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ON A PROPERTY OF NILPOTENT GROUPS 

MICHAEL DOKUCHAEV 

ABSTRACT. Let g be an element of a group G and [g, G] = (g~la~lga \ a G G). 
We prove that if G is locally nilpotent then for each g,t £ G either g[g, G] = t[t, G] or 
g[g>G] n ?[?, G] = 0. The converse is true if G is finite. 

1. Introduction. For a group G and a fixed g G G we denote by [g, G] the subgroup 
of G generated by all commutators [g,a] — g~la~lga (a G G). Obviously, [g, G] is 
normal in G, since [g, a]^ = [g, b]~~l [g, ab] for each a,b G G (here a* = b~lab). 

It is an elementary but useful property of a nilpotent group G of class 2 that G is 
divided into disjoint sets of the form g[g, G]. We intend to generalize this fact for arbitrary 
locally nilpotent groups and at the same time to obtain a criterion of nilpotency in the 
case of finite groups. 

DEFINITION. We say that a group G satisfies condition (X) if for all gjeG either 
g[g, G] = t[t, G] or g[g9 G] H t[u G] = 0. 

The purpose of the present paper is to prove the following theorems. 

THEOREM A. A locally nilpotent group satisfies condition (X). 

THEOREM B. A finite group G is nilpotent if and only if G satisfies condition (X). 

Thus, condition (X) can be considered as a generalization of nilpotency for groups. 
In the case when G is nilpotent metabelian, Theorem A has been applied in [1] for 

an investigation of torsion units in integral group rings. Note, that in that case for each 
g G G and t G g[g, G] the order of t equals to the order of g (see [1], Lemma 2.6). 

We use the following notation: G(n) is the n-th derived subgroup of a group G, Gn is 
the n-th term of the lowest central series of G, Cc(H) the centralizer of a subset H in G, 
(H) the subgroup of G, generated by a subset H Ç G. 

2. Proof of Theorem A. 

LEMMA 2.1. Let G be an arbitrary group. Ifb G a[a, G] (a, b G G) then b[b, G] Ç 
a[a,G]. 

PROOF. Let c be an arbitrary element from b[b, G]. There exist elements h\ G [a, G] 
and h2 = IYJLI [b,gt]£i G [b, G] fe = ±1) such that b = hxa and c = h2b. We have 

m m 

hi = U^\a9gi]£i - Il([*i^/]fl[fl^/])£l' € [fl,G] 
/=i /=i 
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since [a, G] is normal in G. Consequently, c = hih\a G a[a, G] as desired. 
Now we prove the Theorem A. 
Let G be a locally nilpotent group. Suppose that c e a[a, G]Hb[b, G] for some a,b,c G 

G. We have to show that a[a, G] = b[b, G]. By Lemma 2.1 

(2.2) c[c, G] Ç a[a, G] H b[b, G]. 

Clearly, c = hrxa for some h = n j l ^ g , ] 6 ' G [a, G] (g G G,£, = ±1). Let G\ = 
(a,gi , . . . ,gm). Since a = hc,h = n?=l[h9gi]£i modulo [c, Gi], that is, h = IV^dKgiY1 

in Gi/[c,Gi]. However, since the latter group is nilpotent it follows that h = 1 in 
G\/[c,G\] and h G [c, G\]. Therefore, a = he G c[c,G] and in view of Lemma 2.1 
a[a, G] Ç c[c, G]. It follows from (2.2) that a[a, G] = c[c, G]. 

Similarly, b[b,G] = c[c,G] and, consequently, a[a,G] — b[b,G], proving Theo
rem A. 

3. Some elementary properties of groups which satisfy condition (X). 

LEMMA 3.1. The following conditions are equivalent: 
(i) G satisfies (X), 

(ii) for any a G G 

a[a, G] Ç b[b, G] =» a[a, G] = b[b, G], 

(Hi) for each a,b G G 

ft G [a, G] => [aA,G] = [a, G]. 

PROOF. Clearly, (i) => (ii). Applying Lemma 2.1 we get (ii) => (iii). 
Suppose that (iii) holds and c G a[#, G]Db[b, G]. Then c — ah for suitable ft G [a, G] 

and [c,G] = [a,G\. Hence, c[c,G] = flft[<2,G] = a[a,G]. Similarly, c[c,G] = b[b,G], 
so that a[a, G] = £[£, G], which completes the proof. 

COROLLARY 3.2. Let G be a group satisfying condition (X). Then any factor group 
of G also satisfies (X). 

PROOF. The corollary immediately follows Lemma 3.1 since for any normal sub
group H Ç G and a G G, v G [a, G] 

[ai/, G] = [a, G] =̂> [ai/, G]H = [a, G]//. 

Note that the symmetric group S3 = (a,b | a3 = b2 — \,b~xab — a~x) does not 
satisfy condition (X) since 1 G a[a, G]. Therefore by Corollary 3.2 the free group of 
rank 2 does not satisfy condition (X). It shows, for example, that the class of groups 
satisfying condition (X) does not contain the class of residually nilpotent groups. 
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COROLLARY 3.3. The direct product of an arbitrary set of groups satisfying condi

tion (X) is also a group which satisfies (X). 

PROOF. Let Ga(a G J) be a set of groups which satisfy condition (X) and G be the 

direct product of G a ( a G J). Suppose that a[a,G\ Ç b[b,G] for some a, b G G. Denoting 

by aa the projection of a on Ga we get aa[aa, Ga] Ç ba[ba, Ga] for each a G / . By 

Lemma 3.1 aa[aa, Ga] = ba[ba,Ga] (a G J) and, consequently, a[a, G] = b[b,G] 

proving the corollary. 

LEMMA 3.4. A finite group which satisfies condition (X) is soluble. 

PROOF. Note first that a finite group G satisfying condition (X) contains a soluble 

normal subgroup. Indeed, if not then there is a noncommutative simple subgroup P in G 

(see [31, § 61). Clearly, for an element l ^ g G P w e have g G P = [g, P] and therefore 

1 G g [g, G] which is impossible. 

Denote by Sol(G) the largest soluble normal subgroup of G. If Sol(G) ^ G then 

Sol(G/ Sol(G)) = 1 and by the above Gj Sol(G) cannot satisfy condition (X). The 

contradiction with Corollary 3.2 proves the lemma. 

4. Proof of Theorem B. We need the following lemma [4, p. 149]. 

LEMMA 4.1. Let Abe a normal Abelian subgroup of a group G. Suppose that A has 

exponent pn and G acts by conjugation on A as a finite p-g roup of automorphisms. Then 

[A,G,G,...,G] = [A^G] = 1 

for a suitable I. 

Now, we can prove Theorem B. 

Let G be a finite group which satisfies condition (X). According to Lemma 3.4 G is 

soluble and G(n) ^ 1, G(n+1) = 1 for some n G N. By Corollary 3.2 G/G{n) satisfies 

condition (X) and using induction on n we can assume that G/G^ is nilpotent. Let m 

be the nilpotency class of G/G^ and p\,pi, ..-,Pk be all the prime divisors of \Gm+\ \. 

Denote by 5/ the Sylow ^/-subgroup of Gm+\. Since Gm+\ Ç G(n) and G(w) is Abelian, 

each St is an Abelian characteristic subgroup of Gm+i. 

Fix an / G { 1 , . . . , k}. We claim that for g G G 

(4.2) {o(g),Pi) = 1 =» g e CG(Sd. 

Indeed, suppose that there exists an element g G G such that [o(g),p^j = 1 and g fi 

CG(Si). Regarding Qi(5/) = (a G St \ aPi = 1) as a K(g)-module, where K is the field 

with/?/ elements and applying Mashke's theorem we obtain 

Cl\(Sï) = A\ x • • • x Ar, 

where Al (i = 1 , . . . , r) are irreducible ^(g)-modules. By Theorem 5.2.4 [2], (g) acts 

non-trivially on Q.\(Si) and consequently, g £ CG(AJ) for some j G { 1 , . . . , r). Thus, 
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there exists an element a G Aj such that [a,g] ^ 1. Using the identity [a,gl1]8'2 = 
[a,gl2]~l[a,gll+l2] we conclude that the subgroup [a, (g)] is a ^(g)-submodule of Aj. 
Since Aj is irreducible, [a, (g)] — Aj and a G [a, (g)], so that / E «[a, G]. The contradic
tion with condition (X) proves (4.2). 

It is easy to see that 

Gm+1+/ - [SUIG] x [S2,,G] x • • • x [ShlG]. 

In view of (4.2) G acts as a finite /?/-group of automorphisms on St (i = 1,... ,£) and 
by Lemma 4.1 we can choose a number / such that [5,-, /G] = 1 for each / E { 1 , . . . , k}. 
Hence Gm+\+i = 1 and G is nilpotent which completes the proof. 
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