove the following theorem, by making use of Proposition 1.

Theorem 1. If a ring $R$ satisfies $(*)_{(l, 1, n)}$, then $R$ is commutative.
We start our preparation for proving Theorem 1 with the following proposition.
Proposition 2. Let $R$ be a ring generated by two elements such that $D$ is the heart of $R$ and $R D=D R=0$. Then $R$ is nilpotent.

Proof: Obviously, $D$ is $Z$-isomorphic to $Z / p Z$ for some prime $p$. Noting that $R / D$ is a homomorphic image of the subring $\langle X, Y\rangle$ of $Z[X, Y]$ and every ideal of

[^0]$\langle X, Y\rangle$ is an ideal of $Z[X, Y]$, we see that $R / D$ is Noetherian. Accordingly, $R$ is right Noetherian.

Now, let $x$ be an arbitrary element of $R$, and $k$ a positive integer such that $r\left(x^{k}\right)=r\left(x^{k+1}\right)$, where $r(*)$ denotes the right annihilator of $*$ in $R$. Since $R x^{k} \subseteq$ $\left(x^{k} R+D\right) R \subseteq x^{k} R, x^{k} R$ is an ideal of $R$. Further, if $x^{k} a \in x^{k} R \cap D$ then $x^{k+1} a=$ $x\left(x^{k} a\right)=0$, and so $x^{k} a=0$. Hence $x^{k} R \cap D=0$, whence $x^{k} R=0$ follows. We have thus seen that $R$ is nil. Now, it is easy to see that $R$ is nilpotent.

Combining Proposition 2 with [ 2 , Theorem $S$ ], we see that if $R$ is not commutative then there exists a factorsubring of $R$ which is of type (a) $)_{l}(\mathrm{a})_{r},(\mathrm{~b}),(\mathrm{c})$, (d) or (e):
(a) $\quad\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & 0\end{array}\right), p$ a prime.
(a) $r_{r}\left(\begin{array}{ll}0 & G F(p) \\ 0 & G F(p)\end{array}\right) p$ a prime.
(b) $\quad M_{\sigma}(K)=\left\{\left.\left(\begin{array}{cc}\alpha & \beta \\ 0 & \sigma(\alpha)\end{array}\right) \right\rvert\, \alpha, \beta \in K\right\}$, where $K$ is a finite field with a non-trivial automorphism $\sigma$.
(c) A non-commutative division ring.
(d) A simple radical ring with no non-zero divisors of zero.
(e) A finite nilpotent ring $S$ such that $D(S)$ is the heart of $S$ and $S D(S)=$ $D(S) S=0$.

In particular, if $R$ is non-commutative and satisfies $(S)$ then there exists a factorsubring of $R$ which is of type (a) $)_{l},(\mathrm{a})_{r}(\mathrm{~b})$, (c) or (d) (see [2, Corollary S.1]).

This result gives the following Meta-Theorem.
Meta-Theorem. Let $P$ be a ring property which is inherited by factorsubrings. If no rings of type $(a)_{l},(a)_{r},(b),(c),(d)$ or (e) satisfy $P$, then every ring satisfying $P$ is commutative. (If no rings of type (a) $)_{l},(\mathrm{a})_{r},(b),(c)$ or (d) satisfy $P$, then every ring satisfying ( $S$ ) and $P$ is commutative.)

We are now ready to complete the proof of Theorem 1.
Proof of Theorem 1: In view of the Meta-Theorem, it suffices to show that $R$ cannot be of type (a) $l_{1},(\mathrm{a})_{r},(b),(c)$, (d) or (e).

Noting that $e_{12}=e_{11} e_{12} \neq e_{11}^{n} f\left(e_{12}\right) e_{11}^{l}=0$ and $e_{12}=e_{12} e_{22} \neq e_{12}^{n} f\left(e_{22}\right) e_{12}^{l}=0$ for any $f(X) \in X^{2} Z[X]$, we see that $R$ cannot be of type (a) $l_{l}$ or $(\mathrm{a})_{r}$. Further, by Proposition 1, no rings of type (b) or (c) satisfy (*) ${ }_{(1,1, n)}$.

Now, suppose that $R$ is of type (d), and choose $x, y \in R$ with $[x, y] \neq 0$. Then there exists $p(X) \in X Z[X]$ such that $x y=x^{n} p(y) y x^{l}$. If $\left[x, y^{l}\right] \neq 0$ and $\left[x^{l}, y\right] \neq 0$, there exist $f(X), g(X) \in X^{2} Z[X]$ such that $x y^{l}=x^{n} f\left(y^{l}\right) x^{l}$ and $y x^{l}=y^{n} g\left(x^{l}\right) y^{l}$. Putting $f\left(y^{l}\right)=f_{0}(y) y$ and $g\left(x^{l}\right)=g_{0}(x) x$ with some $f_{0}(X), g_{0}(X) \in X Z[X]$, we
obtain $x y^{l}=x^{n} f_{0}(y) y^{n} g_{0}\left(x^{l}\right) x y^{l}$. Since $R$ is a radical ring, this forces a contradiction $x y^{l}=0$. Next, if $\left[x^{l}, y\right]=0$ then $x y=x^{n} p(y) x^{i-1} x y$, which implies a contradiction $x y=0$. Similarly, $\left[x, y^{l}\right]=0$ forces a contradiction. We have thus seen that $R$ cannot be of type (d).

Finally, suppose that $R$ is of type (e). Then $R^{2} \subseteq C$. Given $x, y \in R$ with $[x, y] \neq 0$, we can take $p(X) \in X Z[X]$ such that $x y=x^{n} y p(y) x^{l}=x y p(y) x^{l+n-1}$, whence $x y=0$ follows; similarly $y x=0$. But this is impossible.

Corollary 1. If $R$ satisfies $(S)$ and $(* *)_{(1,1, n)}$, then $R$ is commutative.
Proof: In view of Proposition 1 and the Meta-Theorem, it suffices to show that $R$ cannot be of type $(\mathrm{a})_{l},(\mathrm{a})_{r}$, or (d). It is easy to see that $R$ is not of type (a) ${ }_{l}$ or (a) $)_{r}$. If $R$ is of type (d), then $C=0$ and $R$ satisfies $(*)_{(l, 1, n)}$. Thus $R$ is commutative by Theorem 1. But this is impossible.

Finally, we remark that a ring with $(*)_{(l, m, n)}$ for $m>1$ need not be commutative. Actually, there exists a non-commutative ring $R$ with $R^{3}=0$.

## References

[1] H.E. Bell, 'Commutativity results for semigroups in rings', Proc. Internat. Sympos. Semigroup Theory, Kyoto (1990), 31-39.
[2] H. Komatsu and H. Tominaga, 'Chacron's condition and commutativity theorems', Math. J. Okayama Univ. 31 (1989), 101-120.
[3] H. Komatsu and H. Tominaga, 'Some commutativity conditions for rings with unity', Resultate Math. 19 (1991), 83-88.

Department of Mathematics
Okayama University
Okayama 700
Japan


[^0]:    Received 22 November 1990
    Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

