SQUARE ROOTS IN BANACH *-ALGEBRAS

by F. F. BONSALL and D. S. G. STIRLING

(Received 23 April, 1970)

We give a simple proof of the lemma of Ford [1] on the existence of self-adjoint square roots in Banach *-algebras in which continuity of the involution is not assumed.

Let A denote a real or complex Banach algebra and let

$$\rho(a) = \inf_{n} ||a^{n}||^{1/n} \quad (a \in A).$$

LEMMA 1. Let $a \in A$ and $\rho(a) < 1$. Then there exists a unique element x in A for which $2x - x^2 = a$ and $\rho(x) < 1$.

Proof. Since $\rho(a) = \inf |a|$, where the infimum is taken over all algebra-norms $|\cdot|$ equivalent to the given norm [2], we may choose such a norm $|\cdot|$ and real number η with $|a| < \eta < 1$. Let C denote the least closed subalgebra containing a, and let $E = \{x \in C : |x| \le \eta\}$. Then T, given by

$$Tx=\frac{1}{2}(a+x^2),$$

is a contraction mapping of E into E, since the commutativity of C gives

 $|Tx - Ty| = \frac{1}{2} |x^2 - y^2| \le \frac{1}{2} |x - y| |x + y| \le \eta |x - y| \qquad (x, y \in E).$

Therefore there exists $x \in E$ with $2x - x^2 = a$, $\rho(x) \leq |x| < 1$.

Suppose now that $y \in A$, $2y - y^2 = a$, and $\rho(y) < 1$. Since y commutes with a, and x is a limit of polynomials in a, y commutes with x. Therefore $\rho(x+y) < 2$ and we may again choose an equivalent algebra-norm $|\cdot|'$ with |x+y|' < 2. But then the inequality

$$|x-y|' = |\frac{1}{2}(a+x^2) - \frac{1}{2}(a+y^2)|' \le \frac{1}{2}|x+y|'|x-y|'$$

gives |x-y|' = 0.

LEMMA 2. (Ford [1]). Let B be a Banach *-algebra with $a \in B$, $a = a^*$ and $\rho(a) < 1$. Then there exists a unique $x \in B$ with $2x - x^2 = a$, $\rho(x) < 1$ and $x = x^*$.

Proof. By Lemma 1, there is a unique $x \in B$ with $\rho(x) < 1$ and $2x - x^2 = a$. But $\operatorname{Sp} x^* = (\operatorname{Sp} x)^*$; so $\rho(x^*) = \rho(x) < 1$, and $a = a^* = (2x - x^2)^* = 2x^* - (x^*)^2$.

Therefore, by the uniqueness of x, $x = x^*$.

REMARK. The proof does not use all the axioms of an involution. It applies to any mapping $x \to x^*$ such that $\rho(x^*) \leq \rho(x)$ and $(2x - x^2)^* = 2x^* - (x^*)^2$.

REFERENCES

1. J. W. M. Ford, A square root lemma for Banach *-algebras, J. London Math. Soc. 42 (1967), 521-522.

2. R. B. Holmes, A formula for the spectral radius of an operator, Amer. Math. Monthly 75 (1968), 163-166.

UNIVERSITY OF EDINBURGH