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Consider a particular bidimensional risk model, in which two insurance companies divide
between them in different proportions both the premium income and the aggregate claims.
In practice, it can be interpreted as an insurer–reinsurer scenario, where the reinsurer takes
over a proportion of the insurer’s losses. Under the assumption that the claim sizes and
inter-arrival times form a sequence of independent and identically distributed random
pairs, with each pair obeying a dependence structure, an asymptotic expression for the
ruin probability of this bidimensional risk model with constant interest rates is established.
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1. INTRODUCTION

Consider a particular bidimensional risk model, in which two insurance companies split the
amount they pay out of each claim in positive proportions δ1 and δ2 with δ1 + δ2 = 1. The
surplus of the i-th (i = 1, 2) company up to time t ≥ 0 is given by

Ui(t) = xierit +
∫ t

0

eri(t−s)dCi(s) − δi

N(t)∑
k=1

Xkeri(t−τk), i = 1, 2, (1.1)

where �r = (r1, r2) is the vector of constant force of interest, �x = (x1, x2) is the ini-
tial surplus vector, �C(t) = (C1(t), C2(t)) is the vector of the total premium accumulated
up to time t with the nondecreasing and right continuous stochastic process satisfying
�C(0) = (0, 0), and {Xi; i ≥ 1} is the sequence of claim sizes whose common arrival times
τ1, τ2, . . . constitute a renewal claim-number process {N(t); t ≥ 0} with finite renewal func-
tion λt = EN(t) =

∑∞
i=1 P(τi ≤ t). Note that this particular bidimensional risk model, firstly

proposed by Avram et al. [2], where they focused on a special case that the loss process is
a compound Poisson process with premiums only, is different from the usually-mentioned
bidimensional risk model confronting a book of two dependent classes of business (see Chan
et al. [5], Chen et al. [6–8], Gao and Yang[12], Jiang et al. [15], and references therein). It
can be interpreted as an insurer–reinsurer scenario, where the reinsurer takes over a pro-
portion of the insurer’s losses. It is well-known that reinsurance contracts between a direct
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insurer and a reinsurer are used to transfer part of the risks assumed by the insurer, and
proportional reinsurance is one of the main reinsurance forms. Under proportional rein-
surance, the arrangement may be quota share reinsurance with a fixed percentage of each
insurance policy being reinsured. Due to its wide applications in real life, this bidimensional
risk model has been studied by many researchers, and one can refer to Badescu et al. [3],
Foss et al. [10], Fu [11], Hu and Jiang [14], and Zhang and Wang [19] for more details.

Note that in reality if the deductible applied to each loss is raised, then the claim sizes
would decrease and the inter-arrival time will increase, since small losses will be retained
by the insured. Hence, it is reasonable to admit some kind of dependence structure between
the claim sizes {Xi; i ≥ 1} and their corresponding inter-arrival times {θi = τi − τi−1;
i ≥ 1}(τ0 = 0), and in this paper, we use the dependence structure proposed by Asimit
and Badescu [1], which is termed as time-dependence. For notational convenience, we state
the assumption as follows.

Assumption A. The pairs of claim size and its corresponding inter-arrival time
(Xi, θi), i ≥ 1, are independent and identically distributed (i.i.d.) copies of a generic pair
(X, θ) with marginal distributions F and G on [0,∞), which fulfills the relation

P(X > x|θ = t) ∼ P(X > x)h(t) (1.2)

uniformly for all t ∈ [0,∞) and for some measurable function h(·) : [0,∞) → (0,∞) with
inft≥0 h(t) > 0.

Note that to avoid triviality, both F and G are assumed not degenerate at 0, and the symbol
∼ above means that the quotient of both sides tends to 1 as x→ ∞. When t is not in the
support of θ, the conditional probability in (1.2) is understood as unconditional and h(t) = 1
for such t. As discussed in Asimit and Badescu [1] and Li et al. [16], relation (1.2) defines
a general dependence structure which includes many commonly-used bivariate copulas, for
example, the Ali–Mikhail–Haq, Farlie–Gumbel–Morgenstern and Frank copulas, and allows
for both negative and positive dependence.

As for this particular time-dependent bidimensional risk model, define the finite-time
ruin probability as follows,

ψ(�x, T ) = P(τ(x1, x2) ≤ T |Ui(0) = xi, i = 1, 2), (1.3)

where τ(x1, x2) = inf{t : max{U1(t), U2(t)} < 0} represents the time when U1(t) and U2(t)
first become negative simultaneously; see Chan et al. [5].

In this paper, we aim to show the asymptotic behavior of (1.3) as �x→ ∞, i.e., (x1, x2) →
(∞,∞), with fixed T . In the rest of this paper, Section 2 presents our main result after
introducing necessary preliminaries, and the proof of the main result with some crucial
lemmas is exhibited in Section 3.

2. NOTATION AND MAIN RESULTS

In modeling extremal event, heavy-tailed risk has played an important role in insurance
and finance, because it can describe large claims efficiently. We now introduce some related
classes of heavy-tailed distributions. Denote the survival distribution of a random vari-
able with distribution F by F (x) = 1 − F (x) = P(X > x) > 0. A useful heavy-tailed class
is the class L of all distribution functions with long tail, characterized by the relation
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limx→∞ F (x+ y)/F (x) = 1 for any y ∈ R. A subclass of L is the class C of consistently
varying functions. By definition, F ∈ C if

lim
y↘1

F ∗(y) = 1 or, equivalently, lim
y↗1

F
∗
(y) = 1,

where F ∗(y) := lim infx→∞ F (xy)/F (x) and F
∗
(y) := lim supx→∞ F (xy)/F (x). An impor-

tant subclass of the class C is the class R−α of regularly varying functions specified by

lim
x→∞

F (xy)
F (x)

= y−α, y ≥ 1,

for some α > 0. We use R to denote the union of all R−α over the range 0 < α <∞.
It is noted that the class R contains lots of popular distributions such as Pareto, Burr,
Loggamma, and t distributions. In addition, F on [0,∞) belongs to the dominated varia-
tion class by denoting F ∈ D, if lim supx→∞ F (x/2)/F (x) <∞. It is well known that the
following inclusions are proper

R ⊂ C ⊂ D ∩ L; (2.1)

see, Embrechts et al. [9] for more details.
Also we need two significant indices for any distribution F supported on [0,∞). Set

M∗(F ) = − lim
y→∞

logF ∗(y)
log y

and M∗(F ) = − lim
y→∞

logF
∗
(y)

log y
.

Following Tang and Tsitsiashvili [17], they are called the upper and lower Matuszewska
indices, respectively. Generally, 0 ≤M∗(F ) ≤M∗(F ) ≤ ∞. If F ∈ R−α, then M∗(F ) =
M∗(F ) = α. Especially, if F ∈ D, then M∗(F ) <∞.

Also note that it follows from (1.2) that Eh(θ) = 1. Hence, we define a random variable
θ∗ independent of {(Xi, θi); i ≥ 1}, with the distribution G∗(dt) = h(t)G(dt). With inter-
arrival times θ∗, θi, i ≥ 2, we construct a delayed renewal counting process {N∗(t); t ≥ 0}
with claim arrival time τ∗1 = θ∗ and τ∗k = θ∗ +

∑k
i=2 θi, k = 2, 3, . . . . Denote by λ∗t the

corresponding renewal function of {N∗(t); t ≥ 0}, and it is easily seen that

λ∗t =
∫ t

0

(1 + λt−u)h(u)G(du) =
∫ t

0

(1 + λt−u)G∗(du).

Moreover, we assume that �C(t) is independent of all source of randomness.
Hereafter, all limit relationships are for (x1, x2) → (∞,∞) (�x→ ∞) unless other-

wise stated. For two positive functions a(x1, x2) and b(x1, x2), we write a(x1, x2) �
b(x1, x2) or b(x1, x2) � a(x1, x2), if lim sup a(x1, x2)/b(x1, x2) ≤ 1, a(x1, x2) ∼ b(x1, x2)
if both a(x1, x2) � b(x1, x2) and a(x1, x2) � b(x1, x2), and a(x1, x2) 
 b(x1, x2) if both
lim sup a(x1, x2)/b(x1, x2) <∞ and lim sup b(x1, x2)/a(x1, x2) <∞.

Now we are ready to present our main result of this paper.

Theorem 2.1: Consider the bidimensional risk model given by (1.1) with Assumption A
being fulfilled. If F ∈ C with M∗(F ) > 0, then for every 0 < T <∞ satisfying P(τ1 ≤ T ) > 0,
we have

ψ(�x, T ) ∼
∫ T

0

F
(
(x1er1u/δ1) ∨ (x2er2u/δ2)

)
dλ∗u. (2.2)
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Remark 2.1: From the proofs below, we can conclude that it allows to go beyond two
insurance companies and consider a model with d-dimensional insurance contracts. In that
case, under the conditions of Theorem 2.1, a similar proof of Theorem 2.1 will result in that
the finite time ruin probability is asymptotically equivalent to

∫ T

0
F (∨d

i=1(xieriu/δi))dλ∗u,
where xi, ri and δi (i = 1, . . . , d) are defined similarly to those in model (1.1).

In particular, if the two insurance companies invest all of their reserves into the same
bond, then we have the following corollary immediately.

Corollary 2.1: Consider the bidimensional risk model given by (1.1) with Assumption A
being fulfilled. Suppose that the insurance companies invest their reserves totally into a bond
with constant force of interest r > 0. If F ∈ R−α for some α > 0, then for every 0 < T <∞
satisfying P(τ1 ≤ T ) > 0, we have

ψ(�x, T ) ∼ F

(
x1

δ1
∨ x2

δ2

)∫ T

0

e−rαudλ∗u.

Remark 2.2: Hu and Jiang [14] and Zhang and Wang [19] have ever considered similar
models with constant interest rates, and asymptotic expressions were derived under dif-
ferent conditions. Theorem 2.1 and Corollary 2.1 allow for the dependence between the
claim sizes and their corresponding inter-arrival times, which extend the results of Hu
and Jiang [14] and Zhang and Wang [19] to a more general and practical setting. From
Remark 2.1, it follows, under the conditions of Corollary 2.1, the finite time ruin probabil-
ity of a similar model with d-dimensional insurance contracts is asymptotically equivalent
to F (∨d

i=1xi/δi)
∫ T

0
e−rαudλ∗u.

3. PROOFS

If F ∈ D, then from Proposition 2.2.1 in Bingham et al. [4] that, for any p1 < M∗(F ) and
p2 > M∗(F ), there are positive constants ci and d, i = 1, 2, such that the two-side inequality

c1(x/y)p1 ≤ F (y)/F (x) ≤ c2(x/y)p2 (3.1)

holds for all x ≥ y ≥ d. Furthermore, fixing the variable y in (3.1) gives x−p = o(F (x)) for
p > M∗(F ). In what follows, A(x) 
 B(x) means both lim supx→∞A(x)/B(x) <∞ and
lim supx→∞B(x)/A(x) <∞.

For proving the main result, we need the following series of lemmas. Besides their critical
role in the proof of Theorem 2.1, some of these lemmas are themselves interesting. Among
them, Lemma 3.1 is from Lemma 5.7 of Tang and Yuan [18], which will be used frequently
in the proofs.

Lemma 3.1: Let X be a random variable with a dominatedly-varying right tail and upper
Matuszewska index M∗(F ) (F is the distribution function of X), let θ be a nonnegative
random variable with Eθβ <∞ for some β > M∗(F ), let {Δt, t ∈ T } be a set of random
events satisfying limt→t0 P(Δt) = 0 for some t0 in the closure of the index set T , and let
{θ, {Δt, t ∈ T }} be independent of X. Then

lim
t→t0

lim sup
x→∞

P(θX > x,Δt)
P(θX > x)

= lim
t→t0

lim sup
x→∞

P(θX > x,Δt)
P(X > x)

= 0.
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Lemma 3.2: Under the conditions of Theorem 2.1, it holds, for any fixed n and 0 < T <∞,

P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2, N(T ) = n

⎞
⎠

∼
n∑

i=1

P
(
Xie−r1τi > x1,Xie−r2τi > x2, N(T ) = n

)
. (3.2)

Proof: Note that the event {N(T ) = n} in relation (3.2) could have a probability 0. In
the proof below, we still use the notation a(x1, x2, T ) ∼ b(x1, x2, T ) even though the two
functions a(x1, x2, T ) and b(x1, x2, T ) could be simultaneously equal to 0. For such an
occasion the notation exactly means a(x1, x2, T ) = (1 + o(1))b(x1, x2, T ).

For any 0 < ε < 1, we have

P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2, N(T ) = n

⎞
⎠

≤
n∑

i=1

n∑
j=1

P
(
Xie−r1τi > (1 − ε)x1,Xje−r2τj > (1 − ε)x2, N(T ) = n

)

+ P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2,

n⋂
j=1

(Xje−r2τj ≤ (1 − ε)x2), N(T ) = n

⎞
⎠

+ P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,
n∑

j=1

Xje−r2τj > x2,
n⋂

i=1

(Xie−r1τi ≤ (1 − ε)x1), N(T ) = n

⎞
⎠

=: I1 + I2 + I3.

As for I1, we have

I1 ≤
n∑

i=1

P
(
Xie−r1τi > (1 − ε)x1,Xie−r2τi > (1 − ε)x2, N(T ) = n

)
+

∑
1≤i
=j≤n

P (Xi > x1,Xj > x2, N(T ) = n)

=
n∑

i=1

Pii +
∑

1≤i
=j≤n

Pij .

Note that

Pii ≥ P
(
Xie−r1T > (1 − ε)(x1 ∨ x2), N(T ) = n

)

 P(Xi > x1 ∨ x2), (3.3)

and Pij = o(P(Xi > x1)), Pij = o(P(Xj > x2)), deduced from Lemma 3.1. This implies
Pij/Pii → 0 as �x→ ∞, which, coupled with

Pii =
∫

· · ·
∫

Ωn(T )

P
(
Xie−r1ti > (1 − ε)x1,Xie−r2ti > (1 − ε)x2

∣∣∣θi = si

)

×G(T − tn)
n∏

k=1

G(dsk)
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∼
∫

· · ·
∫

Ωn(T )

P(Xie−r1ti > (1 − ε)x1,Xie−r2ti > (1 − ε)x2)h(si)G(T − tn)
n∏

k=1

G(dsk)

� 1
F ∗((1 − ε)−1)

∫
· · ·
∫

Ωn(T )

P(Xie−r1ti > x1,Xie−r2ti > x2)h(si)G(T − tn)
n∏

k=1

G(dsk)

=
1

F ∗((1 − ε)−1)
P(Xie−r1τi > x1,Xie−r2τi > x2, N(T ) = n), (3.4)

where Ωn(t) = {(s1, . . . , sn) ∈ [0, t]n : tn =
∑n

k=1 sk ≤ t} and Assumption A is applied,
gives

I1 � 1
F ∗((1 − ε)−1)

n∑
i=1

P(Xie−r1τi > x1,Xie−r2τi > x2, N(T ) = n).

While for I2, we have

I2 ≤
n∑

i=1

n∑
j=1

∑
1≤k≤n

k 
=j

× P

(
Xie−r1τi >

x1

n
,
x2

n
< Xje−r2τj < (1 − ε)x2,Xke−r2τk >

εx2

n− 1
, N(T ) = n

)

≤
n∑

i=1

∑
1≤k≤n

k 
=i

P

(
Xie−r1τi >

x1

n
,Xie−r2τi >

x2

n
,Xke−r2τk >

εx2

n− 1
, N(T ) = n

)

+
n∑

i=1

∑
1≤j≤n

j 
=i

∑
1≤k≤n

k 
=j

P

(
Xie−r1τi >

x1

n
,Xke−r2τk >

εx2

n− 1
,Xje−r2τj >

x2

n
,N(T ) = n

)

= o

(
n∑

i=1

Pii

)
= o(I1),

where in the last step Lemma 3.1 with (3.3) is applied. Taking a similar proof, we can obtain
I3 = o(I1). Hence, by letting first �x→ ∞ and then ε→ 0, with F ∈ C, we can get

P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2, N(T ) = n

⎞
⎠

�
n∑

i=1

P
(
Xie−r1τi > x1,Xie−r2τi > x2, N(T ) = n

)
. (3.5)
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As for the asymptotic lower bound, we have, for any 0 < ε < 1,

P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2, N(T ) = n

⎞
⎠

≥ P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2, max
1≤i≤n

Xie−r1τi > (1 + ε)x1,

max
1≤j≤n

Xje−r2τj > (1 + ε)x2, N(T ) = n

)

≥
n∑

i=1

P
(
Xie−r1τi > (1 + ε)x1,Xie−r2τi > (1 + ε)x2, N(T ) = n

)
+

∑
1≤i
=j≤n

P(Xie−r1T > (1 + ε)x1,Xje−r2T > (1 + ε)x2, N(T ) = n)

−
n∑

i=1

n∑
j=1

∑
1≤k≤n

k 
=j

P
(
Xie−r1τi > (1 + ε)x1,Xje−r2τj > (1 + ε)x2,

Xke−r2τk > (1 + ε)x2, N(T ) = n
)

−
n∑

k=1

n∑
j=1

∑
1≤i≤n

i
=j

P
(
Xie−r1τi > (1 + ε)x1,Xje−r1τj > (1 + ε)x1,

Xke−r2τk > (1 + ε)x2, N(T ) = n
)

= (1 + o(1))
n∑

i=1

P(Xie−r1τi > (1 + ε)x1,Xie−r2τi > (1 + ε)x2, N(T ) = n),

where in the last step Lemma 3.1 is applied again. By taking a similar way to the proof of
(3.4), we can get

P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,
n∑

j=1

Xje−r2τj > x2, N(T ) = n

⎞
⎠

� F ∗(1 + ε)
n∑

i=1

P
(
Xie−r1τi > x1,Xie−r2τi > x2, N(T ) = n

)
.

Hence, by letting first �x→ ∞ and then ε→ 0 with F ∈ C, we have

P

⎛
⎝ n∑

i=1

Xie−r1τi > x1,

n∑
j=1

Xje−r2τj > x2, N(T ) = n

⎞
⎠

�
n∑

i=1

P(Xie−r1τi > x1,Xie−r2τi > x2, N(T ) = n).

This, together with (3.5), implies (3.2) holds, and the proof of Lemma 3.2 is finished. �
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Lemma 3.3: Let the pairs of claim size and its corresponding inter-arrival time (Xi, θi), i ≥
1, be i.i.d. random vectors and Assumption A is fulfilled. Then under the conditions of
Theorem 2.1, it holds, for every 0 < T <∞ satisfying P(τ1 ≤ T ) > 0,

P

⎛
⎝N(T )∑

i=1

Xie−r1τi > x1/δ1,

N(T )∑
j=1

Xje−r2τj > x2/δ2

⎞
⎠

∼
∫ T

0

F
(
(x1er1u/δ1) ∨ (x2er2u/δ2)

)
dλ∗u.

Proof: Arbitrarily choose some positive integer M . Note that

P

⎛
⎝N(T )∑

i=1

Xie−r1τi > x1/δ1,

N(T )∑
j=1

Xje−r2τj > x2/δ2

⎞
⎠

=

(
M∑

n=1

+
∞∑

n=M+1

)
P

⎛
⎝ n∑

i=1

Xie−r1τi > x1/δ1,

n∑
j=1

Xje−r2τj > x2/δ2, N(T ) = n

⎞
⎠

=: I4 + I5.

First consider I4. By applying Lemma 3.2, we arrive at

I4 ∼
M∑

n=1

n∑
i=1

P(Xie−r1τi > x1/δ1,Xie−r2τi > x2/δ2, N(T ) = n)

=

( ∞∑
n=1

−
∞∑

n=M+1

)
n∑

i=1

P(Xie−r1τi > x1/δ1,Xie−r2τi > x2/δ2, N(T ) = n)

=: I41 − I42, (3.6)

Let {θ∗i ; i ≥ 1} be the i.i.d. copies of θ∗, independent of {(Xi, θi); i ≥ 1}. Then by
interchanging the order of the sums, we can get that

I41 =
∞∑

i=1

∫ T

0

∫ T−u

0

P(Xie−r1(u+v) > x1/δ1,Xie−r2(u+v) > x2/δ2

∣∣∣θi = u)

× P(τi−1 ∈ dv)P(θi ∈ du)

∼
∞∑

i=1

∫ T

0

∫ T−u

0

P(Xie−r1(u+v) > x1/δ1,Xie−r2(u+v) > x2/δ2)

× P(τi−1 ∈ dv)h(u)P(θi ∈ du)

=
∞∑

i=1

∫ T

0

∫ T−u

0

P(Xie−r1(u+v) > x1/δ1,Xie−r2(u+v) > x2/δ2)P(τi−1 ∈ dv)P(θ∗i ∈ du)
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=
∞∑

i=1

P(Xie−r1(τi−1+θ∗
i ) > x1/δ1,Xie−r2(τi−1+θ∗

i ) > x2/δ2, τi−1 + θ∗i ≤ T )

=
∫ T

0

F ((x1er1u/δ1) ∨ (x2er2u/δ2))
∞∑

i=1

P(τ∗i ∈ du)

=
∫ T

0

F ((x1er1u/δ1) ∨ (x2er2u/δ2))dλ∗u, (3.7)

since τi−1 + θ∗i
d= τ∗i with d= denoting equality in distribution, where Assumption A is used

in the second step.
As for I42, we have

I42 ≤
∞∑

n=M+1

n∑
i=1

P

(
Xi >

x1

δ1
∨ x2

δ2
, τn − θi ≤ T

)

≤
∞∑

n=M+1

nF

(
x1

δ1
∨ x2

δ2

)
P(τn−1 ≤ T )

≤
∞∑

n=M+1

nF

(
x1

δ1
∨ x2

δ2

)
P(N(T ) ≥ n− 1)

≤ F

(
x1

δ1
∨ x2

δ2

)
E(N(T ) + 1)2I(N(T ) ≥M),

where I(·) is an indicator function. This leads to limM→∞ lim�x→∞ I42/I41 = 0, where
E(N(T ))Q <∞ for any Q > 0, deduced from Lemma 4.2 of Hao and Tang [13], is employed.
Hence, to complete the proof, it is sufficient to show I5 = o(I4), as first �x→ ∞ and then
M → ∞.

Now we begin to deal with I5. Find an N such that
∑∞

i=1 1/i2 < N, and then it follows
that, for x1, x2 large enough and p2 > M∗(F ),

I5 ≤
∞∑

n=M+1

P

⎛
⎝ n∑

i=1

Xie−r1τi >

n∑
i=1

x1

i2Nδ1
,

n∑
j=1

Xje−r2τj >

n∑
j=1

x2

j2Nδ2
, τn ≤ T

⎞
⎠

≤
∞∑

n=M+1

n∑
i=1

n∑
j=1

P

(
Xi >

x1

i2Nδ1
,Xj >

x2

j2Nδ2
, τn ≤ T

)

≤
∞∑

n=M+1

(
n∑

i=1

F

(
1
i2N

(
x1

δ1
∨ x2

δ2

))
P(τn−1 ≤ T )

+
∑

1≤i
=j≤n

F

(
x1

i2Nδ1

)
F

(
x2

j2Nδ2

)
P(τn−2 ≤ T )

⎞
⎠

≤ C
∞∑

n=M+1

(
n∑

i=1

(i2N)p2F

(
x1

δ1
∨ x2

δ2

)
P(N(T ) ≥ n− 1)

+
∑

1≤i
=j≤n

(ijN)2p2F (x1)F (x2)P(N(T ) ≥ n− 2)

⎞
⎠
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≤ C

(
F

(
x1

δ1
∨ x2

δ2

)
E(N(T ) + 1)2p2+1I(N(T ) ≥M)

+ F (x1)F (x2)E(N(T ) + 2)4p2+3I(N(T ) ≥M − 1)

)
, (3.8)

where (3.1) is used in the fourth step, and C denotes a generic constant that may be
different in each of its appearance. Applying E(N(T ))Q <∞ for any Q > 0 again, it results
in limM→∞ lim�x→∞ I5/I41 = 0, which implies I5 = o(I4), as first �x→ ∞ and then M → ∞,
and the proof of Lemma 3.3 is completed. �

Now we begin to prove Theorem 2.1.

Proof of Theorem 2.1: Observe that

ψ
(
�x, T ) = P(U1(t) < 0, U2(t) < 0 for some 0 ≤ t ≤ T

∣∣Ui(0) = xi, i = 1, 2
)

= P

⎛
⎝ inf

0≤t≤T
max

⎛
⎝xi +

∫ t

0

e−risdCi(s) − δi

N(t)∑
k=1

Xke−riτk , i = 1, 2

⎞
⎠ < 0

⎞
⎠.

Then by applying Lemma 3.3, it gives

ψ(�x, T ) ≤ P

⎛
⎝N(T )∑

i=1

Xie−r1τi > x1/δ1,

N(T )∑
j=1

Xje−r2τj > x2/δ2

⎞
⎠

∼
∫ T

0

F ((x1er1u/δ1) ∨ (x2er2u/δ2))dλ∗u. (3.9)

Denote by H(·, ·) the joint distribution function of (
∫∞
0

e−r1sC1(ds),
∫∞
0

e−r2sC2(ds)),
and then an application of Lemma 3.3 leads to

ψ(�x, T ) ≥ P

⎛
⎝N(T )∑

k=1

Xke−riτk >

(
xi +

∫ ∞

0

e−risCi(ds)
)/

δi, i = 1, 2

⎞
⎠

=
∫∫

0<s1,s2<∞
P

⎛
⎝N(T )∑

k=1

Xke−riτk > (xi + si)
/
δi, i = 1, 2

⎞
⎠H(ds1,ds2)

∼
∫∫

0<s1,s2<∞

∫ T

0

F (((x1 + s1)er1u/δ1) ∨ ((x2 + s2)er2u/δ2))dλ∗uH(ds1,ds2).

By making use of F ∈ C ⊂ L, we have∫ T

0

F (((x1 + s1)er1u/δ1) ∨ ((x2 + s2)er2u/δ2))dλ∗u ∼
∫ T

0

F ((x1er1u/δ1) ∨ (x2er2u/δ2))dλ∗u,

which, coupled with the dominated convergence theorem, guarantees

ψ(�x, T ) �
∫ T

0

F ((x1er1u/δ1) ∨ (x2er2u/δ2))dλ∗u.

This, combined with (3.9), completes the proof of Theorem 2.1. �
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