Symmetric Sequence Subspaces of $\mathrm{C}(\alpha)$, II

Denny H. Leung and Wee-Kee Tang

Abstract

If α is an ordinal, then the space of all ordinals less than or equal to α is a compact H ausdorff space when endowed with the order topology. Let $C(\alpha)$ be the space of all continuous real-valued functions defined on the ordinal interval $[0, \alpha]$. We characterize the symmetric sequence spaces which embed into $\mathrm{C}(\alpha)$ for some countable ordinal α. A hierarchy (E_{α}) of symmetric sequence spaces is constructed so that, for each countable ordinal $\alpha, \mathrm{E}_{\alpha}$ embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$, but does not embed into $\mathrm{C}\left(\omega^{\omega^{\beta}}\right)$ for any $\beta<\alpha$.

Let α be an ordinal. The ordinal interval $[0, \alpha]$ is a compact Hausdorff space in the order topology. The space of all continuous real-valued functions on [$0, \alpha$] is commonly denoted by $\mathrm{C}(\alpha)$. In [4], the symmetric sequence spaces which embed into $\mathrm{C}\left(\omega^{\omega}\right)$ are characterized. This paper, which is a continuation of [4], gives a characterization of the symmetric sequence spaces which embed into $\mathrm{C}(\alpha)$ for some countable ordinal α. In [4], it is shown that any Orlicz sequence space which embeds into $C(\alpha)$ for some countable ordinal α already embeds into $\mathrm{C}\left(\omega^{\omega}\right)$. Here, we construct a hierarchy of symmetric sequence spaces $\left(\mathrm{E}_{\alpha}\right)_{\alpha<\omega_{1}}$ such that, for each countable ordinal α, E_{α} embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$, but does not embed into $\mathrm{C}\left(\omega^{\omega^{\beta}}\right)$ for any $\beta<\alpha$. Since, according to Bessaga and Pełczynski [2], if $\alpha<\beta$ are countable infinite ordinals, then $\mathrm{C}(\alpha)$ and $\mathrm{C}(\beta)$ are isomorphic if and only if $\beta<\alpha^{\omega},\left(\mathrm{E}_{\alpha}\right)$ is a full hierarchy of mutually non-isomorphic symmetric sequence spaces which embed into $\mathrm{C}(\alpha)$ for some countable ordinal α. The authors thank the referee for pointing out some errors in an earlier version of the paper, and for various suggestions for improving the exposition.

For terms and notation concerning ordinal numbers and general topology, we refer to [3]. The first infinite ordinal, respectively, the first uncountable ordinal, is denoted by ω, respectively, ω_{1}. Any ordinal is either 0 , a successor, or a limit. If α is a successor ordinal, denote its immediate predecessor by $\alpha-1$. If K is a compact H ausdorff space, $\mathrm{C}(\mathrm{K})$ denotes the space of all continuous real-valued functions on K. It is a Banach space under the norm $\|f\|=\sup _{t \in K}|f(t)|$. If K is a topological space, its derived set $K^{(1)}$ is the set of all of its limit points. A transfinite sequence of derived sets may be defined as follows. Let $\mathrm{K}^{(0)}=\mathrm{K}$. If α is an ordinal, let $\mathrm{K}^{(\alpha+1)}=\left(\mathrm{K}^{(\alpha)}\right)^{(1)}$. Finally, for a limit ordinal α, we define $\mathrm{K}^{(\alpha)}=\bigcap_{\beta<\alpha} \mathrm{K}^{(\beta)}$. The cardinality of a set A is denoted by $|\mathrm{A}|$. By $\mathcal{P}_{\infty}(\mathrm{N})$, respectively, $\mathcal{P}_{<\infty}(N)$, we mean the collection of all infinite, respectively, finite, subsets of N. These are subsets of 2^{N}, and consequently inherit the product topology. If A and B are nonempty subsets of N, we say that $A<B$ if $\max A<\min B$. We also allow that $\varnothing<A$ and $A<\varnothing$ for any $\mathrm{A} \subseteq \mathrm{N}$.

We follow standard Banach space terminology, as may be found in the book [5]. We say that a Banach space is a sequence space if it is a vector subspace of the space of all real sequences. Such is the case, for instance, when a Banach space E has a (Schauder) basis (ek),

[^0]i.e., every element $x \in E$ has a unique representation $x=\sum a_{k} e_{k}$ for some sequence of scalars (a_{k}). Naturally, we identify every $x \in E$ with the sequence (a_{k}) used in its representation. If $\left(e_{k}\right)$ is a basis of a Banach space E, there is a unique sequence of bounded linear functionals (e_{k}^{\prime}) on E such that $\left\langle e_{j}, e_{k}^{\prime}\right\rangle=1$ if $j=k$, and 0 otherwise. The sequence (e_{k}^{\prime}) is called the sequence of biorthogonal functionals to the sequence (e_{k}). It is a well known fact that every $x^{\prime} \in E^{\prime}$, the dual space of E, has a unique representation $x^{\prime}=\sum a_{k} e_{k^{\prime}}^{\prime}$, where the sum converges in the weak* topology on E^{\prime}. Therefore, E^{\prime} may also be regarded as a sequence space. If (e_{k}^{\prime}) is a basis of E^{\prime} (so that the foregoing sum actually converges in norm for every $x^{\prime} \in E^{\prime}$), then the basis $\left(e_{k}\right)$ is said to be shrinking. If x is an element of a sequence space, let supp x be the set of all coordinates k at which x is nonzero. The vector space consisting of all finitely supported real sequences is denoted by c_{00}. Given a real null sequence $a=\left(a_{n}\right)$, let $a^{*}=\left(a_{n}^{*}\right)$ be the decreasing rearrangement of $\left(\left|a_{n}\right|\right)$. A basis (e_{k}) of a Banach space is unconditional if $\sum \varepsilon_{k} a_{k} e_{k}$ converges for every choice of signs (ε_{k}) whenever $\sum a_{k} \theta_{k}$ converges. A basis (e_{k}) is subsymmetric if it is unconditional and $\sum \mathrm{a}_{\mathrm{j}} \mathrm{e}_{\mathrm{k}_{\mathrm{j}}}$ converges for every subsequence ($e_{k_{j}}$) whenever $\sum \mathrm{a}_{\mathrm{k}} \mathrm{e}_{k}$ converges. It is symmetric if $\sum \mathrm{a}_{\mathrm{k}} \mathrm{e}_{\pi(\mathrm{k})}$ converges for every permutation π on N whenever $\sum a_{k} e_{k}$ converges. A symmetric basis is necessarily unconditional [5, Section 3a]. We say that it is 1-symmetric (respectively, 1-subsymmetric) if $\left\|\sum \varepsilon_{k} \mathrm{a}_{\mathrm{k}} \mathrm{e}_{\pi(\mathrm{k})}\right\|=\left\|\sum \mathrm{a}_{\mathrm{k}} \mathrm{e}_{k}\right\|$ for every choice of signs $\left(\varepsilon_{k}\right)$, and every permutation π on N (respectively, every increasing function $\pi: \mathrm{N} \rightarrow \mathrm{N}$). Examples of Banach spaces with 1 -symmetric bases are $\ell^{p}(1 \leq p<\infty)$, and c_{0}. These norms are defined by
$$
\left\|\left(a_{k}\right)\right\|_{p}=\left(\sum\left|a_{k}\right|^{p}\right)^{\frac{1}{p}} \quad \text { and } \quad\left\|\left(a_{k}\right)\right\|_{\infty}=\sup \left|a_{k}\right|
$$
respectively. A sequence $\left(x_{k}\right)$ in a Banach space is normalized if $\left\|x_{k}\right\|=1$ for all k. Given two sequences (x_{k}) and (y_{k}) in possibly different Banach spaces, we say that they are equivalent if there is a finite positive constant C such that
$$
c^{-1}\left\|\sum a_{k} x_{k}\right\| \leq\left\|\sum a_{k} y_{k}\right\| \leq c\left\|\sum a_{k} x_{k}\right\|
$$
for every finitely supported sequence (a_{k}). Two Banach spaces E and F are said to be isomorphic if they are linearly homeomorphic. We say that E embeds into $F, E \hookrightarrow F$, if E is isomorphic to a subspace of F.

Throughout the rest of the paper, for each countable limit ordinal α, fix a sequence of ordinals $\left(\alpha_{n}\right)$ which strictly increases to α. In [4], the family $\left(\mathcal{A}_{\alpha}^{f}\right)$ of subsets of $\mathcal{P}_{<\infty}(\mathrm{N})$ is introduced. If $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is strictly increasing, let

$$
\mathcal{A}_{0}^{f}=\{\mathrm{A} \subseteq \mathrm{~N}: \max \mathrm{A} \leq \mathrm{f}(\min \mathrm{~A})\} \cup\{\varnothing\}
$$

For a countable ordinal α, let

$$
\mathcal{A}_{\alpha+1}^{\mathrm{f}}=\left\{\mathrm{A}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{i}}: \mathrm{A}_{1}<\cdots<\mathrm{A}_{\mathrm{n}}, \mathrm{~A}_{\mathrm{i}} \in \mathcal{A}_{\alpha}^{\mathrm{f}}, \mathrm{n} \leq \mathrm{f}(\min \mathrm{~A})\right\}
$$

If $\alpha<\omega_{1}$ is a limit ordinal, recall the sequence $\left(\alpha_{\mathrm{n}}\right)$ chosen above. Set

$$
\mathcal{A}_{\alpha}^{\mathrm{f}}=\left\{\mathrm{A}: \text { there exists } \mathrm{n} \leq \mathrm{f}(\min \mathrm{~A}) \text { such that } \mathrm{A} \in \mathcal{A}_{\alpha_{n}}^{\mathrm{f}}\right\}
$$

The results in [4] yield the following fact.

Proposition 1 Let E bea Banach space with an unconditional basis (e_{n}) such that E embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$ for some $\alpha<\omega_{1}$. Then there exist an increasing function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, and a constant $\mathrm{K}<\infty$ such that for all $\mathrm{x}=\sum \mathrm{a}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}} \in \mathrm{E}$,

$$
\|x\| \leq K \sup \left\{\left\|\sum_{n \in A} a_{n} e_{n}\right\|: A \in \mathcal{A}_{\alpha}^{f}\right\} .
$$

The definition of the family $\left(\mathcal{A}_{\alpha}^{f}\right)$ is modelled on the definition of the well known Schreier family (\mathcal{S}_{α}^{f}) [1], [7]. The Schreier set $\mathcal{S}_{0}^{\dagger}=\{\mathrm{A} \subseteq \mathrm{N}:|\mathrm{A}| \leq 1\}$. The inductive steps defining $\mathcal{S}_{\alpha}^{\dagger}$ are exactly the same as in the definition for $\left(\mathcal{A}_{\alpha}^{\dagger}\right)$ (with \mathcal{A} replaced by §). We will need a slight modification of Proposition 1. The next lemma is easily proved by induction.

Lemma 2 Let α be a countable ordinal, and let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be an increasing function. If $h: N \rightarrow N$ is an increasingfunction such that $h(n+1)>f(h(n))$ for all n, then $A \cap h(N) \in S_{\alpha}^{f}$ for all $\mathrm{A} \in \mathcal{A}_{\alpha}^{\mathrm{f}}$.

Proposition 3 Let E bea Banach spacewith a 1-subsymmetric basis (e_{n}) such that E embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$ for some $\alpha<\omega_{1}$. Then there exist an increasingfunction $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, and $\mathrm{K}<\infty$ such that for all $x=\sum a_{n} e_{n} \in E$,

$$
\|x\| \leq K \sup \left\{\left\|\sum_{n \in A} a_{n} e_{n}\right\|: A \in \mathcal{S}_{\alpha}^{f}\right\} .
$$

Proof By Proposition 1, there exist an increasing function $\tilde{f}: \mathrm{N} \rightarrow \mathrm{N}$, and a constant $\mathrm{K}<\infty$ such that for all $\mathrm{x}=\sum \mathrm{a}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}} \in \mathrm{E}$,

$$
\|x\| \leq K \sup \left\{\left\|\sum_{n \in A} a_{n} e_{n}\right\|: A \in \mathcal{A}_{\alpha}^{\tilde{f}}\right\} .
$$

Let $h: N \rightarrow N$ be an increasing function such that $h(n+1)>\tilde{f}(h(n))$ for all n. Define $y=\sum a_{n} \theta_{h(n)}$. Then

$$
\begin{aligned}
\|x\| & =\|y\| \leq K \sup \left\{\left\|\left(\sum a_{n} \epsilon_{(n)}\right) \chi_{A}\right\|: A \in \mathcal{A}_{\alpha}^{\tilde{f}}\right\} \\
& =K \sup \left\{\left\|\left(\sum a_{n} e_{n(n)}\right) \chi_{n(N) \cap A}\right\|: A \in \mathcal{A}_{\alpha}^{\tilde{f}}\right\} \\
& \leq K \sup \left\{\left\|\sum_{n \in A} a_{n} e_{n}\right\|: h(A) \in S_{\alpha}^{\tilde{f}}\right\} \quad \text { by Lemma } 2 \\
& \leq K \sup \left\{\left\|\sum_{n \in A} a_{n} e_{n}\right\|: A \in S_{\alpha}^{\text {foh }}\right\} .
\end{aligned}
$$

The proposition follows by taking $f=\tilde{f} \circ h$.

1 N orming sets

In this section, we show that if E is a symmetric sequence space which embeds into some $C\left(\omega^{\omega^{\alpha}}\right)$, then the norm on E can be isomorphically generated by a norming subset of E^{\prime} of a particular type. Recall that a subset W of E^{\prime} is isomorphically norming if W is bounded and there exists $K>0$ such that $K\|x\| \leq \sup _{x^{\prime} \in W}\left|\left\langle x, x^{\prime}\right\rangle\right|$ for all $x \in E$. We begin with the following definitions. Let $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}$be a nondecreasing function such that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}(\mathrm{n})=$ ∞. Define

$$
\mathcal{C}_{0}^{\mathrm{g}}=\left\{\mathrm{x} \in \mathrm{c}_{00}:\|\mathrm{x}\|_{\infty} \leq 1, \mid \text { supp } \mathrm{x} \mid \leq 1\right\} .
$$

If α is a successor ordinal, let

$$
\mathfrak{C}_{\alpha}^{g}=\left\{\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}: \mathrm{x}_{\mathrm{i}} \in \mathfrak{C}_{\alpha-1}^{\mathrm{g}},\left(\mathrm{x}_{\mathrm{i}}\right) \text { pairwise disjoint, and } \mathrm{g}(\mathrm{n})\|\mathrm{x}\|_{\infty} \leq 1\right\} \text {, }
$$

If α is a limit ordinal, recall the sequence (α_{n}) chosen in the introduction. Define $\mathcal{C}_{\alpha}^{\mathrm{g}}=$ $\left\{x: x \in \mathcal{C}_{\alpha_{n}}^{g}, g(n)\|x\|_{\infty} \leq 1\right\}$. It is easy to see that \mathcal{C}_{α}^{g} is a symmetric set, i.e, it is invariant under permutations of the coordinates.

Let E be a sequence space that admits a normalized 1 -symmetric shrinking basis which is not equivalent to the unit vector basis of c_{0}. We represent both E and E^{\prime} naturally as spaces of real sequences. Denote the (closed) unit balls of E and E^{\prime} by U_{E} and $\mathrm{U}_{\mathrm{E}^{\prime}}$ respectively.

Lemma 4 Given an increasing function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ and numbers δ, η such that $0<\delta<1$, $\eta>0$, there exists a nondecreasing function $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}, \lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}(\mathrm{n})=\infty$, such that if $a=a^{*}=\left(a_{n}\right) \in U_{E}, b=\left(b_{n}\right) \in U_{E^{\prime}},\left|\left\langle a, b \chi_{A}\right\rangle\right| \geq \eta$ for some $A \in \mathcal{P}_{<\infty}(N)$, there exists c such that $|c| \leq\left|b \chi_{A}\right|,\|c\|_{\infty} g(f(\min A)) \leq 1$ and $|\langle a, c\rangle| \geq \delta\left|\left\langle a, b \chi_{A}\right\rangle\right|$.

Proof Define $\lambda(\mathrm{n})=\|(\overbrace{1,1, \ldots, 1}^{n})\|_{E}$ and $\mu(\mathrm{n})=\|\overbrace{(1,1, \ldots, 1)}^{n}\|_{E^{\prime}}$. Since the basis for E is shrinking but not equivalent to the c_{0}-basis, $\lambda(\mathrm{n}) \rightarrow \infty$ and $\mu(\mathrm{n}) \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$. Therefore, there exists a nondecreasing function $g: N \rightarrow R_{+}, \lim _{n \rightarrow \infty} g(n)=\infty$, such that for every $k \in N$,

$$
g(f(\mathrm{k})) \leq \begin{cases}1 & \text { if }\lfloor(1-\delta) \eta \lambda(\mathrm{k})\rfloor=0 \\ \frac{1}{2} \mu(\lfloor(1-\delta) \eta \lambda(\mathrm{k})\rfloor) & \text { otherwise }\end{cases}
$$

where $\lfloor\cdot\rfloor$ is the greatest integer function. Let a, b and A be given that satisfy the hypotheses, and let $\mathrm{m}=\min \mathrm{A}$. If $\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor=0$, let $\varepsilon=1$; otherwise, let $\varepsilon=$ $2 / \mu(\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor)$. Consider $\mathrm{B}=\left\{\mathrm{n} \in \mathrm{A}:\left|\mathrm{b}_{\mathrm{n}}\right|>\varepsilon\right\}$. In the first case, $\mathrm{B}=\varnothing$. In the second case,

$$
1 \geq\|\mathrm{b}\| \geq\left\|\mathrm{b} \chi_{\mathrm{B}}\right\| \geq \varepsilon \mu(|\mathrm{B}|),
$$

which implies that

$$
\mu(|\mathbf{B}|) \leq \frac{1}{\varepsilon}=\frac{1}{2} \mu(\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor)<\mu(\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor) .
$$

Consequently, $|\mathrm{B}|<(1-\delta) \eta \lambda(\mathrm{m})$ as μ is nondecreasing. Also,

$$
1 \geq\|a\| \geq\|(\overbrace{a_{m}\left|, \ldots,\left|a_{m}\right|\right.}^{m})\|=\left|a_{m}\right| \lambda(m) .
$$

Therefore, $\left\|\mathrm{a} \chi_{A}\right\|_{\infty}=\left|\mathrm{a}_{\mathrm{m}}\right| \leq \frac{1}{\lambda(m)}$. Let $\mathrm{c}=\mathrm{b} \chi_{\mathrm{A} \backslash \mathrm{B}}$. Then $|\mathrm{c}| \leq\left|\mathrm{b} \chi_{\mathrm{A}}\right|$ and $\|\mathrm{c}\|_{\infty} g(\mathrm{f}(\mathrm{min} \mathrm{A})) \leq \varepsilon g(\mathrm{f}(\mathrm{m}))$. If $\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor=0$, then $\varepsilon=1$ and $\mathrm{g}(\mathrm{f}(\mathrm{m})) \leq 1$; hence $\varepsilon g(f(m)) \leq 1$. Otherwise,

$$
\varepsilon g(\mathrm{f}(\mathrm{~m})) \leq \frac{2}{\mu(\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor)} \cdot \frac{1}{2} \mu(\lfloor(1-\delta) \eta \lambda(\mathrm{m})\rfloor)=1 .
$$

Finally,

$$
\begin{aligned}
|\langle a, c\rangle| & \geq\left|\left\langle a, b \chi_{A}\right\rangle\right|-\left|\left\langle a, b \chi_{B}\right\rangle\right| \\
& \geq\left|\left\langle a, b \chi_{A}\right\rangle\right|-\left\|a \chi_{B}\right\|_{\infty}|B| \\
& \geq\left|\left\langle a, b \chi_{A}\right\rangle\right|-\left\|a \chi_{A}\right\|_{\infty}|\mathrm{B}| \\
& \geq\left|\left\langle a, b \chi_{A}\right\rangle\right|-\frac{1}{\lambda(m)} \cdot(1-\delta) \eta \lambda(m) \\
& \geq \delta \mid\left\langle a, b \chi_{A}\right\rangle .
\end{aligned}
$$

Lemma 5 Let h, and $g_{n}, n \in N$, be nondecreasing functions from N into R_{+}such that $\lim _{k \rightarrow \infty} h(k)=\lim _{k \rightarrow \infty} g_{n}(k)=\infty$ for all n. There exists a nondecreasing function $g: N \rightarrow R_{+}$, $\lim _{k \rightarrow \infty} \mathrm{~g}(\mathrm{k})=\infty$, such that $\mathrm{g} \leq \mathrm{h}$, and $\mathrm{d} \in \mathcal{C}_{\alpha}^{g}$ whenever $\alpha<\omega_{1}$, and $\mathrm{d} \in \mathcal{C}_{\alpha}^{\mathrm{g}_{\alpha}}$ for somen satisfying $\|d\|_{\infty} h(n) \leq 1$.

Proof There exist $0=m_{0}<m_{1}<m_{2}<\cdots \in \mathrm{N}$ and a nondecreasing function $\mathrm{g}^{\prime}: \mathrm{N} \rightarrow$ R_{+}such that $\lim _{k \rightarrow \infty} g^{\prime}(k)=\infty$, and $g^{\prime}(k) \leq \min \left\{g_{1}(k), \ldots, g_{i}(k)\right\}$ whenever $m_{i-1}<k \leq$ $m_{i}, i \in N$. Now choose a nondecreasing function $g: N \rightarrow R_{+}$such that $\lim _{k \rightarrow \infty} g(k)=\infty$, $g \leq g^{\prime}$, and $g\left(m_{i}\right) \leq h(i)$ for all $i \in N$. Clearly, $g \leq h$.

We claim that the function g satisfies the remaining condition of the lemma. The proof is by induction on α. If $\alpha=0$, there is nothing to prove. Suppose the claim is truefor some $\alpha<\omega_{1}$. Assumethat $\mathrm{d} \in \mathrm{C}_{\alpha+1}^{g_{1}}$, and $\|\mathrm{d}\|_{\infty} \mathrm{h}(\mathrm{n}) \leq 1$. We can writed $=\mathrm{d}_{1}+\cdots+\mathrm{d}_{1}$, where $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{1}$ are pairwise disjoint elements of $\mathrm{C}_{\alpha}^{g_{\mathrm{n}}}$, and $\|\mathrm{d}\|_{\infty} \mathrm{g}_{\mathrm{n}}(I) \leq 1$. Since $\left\|\mathrm{d}_{\mathrm{j}}\right\|_{\infty} \mathrm{h}(\mathrm{n}) \leq$ $\|\mathrm{d}\|_{\infty} \mathrm{h}(\mathrm{n}) \leq 1, \mathrm{~d}_{\mathrm{j}} \in \mathcal{C}_{\alpha}^{g}$ by the inductive hypothesis. Choosei so that $\mathrm{m}_{\mathrm{i}-1}<\mathrm{I} \leq \mathrm{m}_{\mathrm{i}}$, then $\mathrm{g}(\mathrm{I}) \leq \min \left\{g_{1}(\mathrm{I}), \ldots, \mathrm{g}_{\mathrm{i}}(\mathrm{I})\right\}$. If $\mathrm{n} \leq \mathrm{i}$, then $\|\mathrm{d}\|_{\infty} \mathrm{g}(\mathrm{I}) \leq\|\mathrm{d}\|_{\infty} \mathrm{g}_{n}(\mathrm{I}) \leq 1$. Otherwise, $\mathrm{i}<\mathrm{n}$; hence $\|d\|_{\infty} g(I) \leq\|d\|_{\infty} g\left(m_{j}\right) \leq\|d\|_{\infty} h(i) \leq\|d\|_{\infty} h(n) \leq 1$. Therefored $\in \mathcal{C}_{\alpha+1}^{g}$.

Finally, suppose that α is a limit ordinal and that the claim holds for all ordinals $\beta<\alpha$. Assume that $\mathrm{d} \in \mathrm{C}_{\alpha}^{g_{n}}$, and $\|\mathrm{d}\|_{\infty} \mathrm{h}(\mathrm{n}) \leq 1$. Let $\left(\alpha_{\mathrm{j}}\right)$ be the sequence used to define $\mathrm{C}_{\alpha}^{\mathrm{g}_{\mathrm{g}}}$ and \mathcal{C}_{α}^{g}. By definition, $\mathrm{d} \in \mathcal{C}_{\alpha}^{g_{n}}$ implies $\mathrm{d} \in \mathcal{C}_{\alpha_{j}}^{g_{n}}$ for some j such that $\|\mathrm{d}\|_{\infty} \mathrm{g}_{n}(\mathrm{j}) \leq 1$. By the inductive hypothesis, $d \in \mathcal{C}_{\alpha_{j}}^{g}$. Choose i such that $m_{i-1}<j \leq m_{i}$. If $n \leq i$, then

$$
\|d\|_{\infty} g(j) \leq\|d\|_{\infty} g^{\prime}(j) \leq\|d\|_{\infty} g_{n}(j) \leq 1 .
$$

On the other hand, if $i<n$, then

$$
\|\mathrm{d}\|_{\infty} g(\mathrm{j}) \leq\|\mathrm{d}\|_{\infty} g\left(\mathrm{~m}_{\mathrm{i}}\right) \leq\|\mathrm{d}\|_{\infty} \mathrm{h}(\mathrm{i}) \leq\|\mathrm{d}\|_{\infty} \mathrm{h}(\mathrm{n}) \leq 1 .
$$

Hence $d \in \mathcal{C}_{\alpha_{j}}^{g}$, and $\|d\|_{\infty} g(j) \leq 1$. Consequently, $d \in \mathfrak{C}_{\alpha}^{g}$. This completes the proof of the claim.

Proposition 6 Given an increasingfunction $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}, 0<\delta<1, \eta>0$, and a countable ordinal α, there exists a nondecreasing function $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}, \lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}(\mathrm{n})=\infty$, such that if $a=a^{*}=\left(a_{n}\right) \in U_{E}, b=\left(b_{n}\right) \in U_{E^{\prime}}, A \in \mathcal{S}_{\alpha}^{f}$, and $\left|\left\langle a, b \chi_{A}\right\rangle\right| \geq \eta$, then thereisa $c \in \mathcal{C}_{\alpha}^{g}$, $|c| \leq\left|b \chi_{A}\right|,\|c\|_{\infty} g(f(\min A)) \leq 1$ and $|\langle a, c\rangle| \geq \delta\left|\left\langle a,{ }^{\prime} \chi_{A}\right\rangle\right|$.
Proof We will prove the proposition by induction on α. Consider first the case when $\alpha=0$. Choose g by Lemma 4. If a, b and A are given as in the hypothesis, there exists C such that $|c| \leq\left|b \chi_{A}\right|,\|c\|_{\infty} g(f(\min A)) \leq 1$ and $|\langle a, c\rangle| \geq \delta\left|\left\langle a, b \chi_{A}\right\rangle\right|$. Since $A \in \mathcal{S}_{0}^{f}$, $|\mathrm{A}| \leq 1$. Thus, it follows from the fact that $|c| \leq\left|\mathrm{b} \chi_{\mathrm{A}}\right|$ that \mid supp $\mathrm{c} \mid \leq 1$. As $\|\mathrm{b}\|_{\infty} \leq 1$, the same inequality also shows that $\|c\|_{\infty} \leq 1$. Therefore, $\mathrm{c} \in \mathrm{C}_{0}^{\mathrm{g}}$, as desired.

Suppose the proposition holds for some $\alpha<\omega_{1}$. Choose a function h by Lemma 4 corresponding to $\mathrm{f}, \sqrt[3]{\delta}$, and η. For each $\mathrm{n} \in \mathrm{N}$, choose a function g_{n} by the inductive hypothesis (for the ordinal α) corresponding to $\mathrm{f}, \sqrt[3]{\delta}$, and $\eta \sqrt[3]{\delta}(1-\sqrt[3]{\delta}) / \mathrm{n}$. Finally, apply Lemma 5 with the functions h and $\left(g_{n}\right)$ to obtain a function g. Let $a=a^{*} \in U_{E}$, $b \in U_{E^{\prime}}$ and $A \in \mathcal{S}_{\alpha+1}^{f}$ be given so that $\left|\left\langle a, b \chi_{A}\right\rangle\right| \geq \eta$. There exists $c,|c| \leq\left|b \chi_{A}\right|$, $\|c\|_{\infty} h(f(\min A)) \leq 1$, such that $|\langle a, c\rangle| \geq \sqrt[3]{\delta}\left|\left\langle a, b \chi_{A}\right\rangle\right|$. Let $n=f(\min A)$. Since $A \in \mathcal{S}_{\alpha+1}^{f}, A=A_{1} \cup \cdots \cup A_{k}$, where $A_{1}<\cdots<A_{k}, A_{1}, \ldots, A_{k} \in \mathcal{S}_{\alpha}^{f}$, and $k \leq n$. Let I be the set of the indicesi such that $\left|\left\langle a, \chi_{A_{i}}\right\rangle\right| \geq \eta \sqrt[3]{\delta}(1-\sqrt[3]{\delta}) / n$, and let $B=\bigcup_{i \in 1} A_{i}$. Then

$$
\begin{aligned}
\left|\left\langle\mathrm{a}, \mathrm{c} \chi_{B}\right\rangle\right| & \geq\left|\left\langle\mathrm{a}, \mathrm{c} \chi_{A}\right\rangle\right|-(\mathrm{k}-| |) \eta \sqrt[3]{\delta}(1-\sqrt[3]{\delta}) / \mathrm{n} \\
& \geq \sqrt[3]{\delta}\left|\left\langle\mathrm{a}, \mathrm{~b} \chi_{\mathrm{A}}\right\rangle\right|-\sqrt[3]{\delta}(1-\sqrt[3]{\delta}) \eta \geq \delta^{2 / 3}\left|\left\langle\mathrm{a}, \mathrm{~b} \chi_{A}\right\rangle\right| .
\end{aligned}
$$

By choice of g_{n}, for each $\mathrm{i} \in \mathrm{I}$, there exists $\mathrm{d}_{\mathrm{i}} \in \mathrm{C}_{\alpha}^{\mathrm{g}_{\mathrm{a}}},\left|\mathrm{d}_{\mathrm{i}}\right| \leq\left|\mathcal{C}_{\chi_{\mathrm{A}}}\right|,\left\|\mathrm{d}_{\mathrm{i}}\right\| \infty \mathrm{g}_{\mathrm{n}}\left(\mathrm{f}\left(\right.\right.$ min $\left.\left._{\mathrm{i}}\right)\right) \leq 1$, and $\left|\left\langle a, d_{i}\right\rangle\right| \geq \sqrt[3]{\delta}\left|\left\langle a, \chi_{A_{i}}\right\rangle\right|$. Defined $=\sum_{i \in 1} \operatorname{sgn}\left\langle a, d_{i}\right\rangle d_{i}$. Now $\operatorname{sgn}\left\langle a, d_{i}\right\rangle d_{i} \in \mathcal{C}_{\alpha}^{g_{1}}$, and

$$
\left\|\operatorname{sgn}\left\langle a, d_{i}\right\rangle d_{i}\right\|_{\infty} h(n) \leq\|c\|_{\infty} h(n) \leq 1 .
$$

Hence sgn $\left\langle\mathrm{a}, \mathrm{d}_{\mathrm{i}}\right\rangle \mathrm{d}_{\mathrm{i}} \in \mathcal{C}_{\alpha}^{g}$ by the choice of the function g . Note that

$$
\|d\|_{\infty} g(k) \leq\|d\|_{\infty} g(n) \leq\|c\|_{\infty} g(n) \leq\|c\|_{\infty} h(n) \leq 1 .
$$

In particular, $\mathrm{d} \in \mathcal{C}_{\alpha+1}^{\mathrm{g}}$. Clearly, $|\mathrm{d}| \leq\left|\mathrm{b} \chi_{\mathrm{A}}\right|$. Also,

$$
\begin{aligned}
|\langle\mathrm{a}, \mathrm{~d}\rangle| & =\sum_{\mathrm{i} \in 1}\left|\left\langle\mathrm{a}, \mathrm{~d}_{\mathrm{i}}\right\rangle\right| \\
& \geq \sqrt[3]{\delta} \sum_{\mathrm{i} \in 1}\left|\left\langle\mathrm{a}, \mathrm{c}_{\chi_{A_{i}}}\right\rangle\right| \\
& \geq \sqrt[3]{\delta}\left|\left\langle\mathrm{a}, \mathrm{c} \chi_{B}\right\rangle\right| \\
& \geq \delta\left|\left\langle\mathrm{a}, \mathrm{~b} \chi_{A}\right\rangle\right| .
\end{aligned}
$$

Finally, suppose that $\alpha<\omega_{1}$ is a limit ordinal and the proposition holds for all $\beta<\alpha$. Let $\left(\alpha_{n}\right)$ be the sequence used in defining \mathcal{C}_{α}^{g} and \mathcal{S}_{α}^{f}. Apply Lemma 4 with $f, \sqrt{\delta}$, and η to obtain a function h. Then, for each n, apply the inductive hypothesis with $f, \sqrt{\delta}, \sqrt{\delta} \eta$, and the ordinal α_{n} to obtain a function g_{n}. Again, choose a function g corresponding to h and $\left(g_{n}\right)$ by Lemma 5 .

Let a, b, and A be given satisfying the hypothesis of the proposition for the ordinal α. By definition, $A \in S_{\alpha}^{\dagger}$ implies that $A \in \mathcal{S}_{\alpha_{n}}^{\dagger}$ for some $n \leq f(\min A)$. By the choice of the function h, we can find a c such that $|\mathrm{c}| \leq\left|\mathrm{b}_{\mathrm{A}}\right|,\|\mathrm{c}\|_{\infty} \mathrm{h}(\mathrm{f}(\min \mathrm{A})) \leq 1$ and $|\langle\mathrm{a}, \mathrm{c}\rangle| \geq$ $\sqrt{\delta}\left|\left\langle a,{ }_{b} \chi_{A}\right\rangle\right|$. Similarly, because of the choice of the function g_{n}, there exists d such that $|\mathrm{d}| \leq\left|c \chi_{A}\right|,\|\mathrm{d}\|_{\infty} \mathrm{g}_{n}(\mathrm{f}(\min \mathrm{A})) \leq 1, \mathrm{~d} \in \mathcal{C}_{\alpha_{n}}^{g_{n}}$ and $|\langle\mathrm{a}, \mathrm{d}\rangle| \geq \sqrt{\delta}\left|\left\langle\mathrm{a}, \mathrm{c} \chi_{A}\right\rangle\right| \geq \delta\left|\left\langle\mathrm{a}, \mathrm{b} \chi_{A}\right\rangle\right|$. Then $|d| \leq\left|\mathcal{c}_{\mathrm{A}}\right| \leq\left|\mathrm{b} \chi_{\mathrm{A}}\right|$. Since $\mathrm{d} \in \mathrm{C}_{\alpha_{\alpha_{n}}}^{\mathrm{g}_{n}}$, and $\|\mathrm{d}\|_{\infty} \mathrm{h}(\mathrm{n}) \leq\|\mathrm{c}\|_{\infty} \mathrm{h}(\mathrm{f}(\min \mathrm{A})) \leq 1$, it follows from the choice of g that $\mathrm{d} \in \mathcal{C}_{\alpha_{n}}^{g}$. Observe that

$$
\|d\|_{\infty} g(n) \leq\|d\|_{\infty} h(n) \leq\|c\|_{\infty} h(f(\min A)) \leq 1 .
$$

Therefore, $\mathrm{d} \in \mathfrak{C}_{\alpha}^{g}$. Finally,

$$
\|d\|_{\infty} g(f(\min A)) \leq\|d\|_{\infty} h(f(\min A)) \leq 1 .
$$

This proves the proposition.
Theorem 7 Let E bea Banach space with a normalized 1-symmetric basis. Suppose E embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$ for some $\alpha<\omega_{1}$. Then there exists a nondecreasing function $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}$, $\lim _{n \rightarrow \infty} g(n)=\infty$ such that $U_{E^{\prime}} \cap \mathfrak{C}_{\alpha}^{g}$ is an isomorphically norming subset of E^{\prime}.

Proof If $\mathrm{E}=\mathrm{c}_{0}$, the result is obvious; hence we may assume that $\mathrm{E} \neq \mathrm{c}_{0}$. Since E embeds into $C\left(\omega^{\omega^{\alpha}}\right)$, any normalized 1 -symmetric basis of E must be shrinking. According to Proposition 3, there exist an increasing function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, and a finite constant K such that for all $x \in E$,

$$
\|x\|_{E} \leq K \sup \left\{\left\|\chi_{X}\right\|_{E}: A \in \mathcal{S}_{\alpha}^{f}\right\} .
$$

Given $\mathrm{x} \in \mathrm{E} \cap \mathrm{c}_{00},\|\mathrm{x}\|_{\mathrm{E}}=1$, pick $\mathrm{A} \in \mathcal{S}_{\alpha}^{\dagger}$ such that

$$
1=\|\mathrm{x}\|_{\mathrm{E}}=\left\|\mathrm{x}^{*}\right\|_{\mathrm{E}} \leq \mathrm{K}\left\|\mathrm{x}^{*} \chi_{\mathrm{A}}\right\|_{\mathrm{E}} .
$$

Now choose $x^{\prime} \in U^{E}$, such that $1 \leq K\left|\left\langle x^{*}, x^{\prime} \chi_{A}\right\rangle\right|$. Let g be the function given by applying Proposition 6 with the function $\mathrm{f}, \delta=1 / 2$, and $\eta=1 / K$. It follows that there exists a y^{\prime}, $y^{\prime} \in \mathfrak{C}_{\alpha}^{\mathrm{g}},\left|\mathrm{y}^{\prime}\right| \leq\left|\mathrm{x}^{\prime} \chi_{\mathrm{A}}\right|$, and

$$
\left|\left\langle x^{*}, y^{\prime}\right\rangle\right| \geq \frac{1}{2}\left|\left\langle x^{*}, x^{\prime} \chi_{A}\right\rangle\right| \geq \frac{1}{2 K} .
$$

Since $x^{\prime} \in U_{E^{\prime}}$ and $\left|y^{\prime}\right| \leq\left|x^{\prime} \chi_{A}\right|$, we see that $y^{\prime} \in U_{E^{\prime}}$. Thus $y^{\prime} \in U_{E^{\prime}} \cap \mathcal{C}_{\alpha}^{g}$. Since $\mathrm{U}_{\mathrm{E}^{\prime}} \cap \mathfrak{C}_{\alpha}^{9}$ is a symmetric set, this proves that $\mathrm{U}_{\mathrm{E}^{\prime}} \cap \mathfrak{C}_{\alpha}^{9}$ is an isomorphically norming subset of E^{\prime}, as desired.

2 A characterization theorem

In this section, we provethe converse of Theorem 7 (see Theorem 16). Given a nondecreasing function $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}$such that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}(\mathrm{n})=\infty$, and a pointwise compact subset \mathcal{F} of c_{00} such that $|x| \chi_{A} \in \mathcal{F}$ whenever $x \in \mathcal{F}$ and $A \in \mathcal{P}_{<\infty}(N)$, define

$$
g(\mathcal{F})=\left\{x=\sum_{i=1}^{n} x_{i}: x_{i} \in \mathcal{F},\left(x_{i}\right) \text { pairwise disjoint, and } g(n)\|x\|_{\infty} \leq 1\right\} .
$$

If $x=\sum_{i=1}^{n} x_{i}$ as in the foregoing definition, we say that $\sum_{i=1}^{n} x_{i}$ is an admissible representation of x.

Lemma 8 The set $\mathcal{G}=g(\mathcal{F})$ is pointwise compact.
Proof It suffices to show that \mathcal{G} is pointwise closed. Let (x_{j}) be a sequence in \mathcal{G} converging pointwise to some nonzero x. By the definition of $g(\mathcal{F})$, for each j, there exists a pairwise disjoint sequence $\left(\mathrm{x}_{\mathrm{j}, \mathrm{j}}\right)_{i=1}^{n_{j}}$ in \mathcal{F} such that $\mathrm{x}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{n_{j}} \mathrm{x}_{\mathrm{j}, \mathrm{i}}$, and $\mathrm{g}\left(\mathrm{n}_{\mathrm{j}}\right)\left\|\mathrm{x}_{\mathrm{j}}\right\|_{\infty} \leq 1$. Now $\lim \inf \left\|\mathrm{x}_{\mathrm{j}}\right\|_{\infty} \geq\|\mathrm{x}\|_{\infty}$. Therefore, lim supg($\left.\mathrm{n}_{\mathrm{j}}\right) \leq 1 /\|\mathrm{x}\|_{\infty}$. In particular, it follows that $\left(n_{j}\right)$ is a bounded sequence. By using a subsequence, we may assumethat there is a constant n such that $n_{j}=n$ for all j. As a result, we may represent x_{j} as

$$
x_{j}=\sum_{i=1}^{n} x_{j, i} .
$$

Since $\mathrm{x}_{\mathrm{j}, \mathrm{i}} \in \mathcal{F}$ and \mathcal{F} is compact, we may assume that $\lim _{\mathrm{j} \rightarrow \infty} \mathrm{x}_{\mathrm{j}, \mathrm{i}}=\mathrm{z}_{\mathrm{i}} \in \mathcal{F}$ exists. Then $x=\sum_{i=1}^{n} z_{i}$. It is clear that $\left(z_{i}\right)_{i=1}^{n}$ is a pairwise disjoint sequence. It follows from the above that $\mathrm{g}(\mathrm{n})\|\mathrm{x}\|_{\infty} \leq 1$. Hence $\mathrm{x} \in \mathcal{G}$, as required.

The proof of Lemma 8 shows the following:
Lemma 9 Let (x_{j}) bea sequence in \mathcal{G} converging to a nonzero vector x. Suppose each x_{j} has an admissible representation $\sum_{i=1}^{n_{j}} x_{j, i}$. Then there exist $M \in \mathcal{P}_{\infty}(N)$ and $n \in N$ such that $n_{j}=n$ for all $j \in M, z_{i}=\lim _{j \in M} x_{j, i}$ exists for $1 \leq i \leq n$, and $x=\sum_{i=1}^{n} z_{i}$ is an admissible representation of x .

Definition 10 For $\mathrm{x} \in \mathcal{F}$, define the degree of x by

$$
\operatorname{deg}(x)=\sup \left\{\beta: x \in \mathcal{F}^{(\beta)}\right\} .
$$

If α is an ordinal, it can beexpressed uniquely in its Cantor canonical form $\alpha=\omega^{\alpha_{1}} \cdot \mathrm{~m}_{1}+$ $\cdots+\omega^{\alpha_{k}} \cdot m_{k}$, where $\alpha_{1}>\cdots>\alpha_{k}$, and $m_{1}, \ldots, m_{k} \in N$. We say that the α_{i}-th component of α is $\mathrm{m}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$; whereas the γ-th component of α is 0 if $\gamma \notin\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{k}}\right\}$. If α and β are two ordinals, let $\alpha \oplus \beta$ be the unique ordinal each of whose γ-th component is the sum of the γ-th components of α and β. The operation ' \oplus ' may be extended to any finite number of ordinals in an obvious fashion. It is clear that $\alpha \oplus \beta<\omega_{1}$ if both α and β are countable. The proof of the next proposition is left to the reader.

Proposition 11 Let $\left(\alpha_{\mathrm{i}}\right)_{\mathrm{i}=1}^{\mathrm{n}}$ and $\left(\beta_{\mathrm{i}}\right)_{\mathrm{i}=1}^{\mathrm{n}}$ be two sequences of ordinals. If $\alpha_{\mathrm{i}} \geq \beta_{\mathrm{i}}$ for each i , and $\bigoplus_{\mathrm{i}=1}^{n} \beta_{\mathrm{i}} \geq \bigoplus_{\mathrm{i}=1}^{n} \alpha_{\mathrm{i}}$, then $\alpha_{\mathrm{i}}=\beta_{\mathrm{i}}$ for every i .

Proposition 12 Suppose that x is a nonzero vector in $\mathcal{G}^{(\alpha)}$ for some $\alpha<\omega_{1}$. If $\mathrm{x}=\sum_{i=1}^{n} \mathrm{z}_{\mathrm{i}}$ is an admissible representation of x , then $\bigoplus_{\mathrm{i}=1}^{n} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq \alpha$.

Proof If $\alpha=0$, there is nothing to prove. Suppose that the proposition is true for all ordinals less than some $\alpha<\omega_{1}$. First consider the case when α is a successor ordinal. Let x be a nonzero vector in $\mathcal{G}^{(\alpha)}$. There exists a sequence $\left(x_{j}\right) \subseteq \mathcal{G}^{(\alpha-1)} \backslash\{x\}$ that converges to x. By Lemma 9 , we may assume that there exists $n \in N$ such that each x_{j} has an admissible representation $\mathrm{x}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{j}, \mathrm{i}}$, that $\lim \mathrm{x}_{\mathrm{j}, \mathrm{i}}=\mathrm{z}_{\mathrm{i}}$ for each i , and $\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{z}_{\mathrm{i}}$ is an admissible representation of x. By taking a subsequence if necessary, we may further assume that $\lim _{\mathrm{j}} \operatorname{deg}\left(\mathrm{x}_{\mathrm{j}, \mathrm{i}}\right)=\alpha_{\mathrm{i}}$ exists for each i , and $\operatorname{deg}\left(\mathrm{x}_{\mathrm{j}, \mathrm{i}}\right) \leq \alpha_{\mathrm{i}}$ for all j . Since $\mathrm{x}_{\mathrm{j}, \mathrm{i}} \rightarrow \mathrm{z}_{\mathrm{i}}, \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq$ α_{i}. Now $\bigoplus_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{deg}\left(\mathrm{x}_{\mathrm{j}, \mathrm{i}}\right) \geq \alpha-1$ by the inductive hypothesis. Of course, $\bigoplus_{\mathrm{i}=1}^{n} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq$ $\bigoplus_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}} \geq \alpha-1$. Supposethat $\bigoplus_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right)=\alpha-1 \leq \bigoplus_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{deg}\left(\mathrm{x}_{\mathrm{j}, \mathrm{i}}\right)$. By Proposition 11, $\operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right)=\operatorname{deg}\left(\mathrm{x}_{\mathrm{j}, \mathrm{i}}\right)$ for all i, j. But since $\lim \mathrm{x}_{\mathrm{j}, \mathrm{i}}=\mathrm{z}_{\mathrm{i}}, \operatorname{deg}\left(\mathrm{x}_{\mathrm{j}, \mathrm{i}}\right)=\operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right)$ would imply that $\mathrm{x}_{\mathrm{j}, \mathrm{i}}=\mathrm{z}_{\mathrm{i}}$ for all large j . Consequently, $\mathrm{x}_{\mathrm{j}}=\mathrm{x}$ for all large j , which is a contradiction. Therefore $\bigoplus_{i=1}^{n} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq \alpha$.

Finally, consider the case when α is a limit ordinal. Let $\mathrm{x} \in \mathcal{G}^{(\alpha)}=\bigcap_{\beta<\alpha} \mathcal{G}^{(\beta)}$. Suppose $x=\sum_{i=1}^{n} z_{i}$ is an admissible representation of x. Since $x \in \mathcal{G}^{(\beta)}$ for all $\beta<\alpha$, $\bigoplus_{\mathrm{i}=1}^{n} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq \beta$ for all $\beta<\alpha$ by the inductive hypothesis. Consequently, $\bigoplus_{\mathrm{i}=1}^{n} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq$ α.

We now proceed to apply the foregoing analysis to the sets \mathcal{C}_{α}^{9} defined in Section 1 .
Lemma 13 Let $\alpha<\omega_{1}$, then $\mathfrak{C}_{\alpha}^{g}$ is pointwise compact.
Proof The assertion is clear for $\alpha=0$. Suppose that the lemma has been proved for all ordinals less than some $\alpha<\omega_{1}$. If α is a successor ordinal, a glance at the definitions shows that $\mathcal{C}_{\alpha}^{g}=\mathrm{g}\left(\mathcal{C}_{\alpha-1}^{\mathrm{g}}\right)$. It follows from Lemma 8 that \mathcal{C}_{α}^{g} is pointwise compact.

Suppose that α is a limit ordinal, and let (α_{n}) be the sequence of ordinals used in defining \mathcal{C}_{α}^{g}. Let (x_{k}) be a sequence in $\mathcal{C}_{\alpha}^{\mathrm{g}}$ converging pointwise to a vector x . If $\mathrm{x}=0$, then certainly $\mathrm{x} \in \mathfrak{C}_{\alpha}^{\mathrm{g}}$. Thus we may assumethat $\mathrm{x} \neq 0$. For each k , let $\mathrm{n}_{\mathrm{k}} \in \mathrm{N}$ be such that $\mathrm{x}_{\mathrm{k}} \in$ $\mathcal{C}_{\alpha_{n_{k}}}^{g}$, and $g\left(n_{k}\right)\left\|x_{k}\right\|_{\infty} \leq 1$. Since lim inf $\left\|x_{k}\right\|_{\infty} \geq\|x\|_{\infty}$, lim sup $\sin _{k} g\left(n_{k}\right) \leq 1 /\|x\|_{\infty}$.

This implies that $\left(n_{k}\right)$ is bounded. By taking a subsequence if necessary, we may assume that $n_{k}=n$ for all k. Then $x_{k} \in \mathcal{C}_{\alpha_{n}}^{g}$ for all k. Since $\mathcal{C}_{\alpha_{n}}^{g}$ is compact, $x \in \mathcal{C}_{\alpha_{n}}^{g}$. M oreover, as $g(n)\|x\|_{\infty}=g\left(n_{k}\right)\|x\|_{\infty} \leq 1$, we conclude that $x \in \mathcal{C}_{\alpha}^{g}$.

Lemma 14 Suppose $\alpha<\omega_{1}$ is a limit ordinal, and let (α_{n}) be the sequence of ordinals used to define \mathcal{C}_{α}^{g}. Then for any ordinal $\beta<\omega_{1}$,

$$
\left(\mathcal{C}_{\alpha}^{g}\right)^{(\beta)} \subseteq\left\{x: x \in\left(\mathcal{C}_{\alpha_{n}}^{g}\right)^{(\beta)} \text { for somen such that } g(n)\|x\|_{\infty} \leq 1\right\} \cup\{0\} \text {. }
$$

Proof The proof is by induction on β. If $\beta=0$, there is nothing to prove. Suppose the lemma is true for some ordinal $\beta<\omega_{1}$. Let $\mathrm{x} \in\left(\mathcal{C}_{\alpha}^{\mathrm{g}}\right)^{(\beta+1)}, \mathrm{x} \neq 0$. Then there exists a sequence $\left(x_{k}\right) \subseteq\left(\mathcal{C}_{\alpha}^{g}\right)^{(\beta)} \backslash\{x\}$ converging pointwise to x. By the inductive hypothesis, $x_{k} \in\left(\mathcal{C}_{\alpha_{n_{k}}}^{g}\right)^{(\beta)}$ for some n_{k} such that $g\left(n_{k}\right)\left\|x_{k}\right\|_{\infty} \leq 1$. Now lim inf $\left\|x_{k}\right\|_{\infty} \geq\|x\|_{\infty}$. Therefore,

$$
1 \geq \lim _{k} \sup g\left(n_{k}\right)\left\|x_{k}\right\|_{\infty} \geq \lim _{k} \sup g\left(n_{k}\right)\|x\|_{\infty}
$$

Hence $\left(n_{k}\right)$ is bounded. By going to a subsequence, we may assume that $n_{k}=n$ for all k, and $\mathrm{g}(\mathrm{n})\|\mathrm{x}\| \leq 1$. Since $\left(\mathrm{x}_{\mathrm{k}}\right) \subseteq\left(\mathcal{C}_{\alpha_{n}}^{\mathrm{g}}\right)^{(\beta)} \backslash\{\mathrm{x}\}$ and $\left(\mathrm{x}_{\mathrm{k}}\right)$ converges to $\mathrm{x}, \mathrm{x} \in\left(\mathcal{C}_{\alpha_{n}}^{\mathrm{g}}\right)^{(\beta+1)}$.

Suppose $\beta<\omega_{1}$ is a limit ordinal and the lemma holds for all $\beta^{\prime}<\beta$. Let $\mathrm{x} \in\left(\mathcal{C}_{\alpha}^{\mathrm{g}}\right)^{(\beta)}$, $x \neq 0$, and let $\left(\beta_{n}\right)$ be a sequence of ordinals strictly increasing to β. Choose a sequence $\left(x_{n}\right)$ such that $x_{n} \in\left(\mathcal{C}_{\alpha}^{g}\right)^{\left(\beta_{n}\right)}$ for each n, and $\lim _{n \rightarrow \infty} x_{n}=x$ in the topology of pointwise convergence. By the inductive hypothesis, $x_{n} \in\left(\mathcal{C}_{\alpha_{k_{n}}}^{g}\right)\left(\beta_{n}\right)$, where $g\left(k_{n}\right)\left\|x_{n}\right\|_{\infty} \leq 1$. As before, we may assume without loss of generality that $k_{n}=k$ and $g(k)\|x\|_{\infty} \leq 1$. Then $x_{n} \in\left(\mathcal{C}_{\alpha_{k}}^{g}\right)^{\left(\beta_{n}\right)}$ for all n. Since $\lim _{n \rightarrow \infty} x_{n}=x$ and $\left(\beta_{n}\right) \nearrow \beta, x \in\left(\mathcal{C}_{\alpha_{k}}^{g}\right)^{(\beta)}$. This completes the induction.

Proposition 15 If $\alpha<\omega_{1}$, then $\left(\mathcal{C}_{\alpha}^{g}\right)^{\left(\omega^{\alpha}\right)} \subseteq\{0\}$.

Proof It is easy to verify that the proposition is true for $\alpha=0$. We now suppose the proposition has been proved for all $\alpha<\beta$, where $\beta<\omega_{1}$. Consider first the case when β is a successor. Let $x \in\left(\mathcal{C}_{\beta}^{g}\right)^{\left(\omega^{\beta}\right)}=\left(\mathrm{g}\left(\mathcal{C}_{\beta-1}^{\mathrm{g}}\right)\right)^{\left(\omega^{\beta}\right)}, \mathrm{x} \neq 0$. Applying Proposition 12 with $\mathcal{F}=\mathcal{C}_{\beta-1}^{\mathrm{g}}, \mathrm{x}$ has an admissible representation $\mathrm{x}=\sum_{\mathrm{i}=1}^{n} \mathrm{z}_{\mathrm{i}}$ such that $\bigoplus_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{deg}\left(\mathrm{z}_{\mathrm{i}}\right) \geq \omega^{\beta}$. But by the inductive hypothesis, $\left(\mathcal{C}_{\beta-1}^{g}\right)^{\left(\omega^{\beta-1}\right)} \subseteq\{0\}$; hence $\operatorname{deg}\left(z_{i}\right) \leq \omega^{\beta-1}$ for all i. Consequently,

$$
\omega^{\beta} \leq \bigoplus_{i=1}^{n} \operatorname{deg}\left(z_{i}\right) \leq \omega^{\beta-1} \cdot n
$$

which is a contradiction.
Suppose that β is a limit ordinal. Let $\left(\beta_{n}\right)$ be the sequence used to define \mathcal{C}_{β}^{g}. By Lemma 14,

$$
\left(\mathcal{C}_{\beta}^{g}\right)^{\left(\omega^{\beta}\right)} \subseteq\left\{x: x \in\left(\mathcal{C}_{\beta_{\mathrm{n}}}^{g}\right)^{\left(\omega^{\beta}\right)} \text { for somen such that } \mathrm{g}(\mathrm{n})\|\mathrm{x}\|_{\infty} \leq 1\right\} \cup\{0\}
$$

But $\left(\mathcal{C}_{\beta_{n}}^{\mathrm{g}}\right)^{\left(\omega^{\beta}\right)}=\varnothing$ by the inductive hypothesis. Hence $\left(\mathcal{C}_{\beta}^{\mathrm{g}}\right)^{\left(\omega^{\beta}\right)} \subseteq\{0\}$.

Theorem 16 Let E bea Banach space with a normalized 1-symmetric basis. Then E embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$ for some $\alpha<\omega_{1}$ if and only if there exists a nondecreasing function $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}$, $\lim _{n \rightarrow \infty} g(n)=\infty$, such that $U_{E^{\prime}} \cap \mathcal{C}_{\alpha}^{g}$ is an isomorphically norming subset of E^{\prime}.

Proof Suppose that such a function g exists. Since $U_{E}, \cap \mathcal{C}_{\alpha}^{g}$ is pointwise compact, and $\left(U_{\mathrm{E}}, \cap \mathcal{C}_{\alpha}^{\mathrm{g}}\right)^{\left(\omega^{\alpha}\right)} \subseteq\left(\mathfrak{C}_{\alpha}^{\mathrm{g}}\right)^{\left(\omega^{\alpha}\right)} \subseteq\{0\}$ by Proposition $15, \mathrm{U}_{\mathrm{E}}, \cap \mathcal{C}_{\alpha}^{\mathrm{g}}$ is homeomorphic to an ordinal interval $[0, \beta]$ for some $\beta \leq \omega^{\omega^{\alpha}}$. Now $U_{E}, \cap \mathfrak{C}_{\alpha}^{g}$ is isomorphically norming. Therefore,

$$
\mathrm{E} \hookrightarrow \mathrm{C}\left(\mathrm{U}_{\mathrm{E}}, \cap \mathfrak{C}_{\alpha}^{\mathrm{g}}\right) \hookrightarrow \mathrm{C}(\beta) \hookrightarrow \mathrm{C}\left(\omega^{\omega^{\alpha}}\right) .
$$

The converse is precisely Theorem 7 in Section 1.

3 A family of examples

The aim of this section is to construct a full complement of mutually non-isomorphic 1symmetric sequence spaces which embed into $\mathrm{C}(\alpha)$ for some $\alpha<\omega_{1}$. Let us define the following terms and operations on finite sequences of natural numbers. If $m=\left(m_{1}, \ldots, m_{i}\right)$ and $\mathrm{n}=\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{j}}\right)$ are finite sequences of natural numbers, let

1. $\varphi(\mathrm{m})=\mathrm{m}_{1}$ (the leading term of the sequence),
2. $m \cup n=\left(m_{1}, \ldots, m_{i}, n_{1}, \ldots, n_{j}\right)$ (the concatenation of m and n).

Also, we say that $m<n$ if $2 m_{i} \leq n_{1}$, and that m is at least doubling if $2 m_{1} \leq m_{1+1}$, $1 \leq \mathrm{I}<\mathrm{i}$. Now define $\mathcal{M}_{1}=\{(\mathrm{m}): \mathrm{m} \in \mathrm{N}\}$. For $1 \leq \alpha<\omega_{1}$, let

$$
\mathcal{M}_{\alpha+1}=\left\{m_{1} \smile \cdots \smile m_{k}: m_{1}, \ldots, m_{k} \in \mathcal{M}_{\alpha}, m_{1} \ll \cdots \ll m_{k}, \text { and } k \leq \varphi\left(m_{1}\right)\right\} .
$$

If $\alpha<\omega_{1}$ and α is a limit ordinal, recall the sequence (α_{n}) chosen in the introduction. Define

$$
\mathcal{M}_{\alpha}=\left\{\mathrm{m} \text { : there exists } \mathrm{n} \in \mathrm{~N}, \mathrm{n} \leq \varphi(\mathrm{m}) \text { such that } \mathrm{m} \in \mathcal{M}_{\alpha_{\mathrm{n}}}\right\} .
$$

It is easily verified that any $\mathrm{m} \in \mathcal{M}_{\alpha}, 1 \leq \alpha<\omega_{1}$, is at least doubling.
Definition 17 Let $1 \leq \alpha<\omega_{1}$, if $m=\left(m_{1}, \ldots, m_{l}\right)$ is a finite sequence of integers, we let X_{m} be the set of all $\mathrm{x} \in \mathrm{c}_{00}$ such that there exist pairwise disjoint sets $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{I} \subseteq \mathrm{~N}$, $\left|A_{i}\right|=m_{i}, 1 \leq i \leq l$, and

$$
x=\sum_{i=1}^{1} \frac{1}{\sqrt{m_{i}}} \chi_{A_{i}} .
$$

M oreover, define $\mathcal{G}_{\alpha}=\cup\left\{\mathcal{X}_{\mathrm{m}}: \mathrm{m} \in \mathcal{M}_{\alpha}\right\}$.
Lemma 18 Let $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{+}$be defined by $\mathrm{g}(\mathrm{n})=\sqrt{\mathrm{n}}$. Then $\mathcal{G}_{\alpha} \subseteq \mathfrak{C}_{\alpha}^{\mathrm{g}}$ for $1 \leq \alpha<\omega_{1}$.
Proof The proof is by induction on α. Suppose $x \in \mathcal{G}_{1}$. There exist $(m) \in \mathcal{M}_{1}, A \subseteq N$, $|A|=m$ such that $x=\frac{1}{\sqrt{m}} \chi_{A}$. Let $x_{i}=\frac{1}{\sqrt{m}} \chi_{\left\{n_{i}\right\}}, 1 \leq i \leq m$, where $A=\left\{n_{1}, \ldots, n_{m}\right\}$. Then $x=\sum_{i=1}^{m} x_{i}$ and $x_{i} \in \mathfrak{C}_{0}^{g}$. M oreover, $g(m)\|x\|_{\infty}=\sqrt{m} \frac{1}{\sqrt{m}}=1$. Hence $x \in \mathfrak{C}_{1}^{g}$.

Suppose now that $\mathcal{G}_{\alpha} \subseteq \mathcal{C}_{\alpha}^{g}$ for some $1 \leq \alpha<\omega_{1}$. Let $\mathrm{x} \in \mathcal{G}_{\alpha+1}$. There exist $\mathrm{m}=$ $\left(m_{1}, \ldots, m_{l}\right) \in \mathcal{M}_{\alpha+1}$, and pairwise disjoint sets $A_{1}, \ldots, A_{I} \subseteq N,\left|A_{i}\right|=m_{i}$, such that

$$
x=\sum_{i=1}^{1} \frac{1}{\sqrt{m_{i}}} \chi_{A_{i}}
$$

Since $m \in \mathcal{M}_{\alpha+1}$, we may write $m=r_{1} \smile \cdots \smile r_{n}$ for some $r_{1}, \ldots, r_{n} \in \mathcal{M}_{\alpha}$ such that $n \leq \varphi\left(r_{1}\right)=m_{1}$. Let $I_{j}=\left\{i: m_{i}\right.$ is a coordinate of $\left.r_{j}\right\}$. Then since $r_{j} \in \mathcal{M}_{\alpha}$, $x_{j}=\sum_{i \in l_{j}} \frac{1}{\sqrt{m_{i}}} \chi_{A_{i}} \in \mathcal{G}_{\alpha}$. Now $\left(x_{j}\right)_{j=1}^{n}$ is pairwise disjoint and $x_{j} \in \mathcal{C}_{\alpha}^{g}$ by the inductive hypothesis. Note that $x=\sum_{i=1}^{n} x_{j}$ and $\|x\|_{\infty}=\frac{1}{\sqrt{m_{1}}}$. Therefore, $g(n)\|x\|_{\infty}=\frac{g(n)}{\sqrt{m_{1}}} \leq$ $\frac{g(n)}{\sqrt{n}}=1$. Hence $x \in \mathcal{C}_{\alpha+1}^{g}$.

Finally, suppose that $\alpha<\omega_{1}$ is a limit ordinal and $\mathcal{G}_{\beta} \subseteq \mathcal{C}_{\beta}^{g}$ for all $\beta<\alpha$. Let (α_{n}) be the sequence used in defining \mathcal{G}_{α} and $\mathcal{C}_{\alpha}^{\mathrm{g}}$. Suppose $\mathrm{x} \in \mathcal{G}_{\alpha}$, then there exists $\mathrm{m}=$ $\left(m_{1}, \ldots, m_{l}\right) \in \mathcal{M}_{\alpha}$ such that $x \in \mathcal{X}_{m}$. Since $m \in \mathcal{M}_{\alpha}$, there exists $n \leq \varphi(m)$ such that $\mathrm{m} \in \mathcal{M}_{\alpha_{n}}$. Thus $\mathrm{x} \in \mathcal{G}_{\alpha_{n}}$ and consequently, $\mathrm{x} \in \mathcal{C}_{\alpha_{n}}^{\mathrm{g}}$. As $\mathrm{n} \leq \varphi(\mathrm{m})=\mathrm{m}_{1}$, we see that $g(n)\|x\|_{\infty} \leq g\left(m_{1}\right) \frac{1}{\sqrt{m_{1}}}=1$. Hence $x \in \mathcal{C}_{\alpha}^{g}$, as required

Lemma 19 Given $1 \leq \alpha<\omega_{1}$, define a norm on C_{00} by

$$
\|\mathrm{y}\|_{\alpha}=\sup \left\{\langle | \mathrm{y}|, \mathrm{x}\rangle: \mathrm{x} \in \mathcal{G}_{\alpha}\right\}
$$

Then $\|\cdot\|_{\alpha}$ is a 1 -symmetric norm on c_{00}, and $\|(1,0,0, \ldots)\|_{\alpha}=1$.
Proof By definition, \mathcal{G}_{α} is invariant under permutation of the coordinates. Therefore, $\|\cdot\|_{\alpha}$ is 1 -symmetric. Also, every element of \mathcal{G}_{α} has ℓ^{∞}-norm at most 1 . Hence $\|(1,0,0, \ldots)\|_{\alpha} \leq 1$. On theother hand, thesingleton (1) lies in \mathcal{M}_{α} for every $1 \leq \alpha<\omega_{1}$. Thus $(1,0,0, \ldots) \in \mathcal{G}_{\alpha}$. Consequently,

$$
\|(1,0,0, \ldots)\|_{\alpha} \geq\langle(1,0,0, \ldots),(1,0,0, \ldots)\rangle=1
$$

Lemma 20 Given $n \in N$, let $1_{n}=(\overbrace{1, \ldots, 1}^{n}, 0,0, \ldots)$. Then for every $1 \leq \alpha<\omega_{1}$, $\left\|1_{n}\right\|_{\alpha} \leq 5 \sqrt{n}$.

Proof Suppose $x \in \mathcal{G}_{\alpha}$. There exist $m=\left(m_{1}, \ldots, m_{l}\right) \in \mathcal{M}_{\alpha}$, and pairwise disjoint sets $A_{1}, \ldots, A_{1} \subseteq N,\left|A_{i}\right|=m_{i}$, such that

$$
x=\sum_{i=1}^{1} \frac{1}{\sqrt{m_{i}}} \chi_{A_{i}}
$$

Choose l_{1} such that $m_{1}+\cdots+m_{l_{1}-1}<n \leq m_{1}+\cdots+m_{1_{1}}$, and let $k=n-\left(m_{1}+\cdots+m_{l_{1}-1}\right)$. Then

$$
\left\langle 1_{n}, x\right\rangle \leq\left\langle 1_{n}, x^{*}\right\rangle \leq \sqrt{m_{1}}+\sqrt{m_{2}}+\cdots+\sqrt{m_{l_{1}-1}}+\frac{k}{\sqrt{m_{l_{1}}}}
$$

Since m is at least doubling,

$$
\begin{aligned}
\left\langle 1_{n}, x\right\rangle & \leq \sqrt{m_{l_{1}-1}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2^{2}}}+\cdots\right)+\frac{k}{\sqrt{m_{l_{1}}}} \\
& \leq \frac{\sqrt{2 n}}{\sqrt{2}-1}+\frac{\sqrt{k n}}{\sqrt{m_{l_{1}}}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{\left\langle 1_{n}, x\right\rangle}{\sqrt{n}} & \leq \frac{\sqrt{2}}{\sqrt{2}-1}+\sqrt{\frac{k}{m_{l_{1}}}} \\
& \leq \frac{\sqrt{2}}{\sqrt{2}-1}+1 \leq 5
\end{aligned}
$$

As a result, $\left\|1_{n}\right\|_{\alpha}=\sup \left\{\left\langle 1_{n}, x\right\rangle: x \in \mathcal{G}_{\alpha}\right\} \leq 5 \sqrt{n}$.
The next proposition is due to Odell, Tomczak-Jaegermann, and Wagner [7, Proposition 3.2a].

Proposition 21 Given $\beta \leq \alpha<\omega_{1}$, and an increasing function $\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N}$, there exists $\mathrm{i} \in \mathrm{N}$ such that $\mathrm{A} \in \mathcal{S}_{\alpha}^{\dagger}$ whenever $\mathrm{A} \in \mathcal{S}_{\beta}^{\dagger}$ and $\min \mathrm{A} \geq \mathrm{i}$.

Proposition 22 Let $\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N}$ bean increasing function. Given any $\mathrm{k} \geq 2$, and $1 \leq \beta<$ $\alpha<\omega_{1}$, there exist $m \in \mathcal{M}_{\alpha}, \varphi(m) \geq k, x \in \mathcal{X}_{m}, \min ($ supp $x) \geq k$, and $y \in c_{00}$ such that $\min ($ supp y$) \geq \mathrm{k},\langle\mathrm{y}, \mathrm{x}\rangle \geq \mathrm{k},\|\mathrm{y}\|_{\gamma} \leq 5\langle\mathrm{y}, \mathrm{x}\rangle$, and $\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\gamma} \leq 10$ for $1 \leq \gamma<\omega_{1}$ and all $A \in S_{\beta}^{f}$.

Proof The proof is by induction on α. Consider $\alpha=2$ and $\beta=1$. Pick m_{1}, \ldots, m_{k} such that $m_{1} \geq k$ and $m_{i+1} \geq \max \left\{2 m_{i}, f\left(k+m_{1}+m_{2}+\cdots+m_{i}\right)\right\}$ for $1 \leq i<k$. Then $m=\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{M}_{2}$, and $\varphi(m) \geq k$. Furthermore,

$$
x=(\overbrace{0, \ldots, 0}^{k}, \overbrace{\frac{1}{\sqrt{m_{1}}}, \ldots, \frac{1}{\sqrt{m_{1}}}}^{m_{1}}, \ldots, \overbrace{\frac{1}{\sqrt{m_{k}}}, \ldots, \frac{1}{\sqrt{m_{k}}}}^{m_{k}}) \in x_{m} .
$$

Now let $\mathrm{y}=\mathrm{x}$. Then $\mathrm{y} \in \mathrm{c}_{00}$ and $\min (\operatorname{supp} \mathrm{x})=\min ($ supp y$) \geq \mathrm{k}$. Computing directly, we have $\langle\mathrm{y}, \mathrm{x}\rangle=\mathrm{k}$. Applying Lemma 20,

$$
\begin{aligned}
\|\mathrm{y}\|_{\gamma} & \leq\|(\overbrace{\left(\frac{1}{\sqrt{m_{1}}}, \ldots, \frac{1}{\sqrt{m_{1}}}\right.}^{m_{1}})\|_{\gamma}+\cdots+\|(\overbrace{\left(\frac{1}{\sqrt{m_{k}}}, \ldots, \frac{1}{\sqrt{m_{k}}}\right.}^{m_{k}})\|_{\gamma} \\
& \leq 5 \mathrm{k}=5\langle\mathrm{y}, \mathrm{x}\rangle .
\end{aligned}
$$

If $A \in \mathcal{S}_{1}^{f}$, choose i such that $k+m_{1}+\cdots+m_{i-1}<\min A \leq k+m_{1}+\cdots+m_{i}$, then

$$
|A| \leq f(\min A) \leq f\left(k+m_{1}+\cdots+m_{i}\right) \leq m_{i+1}
$$

Hence

$$
\begin{aligned}
\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\gamma} & \leq\|(\overbrace{\left(\frac{1}{\sqrt{m_{i}}}, \ldots, \frac{1}{\sqrt{\mathrm{~m}_{\mathrm{i}}}}\right.}^{\mathrm{m}_{\mathrm{i}}})\|_{\gamma}+\|(\overbrace{\left(\frac{1}{\sqrt{m_{i+1}}}, \ldots, \frac{1}{\sqrt{m_{i+1}}}\right.}^{|\mathrm{A}|})\|_{\gamma} \\
& \leq 5+5 \sqrt{\frac{|\mathrm{~A}|}{\mathrm{m}_{\mathrm{i}+1}}} \leq 5+5=10 .
\end{aligned}
$$

Suppose the proposition holds for all ordinals less than or equal to some $\alpha \geq 2$; let us prove it for $\alpha+1$. Say $1 \leq \beta<\alpha+1$. If $\beta<\alpha$, there is nothing to prove since $\mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha+1}$. So we may assume without loss of generality that $\beta=\alpha$. If α is a successor ordinal, apply the inductive hypothesis repeatedly to pick sequences $\left(m_{p}\right)_{p=1}^{\mathrm{k}} \subseteq \mathcal{M}_{\alpha}$, and $\left(x_{p}\right)_{p=1}^{k},\left(y_{p}\right)_{p=1}^{k} \subseteq c_{00}$ such that

1. $\varphi\left(m_{1}\right) \geq k$, and $m_{1} \ll \cdots \ll m_{k}$,
2. $\mathrm{x}_{\mathrm{p}} \in X_{\mathrm{m}_{\mathrm{p}}}, 1 \leq \mathrm{p} \leq \mathrm{k}$,
3. $\{\mathrm{k}\} \leq \operatorname{supp} \mathrm{x}_{1} \cup \operatorname{supp} \mathrm{y}_{1}<\cdots<\operatorname{supp} \mathrm{x}_{\mathrm{k}} \cup \operatorname{supp} \mathrm{y}_{\mathrm{k}}$,
4. $\left\langle y_{p}, x_{p}\right\rangle \geq k$, and $\left\|y_{p}\right\|_{\gamma} \leq 5\left\langle y_{p}, x_{p}\right\rangle, 1 \leq p \leq k$,
5. $\left\|\mathrm{y}_{\mathrm{p}} \chi_{\mathrm{A}}\right\|_{\gamma} \leq 10$ for $1 \leq \gamma<\omega_{1}$ and all $\mathrm{A} \in \mathcal{S}_{\alpha-1}^{f}$,
6.

$$
10 f\left(\max \left(\operatorname{supp} y_{p}\right)\right) \sum_{q=p+1}^{k} \frac{1}{\left\langle y_{q}, x_{q}\right\rangle} \leq 5 \quad \text { for } 1 \leq p<k
$$

Let $m=m_{1} \smile \cdots \smile m_{k}$. Because of condition (3), $m \in \mathcal{M}_{\alpha+1}$, and $\varphi(m) \geq k$. Also, $x=x_{1}+\cdots+x_{k} \in X_{m}, \min (\operatorname{supp} x) \geq k$. Define

$$
\mathrm{y}=\frac{\mathrm{y}_{1}}{\left\langle\mathrm{y}_{1}, \mathrm{x}_{1}\right\rangle}+\cdots+\frac{\mathrm{y}_{\mathrm{k}}}{\left\langle\mathrm{y}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}\right\rangle}
$$

Then $y \in c_{00}, \min (\operatorname{supp} y) \geq k$, and $\langle y, x\rangle \geq k$. Furthermore,

$$
\|\mathrm{y}\|_{\gamma} \leq \frac{\left\|\mathrm{y}_{1}\right\|_{\gamma}}{\left\langle\mathrm{y}_{1}, \mathrm{x}_{1}\right\rangle}+\cdots+\frac{\left\|\mathrm{y}_{\mathrm{k}}\right\|_{\gamma}}{\left\langle\mathrm{y}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}\right\rangle} \leq 5 \mathrm{k} \leq 5\langle\mathrm{y}, \mathrm{x}\rangle
$$

for $1 \leq \gamma<\omega_{1}$. Suppose $A \in \mathcal{S}_{\alpha}^{f}$. Then $A=A_{1} \cup \cdots \cup A_{1}$, where $A_{1}<\cdots<A_{1}$, $A_{1}, \ldots, A_{I} \in S_{\alpha-1}^{f}$ and $I \leq f(\min A)$. Choose i so that

$$
\max \left(\operatorname{supp} y_{i-1}\right)<\min A \leq \max \left(\operatorname{supp} y_{i}\right)
$$

For $1 \leq \gamma<\omega_{1}$,

$$
\begin{aligned}
\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\gamma} & \leq \frac{\left\|\mathrm{y}_{\mathrm{i}}\right\|_{\gamma}}{\left\langle\mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right\rangle}+\sum_{\mathrm{q}=i+1}^{\mathrm{k}} \sum_{\mathrm{p}=1}^{1} \frac{\left\|\mathrm{y}_{\mathrm{q}} \chi_{A_{\mathrm{p}}}\right\|_{\gamma}}{\left\langle\mathrm{y}_{\mathrm{q}}, x_{\mathrm{q}}\right\rangle} \\
& \leq 5+\sum_{\mathrm{q}=i+1}^{\mathrm{k}} \sum_{\mathrm{p}=1}^{1} \frac{10}{\left\langle\mathrm{y}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}}\right\rangle} \quad \text { by conditions (3) and (3) } \\
& =5+10 \left\lvert\, \sum_{\mathrm{q}=i+1}^{\mathrm{k}} \frac{1}{\left\langle\mathrm{y}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}}\right\rangle}\right. \\
& \leq 5+10 \mathrm{f}\left(\max \left(\text { supp } \mathrm{y}_{\mathrm{i}}\right)\right) \sum_{\mathrm{q}=i+1}^{\mathrm{k}} \frac{1}{\left\langle\mathrm{y}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}}\right\rangle} \\
& \leq 10 \text { by condition (3). }
\end{aligned}
$$

Let us turn to the case when α is a limit ordinal. Let (α_{n}) be the sequence used to define \mathcal{S}_{α}^{f} and \mathcal{G}_{α}. Suppose $k \in N$ is given. Pick sequences $\left(i_{p}\right)_{p=1}^{k},\left(m_{p}\right)_{p=1}^{k},\left(x_{p}\right)_{p=1}^{k}$, and $\left(y_{p}\right)_{p=1}^{k}$ as follows. Let $\mathrm{i}_{1}=2$. By the inductive hypothesis, there exist $\mathrm{m}_{1} \in \mathcal{M}_{\alpha_{2}}, \varphi\left(\mathrm{~m}_{1}\right) \geq \mathrm{k}$, $\mathrm{x}_{1} \in X_{\mathrm{m}_{1}}, \min \left(\right.$ supp $\left.\mathrm{x}_{1}\right) \geq \mathrm{k}$, and $\mathrm{y}_{1} \in \mathrm{c}_{00}$ such that $\min \left(\right.$ supp $\left.\mathrm{y}_{1}\right) \geq \mathrm{k},\left\langle\mathrm{y}_{1}, \mathrm{x}_{1}\right\rangle \geq \mathrm{k}$, $\left\|\mathrm{y}_{1}\right\|_{\gamma} \leq 5\left\langle\mathrm{y}_{1}, \mathrm{x}_{1}\right\rangle$, and $\left\|\mathrm{y}_{1} \chi_{\mathrm{A}}\right\|_{\gamma} \leq 10$ for $1 \leq \gamma<\omega_{1}$ and all $\mathrm{A} \in \mathcal{S}_{\alpha_{1}}^{\dagger}$. Suppose all four sequences have been chosen up to p , where $1 \leq \mathrm{p}<\mathrm{k}$. By Proposition 21, there exists $i_{p+1}>f\left(\max \left(\operatorname{supp} x_{p}\right)\right)$ such that $A \in S_{\alpha f\left(\max \left(\text { spp } x_{p}\right)\right)}^{\dagger}$ whenever $A \in S_{\alpha_{j}}^{\dagger}$ for some $j \leq f\left(\max \left(\operatorname{supp} x_{p}\right)\right)$ and $\min A \geq i_{p+1}$. By the inductive hypothesis (applied to the ordinals $\left.\left.\left.\alpha_{f(\max (s u p p} x_{\rho}\right)\right)<\alpha_{i_{p+1}}\right)$, pick

1. $m_{p+1} \in \mathcal{M}_{\alpha_{i p+1}}, m_{p}<m_{p+1}, \varphi\left(m_{p+1}\right) \geq i_{p+1}$,
2. $x_{p+1} \in X_{m_{p+1}}, \min \left(\operatorname{supp} x_{p+1}\right) \geq i_{p+1}$, and
3. $y_{p+1} \in c_{00}$,
such that $\left\langle y_{p+1}, x_{p+1}\right\rangle \geq 2 k,\left\|y_{p+1}\right\|_{\gamma} \leq 5\left\langle y_{p+1}, x_{p+1}\right\rangle$, and $\left\|y_{p+1} \chi_{A}\right\|_{\gamma} \leq 10$ for $1 \leq \gamma<\omega_{1}$
 Now $m_{1} \ll \cdots \ll m_{k}$, and $k \leq \varphi\left(m_{1}\right)$. Hence $m=m_{1} \smile \cdots \smile m_{k} \in \mathcal{M}_{\alpha+1}$. Define $\mathrm{x}=\mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{k}}$. Then $\mathrm{x} \in x_{\mathrm{m}}$ and $\min (\operatorname{supp} \mathrm{x}) \geq \mathrm{k}$. Let

$$
y=\frac{y_{1} \chi_{\text {supp }} x_{1}}{\left\langle y_{1}, x_{1}\right\rangle}+\cdots+\frac{y_{k} \chi_{\text {supp }} x_{k}}{\left\langle y_{k}, x_{k}\right\rangle} .
$$

Then $y \in c_{00}, \min (\operatorname{supp} y) \geq k$, and $\langle y, x\rangle=k$. Furthermore,

$$
\|\mathrm{y}\|_{\gamma} \leq \frac{\left\|\mathrm{y}_{1}\right\|_{\gamma}}{\left\langle\mathrm{y}_{1}, \mathrm{x}_{1}\right\rangle}+\cdots+\frac{\left\|\mathrm{y}_{\mathrm{k}}\right\|_{\gamma}}{\left\langle\mathrm{y}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}\right\rangle} \leq 5 \mathrm{k}=5\langle\mathrm{y}, \mathrm{x}\rangle
$$

for $1 \leq \gamma<\omega_{1}$. Suppose $A \in \mathcal{S}_{\alpha}^{f}$. Then $A \in \mathcal{S}_{\alpha_{r}}^{f}$ for somer $\leq f(\min A)$. Choose p such that

$$
\max \left(\operatorname{supp} x_{p-1}\right)<\min A \leq \max \left(\operatorname{supp} x_{p}\right) .
$$

If $p<q \leq k$, let $A_{q}=A \cap \operatorname{supp} x_{q} \cap \operatorname{supp} y_{q}$. Then $A_{q} \in \mathcal{S}_{\alpha_{r}}^{f}$. Note that

$$
r \leq f(\min A) \leq f\left(\max \left(\operatorname{supp} x_{p}\right)\right) \leq f\left(\max \left(\operatorname{supp} x_{q-1}\right)\right)
$$

and $\min A_{q} \geq \min \left(\operatorname{supp} x_{q}\right) \geq i_{q}$. By the choice of i_{q}, we see that $A_{q} \in \mathcal{S}_{\alpha_{f\left(\max \left(\operatorname{supp} x_{q-1}\right)\right)}^{f}}$. Hence $\left\|\mathrm{y}_{\mathrm{q}} \chi_{\mathrm{A}_{\mathrm{q}}}\right\|_{\gamma} \leq 10$ for $1 \leq \gamma<\omega_{1}$. Therefore,

$$
\begin{aligned}
\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\gamma} & \leq \frac{\left\|\mathrm{y}_{\mathrm{p}}\right\|_{\gamma}}{\left\langle\mathrm{y}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}}\right\rangle}+\sum_{\mathrm{q}=\mathrm{p}+1}^{\mathrm{k}} \frac{\left\|\mathrm{y}_{\mathrm{q}} \chi_{\mathrm{A}_{\mathrm{q}}}\right\|_{\gamma}}{\left\langle\mathrm{y}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}}\right\rangle} \\
& \leq 5+\sum_{\mathrm{q}=\mathrm{p}+1}^{\mathrm{k}} \frac{10}{\left\langle\mathrm{y}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}}\right\rangle} \leq 10
\end{aligned}
$$

since $\left\langle\mathrm{y}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}}\right\rangle \geq 2 \mathrm{k}$ for $1<\mathrm{q} \leq \mathrm{k}$.
Finally, suppose $\alpha_{0}<\omega_{1}$ is a limit ordinal and the proposition holds for all $\alpha<\alpha_{0}$. Let (α_{n}) be the sequence used to define $\mathcal{M}_{\alpha_{0}}$. Let $\mathrm{k} \in \mathrm{N}$, and $1 \leq \beta<\alpha_{0}<\omega_{1}$ be given. Choose n_{0} such that $\beta<\alpha_{\mathrm{n}_{0}}$. There exist $\mathrm{m} \in \mathcal{M}_{\alpha_{n_{0}}}, \varphi(\mathrm{~m}) \geq \mathrm{k}, \mathrm{x} \in \mathcal{X}_{\mathrm{m}}, \min (\operatorname{supp} \mathrm{x}) \geq$ $\max \left\{\mathrm{k}, \mathrm{n}_{0}\right\}$, and $\mathrm{y} \in \mathrm{c}_{00}$ with $\min (\operatorname{supp} \mathrm{y}) \geq \mathrm{k}$ such that $\langle\mathrm{y}, \mathrm{x}\rangle \geq \mathrm{k},\|\mathrm{y}\|_{\gamma} \leq 5\langle\mathrm{y}, \mathrm{x}\rangle$, $\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\gamma} \leq 10$ for $1 \leq \gamma<\omega_{1}$ and all $\mathrm{A} \in \mathcal{S}_{\beta}^{\mathrm{f}}$. Since $\mathrm{n}_{0} \leq \varphi(\mathrm{m}), \mathrm{m} \in \mathcal{M}_{\alpha_{0}}$.

Theorem 23 For $1 \leq \alpha<\omega_{1}$, let E_{α} be the completion of c_{00} with respect to the norm $\|\cdot\|_{\alpha}$. Then E_{α} has 1-symmetric basis, E_{α} embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$, but E_{α} does not embed into $\mathrm{C}\left(\omega^{\omega^{\beta}}\right)$ for any $\beta<\alpha$.

Proof By Lemma 19, the coordinate unit vectors form a 1-symmetric basis of E_{α}. Note that $\mathcal{G}_{\alpha} \subseteq \mathrm{U}_{\mathrm{E}_{\alpha}^{\prime}}$ is a norming subset of $\mathrm{E}_{\alpha}^{\prime}$. By Lemma $18, \mathcal{G}_{\alpha} \subseteq \mathcal{C}_{\alpha}^{\mathrm{g}}$, where $\mathrm{g}(\mathrm{n})=\sqrt{\mathrm{n}}$. Therefore, E_{α} embeds into $\mathrm{C}\left(\omega^{\omega^{\alpha}}\right)$ by Theorem 16. Suppose $\beta<\alpha$ and E_{α} embeds into $\mathrm{C}\left(\omega^{\omega^{\beta}}\right)$. By Proposition 3, there exist an increasing function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, and $\mathrm{K}<\infty$ such that for all $\mathrm{y} \in \mathrm{E}_{\alpha}$,

$$
\begin{equation*}
\|\mathrm{y}\|_{\alpha} \leq \mathrm{K} \sup \left\{\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\alpha}: \mathrm{A} \in \mathcal{S}_{\beta}^{\mathrm{f}}\right\} \tag{1}
\end{equation*}
$$

By Proposition 22, there exist $m \in \mathcal{M}_{\alpha}, x \in \mathcal{X}_{\mathrm{m}}$, and $\mathrm{y} \in \mathrm{c}_{00}$ such that $\langle\mathrm{y}, \mathrm{x}\rangle>10 \mathrm{~K}$, and $\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\alpha} \leq 10$ for all $\mathrm{A} \in \mathcal{S}_{\beta}^{\mathrm{f}}$. Since $\mathrm{x} \in \mathcal{G}_{\alpha}$,

$$
\|\mathrm{y}\|_{\alpha} \geq\langle\mathrm{y}, \mathrm{x}\rangle>10 \mathrm{~K} \geq \mathrm{K} \sup \left\{\left\|\mathrm{y} \chi_{\mathrm{A}}\right\|_{\alpha}: \mathrm{A} \in \mathcal{S}_{\beta}^{\mathrm{f}}\right\}
$$

contrary to (1).

References

[1] D. Alspach and S. Argyros, Complexity of weakly null sequences. Dissertationes Math. (Rozprawy Mat.) 321(1992), 1-44.
[2] C. Bessaga and A. Pekczynski, Spaces of continuous functions (IV) (on isomorphical classification of spaces C (S)). Studia M ath. 19(1960), 53-62.
[3] James Dugundji, Topology. Allyn and Bacon, Inc., Boston, 1966.
[4] Denny H. Leung, Symmetric sequence subspaces of $\mathrm{C}(\alpha)$. J. London M ath. Soc. (To appear.)
[5] Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces I. Springer-Verlag, 1977.
[6] Stefan M azurkiewicz and W. Sierpiński, Contribution à la topologiedes ensembles dénombrables. Fund. M ath. 1(1920), 17-27.
[7] E. Odell, N. Tomczak-Jaegermann, and R. Wagner, Proximity to ℓ_{1} and Distortion in Asymptotic ℓ_{1} spaces. J. Funct. Anal. 150(1997), 101-145.
[8] Z. Semadeni, Banach Spaces of Continuous Functions. Polish Scientific Publishers, Warzawa, 1971.

Department of M athematics	National Institute of Education
N ational University of Singapore	Nanyang Technological University
Singapore 119260	469 Bukit Timah Road
email: matlhh@nus.edu.sg	Singapore 259756
	email: tangwk@nievax.nie.ac.sg

[^0]: Received by the editors December 15, 1997; revised July 16, 1998.
 AM S subject classification: 03E13, 03E15, 46B03, 46B45, 46E15, 54G12.
 (C) Canadian M athematical Society 1999.

