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Abstract

The representation of the reliability function of the lifetime of a coherent system as
a mixture of the reliability function of order statistics associated with the lifetimes of
its components is a very useful tool to study the ordering and the limiting behaviour
of coherent systems. In this paper, we obtain several representations of the reliability
functions of residual lifetimes of used coherent systems under two particular conditions
on the status of the components or the system in terms of the reliability functions of
residual lifetimes of order statistics.
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1. Introduction

A coherent system is one in which every component is relevant (that is, actually affects
the working or failure of the system) and for which the structure function is monotone in
every component (that is, replacing a failed component by a working component cannot cause
a working system to fail). Although there has been some work in reliability that focuses
on monotone systems, most work has been restricted to the class of coherent systems. This
restriction is motivated by the reasoning that if the relevance or monotonicity restrictions are
violated for a given system, we could design a coherent system with the same number of
components (or fewer) that achieves the same or better performance.

The signature of a coherent system is a very useful tool to study the system behaviour or
to compare the behaviour of different systems. The utility of signatures is evident from the
following mixture representation theorem due to Samaniego [12] (see also [13, p. 25]). It shows
that the lifetime distribution of a coherent system based on n components with independent and
identically distributed (i.i.d.) lifetimes and common continuous distribution F can be written
as a function which depends on the system’s design only through its signature.

Theorem 1.1. Consider a coherent system based on n components with i.i.d. lifetimes X1, X2,

. . . , Xn distributed according to the common continuous distribution F . Let T be the system’s
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lifetime. Then

F̄T (t) =
n∑

i=1

si P(Xi:n > t), (1.1)

where F̄T (t) = P(T > t), X1:n, X2:n, . . . , Xn:n are the order statistics obtained from X1, X2,

. . . , Xn, si = P(T = Xi:n), and s = (s1, . . . , sn) is the system’s signature.

Mixture representations have proven especially useful in the comparison of the performance
of competing systems. For example, Kochar et al. [5] established the following preservation
results. Here, ‘≤st’, ‘≤hr’ and ‘≤lr’ refer to the stochastic, hazard rate, and likelihood ratio
orderings, respectively; for details on these orderings, we refer the reader to Chapter 1 of [15].

Theorem 1.2. Let s1 and s2 be the signatures of two coherent systems, both based on n

components with i.i.d. lifetimes distributed according to the common continuous distribution
F . Let T1 and T2 be their respective lifetimes.

(a) If s1 ≤st s2 then T1 ≤st T2.

(b) If s1 ≤hr s2 then T1 ≤hr T2.

(c) If F is absolutely continuous and s1 ≤lr s2, then T1 ≤lr T2.

These results can be extended to the concept of mixed systems, that is, to stochastic mixtures
of coherent systems; see [2] for more details. Hence, a mixture representation similar to the one
in (1.1) holds for the reliability function of the lifetime of any mixed system and Theorem 1.2
applies to these kinds of systems as well.

The purpose of this paper is to extend these results to the conditional distributions of systems
under certain conditions on the components or the system state.

The paper is organised as follows. In Section 2, we present some mixture representations for
the residual lifetime (T − t | T > t) of a system with i.i.d. component lifetimes. In Section 3
we do the same under additional conditions on the components. Specifically, we consider the
residual lifetime (T − t | T > t, Xi:n < t), a situation in which we know that at time t the
system is working but at least i components have failed. Finally, in Section 4 we provide some
conclusions and some problems that are worth considering for further investigation.

Throughout this paper, the notions ‘increasing’ and ‘decreasing’ are used in the weak sense
(i.e. a function g is increasing if g(x) ≤ g(y) for all x < y).

2. Mixture representations of residual lifetimes of used systems

Let T = φ(X1, X2, . . . , Xn) be the lifetime of a coherent system with i.i.d. component
lifetimes X1, X2, . . . , Xn from a common continuous distribution function F . Let F̄ = 1 − F

be the common reliability function, and let X1:n, X2:n, . . . , Xn:n be the corresponding order
statistics. In this section we establish representations similar to that in (1.1) for the reliability
function of a used but working system, i.e. for the distribution of the system lifetime T given
that it is known that T > t or, equivalently, for the residual lifetime (T − t | T > t). From (1.1)
we have

P(T − t > x | T > t) = F̄T (t + x)

F̄T (t)
=

∑n
i=1 si P(Xi:n > t + x)∑n

i=1 si P(Xi:n > t)

for all x ≥ 0 and t ≥ 0 such that F̄T (t) > 0. Since

P(Xi:n > t + x | Xi:n > t) P(Xi:n > t) = P(Xi:n > t + x),
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this expression can also be written as

P(T − t > x | T > t) =
n∑

i=1

pi(t) P(Xi:n − t > x | Xi:n > t), (2.1)

where pi(t) = si P(Xi:n > t)/F̄T (t). The function pi(t) may be identified as the probability
of {T = Xi:n | T > t} as follows:

P(T = Xi:n | T > t) = P(T > t, T = Xi:n)
F̄T (t)

= P(T = Xi:n) P(T > t | T = Xi:n)
F̄T (t)

= P(T = Xi:n) P(Xi:n > t | T = Xi:n)
F̄T (t)

= si P(Xi:n > t)

F̄T (t)

= pi(t),

where P(Xi:n > t | T = Xi:n) = P(Xi:n > t) follows from the fact that the events {T = Xi:n}
and Xi:n > t are independent when the component lifetimes are i.i.d.

This reveals that the residual lifetime (T − t | T > t) of the system at time t is a mixture of
the residual lifetimes (Xi:n − t | Xi:n > t) of the order statistics (which represent the lifetimes
of k-out-of-n systems) at time t with coefficients pi(t) for i = 1, 2, . . . , n. Note that the vector
p(t) = (p1(t), p2(t), . . . , pn(t)) of coefficients is the conditional distribution of the index It of
the ordered component lifetime that is fatal to the system given that T > t . These coefficients
depend both on φ and on F(t). Furthermore, we also note that (T − t | T > t) is equal in
distribution to a mixed system of the residual lifetimes of k-out-of-n systems. For example, if
we consider the system with lifetime T = min(X1, max(X2, X3)) and corresponding signature
s = ( 1

3 , 2
3 , 0), and that we know that it is working at time t , then

p(t) =
(

F̄ (t)

6 − 3F̄ (t)
,

6 − 4F̄ (t)

6 − 3F̄ (t)
, 0

)
.

Note that p(0) = s = ( 1
3 , 2

3 , 0) and that limt→∞ p(t) = (0, 1, 0), that is, the residual lifetime
of the system (T − t | T > t) is asymptotically (as t → ∞) equivalent to the residual lifetime
(X2:3 − t | X2:3 > t) of the 2-out-of-3 system (i.e. they have the same law as t → ∞); see [7],
[8], and [11] for analogous results based on the hazard rate and mean residual life functions.

Under the i.i.d. assumption on component lifetimes, the representation in (2.1) can be
extended to mixed systems and, in particular, to coherent systems with fewer than n components
since they are equal in distribution to mixed systems with n components; see [10] or Theorem 3.2
of [13]. Thus, for example, the series system with two components X1:2 is equal in distribution
to the mixed system with signature s1:2 = ( 2

3 , 1
3 , 0), and, hence, (2.1) holds with

p1:2(t) =
(

2F̄ (t)

3
, 1 − 2F̄ (t)

3
, 0

)
.
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Table 1: Vectors of coefficients in (2.1) with n = 3 for coherent systems with 1–3 i.i.d. components.

System T = φ(X1, X2, X3) p(t)

1 X1:1 = X1
( 1

3 F̄ 2(t), F̄ (t) − 2
3 F̄ 2(t), 1 − F̄ (t) + 1

3 F̄ 2(t)
)

2 X1:2 = min(X1, X2)
( 2

3 F̄ (t), 1 − 2
3 F̄ (t), 0

)
3 X2:2 = max(X1, X2)

(
0,

3F̄ (t) − 2F̄ 2(t)

6 − 3F̄ (t)
,

6 − 6F̄ (t) + 2F̄ 2(t)

6 − 3F̄ (t)

)
4 X1:3 = min(X1, X2, X3) (1, 0, 0)

5 min(X1, max(X2, X3))

(
F̄ (t)

6 − 3F̄ (t)
,

6 − 4F̄ (t)

6 − 3F̄ (t)
, 0

)
6 X2:3 (2-out-of-3) (0, 1, 0)

7 max(X1, min(X2, X3))

(
0,

6F̄ (t) − 4F̄ 2(t)

3 + 3F̄ (t) − 3F̄ 2(t)
,

3 − 3F̄ (t) + F̄ 2(t)

3 + 3F̄ (t) − 3F̄ 2(t)

)
8 X3:3 = max(X1, X2, X3) (0, 0, 1)

In Table 1, we have presented the vectors of coefficients of order 3 in (2.1) for coher-
ent systems with 1–3 i.i.d. components. It is well known that if a system T has signature
(s1, s2, . . . , sn) then the signature of the dual system is (sn, sn−1, . . . , s1); see [5]. However,
we observe from Table 1 that this property is not necessarily true for the vectors of coefficients
in (2.1), as illustrated by systems 5 and 7. We can obtain a result similar to Theorem 1.2 for
mixed systems and representation (2.1) as follows.

Theorem 2.1. Let p1(t) and p2(t) be the vectors of coefficients in representation (2.1), for a
fixed t ≥ 0, of two mixed systems, both based on n components with i.i.d. lifetimes distributed
according to the common continuous distribution F . Let T1 and T2 be their respective lifetimes.

(a) If p1(t) ≤st p2(t) then (T1 − t | T1 > t) ≤st (T2 − t | T2 > t).

(b) If p1(t) ≤hr p2(t) then (T1 − t | T1 > t) ≤hr (T2 − t | T2 > t).

(c) If F is absolutely continuous and p1(t) ≤lr p2(t), then (T1 − t | T1 > t) ≤lr (T2 −
t | T2 > t).

Proof. It is well known that the order statistics are likelihood ratio ordered in the i.i.d. case,
i.e. Xi:n ≤lr Xi+1:n for i = 1, 2, . . . , n − 1 (see [6] or [15, p. 54]). Moreover, it is also known
that if two random variables are lr-ordered, so are their residual lifetimes; see, for example,
Theorem 1.C.6 of [15]. Hence, we have

(Xi:n − t | Xi:n > t) ≤lr (Xi+1:n − t | Xi+1:n > t) for all i = 1, 2, . . . , n − 1.

Therefore, these residual lifetimes are also hr- and st-ordered. The proof is completed by
using (2.1) and following the steps of Theorem 1.2 (see [5]).

For example, note that(
2

3
F̄ (t), 1 − 2

3
F̄ (t), 0

)
≤lr

(
F̄ (t)

6 − 3F̄ (t)
,

6 − 4F̄ (t)

6 − 3F̄ (t)
, 0

)
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for arbitrary t ≥ 0 and, hence, from Table 1 and Theorem 2.1, if F is absolutely continuous,
we have

(X1:2 − t | X1:2 > t) ≤lr (T − t | T > t) for all t ≥ 0,

where T = min(X1, max(X2, X3)). Note, however, that they are equivalent when t → ∞.
The next example shows that Theorem 2.1 can also be used to determine the age t at which a
used system is st-better than yet another used system when the two are not ordered for all t .

Example 2.1. Let us consider the systems X1:2 and T = min(X2:3, X4) with corresponding
signatures of order 4 as s1:2 = ( 1

2 , 1
3 , 1

6 , 0) and s = ( 1
4 , 3

4 , 0, 0) (see Table 1 of [10]). It is then
easy to see that X1:2 and T are not st-ordered. Their respective vectors of coefficients in (2.1)
can be found to be

p1:2(t) =
(

F̄ 2(t)

2
,

4F̄ (t) − 3F̄ 2(t)

3
, 1 − 8F̄ (t) − 3F̄ 2(t)

6
, 0

)

and

p(t) =
(

F̄ (t)

12 − 8F̄ (t)
,

12 − 9F̄ (t)

12 − 8F̄ (t)
, 0, 0

)
.

It is easy to verify that p1:2(t) ≥st p(t) whenever

F̄ (t) ≤ 3 − √
5

4
.

Consequently, if t1 = inf{t ≥ 0 : F̄ (t) = (3 − √
5)/4} then p1:2(t) ≥st p(t) for all t ≥ t1.

Hence, from Theorem 2.1 we have (X1:2 − t | X1:2 − t) ≥st (T − t | T > t) for all t ≥ t1.
Note that they are not st-ordered for 0 ≤ t < t1 and that

lim
t→∞ p1:2(t) = (0, 0, 1, 0) ≥st lim

t→∞ p(t) = (0, 1, 0, 0).

The next result proves that any coherent system has its tail stochastic behaviour similar to
that of an order statistic (i.e. of a k-out-of-n system). Hence, in the limit as t → ∞, the st-order
is a total order in the set of the residual lifetimes of mixed systems.

Theorem 2.2. If T is a coherent system with signature s = (s1, s2, . . . , si , 0, 0, . . . , 0), where
si > 0 for an integer i ∈ {1, 2, . . . , n}, then

lim
t→∞ p(t) = (0, 0, . . . , 0︸ ︷︷ ︸

i−1 times

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
n−i times

).

Proof. From (1.1), we have

lim
t→∞ pk(t) = sk lim

t→∞
P(Xk:n > t)

F̄T (t)
= sk lim

t→∞
P(Xk:n > t)∑i

r=1 sr P(Xr:n > t)
.

Since (see [3, p. 46])

P(Xr:n > t) =
n∑

j=n−r+1

(−1)j−n+r−1
(

j − 1

n − r

)(
n

j

)
F̄ j (t),
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then

lim
t→∞

P(Xr:n > t)

P(Xk:n > t)
=

⎧⎪⎨
⎪⎩

0 if r < k,

1 if r = k,

+∞ if r > k.

So

lim
t→∞ pk(t) = sk lim

t→∞
P(Xk:n > t)∑i

r=1 sr P(Xr:n > t)
=

{
0 if k �= i,

1 if k = i,

which proves the result.

We shall now establish some extensions of Theorem 2.1. The first one will enable us to
compare the residual lifetimes of used systems with different components.

Theorem 2.3. Let p1(t) and p2(t) be the vectors of coefficients in (2.1), for a fixed t ≥ 0, of
two mixed systems with n i.i.d. component lifetimes X1, . . . , Xn and Y1, . . . , Yn, distributed
according to common continuous distributions F and G, respectively. Let T1 and T2 be their
respective lifetimes.

(a) If F ≤hr G and p1(t) ≤st p2(t), then (T1 − t | T1 > t) ≤st (T2 − t | T2 > t).

(b) If F ≤hr G and p1(t) ≤hr p2(t), then (T1 − t | T1 > t) ≤hr (T2 − t | T2 > t).

(c) If F and G are absolutely continuous, F ≤lr G, and p1(t) ≤lr p2(t), then (T1 − t | T1 >

t) ≤lr (T2 − t | T2 > t).

Proof. If F ≤hr G then Xi:n ≤hr Yi:n and so

(Xi:n − t | Xi:n > t) ≤hr (Yi:n − t | Yi:n > t) for all i = 1, 2, . . . , n;

see [15, p. 34]. Hence, they are also st-ordered. Then, (a) and (b) are obtained from Theo-
rems 1.A.6 and 1.B.14 of [15], respectively.

If F ≤lr G then Xi:n ≤lr Yi:n and so

(Xi:n − t | Xi:n > t) ≤lr (Yi:n − t | Yi:n > t) for all i = 1, 2, . . . , n;

see [15, p. 55]. Then, (c) is obtained from Theorem 1.C.17 of [15]. This completes the proof.

The following theorem allows us to compare the residual lifetimes of a system at different
ages. But, we first need a lemma which gives an intuitive property that the conditional
distribution of It determined by the vector of coefficientsp(t) in (2.1) is stochastically increasing
in t , that is, It1 ≤st It2 for all t1 ≤ t2. In particular, as s = p(0), it also shows that s ≤st p(t).

Lemma 2.1. Let p(t) be the vector of coefficients in (2.1) of a mixed system with n i.i.d.
components. Then, p(t1) ≤st p(t2) for all 0 ≤ t1 ≤ t2.

Proof. We need to show that

n∑
k=j

skF̄k:n(t1)
F̄T (t1)

≤
n∑

k=j

skF̄k:n(t2)
F̄T (t2)

(2.2)
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for all j = 2, 3, . . . , n and all 0 ≤ t1 ≤ t2. Using (1.1), straightforward algebra shows that (2.2)
is equivalent to

j−1∑
i=1

n∑
k=j

sisk{F̄i:n(t1)F̄k:n(t2) − F̄k:n(t1)F̄i:n(t2)} ≥ 0,

since
n∑

i=j

n∑
k=j

sisk{F̄i:n(t1)F̄k:n(t2) − F̄k:n(t1)F̄i:n(t2)} = 0.

Finally, using the fact that the order statistics from i.i.d. random variables are hr-ordered, that
is, Xi:n ≤hr Xk:n for i ≤ k, we have F̄i:n(t)/F̄k:n(t) to be decreasing in t (see [15, p. 16]), and
then

F̄i:n(t1)F̄k:n(t2) − F̄k:n(t1)F̄i:n(t2) ≥ 0

for all t1 ≤ t2 and i ≤ k. This completes the proof.

Theorem 2.4. Let p(t) be the vector of coefficients in (2.1) of a mixed system based on n

components with i.i.d. lifetimes X1, X2, . . . , Xn, and let T be the lifetime of the system.

(a) If Xi:n ≤st (Xi:n − t | Xi:n > t) for a fixed t > 0 and all i = 1, 2, . . . , n, then
T ≤st (T − t | T > t).

(b) If (Xi:n − t1 | Xi:n > t1) ≤st (Xi:n − t2 | Xi:n > t2) for fixed t1 < t2 and all i =
1, 2, . . . , n, then (T − t1 | T > t1) ≤st (T − t2 | T > t2).

The proof is immediate from (2.1), Lemma 2.1 presented above, and Theorem 1.A.6 of
[15, p. 7]. Note that (a) shows that if Xi:n ≤st (Xi:n − t | Xi:n > t) for all t ∈ (0, t1) and
all i = 1, 2, . . . , n, then T ≤st (T − t | T > t) for all t ∈ (0, t1). This property can be
used to obtain a burn-in period for system T , i.e. to obtain the maximum value tm such that
T ≤st (T − t | T > t) holds for all t ∈ (0, tm). Furthermore, we note from (a) that we may
infer that if Xi:n is new worse than used (NWU) for i = 1, 2, . . . , n then T is NWU as well. In a
similar manner, we find from (b) that if Xi:n is decreasing failure rate (DFR) for i = 1, 2, . . . , n,
then T is DFR as well. For definitions and discussion of the NWU and DFR properties, see [1].

We note that representation (2.1) also holds for systems with exchangeable components
(meaning that the distribution of (X1, X2, . . . , Xn) is permutation invariant) since, in this case,
representation (1.1) continues to hold; see [10].

We can obtain another mixture representation using the fact that, in the exchangeable case
(and, thus, also in the i.i.d. case), the reliability F̄T of a coherent system T can be written as a
generalised mixture (i.e. a mixture which can have some negative coefficients)

F̄T (t) =
n∑

i=1

aiF̄1:i (t),

where F̄1:i (t) = P(X1:i > t) is the reliability function of the series system with i components
and the vector of coefficients a = (a1, a2, . . . , an) satisfying

∑n
i=1 ai = 1 is referred to as the

domination vector or the minimal signature (see [14] and [9], respectively). Then, we obtain

P(T − t > x | T > t) =
n∑

i=1

ai(t)F̄1:i (x | t), (2.3)
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where F̄1:i (x | t) = P(X1:i − t > x | X1:i > t) and ai(t) = aiF̄1:i (t)/F̄T (t). The vector of
coefficients a(t) = (a1(t), a2(t), . . . , an(t)) can be called the conditional domination vector,
given that T > t . Note that some of these coefficients can be negative. For example, the
reliability function of T = min(X1, max(X2, X3)) can be written as

F̄T (t) = 2F̄1:2(t) − F̄1:3(t), (2.4)

that is, its domination vector is a = (0, 2, −1); see [9]. Hence, if T has i.i.d. components, the
reliability function of its residual lifetime can be written as

P(T − t > x | T > t) = 2

2 − F̄ (t)
F̄1:2(x | t) − F̄ (t)

2 − F̄ (t)
F̄1:3(x | t), (2.5)

i.e. its conditional domination vector is

a(t) =
(

0,
2

2 − F̄ (t)
,

−F̄ (t)

2 − F̄ (t)

)
.

From Table 1 of [9], it is easy to form a table for the conditional domination vectors similar to
Table 1 above.

The representation in (2.3) can be used to obtain a third mixture representation based on
order statistics obtained from the component residual lifetime distribution as follows.

Theorem 2.5. If T is a coherent system with i.i.d. components then

P(T − t > x | T > t) =
n∑

i=1

p∗
i (t) P(Zi:n > x), (2.6)

where p∗
1(t), p∗

2(t), . . . , p∗
n(t) are coefficients such that

∑n
i=1 p∗

i (t) = 1 and Zi:n is the ith
order statistic from i.i.d. random variables with common reliability function Ḡt (x) = F̄ (x +
t)/F̄ (t).

The proof is obtained from (2.3) and by using the facts that

F̄1:i (x | t) = P(X1:i − t > x | X1:i > t) = (F̄ (t + x))i

(F̄ (t))i
= (Ḡt (x))i = P(Z1:i > x)

and that P(Z1:i > x) can be written as a mixture of P(Zj :n > x) for j = 1, 2, . . . , n (see [10]).
Denote the vector of coefficients in (2.6) by p∗(t). Note that the representation in (2.6) also
holds for mixed systems and, in particular, for systems with fewer than n components. It may
also be noted that Theorem 1.2 can be applied to this representation (when the coefficients are
nonnegative). The vectors of coefficients p∗(t) in (2.6) with n = 3 for coherent systems with
1–3 i.i.d. components are presented in Table 2. Note that p(t) and p∗(t) are not necessarily
equal (see Tables 1 and 2).

For systems with i.i.d. exponential components, we have the following result.

Corollary 2.1. If T is a coherent system with i.i.d. exponential components then

P(T − t > x | T > t) =
n∑

i=1

p∗
i (t) P(Xi:n > x), (2.7)

where p∗
1(t), p∗

2(t), . . . , p∗
n(t) are coefficients such that

∑n
i=1 p∗

i (t) = 1.
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Table 2: Vectors of coefficients in (2.6) with n = 3 for coherent systems with 1–3 i.i.d. components.

System T = φ(X1, X2, X3) p∗(t)

1 X1:1 = X1
( 1

3 , 1
3 , 1

3

)
2 X1:2 = min(X1, X2)

( 2
3 , 1

3 , 0
)

3 X2:2 = max(X1, X2)

(
2 − 2F̄ (t)

6 − 3F̄ (t)
,

2 − F̄ (t)

6 − 3F̄ (t)
,

2

6 − 3F̄ (t)

)
4 X1:3 = min(X1, X2, X3) (1, 0, 0)

5 min(X1, max(X2, X3))

(
4 − 3F̄ (t)

6 − 3F̄ (t)
,

2

6 − 3F̄ (t)
, 0

)

6 X2:3 (2-out-of-3)

(
2 − 2F̄ (t)

3 − 2F̄ (t)
,

1

3 − 2F̄ (t)
, 0

)

7 max(X1, min(X2, X3))

(
1 + 2F̄ (t) − 3F̄ 2(t)

3 + 3F̄ (t) − 3F̄ 2(t)
,

1 + F̄ (t)

3 + 3F̄ (t) − 3F̄ 2(t)
,

1

3 + 3F̄ (t) − 3F̄ 2(t)

)

8 X3:3 = max(X1, X2, X3)

(
1 − 2F̄ (t) + F̄ 2(t)

3 − 3F̄ (t) + F̄ 2(t)
,

1 − F̄ (t)

3 − 3F̄ (t) + F̄ 2(t)
,

1

3 − 3F̄ (t) + F̄ 2(t)

)

The proof is immediate since the exponential distribution has the lack of memory property
so that Ḡt (x) = F̄ (x). Observe that this corollary implies that if a system with lifetime T has
exponential components, then (T − t | T > t) is equal in distribution to the mixture of order
statistics with mixing distribution given by p∗(t) whenever p∗

i (t) ≥ 0 for all i = 1, 2, . . . , n.
The next example shows how this representation can be used to obtain increasing failure rate
(IFR) properties and to compare the residual lifetime (T − t | T > t) of used systems for
different values of t by comparing their vectors of coefficients. It also illustrates how we may
compute p∗(t).

Example 2.2. Let us consider the system with lifetime T = min(X1, max(X2, X3)), and let
us assume that X1, X2, X3 have i.i.d. exponential distributions. The system’s signature is
s = ( 1

3 , 2
3 , 0) and its domination vector is a = (0, 2, −1), that is, its reliability function

F̄T (t) = P(T > t) can be written as (2.4) and the reliability of its residual lifetime as (2.5). If
the components have i.i.d. exponential distributions then F̄1:i (x | t) = P(X1:i > x). Moreover,
since the signatures of order 3 of X1:2 and X1:3 are s1:2 = ( 2

3 , 1
3 , 0) and s1:3 = (1, 0, 0),

respectively (see [10]), we have

P(T − t > x | T > t) = 4 − 3F̄ (t)

6 − 3F̄ (t)
F̄1:3(x) + 2

6 − 3F̄ (t)
F̄2:3(x),

that is,

p∗(t) =
(

4 − 3F̄ (t)

6 − 3F̄ (t)
,

2

6 − 3F̄ (t)
, 0

)
.

Note that p∗(0) = s = ( 1
3 , 2

3 , 0) and that limt→∞ p∗(t) = s1:2 = ( 2
3 , 1

3 , 0) (i.e. it is
asymptotically equivalent to a two-component series system). Moreover, since

s ≥st p∗(t1) ≥st p∗(t2) ≥st s1:2 for all 0 ≤ t1 ≤ t2,
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then from Theorem 1.2 we have

T ≥st (T − t1 | T > t1) ≥st (T − t2 | T > t2) ≥st X1:2 for all 0 ≤ t1 ≤ t2.

Therefore, T is new better than used (NBU). It is a well-known property that the coherent
systems with NBU components are NBU. Actually, the used systems above are st-ordered in t

(i.e. the older the system is, the worse off it is). This implies that T is IFR; see [15, p. 15].
However, if we consider its dual system T ∗ = max(X1, min(X2, X3)) (system 7 in Table 2) with
i.i.d. exponential components then it is easy to show that s ≥st p∗(t) for all t (i.e. T ∗ is NBU),
that p∗(t1) ≥st p∗(t2) for all 0 ≤ t1 ≤ t2 ≤ t0, where F̄ (t0) = 0.5, and that p∗(t) ≤st p∗(t ′)
for all t3 ≤ t1 ≤ t2, where F̄ (t3) = −2 + √

5. Therefore, it is not IFR. Actually, the system
improves when t increases for t ≥ t3. This example shows that Lemma 2.1 does not hold for
p∗(t).

The next example shows that the representation in (2.7) need not hold when the components
have nonexponential distributions.

Example 2.3. Let us consider again the system T = min(X1, max(X2, X3)), and let us now
assume that it has i.i.d. components with common reliability function F̄ (t) = 1/(1 + t) for
t ≥ 0. Then,

F̄T (t) = 2F̄ 2(t) − F̄ 3(t) = 2

(1 + t)2 − 1

(1 + t)3

and

P(T − t > x | T > t) = 1 + 2t + 2x

1 + 2t

(1 + t)3

(1 + t + x)3 .

From [10], P(T − t > x | T > t) is a generalised mixture of F̄1:3, F̄2:3, F̄3:3 if and only if the
system above is a generalised mixture of F̄1:1, F̄1:2, F̄1:3. Let us suppose that it is a generalised
mixture of F̄1:1, F̄1:2, F̄1:3, that is,

P(T − t > x | T > t) = c1(t)
1

1 + x
+ c2(t)

1

(1 + x)2 + c3(t)
1

(1 + x)3 for all x ≥ 0,

for some coefficients c1(t), c2(t), and c3(t) such that c1(t) + c2(t) + c3(t) = 1. If y = 1 + x,
this last expression is equivalent to

(2t + 2y − 1)y3 = (d1(t)y
2 + d2(t)y + d3(t))(t + y)3 for all y ≥ 1,

where di(t) depends only on t for i = 1, 2, 3. It is easy to see that this expression cannot be
true for all y ≥ 1.

3. Mixture representations of residual lifetimes of used systems
with additional information

Let us now assume that the system is working at time t , i.e. {T > t}, and that we have some
additional information at that time point. For example, a logical condition that could arise in
practical situations is that, at age t , we know that the system is working and that at least i of
the components have failed, i.e. {Xi:n < t}. The results included in this section extend some
of the results given in [4] to the present scenario. Thus, we have

P(T − t > x | T > t, Xi:n < t) = P(T > t + x, Xi:n < t)

P(T > t, Xi:n < t)
(3.1)
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for all x ≥ 0 and t ≥ 0 such that P(T > t, Xi:n < t) > 0. To obtain a mixture representation
similar to the one in (2.1) for this case, we need the following lemma.

Lemma 3.1. If T is the lifetime of a coherent system and i (1 ≤ i < n) is an integer, then

P(Xi:n < x, T > y) =
n−i∑
k=1

n−k∑
j=i

aj,kF
j (x)F̄ k(y) for all x ≤ y, (3.2)

where the coefficients aj,k are real numbers that do not depend on F .

Proof. It is well known that the lifetime T of a coherent system can be written as T =
maxj=1,2,...,s mini∈Pj

Xi , where P1, P2, . . . , Ps are the minimal path sets of the system; see,
for example, [1, p. 12]. We shall use the following notation in our proof: XP = mini∈P Xi and
XQ = maxi∈Q Xi . It follows from the inclusion–exclusion formula that

P(Xi:n < x, T > y) = P

(
{Xi:n < x} ∩

( s⋃
j=1

{XPj
> y}

))

= P

( s⋃
j=1

({Xi:n < x} ∩ {XPj
> y})

)

=
s∑

j=1

P(Xi:n < x, XPj
> y) −

∑
j<k

P(Xi:n < x, XPj ∪Pk
> y)

+ · · · ± P(Xi:n < x, XP1∪P2∪···∪Ps > y). (3.3)

Analogously, Xi:n = minj=1,2,...,m maxk∈Qj
Xk , where m = (

n
i

)
and Q1, Q2, . . . , Qm are all

the subsets of {1, 2, . . . , n} with exactly i elements. Therefore, if I ⊆ {1, 2, . . . , n} such that
|I | ≤ n − i, where |I | denotes the cardinality of I , then

P(Xi:n < x, XI > y) = P

(
{XI > y} ∩

( m⋃
j=1

{XQj < x}
))

= P

( m⋃
j=1

({XQj < x} ∩ {XI > y})
)

=
m∑

j=1

P(XQj < x, XI > y) −
∑
j<k

P(XQj ∪Qk < x, XI > y)

+ · · · ± P(XQ1∪Q2∪···∪Qm < x, XI > y)

=
m∗∑
j=1

P(X
Q∗

j < x, XI > y) −
∑
j<k

P(X
Q∗

j ∪Q∗
k < x, XI > y)

+ · · · ± P(XQ∗
1∪Q∗

2∪···∪Q∗
m∗ < x, XI > y), (3.4)

where m∗ = (|Ī |
i

)
and Q∗

1, Q
∗
2, . . . , Q

∗
m∗ are all the subsets of Ī = {1, 2, . . . , n}−I with exactly

i elements. Now, upon using the fact that the components are i.i.d., from (3.4) we obtain

P(Xi:n < x, XI > y) = ciF
i(x)F̄ |I |(y) + ci+1F

i+1(x)F̄ |I |(y) + · · · + c|Ī |F
|Ī |(x)F̄ |I |(y),
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where ci, ci+1, . . . , c|Ī | are coefficients that do not depend on F . Using this last expression
and (3.3), we obtain (3.2) upon grouping together terms with the same powers of F and F̄ (note
that P(Xi:n < x, XI > y) = 0 whenever |I | > n − i).

Since mixed systems are stochastic mixtures of coherent systems, Lemma 3.1 also holds
for mixed systems. We now establish the main theorem of this section which shows that the
reliability function of (T − t | T > t, Xi:n < t) admits a representation similar to the one
in (2.1) for i = 1, 2, . . . , n − 1 such that P(T > t, Xi:n < t) > 0.

Theorem 3.1. If T is the lifetime of a mixed system with i.i.d. components having a common
continuous distribution function F and i ∈ {1, 2, . . . , n − 1} such that P(T > t, Xi:n <

t) > 0, then there exist coefficients p1(t, i), p2(t, i), . . . , pn(t, i) (that depend on F ) such that∑n
j=1 pj (t, i) = 1 and

P(T − t > x | T > t, Xi:n < t) =
n∑

j=1

pj (t, i) P(Xj :n − t > x | Xj :n > t) (3.5)

for all x ≥ 0.

Proof. From (3.1) and Lemma 3.1, we have

P(T − t > x | T > t, Xi:n < t) =
∑n−i

k=1
∑n−k

j=i aj,kF
j (t)F̄ k(x + t)∑n−i

k=1
∑n−k

j=i aj,kF j (t)F̄ k(t)
,

where the coefficients aj,k do not depend on F . Therefore,

P(T − t > x | T > t, Xi:n < t) =
n−i∑
k=1

n−k∑
j=i

aj,k(t, i) P(X1:k − t > x | X1:k > t), (3.6)

where P(X1:k − t > x | X1:k > t) = F̄ k(x + t)/F̄ k(t) and

aj,k(t, i) = aj,kF
j (t)F̄ k(t)∑n−i

k=1
∑n−k

j=i aj,kF j (t)F̄ k(t)
.

Hence, if ak(t, i) = ∑n−k
j=i aj,k(t, i), from (3.6) we obtain

P(T − t > x | T > t, Xi:n < t) =
n−i∑
k=1

ak(t, i) P(X1:k − t > x | X1:k > t). (3.7)

Finally, since, from (2.1), P(X1:k−t > x | X1:k > t) can be written as a mixture of P(Xi:n−t >

x | Xi:n > t) for i = 1, 2, . . . , n, we obtain the required result.

The vector of coefficients p(t, i) = (p1(t, i), p2(t, i), . . . , pn(t, i)) in (3.5) can therefore
be called the conditional domination under the condition {Xi:n < t < T }. Note that the
coefficients pj (t, i) need not all be nonnegative. If they are all nonnegative then Theorem 2.1
can also be applied to this new mixture representation. Also, note that we have a similar mixture
representation (given in (3.7)) in terms of the reliability functions of the residual lifetimes of
series systems. The vector of coefficients in that representation can be represented by a(t, i).
The following examples show how these coefficients can be computed in specific cases. They
also show that some coefficients can be negative.
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Example 3.1. Let us consider again the system T = min(X1, max(X2, X3)), and let us assume
that, at age t , the system is working and that at least one component has failed, i.e. {T >

t, X1:3 < t}. The minimal path sets of T are P1 = {1, 2} and P2 = {1, 3}. Then, for x ≥ 0,
we have

P(X1:3 < t, T > t + x) = P(X1:3 < t, X{1,2} > x + t) + P(X1:3 < t, X{1,3} > x + t)

− P(X1:3 < t, X1:3 > x + t)

= 2F(t)F̄ 2(x + t).

Therefore,

P(T − t > x | T > t, X1:3 < t) = F̄ 2(x + t)

F̄ 2(t)
= P(X1:2 − t > x | X1:2 > t),

that is, a(t, 1) = (0, 1, 0). Hence, the system is equal in law to the residual life of a two-
component series system (an intuitive property). Finally, as the vector p1:2(t) of coefficients
in (2.1) of X1:2 with n = 3 is p1:2(t) = ( 2

3 F̄ (t), 1 − 2
3 F̄ (t), 0) (see Table 1), we have

P(T − t > x | T > t, X1:3 < t) = 2F̄ (t)

3
F̄1:3(x | t) + 3 − 2F̄ (t)

3
F̄2:3(x | t),

where F̄i:3(x | t) = P(Xi:3 − t > x | Xi:3 > t), that is,

p(t, 1) =
(

2F̄ (t)

3
,

3 − 2F̄ (t)

3
, 0

)
.

Naturally, we can use this representation to study what the effect of the condition {X1:3 < t}
is on the used system (T − t | T > t). Since the vector of coefficients of (T − t | T > t)

in (2.1) is

p(t) =
(

F̄ (t)

6 − 3F̄ (t)
,

6 − 4F̄ (t)

6 − 3F̄ (t)
, 0

)
(see Table 1) and p(t, 1) ≤st p(t), from Theorem 2.1 we have

(T − t | T > t, X1:3 < t) ≤st (T − t | T > t) for all t ≥ 0

(i.e. as we would expect, {X1:3 < t} adversely affects the used system).

Example 3.2. Let us consider the parallel system with lifetime X3:3, and suppose that, at age t ,
the system is working and that at least one component has failed, i.e. {X1:3 < t < X3:3}. Then,
we have

P(X1:3 < t, X3:3 > x + t) = 6F(t)F̄ (x + t) − 3F 2(t)F̄ (x + t) − 3F(t)F̄ 2(x + t)

and

P(X3:3 − t > x | X1:3 < t, X3:3 > t) = (1 + F̄ (t))F̄1:1(x | t) − F̄ (t)F̄1:2(x | t),

where F̄1:i (x | t) = P(X1:i − t > x | X1:i > t) for i = 1, 2. The vectors of coefficients in (2.1)
with n = 3 of X1:1 and X1:2 are

p1:1(t) = ( 1
3 F̄ 2(t), F̄ (t) − 2

3 F̄ 2(t), 1 − F̄ (t) + 1
3 F̄ 2(t)

)
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and
p1:2(t) = ( 2

3 F̄ (t), 1 − 2
3 F̄ (t), 0

)
,

respectively (see Table 1). Therefore, the vector p3:3(t, 1) of coefficients of (X3:3 − t | X1:3 <

t, X3:3 > t) in (3.5) with n = 3 and i = 1 is given by

p3:3(t, 1) = ( 1
3 F̄ 3(t) − 1

3 F̄ 2(t), F̄ 2(t) − 2
3 F̄ 3(t), 1 − 2

3 F̄ 2(t) + 1
3 F̄ 3(t)

)
.

Observe that the first coefficient is negative. Also, note that (X3:3 − t | X1:3 < t, X3:3 > t)

is not equal in distribution to (X2:2 − t | X2:2 > t). However, a straightforward calculation
shows that (X3:3 − t | X1:3 < t, X3:3 > t) ≤st (X3:3 − t | X3:3 > t).

Note that Theorem 2.1 cannot be applied to representations with some negative coefficients.
To extend this theorem, we therefore need the following result on generalised mixtures. For
this purpose, we need the following partial order in R

n. If x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) are two vectors of real numbers then x = (x1, x2, . . . , xn) is greater than or
equal to y = (y1, y2, . . . , yn) in the tail domination order (written as x ≥td y) if

∑j
i=1 xi ≤∑j

i=1 yi for j = 1, 2, . . . , n − 1 and
∑n

i=1 xi = ∑n
i=1 yi . Note that if xi, yi ≥ 0 for i =

1, 2, . . . , n and
∑n

i=1 xi = ∑n
i=1 yi = 1, then x ≥td y if and only if x ≥st y.

Theorem 3.2. Let F̄ and Ḡ be two reliability functions such that F̄ = ∑n
i=1 xiF̄i and Ḡ =∑n

i=1 yiF̄i , where F̄1, F̄2, . . . , F̄n are reliability functions and xi and yi are real numbers
satisfying

∑n
i=1 xi = ∑n

i=1 yi = 1. If

x = (x1, x2, . . . , xn) ≥td y = (y1, y2, . . . , yn)

and
F̄1 ≤st F̄2 ≤st · · · ≤st F̄n

then F̄ ≥st Ḡ

Proof. We need to prove that F̄ (t) = ∑n
i=1 xiF̄i(t) ≥ Ḡ(t) = ∑n

i=1 yiF̄i(t), which is
equivalent to proving that∑

xi>0

xiF̄i(t) −
∑
yi<0

yiF̄i(t) ≥
∑
yi>0

yiF̄i(t) −
∑
xi<0

xiF̄i(t).

The last expression can be rewritten as
∑n

i=1 aiF̄i(t) ≥ ∑n
i=1 biF̄j (t), where ai = 0, xi, −yi ,

or xi − yi and bi = 0, yi, −xi , or yi − xi . Note that ai ≥ 0 and bi ≥ 0 for i = 1, 2, . . . , n.
Moreover, as x ≥td y,

∑j
i=1 xi ≤ ∑j

i=1 yi . Then∑
i=1,2,...,j, xi>0

xi −
∑

i=1,2,...,j, yi<0

yi ≤
∑

i=1,2,...,j, yi>0

yi −
∑

i=1,2,...,j, xi<0

xi,

and, hence,
∑j

i=1 ai ≤ ∑j
i=1 bi for j = 1, 2, . . . , n− 1. Analogously, as

∑n
i=1 xi = ∑n

i=1 yi ,∑n
i=1 ai = ∑n

i=1 bi = c > 0. Now, if we define pi = ai/c, qi = bi/c, p = (p1, p2, . . . , pn),
and q = (q1, q2, . . . , qn), then p ≥st q. Then, from Theorem 1.A.6 of [15] and F̄1 ≤st F̄2 ≤st
· · · ≤st F̄n, we have

n∑
i=1

piF̄i(t) ≥
n∑

i=1

qiF̄i(t)

and, hence, F̄ ≥st Ḡ. If the direction of ordering in Theorem 3.2 is reversed (i.e. if F̄1 ≥st
F̄2 ≥st · · · ≥st F̄n), then we may show that F̄ ≤st Ḡ by a similar argument.
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Therefore, Theorem 2.1(a) can also now be applied to the mixture representations with
negative coefficients obtained from (3.5). For example, from Table 1 and Example 3.2, we have
p3:3(t, 1) ≥st p2:2(t) and, hence, (X3:3 − t | X1:3 < t, X3:3 > t) ≥st (X2:2 − t | X2:2 > t)

for all t ≥ 0.

4. Conclusions

The goal of this paper has been to establish representation theorems for the conditional
reliability of the residual lifetime of a used system given particular information on the state of
the system upon inspection at time t . Our results have been obtained under the tacit assumption
of i.i.d. component lifetimes of the systems under study. Two natural forms of conditioning
are considered, namely, that the system is working at time t (i.e. T > t) or that the system is
working and at least i components have failed by time t (i.e. {Xi:n < t < T }). The expressions
in (2.1) and (3.5) constitute such representations in terms of the corresponding conditional
reliability of the residual lifetimes of the order statistics of the system’s components. The utility
of these representations is illustrated in several examples in which the systems’ conditional
residual reliabilities are computed and compared. Alternative representation results in terms
of the ordered remaining life of surviving components are also explored. Possible extensions
to systems whose component lifetimes are exchangeable are duly noted. Finally, several new
preservation theorems are established, thereby providing sufficient conditions for various forms
of stochastic relations between the residual lifetimes of two systems of interest. In ongoing
studies we are examining two interesting extensions of the work above. One investigation is
centred upon alternative formulations of the information available at inspection. We are also
exploring the possibility of obtaining useful representation results in the challenging problem in
which systems have components whose lifetimes are independent but not necessarily identically
distributed. Finally, what can be said about the general case of dependent components remains
an interesting open question.
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