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Abstract. Let k be an algebraically closed field of characteristic zero, F be an algebraically
closed extension of k of transcendence degree one, and G be the group of automorphisms over
k of the field F. The purpose of this note is to calculate the group of continuous automor-

phisms of G.
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1. Introduction

Let k be an algebraically closed field of characteristic zero, L its finitely generated

extension of transcendence degree > 1, and L0 another finitely generated extension

of k. It is a result of Bogomolov [3] that any isomorphism between Galð �LL=LÞ and

Galð �L0L0=L0Þ is induced by an isomorphism of fields �LL�! �L0L0 identifying L with L0.

If the transcendence degree of L over k is one, the group Galð �LL=LÞ is free, and

therefore, its structure tells nothing about the field L.

Let F be an algebraically closed extension of k of transcendence degree one, and

G ¼ GF=k be the group of automorphisms over k of the field F. Let the set of sub-

groups UL :¼ AutðF=LÞ for all subfields L finitely generated over k be the basis of

neighborhoods of the unity in G.

Let l be a continuous automorphism of G. The purpose of this note is to show that

if l induces an isomorphism GalðF=LÞ �!
�

GalðF=L0Þ then the fields L and L0 are iso-

morphic (see Theorem 4.2 below for a more precise statement).

1.1. NOTATIONS

For a field F1 and its subfield F2 we denote by GF1=F2 the group of automorphisms of

the field F1 over F2. Throughout the note k is an algebraically closed field of charac-

teristic zero, F its algebraically closed extension of transcendence degree 14 n < 1

and G ¼ GF=k. If K is a subfield of F then K denotes its algebraic closure in F.
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For a topological group H we denote by H	 its subgroup generated by the com-

pact subgroups, and by Hab the quotient of H by the closure of its commutant.

For a smooth projective curve C over a field, Pic5m
ðCÞ is the submonoid in PicðCÞ

of sheaves of degree5m.

2. A Galois-Type Correspondence

We consider a topology on G with the basis of neighborhood of an automorphism

s : F�!� F over k given by the cosets of the form sUL for all subfields L of F finitely

generated over k, where UL ¼ AutðF=LÞ. This topology was introduced in [4]. One

checks that the group G endowed with such topology is Hausdorff, locally compact,

and totally disconnected.

PROPOSITION 2.1 ([4], Lemma 1, Section 3). The map

fsubfields in F over kg�!fclosed subgroups in Gg given by

K�AutðF=KÞ is injective and restricts to bijections

– fsubfields K with F ¼ �KKg $ fcompact subgroups of Gg;

–
subfields K of F finitely

generated over k with F ¼ �KK

� �
$

compact open
subgroups of G

� �
.

The inverse correspondences are given by G  H�FH � F. &

Denote by G	 the subgroup of G generated by the compact subgroups. Obviously,

G	 is an open normal subgroup in G.

3. Decomposition Subgroups in Abelian Quotients

Let n ¼ 1. We are going to show that for any continuous automorphism l of G and

any L of finite type over k one has lðULÞ ¼ UL0 for some L0 isomorphic to L.

To do that we first need to construct decomposition subgroups in the Abelian

quotients Uab
L .

Set FL ¼ HomðDiv0ðCÞ; bZZð1ÞÞ for a smooth projective model C of L over k. By

Kummer theory, Uab
L ¼ HomðL�; bZZð1ÞÞ, so, as the groups k� and Pic0ðCÞ are divisi-

ble, but there are no divisible elements in bZZð1Þ except 0, the short exact sequence

1�!L�=k� �!Div0ðCÞ �!Pic0ðCÞ �! 0 induces an embedding FL,!Uab
L . One

identifies FL with the bZZ-module of the bZZð1Þ-valued functions on CðkÞ modulo the

constants.

The next step is to get a description of FL in terms of the Galois groups. Clearly,

Uab
kðxÞ ¼ FkðxÞ.
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LEMMA 3.1.

ð1Þ If U is an open compact subgroup in G then NGðUÞ ¼ NG	 ðUÞ. If, moreover,

NGðUÞ=U is infinite and has no Abelian subgroups of finite index then

U ¼ UkðxÞ for some x 2 F� k.

ð2Þ For any x 2 L� k the transfer U ab
kðxÞ �!U ab

L factors through FL.
ð3Þ The span of images of the transfers U ab

kðxÞ �!U ab
L for all x 2 L� k is dense in FL.

Proof. (1) By Proposition 2.1, U ¼ UL for a field L finitely generated over k. Then

the group NGðULÞ=UL coincides with the group of automorphisms of the field L over

k. As the automorphism groups of projective curves of genus > 1 are finite, if L is

isomorphic to the function field of such a curve, then the normalizer of U in G is

compact. As the automorphism groups of elliptic curves are generated by elements of

order 4 4 and contain Abelian subgroups of index 4 6, if L is isomorphic to the

function field of such a curve, then the normalizer of U in G is generated by its

compact subgroups. This implies that if NGðUÞ=U has no Abelian subgroups of finite

index then L should be the function field of a rational curve. As the automorphism

group of the rational curve is generated by involutions, the normalizer of U in G is

generated by its compact subgroups.

(2) The transfer is induced by the norm L�=k����!
NmL=kðxÞ

kðxÞ�=k�, which is the

restriction of the push-forward Div0ðCÞ �!
x�

Div0ðP1
Þ. Since kðxÞ�=k� ¼ Div0ðP1

Þ,

the transfer factors through FL.
(3) Each point p of a smooth projective model C of L over k is a difference of very

ample effective divisors on C. These divisors themselves are zero-divisors of some

rational functions, i.e., there are surjective morphisms x; y : C�!P1 and a point

0 2 P1 such that x�1ð0Þ � y�1ð0Þ ¼ p. Then dp ¼ x�d0 � y�d0 : CðkÞ �! bZZð1Þ is a

d-function of the point p of C. As the span of d-functions is dense in the group

FL, we are done. &

For a point of CðkÞ its decomposition subgroup in FL � Uab
L consists of all func-

tions supported on it. In the case L ¼ kðxÞ the decomposition subgroups in Uab
kðxÞ

are parametrized by the set (which is isomorphic to P1
ðkÞ) of parabolic subgroups

P in NGUkðxÞ=UkðxÞ. The subgroup DP consists of elements in Uab
kðxÞ fixed under the

adjoint action of P. Clearly, DP ffi bZZð1Þ.
Each inclusion of subgroups UL � UkðxÞ induces a homomorphism Uab

L �!Uab
kðxÞ.

For any nonzero element h of the group Uab
L , considered as a homomorphism from

the group L�, there is an element x 2 L� with hðxÞ 6¼ 0, so the image of h in Uab
kðxÞ is

nonzero, and thus, the homomorphism Uab
L �!

jL Q
x2L�k U

ab
kðxÞ is injective.

To construct decomposition subgroups for an arbitrary L, consider such a sub-

group D ffi bZZ in the target of jL that its projection to each of Uab
kðxÞ is of finite index

in some decomposition subgroup. Then our next goal is to show that the set of

decomposition subgroups in Uab
L coincides with the set of maximal subgroups among

FL \ j�1
L ðDÞ.
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LEMMA 3.2 ( ¼ Lemma 5.2 of [2] ¼ Lemma 3.40 of [3]). Let f be such a function on a

projective space P over an infinite field that the restriction of f to each projective line in

P is constant on the complement to a point on it. Then f is a flag function, i.e., there is a

filtration P0 � P1 � P2 � . . . of P by projective subspaces such that f is constant on P0
and on all strata Pjþ1 � Pj. &

The present form of the following lemma as well as its proof are suggested by the

referee.

LEMMA 3.3. For any smooth projective curve C and any L;L0
2 Pic5 4g�1

ðCÞ the

natural map GðC;LÞ � GðC;L0
Þ �!GðC;L� L0

Þ is surjective.

Proof. We may assume that degL4 degL0. Fix an effective divisor D on C of

degree 2g� 1 and a base point free pencil in jLð�DÞj corresponding to a subspace V
in GðC;Lð�DÞÞ of dimension 2, and a subspace V �W � GðC;LÞ of dimension 3

such that W�k OC�!L is surjective. If R is its kernel, it fits into a natural short

exact sequence

0�! detV�k L_
ðDÞ �!R�!ðW=VÞ �k OCð�DÞ �! 0:

This shows that H1ðC;R� L0
Þ ¼ 0, hence W�k GðC;L0

Þ �!GðC;L� L0
Þ is

surjective. &

LEMMA 3.4. If j�1
L ðDÞ is in FL then it is a subgroup in a decomposition subgroup in

Uab
L .

Proof. Let f 2 j�1
L ðDÞ \ FL, i.e., f : CðkÞ �! bZZð1Þ for a smooth projective model C

of L over k, and for any very ample invertible sheaf L on C restrictions of the

induced function f : jLj �! bZZð1Þ to projective lines in jLj are ‘d-functions’ on them.

Then, by Lemma 3.2, f is a flag function. Therefore, the function bff : jLj_ �! bZZð1Þ
given by H� f ðgeneral point of HÞ is a ‘d-function’.
Let g be the genus of C. Consider the composition bffL : CðkÞ �! jLj_ �!

bff bZZð1Þ. It
takes x to fðxÞ þ fðgeneral point of jLð�xÞjÞ. Since it is a ‘d-function’, and all the

hyperplanes xþ jLð�xÞj in L are pairwise distinct, there are such functions

b0 : Pic
5 2gþ1

ðCÞ �! bZZð1Þ and a : Pic5 2gþ1
ðCÞ �!CðkÞ that

fðxÞ þ fðgeneral point of jLð�xÞjÞ ¼ b0ðLÞdx;aðLÞ þ b1ðLÞ;

where b1 : Pic
5 2g

ðCÞ �! bZZð1Þ is the function sending L to the general value of f on

jLj. Then fðxÞ ¼ b0ðLÞdx;aðLÞ þ b1ðLÞ � b1ðLð�xÞÞ.
By Lemma 3.3, for any L;L0

2 Pic5 4g�1
ðCÞ the image of the map jLj�

jL0
j �! jL� L0

j of summation of divisors is not contained in any hyperplane in

jL� L0
j. Then a sum of a general divisor in jLj and a general divisor in jL0

j is a gen-

eral divisor in the linear system jL� L0
j, so one has

b1ðL� L0
Þ ¼ b1ðLÞ þ b1ðL0

Þ;
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and therefore, for any sheaf L0 of degree zero one has

b1ðL0
Þ þ b1ðL0 � LÞ ¼ b1ðLÞ þ b1ðL0 � L0

Þ;

so b2ðL0Þ :¼ b1ðL0 � LÞ � b1ðLÞ : Pic0ðCÞ �! bZZð1Þ does not depend on L. It is easy to
see that b2 is a homomorphism, which therefore should be zero, since Pic0ðCÞ is a

divisible group. From this we conclude that b1ðLÞ ¼ b1ðdegLÞ, and finally,

fðxÞ ¼ b0ðLÞdx;aðLÞ þ b3ðLÞ is a d-function on CðkÞ, i.e., corresponds to a point of

C, or to a decomposition subgroup in Uab
L . &

4. Automorphisms of Subgroups between G		 and G

LEMMA 4.1.

ð1Þ Suppose that for a subgroup H in G containing G	 (the restriction to G	 of) a

homomorphism l : H�!G induces the identity map of the set F of compact open
subgroups in G. Then l ¼ id.

ð2Þ The centralizer of G	 in GF=Q is trivial.

Proof. For any s 2 H and any open compact subgroup U one has

sUs�1 ¼ lðsUs�1Þ ¼ lðsÞlðUÞlðsÞ�1 ¼ lðsÞUlðsÞ�1;

so s�1lðsÞ belongs to the normalizer of each U.

For a variety X of dimension n over k without birational automorphisms and any

x 2 F� k there is a subfield Lx � F containing x isomorphic to the function field of

X. Then the normalizer of ULx coincides with ULx , and the intersection of all ULx is

f1g, so s�1lðsÞ ¼ 1. On the other hand, if t 2 GF=Q normalizes Ukðx;PðxÞ1=2Þ for all

polynomials P over k, then t 2 GF=k and therefore, t ¼ 1. &

Let F be the set of compact open subgroups in G	, and let QðwÞ be the quotient of
the free Abelian group generated by F by the relations ½U� ¼ ½U : U0� � ½U0� for all

U0 � U. As the intersection of a pair of a compact open subgroups in G is a subgroup

of finite index in both of them, QðwÞ is a one-dimensional Q-vector space. The group

G acts on it by the conjugations. Let w be the character of this representation of G.

One can get an explicit formula for w as follows. Fix a subfield L of F finitely gen-

erated and of transcendence degree n over k. Then for any s 2 G one has

½UL� ¼ ½LsðLÞ : L� � ½ULsðLÞ� and ½UsðLÞ� ¼ ½LsðLÞ : sðLÞ� � ½ULsðLÞ�;

and therefore, wðsÞ ¼ ½LsðLÞ : sðLÞ�=½LsðLÞ : L�. This implies that w : G�!Q�
þ is sur-

jective, and its restriction to G	 is trivial.

For a subgroup H in G let NGF=Q ðHÞ be its normalizer in GF=Q.

THEOREM 4.2. Let n ¼ 1, H be a subgroup in G containing G	. Then

NGF=Q ðHÞ � NGF=Q ðGÞ ¼ fautomorphisms of F preserving kg, and the adjoint action of
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NGF=Q ðHÞ on H induces an isomorphism from NGF=Q ðHÞ to the group of continuous open

automorphisms of H.

If H � ker w then NGF=Q ðHÞ ¼ NGF=Q ðG
�Þ.

Proof. For each U 2 F let DivþU be the free Abelian semi-group, whose generators

are decomposition subgroups in Uab, and for each integer d5 2 let

GrðdÞU ¼ fUL 	 U j ½UL : U� ¼ d;L ffi kðtÞg � F:

For a smooth projective model C of FU the set GrðdÞU is in bijection with the disjoint

union of Zariski-open subsets in Grassmannians:

a
L2PicdðCÞ

Grð1; jLjÞ �
[

x2CðkÞ

Grð1; xþ jLð�xÞjÞ
 !

:

One can define

– an ‘invertible sheaf of degree d without base points’ L, as a subset of GrðdÞU � F
consisting of elements equivalent under the relation generated by U1 �U U2 if

there are decomposition subgroups Da � Uab
1 and Db � Uab

2 such that their pre-

images in Uab contain the same collections of decomposition subgroups with the

same indices of their images in Da and Db;

– the ‘linear system’ jLj, as the set of maximal collections of elements of L ‘inter-

secting at a single point’, i.e., as the subset of the free Abelian semi-group DivþU;

– a ‘line presented in L’ in jLj, as an element of L � GrðdÞU , considered as a subset in
jLj;

– an arbitrary ‘line’ in jLj, as a subset in jLj of type Dþ l, where D 2 DivþU and l is

a line presented in the sheaf Lð�DÞ without base points;
– an ‘s-subspace’ in jLj, as the union of all lines passing through a given point in
jLj and intersecting a given ‘ðs� 1Þ-subspace’ in jLj.

Now we remark that for any sufficiently big d and any sheaf L � GrðdÞU the set CU
of decomposition subgroups in Uab can be canonically identified with the subset of

jLj_ consisting of those hyperplanes in jLj that each line on each of them is ‘absent

in L’. As jLj_ has a canonical structure of a projective space (but not of a projective
space over k), this gives us a canonical structure of a scheme on CU. Let kU be the

function field of CU.

Clearly, lðG�Þ ¼ G� and the restriction of l to G� induces a bijection

GrðdÞU �!
�

GrðdÞlðUÞ for each d5 2, and for any sheaf L � GrðdÞU it induces a map

jLj �! jlðLÞj which transforms subspaces into subspaces (of the same dimension),

i.e., a collineation. As l induces a collineation jLj_ �!� jlðLÞj_, the fundamental the-
orem of projective geometry (see, e.g., [1]) implies that such l induces an isomorph-
ism CU�!

�
ClðUÞ of schemes over Q. This isomorphism does not depend on d and L,

since it determines the collineations jL0
j �!

�
jlðL0

Þj for all L0
� Grðd

0Þ

U . Denote by sU
the induced isomorphism klðUÞ �!

� kU.
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For each subgroup U0 of finite index in U the natural map CU0 �!CU is a morph-

ism of schemes, and in particular, kU is naturally embedded into kU0 . The group G	

acts on the field lim
U �! kU. By Lemma 4.1 (2), the centralizer if G	 in GF=Q is trivial,

and therefore, there is a unique isomorphism lim
U �! kU�!

�
F commuting with the

G	-action. Since the diagram

CU0 �! ClðU0Þ

# #

CU �! ClðUÞ

commutes, the restriction of sU0 to kU coincides with sU, and finally, we get an auto-
morphism s of F induced by l. As k is the only maximal algebraically closed subfield
in its arbitrary finitely generated extension, s induces an automorphism of k, and

therefore, normalizes G	.

Then the restriction to G	 of adðsÞ 	 l acts trivially on all of GrðdÞU0 . As any open

compact subgroup is an intersection of elements of GrðdÞU0 for d big enough and U0

small enough, adðsÞ 	 l acts on F also trivially. By Lemma 4.1 (1), this implies that

l ¼ adðs�1Þ. &

Remark. If k is countable then the inverse of any continuous automorphism as in

the statement of Theorem 4.2 is automatically continuous:

LEMMA 4.3. If k is countable, and U�!
l
U0 is a continuous surjective homomorphism

of open subgroups in GF=k and GF0=k0 then the image in U
0 of an open subset in U is open.

Proof. Let UL � U be an open compact subgroup. Then U=UL is a countable set

surjecting onto the set U0=lðULÞ. By Proposition 2.1, for the subfield L0 ¼ FlðULÞ one

has �L0L0 ¼ F. If lðULÞ is not open then L0 is not finitely generated over k0, and

therefore, U0=lðULÞ is not countable. &
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