A Simple Proof of a Theorem of Landau

By E. M. Wright

(Received 14th August, 1951. Read 2nd November, 1951.)

Let $\sigma_{k}(x)$ be the number of integers $n \leqslant x$ which are the product of just k prime factors, so that

$$
\begin{equation*}
n=p_{1} p_{2} \ldots p_{k} \tag{1}
\end{equation*}
$$

and let $\pi_{k}(x)$ be the number of such n for which all the p_{i} are different. The behaviour of $\pi_{k}(x)$ and $\sigma_{k}(x)$ as $x \rightarrow \infty$ is given by

Theorem : $\quad \pi_{k}(x) \sim \sigma_{k}(x) \sim \frac{x(\log \log x)^{k-1}}{(k-1)!\log x}$.
In 1791 Gauss [1] conjectured this result for $k=1,2,3$ " et sic in inf." The case $k=1$ is the celebrated Prime Number Theorem, first proved by Hadamard [2] and de la Vallee Poussin [3] in 1896. For $k \geqslant 2$, the theorem was first proved by Landau [4] in 1900.

Subsequently, Landau [5] found asymptotic expansions for $\pi_{k}(x)$ and $\sigma_{k}(x)$ with error $O\left(x \log ^{-m} x\right)$ for any m. More recently, S. M. Shah [6] and S. Selberg [7] have obtained similar results by more elementary methods.
A. Selberg [8] recently found an elementary proof of

$$
\begin{equation*}
\vartheta(x) \equiv \sum_{p \leqslant x} \log p \sim x \tag{2}
\end{equation*}
$$

which is equivalent to the Prime Number Theorem. Here I present an elementary deduction of our theorem for $k \geqslant 2$ from (2) and the well-known elementary result

$$
\begin{equation*}
\sum_{p \leqslant x} \frac{1}{p} \sim \log \log x \tag{3}
\end{equation*}
$$

So far as I am aware, my method is substantially simpler than any of the earlier methods.

We write c_{n} for the number of ways of expressing n in the form (1), order being relevant. Clearly $c_{n}=0$, unless n is a product of just k prime factors; in this case $c_{n}=k$! or $\mathrm{I} \leqslant c_{n}<k$! according as the k primes are
or are not, all different. We write

$$
\Pi_{k}(x)=\sum_{n \leqslant x} c_{n}=\underset{p_{1} p_{2} \ldots p_{k} \leqslant x}{\Sigma} \mathrm{l}
$$

and so have

$$
\begin{equation*}
k!\pi_{k}(x) \leqslant \Pi_{k}(x) \leqslant k!\sigma_{k}(x) \tag{4}
\end{equation*}
$$

Again, there are just $\sigma_{l c}(x)-\pi_{k}(x)$ values of $n \leqslant x$, each of which is representable in the form (1) with two at least of the p_{i} equal. We may take $p_{k-1}=p_{k}$ and so

$$
\begin{equation*}
\sigma_{k}(x)-\pi_{k}(x) \leqslant \sum_{p_{1} p_{2} \ldots p_{k-2} p_{k-1}^{2} \leqslant x} 1 \leqslant \sum_{p_{1} \ldots p_{k-1} \leqslant x} 1=\Pi_{k-1}(x) \tag{5}
\end{equation*}
$$

We write $\Omega_{0}(x)=1$ and, for $k \geqslant 1$,

$$
\Omega_{k}(x)=\sum_{n \leqslant x} \frac{c_{n}}{n}=\sum_{p_{1} \ldots p_{k} \leqslant x} \frac{1}{p_{1} \ldots p_{k}},
$$

so that

$$
\Omega_{k}(x)=\sum_{p_{1} \leqslant x} \frac{1}{p_{1}} \sum_{p_{2} \ldots p_{k} \leqslant x / p_{1}} \frac{1}{p_{2} \ldots p_{k}}=\sum_{p_{1} \leqslant x} \frac{1}{p_{1}} \Omega_{k-1}\left(\frac{x}{p_{1}}\right) .
$$

We also write

$$
\vartheta_{k}(x)=\sum_{n \leqslant x} c_{n} \log n=\sum_{p_{1} \ldots p_{k} \leqslant x} \log \left(p_{1} p_{2} \ldots p_{k}\right)
$$

so that

$$
\begin{aligned}
k \vartheta_{k+1}(x) & =\sum_{p_{1} \ldots p_{k+1} \leqslant x}\left\{\log \left(p_{2} p_{3} \ldots p_{k+1}\right)+\log \left(p_{1} p_{3} \ldots p_{k+1}\right)\right. \\
& =(k+1) \sum_{p \leqslant x} \vartheta_{k}\left(\frac{x}{p}\right)
\end{aligned}
$$

Hence, if

$$
\phi_{k}(x)=\vartheta_{k}(x)-k x \Omega_{k-1}(x)
$$

we have

$$
k \phi_{k+1}(x)=(k+1) \sum_{p \leqslant x} \phi_{k}\left(\frac{x}{p}\right) \quad(k \geqslant 1)
$$

If, for some fixed $k \geqslant 1$,

$$
\begin{equation*}
\phi_{k}(x)=o\left\{(\log \log x)^{k-1}\right\} \tag{6}
\end{equation*}
$$

it follows that

$$
\left|\phi_{k+1}(x)\right| \leqslant x(\log \log x)^{k-1} \sum_{p \leqslant x} \frac{1}{p} f\left(\frac{x}{p}\right)
$$

where, for any $\epsilon>0$,

$$
0<f(x) \leqslant A \quad(x \geqslant 1), \quad f(x)<\epsilon\left(x \geqslant x_{0}=x_{0}(\epsilon)\right)
$$

Hence

$$
\begin{aligned}
\sum_{p \leqslant x} \frac{1}{p} f\left(\frac{x}{p}\right) & \leqslant \epsilon \underset{p \leqslant x / x_{0}}{\sum} \frac{1}{p}+A \sum_{x / x_{0} \leqslant p \leqslant x} \frac{1}{p} \\
& \leqslant \epsilon \log \log \left(\frac{x}{x_{0}}\right)+A \log \left(\frac{\log x}{\log x-\log x_{0}}\right)+O(1) \\
& \leqslant 2 \epsilon \log \log x
\end{aligned}
$$

for $x \geqslant x_{1} \geqslant x_{0}$, and so

$$
\phi_{k+1}(x)=o\left\{x(\log \log x)^{k}\right\}
$$

which is (6) with $k+1$ for k. But, for $k=1$, (6) is equivalent to (2). Hence (6) is true for all $k \geqslant 1$.

Next we have

$$
\left(\sum_{p \leqslant \sqrt[k]{x}} \frac{1}{p}\right)^{k} \leqslant \Omega_{k}(x) \leqslant\left(\sum_{p \leqslant x} \frac{1}{p}\right)^{k}
$$

and so, by (3),

$$
\Omega_{k}(x) \sim(\log \log x)^{k}
$$

Hence, by (6),

$$
\vartheta_{k}(x) \sim k x(\log \log x)^{k-1}
$$

Trivially

$$
\begin{equation*}
\vartheta_{k}(x)=\sum_{n \leqslant x} c_{n} \log n \leqslant \Pi_{k}(x) \log x \tag{7}
\end{equation*}
$$

and, if $X=\frac{x}{\log x}$;

$$
\vartheta_{k}(x) \geqslant \sum_{X<n \leqslant x} c_{n} \log n \geqslant\left\{\Pi_{k}(x)-\Pi_{k}(X)\right\} \log X .
$$

But $\log X \sim \log x$ and, for $k \geqslant 2$,

$$
\Pi_{k}(X)=O(X)=O\left(\frac{x}{\log x}\right)=o\left(\frac{i \lambda_{k}(x)}{\log x}\right)=o\left(\Pi_{k}(x)\right)
$$

by (7). Hence

$$
\Pi_{k}(x) \sim \frac{\vartheta_{k}(x)}{\log x} \sim \frac{k x(\log \log x)^{k-1}}{\log x}
$$

and so, by (4) and (5),

$$
\pi_{k}(x) \sim \sigma_{k}(x) \sim \frac{x(\log \log x)^{k-1}}{(k-1)!\log x} \quad(k \geqslant 2)
$$

REFERENCES.

1. C. F. Gauss, Werke, vol. 10 (Göttingen 1917), 11.
2. J. Hadamard, Bull. Soc. Math. de France, 24 (1896), 199-220.
3. Ch. de le Vallée Poussin, Ann. Soc. Sc. Bruxelles, 20 II (1896), 183-256.
4. E. Landau, Bull. Soc. Math. de France, 29 (1900), 25-38; Handbuch der Lehre von der Verteilung der Primzahlen (Leipzig 1909) I, 205-13.
5. E. Landau, Göttinger Nachrichten, Math.-phys. Kl. (1911), 361-381.
6. S. M. Shah, Indian Phys. Math. Journal, 4 (1933), 47-53, and Proc. Acad. Sci. India, 4 (1935), 207-216.
7. S. Selberg, K. Norske Vidensk Selskab Forhandlinger, 13 (1940), 30-33, and Skrifter Norske Vidensk-Akad, Oslo I Nat.—Naturv Kl., 1942, No. 5.
8. A. Selberg, Annals of Math., 50 (1949), 305-313.

Department of Mathematics,

University of Aberdeen.

