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Summary

Genetic differences among populations exposed to selection form barriers against genetic exchange

by mortality among hybrids. The strength of such a selection barrier, with which one (recipient)

population reacts against immigration from another (donor) population, may be measured as the

cumulative mean fitness of hybrids and their descendants relative to the fitness of the recipient

population. Previous work analysed a case of weak selection with pairwise epistatic interactions by

assuming small genetic distance between two populations in contact. The present study allows

large genetic difference between the donor and recipient populations and considers weak multilocus

selection with arbitrary epistatic interactions between two or more linked loci. An approximate

analytical expression for the barrier strength is obtained as an expansion in which the strength of

selection plays the role of a small parameter. It is shown that allele frequencies and gametic

linkage disequilibria contribute in different ways to the strength of the selection barrier.

1. Introduction

Biological species are separated by various mech-

anisms of reproductive isolation that decrease the

exchange of genetic material among them, and two

principal types of isolation mechanisms, prezygotic

and postzygotic, are usually distinguished. A pre-

zygotic barrier is the inability of individuals to perform

interspecific matings due to physiological and be-

havioural differences. A postzygotic mechanism of

isolation is a lower viability or fertility of hybrids or

hybrid descendants due to genetic difference between

the species.

When two genetically distinct populations that are

in contact produce hybrids with reduced fitness, they

are less susceptible to mutual introgression of genetic

material. The resulting genetic barrier therefore

amounts to decreased effective migration between the

populations compared with the exchange of breeding

individuals. The added genetic isolation of the barrier

promotes genetic divergence between populations,

and this in turn contributes to an amplification of the
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barrier. These aspects in the evolution of a genetic

barrier require quantitative study in order to under-

stand their role in the speciation process, and thus in

the progressive deepening of the postzygotic barrier as

the species diverge.

The theory of genetic barriers is immediately

applicable to the exploration of the impact of

genetically modified organisms that are introduced

into natural habitats where native populations may be

susceptible to introgression. The specific problems of

the evolutionary fate of the genetic material of

modified individuals are not different from the

problems of how genetic differences influence the

survival of genetic material from one population in

the environment of another divergent population.

Bengtsson (1985) quantified the strength of a genetic

barrier by describing the fate of a neutral gene carried

into a population by recurrent immigration, and this

was later extended to models of hybrid zones (Barton

& Bengtsson, 1986). Even though a neutral gene is

irrelevant to the selection pressure against hybrids, it

is nevertheless indirectly selected because of its

association with the factors involved in the deter-

mination of the fitnesses of hybrids and their
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descendants. The strength of a genetic barrier was

defined as its ability to protect the population against

immigration of the neutral allele, that is, as the ratio

of the migration rate and the effective migration rate

describing the actual influx of the marker gene.

Most models involving hybrids assume reduced

hybrid fitness (Bazykin, 1969; Barton, 1979; Barton

& Hewitt, 1985; Christiansen et al., 1995). A different

approach has been developed by Zhivotovsky &

Christiansen (1995), in which the fitness of hybrids is

determined by their multilocus genotypes and the

selection regime in the recipient population. The only

assumption is that the recipient population is at a

stable genetic equilibrium. The reduced fitness of

hybrids is therefore not an a priori assumption, and

increased fitness may indeed result, because the mean

fitness at equilibrium is unlikely to be at a local

maximum. The barrier is quantified by considering a

small group of individuals that immigrate into a

genetically distinct recipient population. The immi-

grants mate at random with the residents, producing

hybrids which in turn mate with the recipients, and so

on. The immigration amounts to a small perturbation

of the recipient population away from its stable

equilibrium, and it therefore returns to the original

equilibrium. Denote the mean fitness of the hybrid

subpopulation at generation t by wa
t
, and let wa * be the

equilibrium mean fitness in the recipient population.

Zhivotovsky & Christiansen (1995) describe the fate

of immigrants and their descendants by introducing

the selection barrier which describes the ultimate

survival of hybrids relative to the survival of a similar

number of residents :

0
¢

t=t
!

wa
t

wa *
. (1)

Assuming equal fertility of each genotype, this

expression gives the ultimate factor of change in the

number of hybrids relative to that of the same number

of recipients. The strength of the selection barrier is

quantified by the rate of change:

B¯®ln 00
¢

t=t
!

wa
t

wa *1 . (2)

If B" 0, the fitness of hybrids and their descendants

averaged over time is lower than the average fitness in

the recipient population. Thus, the genetic impact of

the immigrants will be lower than suggested by their

number. If B! 0, the time-average fitness of hybrids

and their descendants is higher than the average

fitness in the recipient population. The impact of

immigration will therefore be higher than expected,

but the recipient population will nevertheless return to

its original stable equilibrium.

Zhivotovsky & Christiansen’s (1995) measure B

of the strength of the selection barrier corresponds

closely to that suggested by Bengtsson (1985) if the

diagnostic neutral locus is unlinked to any of the loci

involved in creating the selection barrier (Christiansen,

1999). Bengtsson’s (1985) and Barton & Bengtsson’s

(1986) measure describes more accurately the rate of

immigration of a neutral allele, because it allows

linkage between the neutral locus and loci determining

the fitness of the individuals. Zhivotovsky & Christian-

sen’s (1995) measure is easier to evaluate in a

theoretical analysis, and it is therefore used to provide

a general impression of the barrier between two

populations. Thus, the value of B reveals the sus-

ceptibility of the recipient population 2 to an

introgression of the different genotypes carried from

the donor population $.

Zhivotovsky & Christiansen (1995) calculated the

strength of the selection barrier between genetically

close populations for weak selection with only some

pairwise epistatic interactions allowed. We extend

their results to a general weak multilocus selection

model with arbitrary genetic distance between the

donor population and the recipient population.

2. The model

We consider a randomly mating recipient population

2 with diploid individuals that may differ at n diallelic

loci subject to viability selection. Selection is assumed

to be weak, in that changes in the genetic composition

of the population due to selection are slow compared

with the changes mediated by recombination among

the loci. The recipient and donor populations may

therefore be assumed to be at quasi linkage equilibrium

prior to the event of immigration (Kimura, 1965;

Nagylaki, 1992; Nagylaki et al., 1999). Denoting the

two possible alleles 0 and 1 at each locus, we describe

the state of locus i by an indicator variable l
i
, i¯1, 2,

…, n. This enables us to represent a gamete as l¯ (l
"
,

l
#
,…, l

n
) and the genotype of an individual as l«l§. The

fitness of genotype l«l§ is w
l«l§

¯µ­εν
l«l§

, where ε is

assumed small. Population 2 is assumed to be at an

equilibrium that is stable under the joint action of

selection and recombination.

A small group of immigrants is introduced from a

genetically different donor population $ into the

recipient population 2 after selection, and these

immigrants mate at random with residents and

produce hybrids. To investigate the fate of the

descendants of the immigrants, we consider the group

of hybrids, (, formed by the individuals with

immigrant ancestors (Zhivotovsky & Christiansen,

1995). Because the immigrant group is assumed to be

small and because random mating prevails, we shall

not consider matings among the hybrid individuals.

Immigration takes place at the initial generation 0, so

the descendants of immigrants in generation 1 are

produced from matings of immigrants and residents.
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Thus, we describe the hybrid population in the

subsequent generations by the recursion (
t+"

¯
(

t
¬2 and (

!
¯$. At the loci subject to selection,

the genotypic composition of the hybrid subpopu-

lation ( will converge to that of the undisturbed

recipient population 2 in the course of time.

The gene frequencies, linkage disequilibria and the

mean fitness in population (
t

are p(t)

i
, D(t)

K
and wa

t

respectively, and when convenient we will suppress

the reference to the generation number t. The linkage

disequilibrium D
K

refers to that among the loci in the

subset K of the set of loci N¯²1, 2,…, n´ (Slatkin,

1972; Christiansen, 1999). The values of the variables

at equilibrium in the recipient population 2 are p$
i
,

D$
K

and wa * and in the donor population $ they are

p$$
i

and D$$
K

. We describe the dynamics in (
t
by the

deviation of the variables from their values at

equilibrium in the recipient population 2 :

∆p
i
¯ p

i
®p$

i

∆D
K

¯D
K
®D$

K
(3)

∆wa ¯wa ®wa *.

The initial values of these deviations are therefore

∆po

i
¯ p$$

i
®p$

i
and ∆Do

K
¯D$$

K
®D$

K
.

After t generations of weak selection, the mean

fitness among hybrids (
t

is wa
t
¯wa *­∆

t
wa , and as

∆
t
wa is small, at most on the order of ε, we get

log
wa

t

wa *
¯ log 01­

∆
t
wa

wa * 1E
∆

t
wa

wa *
®

1

2 0
∆

t
wa

wa * 1
#

.

Hence, for weak selection the value of selection

barrier (2) is approximately

BE®3
¢

t="

∆
t
wa

wa *
, (4)

where the error of the approximation is on the order

of magnitude of ε#.

The difference in mean fitness between the hybrid

subpopulation ( and the recipient population 2 is

∆w¯ "

#
3
i`N

∆p
i

¦wa *
¦p$

i

­"

#
3

KXN
rKr"

"

δ
K

¦wa *
¦D$

K

­/(ε#), (5)

where the second sum is taken over all subsets of loci

containing at least two elements. This is shown by

using equations (2), (4) and (8) of Zhivotovsky &

Pylkov (1998) and the assumption that population 2
is at equilibrium. The variables used in the linkage

disequilibrium term of (5) are given by

δ
ij
¯∆D

ij
­∆p

i
∆p

j
,

δ
ijk

¯∆D
ijk

­∆D
ij
∆p

k
­∆D

ik
∆p

j
­∆D

jk
∆p

i

­∆p
i
∆p

j
∆p

k
,

]

δ
K

¯ 3
VXK
rV r"

"

∆D
V

0
i`KcV

∆p
i
­0

i`K

∆p
i
. (6)

These are combined measures of differences in linkage

disequilibria, and through the back-cross series («¯
(¬2, the dynamics of these variables satisfy the

simple recursion

δ!
K

¯ "

#
(1®r

K
) δ

K
, (7)

where r
K

is the probability of at least one recom-

bination event among the loci in K. This equation can

be derived from equation (25) of Zhivotovsky &

Pylkov (1998). The analysis of genetic changes in

population 2 generalizes that of Zhivotovsky &

Gavrilets (1992) and is closely related to those applied

by Barton & Turelli (1991) and Turelli & Barton

(1994).

Using (4), (5) and (7) we obtain the strength of the

selection barrier as

BE
1

2wa *

E

F

3
i`M
) 0¦wa *

¦p$
i

1∆po

i )® 3
KXN
rK r"

"

1®r
K

1­r
K

0¦wa *
¦D$

K

1 δo

K

G

H

,

(8)

where M is the set of loci that are monomorphic in

population 2. If r∆po

i
r( ε, B is on the order of ε, and

the error in the approximation is of the order ε#.

Thus, the barrier is produced by the selection

gradient in the recipient population multiplied by the

corresponding measures of differences between the

donor and recipient populations. The one-locus

selection gradient provides a positive contribution to

the barrier for loci that are monomorphic in the

recipient population. The sign of the contribution due

to the epistatic interactions among the loci is

undetermined; the selection gradient depends only on

the genotypic fitnesses in the recipient population,

whereas the measures of linkage disequilibrium de-

pend on the difference between the recipient popu-

lation and the original immigrants from the donor

population.

(i) The additi�e-by-additi�e epistasis model

The analysis of Zhivotovsky & Christiansen (1995)

was based on a simplified model which allows only

additive and dominance effects within loci, and

additive-by-additive epistasis among them according

to the genotypic fitness model by Zhivotovsky &

Gavrilets (1992):

w
l«l§

¯µ­3
n

i="

(a
i
(l!

i
­l"

i
)­2b

i
l!
i
l"
i
)

­3
n

i="

3
n

j="
j1i

c
ij
(l!

i
­l"

i
) (l!

j
­l"

j
). (9)

The fitness of individuals carrying only 0 alleles at

every locus is µ, and the coefficient a
i
measures the

additive contribution of allele 1 at locus i and b
i
the

dominance contribution. The coefficient c
ij
, i1 j
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Table 1. The three donor populations used in iterations

Donor population $
All 1-allele
frequencies

All pairwise
linkage disequilibria

A Two complementary gametes
(0, 0, 0, 0, 0) : "

#
and (1, 1, 1, 1, 1) : "

#

"

#

"

%
B All gametes in equal frequencies "

$#

"

#
0

C Single gamete (1, 1, 1, 1, 1) 1 0

measures the additive-by-additive epistatic interaction

of the effects of the 1-alleles at loci i and j. The

coefficients a
i
, b

i
and c

ij
are at most on the order of

magnitude of ε.

In the additive-by-additive epistasis model the

selection barrier (8) becomes

BE
1

wa *

E

F

3
i`M

rF$
i
rr∆po

i
r®3

n

i="

3
n

j="
j1i

1®r
ij

1­r
ij

¬c
ij
(∆Do

ij
­∆po

i
∆po

j
)

G

H

, (10)

where

F$
i
¯ a

i
­2b

i
p$
i
­3

n

j="
j1i

4c
ij
p$
j
.

The simplification of the first term is founded on the

property that F$
i
∆po

i
% 0 for all i `M and F$

i
¯ 0

otherwise. The order of magnitude of F$
i

is ε, and if

the difference in gene frequencies between 2 and $ is

large (r∆po

i
r( ε) then B becomes of the order ε.

Equation (10) differs from the result of Zhivotovsky

& Christiansen (1995) by the term ∆po

i
∆po

j
, which

becomes negligible if the difference in the allele

frequencies is indeed on the order of ε as they

assumed.

The loci monomorphic in population 2 always

contribute to the first and positive term in (10), and

this term is independent of recombination. The second

term depends on recombination and epistatic inter-

actions. It consists of two parts, namely a term with

∆po

i
∆po

j
which is proportional to the covariance in

gene frequencies between the two populations, and a

term with ∆Do

ij
which is the difference in linkage

disequilibria between 2 and $.

The covariance in gene frequencies between the two

populations emerges because population ( is a result

of mixing populations 2 and $. The linkage dis-

equilibrium in a mixed population is effectively the

average linkage disequilibrium in the components that

are mixed plus the covariance in gene frequencies

among the components (Feldman & Christiansen,

1975; Christiansen, 1987, 1999). Applying this result

to population 2 with immigrants produces the form

of the initial linkage disequilibrium difference that

appears in the second term of (10).

3. Quality of the approximation

We have evaluated the quality of the approximation

(10) by numerical iterations for different sets of

selection coefficients in the additive-by-additive epis-

tasis model of (9). Three-, five- and seven-locus

models gave similar results, and we report only one

pattern of selection for a case of five loci. In this

example the coefficients of selection are given by a
i
¯

®0±5ε, b
i
¯®1±5ε and c

ij
¯®ε, and the recipient

population is at a monomorphic equilibrium with the

0-allele fixed at all loci (mean fitness equal to µ¯1).

The parameter ε describing the order of the strength

of selection is varied as ε¯10−k, k¯ 2, 3, 4, 5, 6 and

we will illustrate the strength of selection by the

relative difference

ω¯
w+®w−

w+
,

where w− denotes the fitness of the least viable

individual in the population and w+ the highest fitness

(w+ ¯1 in the example). Note that with ε¯ 0±01

selection becomes quite strong against individuals

carrying many 1-alleles, in that w− ¯ 0. The relative

difference ω varies as ω¯10−k, k¯ 0,1, 2, 3, 4.

The effect of linkage on the approximation was

explored using three different patterns of linkage

relationship among the five loci. The first is free

recombination in which the loci are unlinked. The

remaining two patterns assume the five loci to be

placed in order along a chromosome with equal

distance between any two neighbouring loci. We

assume no interference and consider recombination

frequencies of 0±05 and 0±005. Using these parameters

we considered three donor populations with the

genetic compositions shown in Table 1.

The iterations produced the value of the exact

selection barrier B
exact

given by (4), and we compared

it to its approximation B
approx

given by (10). The

comparison is done in terms of a relative error given

by

β¯
B

approx
®B

exact

B
approx

­B
exact

.

If our approximation is accurate we expect a value of

β which is on the order of ε, and we therefore plot the
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Fig. 1. The normalized relative error of approximation β}ω as a function of the strength of selection ω for five loci. The
three drawings correspond to the three donor populations described in Table 1, and the three curves in each drawing
correspond to three values of recombination frequencies between neighbouring loci. The additive-by-additive epistasis
model is assumed with a

i
¯®0±5ε, b

i
¯®1±5ε and c

ij
¯®ε in the recipient population.

normalized value, β}ω, which must be on the order of

1 with respect to ε (Fig. 1). The correspondence

between the exact barrier and its approximation is

very satisfactory because the normalized relative error

is virtually independent of ω, and therefore of ε. The

approximation works even for quite strong selection

(ε¯ 0±01, ω¯1).

4. Discussion

Zhivotovsky & Christiansen (1995) calculated the

strength of the selection barrier (their equation 21)

assuming that the differences in gene frequencies

between the recipient and donor populations are

small, at most on the order of magnitude of the

selection coefficients. The barrier strength was on the

order of magnitude corresponding to the square of

the selection coefficients. Allowing for an arbitrary

genetic difference between the two populations, the

selection barrier in (10) is on the same order

of magnitude as the selection coefficients, and an

additional term occurs which can be interpreted in

terms of the covariance in gene frequencies for pairs

of loci between the recipient and the donor population.

For the case of genetically close populations, this term

becomes of an order of magnitude lower than the

barrier strength and it is therefore neglected. Zhivo-

tovsky & Christiansen’s (1995) interpretation of the

strength of the selection barrier as having two

components still remains, however. For genetically

distant populations subject to arbitrary weak viability

selection the barrier is given by (8), and the com-

ponents are given by:

The allelic component : this depends only on the

frequencies of alleles in the donor population that are

absent in the recipient population.

The linkage disequilibrium component : this depends

on both the differences in linkage disequilibria between

the recipient population and the donor population,

and on the covariance in allele frequencies between

these populations.

The allelic component is always positive, but the sign

of the linkage disequilibrium component is unde-

termined. For genetically distant populations the

contribution of the product term Π
i`K

∆p
i

to the

selection barrier can be significant. In particular, if the

recipient and donor populations have all alleles in

common the allelic component vanishes, and the

linkage disequilibrium component becomes the only

contributor to the barrier.

The existence of a negative barrier is possible

because with multiple loci it is quite unusual that the

mean fitness at a stable equilibrium is at a local

maximum. With weak selection, the mean fitness

increases as the population converges to equilibrium

as we may assume that the population rapidly reaches

quasi linkage equilibrium (Kimura, 1965; Nagylaki et

al., 1999). Introgression is expected to perturb the

recipient population away from the linkage equi-

librium surface, and the equilibrium mean fitness is

maximized only within this surface.

The approximation of the selection barrier in (10) is

very satisfactory, and the errors of approximation in

the two components of the barrier value are com-

parable. We can define relative errors β
"

and β
#

respectively for the allelic and the linkage dis-

equilibrium components, and the ratio β
"
}β

#
is

virtually independent of the strength of selection for

the examples given in Fig. 1. For the donor

populations A and C the ratio is above but close to

one. For donor B the error is larger for the linkage

disequilibrium component, giving a ratio of about 0±6.

The mutual barriers between the two populations 2
and $ may be studied if we assume both populations

to be at a stable genetic equilibrium. With weak
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selection, the equilibrium values of the linkage

disequilibria are of the same order of magnitude as the

selection coefficients and therefore negligible com-

pared with the allele-frequency differences. For in-

stance, in the additive-by-additive epistasis model,

(10), which describes the barrier that protects popu-

lation 2 against migrants from population $ ((
t+"

¯
(

t
¬2 and (

!
¯$), is

B2
$ E

1

wa 2

E

F

3
i`M

rF2

i
rr∆po

i
r®3

n

i="

3
n

j="
j1i

1®r
ij

1­r
ij

c2

ij
∆po

i
∆po

j

G

H

,

(11)

and the strength of the selection barrier in population

$ against introgression from population 2 ((
t+"

¯
(

t
¬$ and (

!
¯2) is

B$
2 E

1

wa $

E

F

3
i`M

rF$

i
rr∆po

i
r®3

n

i="

3
n

j="
j1i

1®r
ij

1­r
ij

c$

ij
∆po

i
∆po

j

G

H

.

(12)

We assume that the populations have the same

recombination frequencies, and that they are at stable

equilibria sufficiently different to make the products

of the gene frequency differences ∆po

i
∆po

j
of a higher

order of magnitude than the selection coefficients. The

barrier in a population depends only on the selection

in that particular population, and we therefore label

the coefficients c
ij

and F
i
by superscripts 2 and $. If

c2

ij
and c$

ij
are of the same sign, the linkage dis-

equilibrium component contributes to the two barriers

in a similar way, but in general the barrier between the

two populations may have different permeability

depending on the direction of introgression.

The barrier between genetically close populations at

genetic equilibrium where the gene frequency dif-

ferences are on the same order magnitude as the

selection coefficients, is given by

B2
$ E

1

wa 2

E

F

3
i`M

rF2

i
rr∆po

i
r®3

n

i="

3
n

j="
j1i

1®r
ij

1­r
ij

c2

ij
∆Do

ij

G

H

, (13)

and a similar expression for B$
2 (Zhivotovsky &

Christiansen, 1995). Thus, (11) provides the relevant

terms in the approximation for r∆po

i
r( ε ; the barrier is

on the order of magnitude ε and the error is of order

ε#. Equation (13) gives the approximation for r∆po

i
rE ε

with the barrier being on the order of magnitude ε#

and the error of order ε$. In the intermediate situation

where r∆po

i
r( εEr∆po

i
∆po

j
r only the allelic component

of the barrier becomes significant unless all loci are

polymorphic in both populations, and we then get

B2
$ E

1

wa 2 3
n

i="

3
n

j="
j1i

1®r
ij

1­r
ij

c2

ij
(∆Do

ij
­∆po

i
∆po

j
), (14)

which is of the order of magnitude ε# with an error of

order ε&/#.

In the calculation of the barrier strength (8),

however, we did not assume equilibrium in the donor

population $. It only describes the initial immigrants

(
!
. Thus, the source of the immigrants may as well be

a mixture of populations such that the linkage

disequilibria in $¯(
!
may be substantial (Feldman

& Christiansen, 1975; Christiansen, 1987, 1999). The

linkage disequilibria in the donor population may

therefore be substantial. The linkage disequilibria at

equilibrium in the recipient population may still be

neglected, and in the additive-by-additive epistasis

model we therefore get the barrier as

B2
$ E

1

wa 2

E

F

(3
i`M

rF2

i
rr∆po

i
r®3

n

i="

3
n

j="
j1i

1®r
ij

1­r
ij

c2

ij

¬(D$$
ij

­∆po

i
∆po

j
)

G

H

. (15)

In case of a mixed (
!
, D$$

ij
is related to the gametic

linkage disequilibrium between locus i and locus j in

the mixture of the donor populations (Christiansen,

1999).

This effect may emerge even if selection works in the

same way in all the populations. A multilocus selection

modelmaywell havemore thanone stable equilibrium.

For instance, in the two-locus symmetrical viability

model of Lewontin & Kojima (1960), a population

may for weak selection (loose linkage) possess a

stable polymorphic equilibrium and four stable mono-

morphic equilibria (Christiansen & Feldman, 1975;

Feldman & Liberman, 1979; Christiansen, 1999). This

allows for a gene frequency difference at both loci

between a recipient and a donor population which are

both at equilibrium, and this makes both the allelic

and the disequilbrium components significant in the

barriers in (11) and (12). Even in this simple two-locus

model, genetic variation among the components of a

mixed donor population is possible, and both of the

terms of the linkage disequilibrium components in the

barrier of (15) may therefore be significant.

As an illustration we have analysed our results for

a simpler mode of selection, namely weak stabilizing

selection on a quantitative character. The quantitative

trait is determined additively with genotype–environ-

ment interaction based on Lerner’s model of homeo-

stasis (Zhivotovsky & Feldman, 1992a), where a

heterozygote at any locus lowers the variance of the

environmental contribution to the trait of the in-

dividual. Fitness is given in terms of a quadratic

deviation from an optimum phenotypic value. The

model has the form introduced by Zhivotovsky &

Gavrilets (1992) and was analysed by Zhivotovsky

& Feldman (1992a, b). The present analysis follows

that of Zhivotovsky & Christiansen (1995). We assume
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free recombination, that both populations are at a

stable equilibrium, and that the recipient population

is in a totally polymorphic state. Then the expression

for the selection barrier may be simplified to exhibit

two terms: one is the squared difference in the mean

values of the character, ∆x¯x**®x*, and the other

is the additive genetic variance, ∆V
G
¯V$$

G
®V$

G
.

Thus,

B2
$ E

1®wa 2

6wa 2V2
("
#
(∆x)#­∆V

G
), (16)

where V2 is the phenotypic variance in the recipient

population. The first term is always positive and the

difference in mean values of the traits therefore always

contributes to the barrier. The second term may either

increase or decrease barrier strength, in that the

population with the greater additive genetic variance

will be more susceptible to introgression.
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