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Abstract

Let �(y′) be an H1(Sn−1) function on the unit sphere satisfying a certain cancellation condition. We
study the L p boundedness of the singular integral operator

T f (x)= p.v.
∫

Rn
f (x − y)�(y′)ρ(y)−α dy,

where α ≥ n and ρ is a norm function which is homogeneous with respect to certain nonistropic dilation.
The result in the paper substantially improves and extends some known results.
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1. Introduction

Let Rn be the n-dimensional Euclidean space with the routine norm |x | for each
x ∈ Rn . Let Sn−1

= {x ∈ Rn
: |x | = 1} be the unit sphere on Rn equipped with the

Lebesgue measure σ(x ′), where we use x ′ to denote the unit vector in the direction
of x . To study the existence and regularity results for an elliptic differential operator,
that is,

D =

n∑
i, j=1

ai, j
∂2

∂xi∂x j
,

with constant coefficients {ai, j }, among some other estimates, one needs to study the
singular integral operator T with a convolution kernel K (see [1] or [2]) satisfying:

(a) K (µx1, . . . , µxn)= µ−n K (x), for any µ > 0;
(b) K ∈ C∞(Rn

\ {0});
(c)

∫
Sn−1 K (x ′) dσ(x ′)= 0.
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164 Y. Chen, Y. Ding and D. Fan [2]

Similarly, for the heat operator

D =
∂

∂x1
−

n∑
j=2

∂2

∂x2
j

,

the corresponding singular integral operator T have a kernel K satisfying:

(a′) K (µ2x1, . . . , µxn)= µ−n−1K (x), for any µ > 0;
(b′) K ∈ C∞(Rn

\ {0});
(c′)

∫
Sn−1 K (x ′)(2x ′

1
2
+ x ′

2
2
+ · · · + x ′

n
2
) dσ(x ′)= 0.

To study a more general parabolic differential operator with constant coefficients, in
1966, Fabes and Rivière [6] defined the parabolic singular integral operator

T f (x)= p.v.
∫
Rn

K (y) f (x − y) dy,

with K satisfying:

(A) K (µα1 x1, . . . , µ
αn xn)= µ−αK (x1, . . . , xn), µ > 0, α =

∑n
i=1 αi ;

(B) K ∈ C∞(Rn
\ {0});

(C)
∫

Sn−1 K (x ′)J (x ′) dσ(x ′)= 0;

where αi ≥ 1 (i = 1, 2, . . . , n) and J (x ′)= α1x ′2
1 + · · · + αnx ′2

n is shown as follows.
For any x ∈ Rn , set

x1 = ρα1 cos ϕ1 · · · cos ϕn−2 cos ϕn−1

x2 = ρα2 cos ϕ1 · · · cos ϕn−2 sin ϕn−1

...

xn−1 = ραn−1 cos ϕ1 sin ϕ2

xn = ραn sin ϕ1.

Then dx = ρα−1 J (x ′) dρ dσ(x ′) and ρα−1 J (x ′) is the Jacobian of the above
transformation. One may check that J (x ′) is a C∞ function on Sn−1, that is, bounded
below uniformly by 1. Moreover, without loss of generality, we may assume that
αn ≥ αn−1 ≥ · · · ≥ α1 ≥ 1. Note that the above condition (A) can be written as:

(A′) K (Aµx)= |det(Aµ)|−1K (x);

where Aµ = diag[µα1, . . . , µαn ] is a diagonal matrix.
For each fixed x ∈ Rn, the function

F(x, ρ)=

n∑
i=1

xi
2

ρ2αi
,

is a strictly decreasing function of ρ > 0. Therefore, there exists an unique ρ = ρ(x)
for which F(x, ρ)= 1. It was proved in [6] that ρ is a metric on Rn . Furthermore, we
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observe that (Rn, ρ) is a homogeneous group that admits a family of dilations δµ
= exp(A log µ) for which ρ(δµx)= µρ(x), µ > 0,where A is a diagonalizable linear
operator with positive eigenvalues.

By the above coordinates of polar type, one now has that

T f (x)= p.v.
∫
Rn

f (x − y)�(y′)ρ(y)−α dy,

where �(y′)= K (y′) satisfying∫
Sn−1

�(y′)J (y′) dσ(y′)= 0. (1.1)

The following theorem was proved by Fabes and Riviere in [6].

THEOREM A. If � ∈ C1(Sn−1) and satisfies (1.1), then the operator T is bounded on
L p(Rn) for 1< p <∞.

Later, the above theorem was improved by Nagel et al. [9] and the regularity
condition on � was removed. The result is the following.

THEOREM B. If � ∈ L log+ L(Sn−1) and satisfies (1.1), then the operator T is
bounded on L p(Rn) for 1< p <∞.

On the other hand, it was shown in [10] that in the case α1 = α2 = · · · = αn = 1,
the condition � ∈ L log+ L(Sn−1) can be replaced further by the weaker condition
� ∈ H1(Sn−1), where H1(Sn−1) is the Hardy space that contains L log+ L(Sn−1) as
a proper subspace on the unit sphere. Thus, a natural question is if one can use a
weaker condition in Theorem B. The main purpose of this paper is to establish the
following theorem.

THEOREM 1. If � ∈ H1(Sn−1) and satisfies (1.1), then the operator T is bounded on
L p(Rn) for 1< p <∞.

Before proving the theorem, we want to say a few words. First, we understand
that the underlying space is a special homogeneous group (see [8]). Thus, many
standard results might be adapted. For instance, we can use the Littlewood–Paley
theory without any modifications. Second, although we follow the ideas in [7], we
find that it is not an easy process of copy and paste. We must obtain some nontrivial
estimates in our proof.

The reader can find these new estimates in Section 3. In Section 2 we present
some basic definitions and known lemmas. The letter C in the paper denotes positive
constant independent of essential variables.
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2. Definitions and lemmas

The Poisson kernel on Sn−1 is defined by Pty′(x ′)= (1 − t2)/|ty′
− x ′

|
n with

0 ≤ t< 1, x ′, y′
∈ Sn−1. For any � ∈ L1(Sn−1), we define the radial maximal

function

P+�(x ′)= sup
0≤t<1

∣∣∣∣∫
Sn−1

�(y′)Ptx ′(y′) dσ(y′)

∣∣∣∣.
The Hardy space H1(Sn−1), is a subspace of L1(Sn−1)which contains all L1 functions
� with the finite norms ‖�‖H1(Sn−1) = ‖P+�‖L1(Sn−1) <∞.

An important property of H1(Sn−1) is the atomic decomposition, which is reviewed
in the following. An exceptional atom E(x ′) is an L∞(Sn−1) function bounded by 1.
A regular H1(Sn−1) atom is an L∞(Sn−1) function a(x ′) satisfying the following
conditions:

supp(a)⊂ Sn−1
∩ {y ∈ Rn

: |y − ξ ′
|< r for some ξ ′

∈ Sn−1 and r ∈ (0, 1]}; (2.1)∫
Sn−1

a(x ′)Ym(x
′) dσ(x ′)= 0 (2.2)

for any spherical harmonic polynomial Ym with degree m ≤ N , where N is any fixed
integer;

‖a‖L∞(Sn−1) ≤ r1−n. (2.3)

From [3], we find that any � ∈ H1(Sn−1) has an atomic decomposition

�=

∞∑
j=1

λ j a j +

∞∑
i=1

ui Ei ,

where each a j is a regular H1(Sn−1) atom and each Ei is an exceptional atom.
Moreover,

∞∑
j=1

|λ j | +

∞∑
i=1

|ui | ≤ C‖�‖H1(Sn−1).

We note that for any x ′
∈ Sn−1,∣∣∣∣ ∞∑

i=1

ui Ei (x
′)

∣∣∣∣ ≤

∞∑
i=1

|ui |.

Without loss of generality, we can assume∣∣∣∣ ∞∑
i=1

ui Ei (x
′)

∣∣∣∣ ≤ ‖�‖H1(Sn−1).
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Thus, we write
∞∑

i=1

ui Ei (x
′)= ‖�‖H1(Sn−1)ω(x

′),

with

ω(x ′)=

∞∑
i=1

ui Ei (x
′)/‖�‖H1(Sn−1).

In this new definition,

�=

∞∑
j=1

λ j a j + ‖�‖H1(Sn−1)ω and ‖ω‖L∞(Sn−1) ≤ 1.

Noting that J (x/|x |)|x |
2 is a homogeneous polynomial of degree 2, by

[11, Theorem 2.1], we can write J (x/|x |)|x |
2
= P2(x)+ |x |

2 P0(x), where Pk(x) is
a harmonic polynomial of degree k (k = 0, 2). Then J (x ′)= P2(x ′)+ P0(x ′), where
Pk(x ′) is a spherical harmonic polynomial of degree k (k = 0, 2). So by (2.2), we have∫

Sn−1
a j (y

′)J (y′) dσ(y′) =

∫
Sn−1

a j (y
′)P2(y

′) dσ(y′)

+

∫
Sn−1

a j (y
′)P0(y

′) dσ(y′)= 0, (2.4)

for all j = 1, 2, . . . . Thus, if � satisfies the cancellation condition (1.1), then∫
Sn−1

ω(y′)J (y′) dσ(y′)= 0. (2.5)

The following Lemmas 2.1 and 2.2 can be found in [7].

LEMMA 2.1. Suppose that n ≥ 3 and b satisfies (2.1), (2.3) and∫
Sn−1

b(y′) dσ(y′)= 0. (2.6)

Let

Fb(s)= (1 − s2)(n−3)/2χ(−1,1)(s)
∫

Sn−2
b(s, (1 − s2)1/2 ỹ) dσ(ỹ),

and

Gb(s)= (1 − s2)(n−3)/2χ(−1,1)(s)
∫

Sn−2
|b(s, (1 − s2)1/2 ỹ)| dσ(ỹ).

Then there exists a constant C, independent of b, such that

supp(Fb)⊂ (ξ ′

1 − 2r(ξ ′), ξ ′

1 + 2r(ξ ′)); (2.7)

supp(Gb)⊂ (ξ ′

1 − 2r(ξ ′), ξ ′

1 + 2r(ξ ′)); (2.8)

‖Fb‖∞ ≤ C/r(ξ ′); ‖Gb‖∞ ≤ C/r(ξ ′); (2.9)∫
R

Fb(s) ds = 0, (2.10)
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where r(ξ ′)= |ξ |−1
|Lrξ | and Lrξ = (r2ξ1, rξ2, . . . , rξn).

LEMMA 2.2. Suppose that n = 2 and b satisfies (2.1), (2.3) and (2.6). Let

Fb(s)= (1 − s2)−1/2χ(−1,1)(s)(b(s, (1 − s2)1/2)+ b(s,−(1 − s2)1/2)),

and

Gb(s)= (1 − s2)−1/2χ(−1,1)(s)(|b(s, (1 − s2)1/2)| + |b(s,−(1 − s2)1/2)|).

Then Fb(s) satisfies (2.7), (2.10) and

‖Fb‖q ≤ C |Lr (ξ
′)|−1+1/q ,

and Gb(s) satisfies (2.8) and

‖Gb‖q ≤ C |Lr (ξ
′)|−1+1/q ,

for some q ∈ (1, 2).

LEMMA 2.3. Fix any function ψ ∈ S(Rn) with supp(ψ)⊂ {x : 1/2 ≤ ρ(x)≤ 2}. Let
9̂(ξ)= ψ(ρ(ξ)), 9t (ξ)= t−α9(At−1ξ) for t > 0. For j ∈ Z, define the multiplier S j
by Ŝ j f (ξ)= ψ(2 jρ(ξ)) f̂ (ξ). Then for 1< p <∞, we have∥∥∥∥∥

(∑
j

|S j f |
2
)1/2

∥∥∥∥∥
p

≤ C‖ f ‖p.

where C is a constant independent of f ∈ L p(Rn).

Lemma 2.3 is a discrete version of a more general theorem in [8]. One can prove
Lemma 2.3 easily following the idea in [8].

Next, we let 8(t)= e−π t2
(t ∈ R). Then 8̂(t)= e−π t2

. Define a radial function
8k on Rn by 8̂k(ξ)= 8̂(|Lr A2k ξ |). We have the following lemma.

LEMMA 2.4. The maximal operator f → supk |8k ∗ f | is bounded on L p(Rn) for
1< p <∞.

PROOF. It is easy to check that

8k(x)= r−22−kα18(x1r−22−kα1)

n∏
j=2

{r−12−kα j8(x jr
−12−kα j )}.

Thus

sup
k

|8k ∗ f (x)| ≤ C M1 M2 · · · Mn( f )(x),

where M j is the one-dimensional Hardy–Littlewood maximal operator acting on x j
variable. So the lemma follows easily by the L p boundedness of the Hardy–Littlewood
maximal function. 2

The following lemma is a variation of a lemma in [5].
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LEMMA 2.5. Let r > 0. Suppose that there exist positive numbers γ and β such that

|σ̂k(ξ)| ≤ C min{|Lr A2k ξ |
−β , |Lr A2k ξ |

γ
}, (2.11)

where Lr A2k ξ = (r22kα1ξ1, r2kα2ξ2, . . . , r2kαnξn). Moreover, suppose also that, for
some q > 1,

‖σ ∗( f )‖q =

∥∥∥∥sup
k

||σk | ∗ f |

∥∥∥∥
q

≤ C‖ f ‖q , (2.12)

where C > 0 is independent of k ∈ Z, ξ and r. Then the following two operators are
bounded on L p(Rn) uniformly for r > 0, whenever |1/p − 1/2|< 1/2q :

B( f )=

∑
k

σk ∗ f, g( f )=

(∑
k

|σk ∗ f |
2
)1/2

.

PROOF. If (2.12) holds and 1/2q = |1/2 − 1/p0|, then by [5], for arbitrary vector
{hk} in L p0(l2), the following vector valued inequality holds∥∥∥∥∥

(∑
k

|σk ∗ hk |
2
)1/2

∥∥∥∥∥
p0

≤ C

∥∥∥∥∥
(∑

k

|hk |
2
)1/2

∥∥∥∥∥
p0

. (2.13)

Choose a C∞

0 function ψ such that 0 ≤ ψ ≤ 1 and supp(ψ)⊂ {y : 1/2 ≤ ρ(y)≤ 2}

and
∑

j ψ(2
jρ(Lrξ))

2
= 1. Define ϒ and 1 by ϒ̂(ξ)= ψ(ρ(Lrξ)) and 1̂(ξ)

= ψ(ρ(ξ)). Denote ϒ j (x)= 2− jαϒ(A2− j x) and 1 j (x)= 2− jα1(A2− j x) for j ∈ Z.
Then it is easy to check ϒ̂ j (ξ)= ψ(2 jρ(Lrξ)) and 1̂ j (ξ)= ψ(2 jρ(ξ)) and

ϒ j (x)= (1/rn+1)2− jα1(L1/r A2− j x). Define the multiplier S j on Rn by (̂S j f )(ξ)
= ψ(2 jρ(Lrξ)) f̂ (ξ). Then we know S j f (x)= ϒ j ∗ f (x). Now we claim that∥∥∥∥(∑

j

|S j f |
2
)1/2∥∥∥∥

p
≤ C‖ f ‖p for all 1< p <∞, (2.14)

with C independent of r . In fact, by the definition of ϒ j , we have

ϒ j ∗ f (x) =
1

rn+1 2− jα
∫
Rn
1(L1/r A2− j y) f (x − y) dy

= 2− jα
∫
Rn
1(A2− j y) f (Lr (L1/r x − y)) dy

= 1 j ∗ U (L1/r x),

where U (x)= f (Lr x). Then, by Lemma 2.3, we obtain
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(∑

j

|S j f (x)|2
)1/2

∥∥∥∥∥
p

=

{∫
Rn

(∑
j

|1 j ∗ U (L1/r x)|2
)p/2

dx

}1/p

=

{
rn+1

∫
Rn

(∑
j

|1 j ∗ U (x)|2
)p/2

dx

}1/p

≤ Cr (n+1)/p
‖U‖p

= C

(
rn+1

∫
Rn

| f (Lr x)|p dx

)1/p

= C‖ f ‖p.

Thus, (2.14) is proved. By the definition of S j , we have, for any f ∈ S(Rn),∑
j S2

j f (x)=
∑

j S j (S j f )(x)= f (x). We decompose operator B as follows:

B( f )=

∑
k

σk ∗

(∑
j

S j+k S j+k f

)
=

∑
j

∑
k

(S j+k(σk ∗ S j+k f ))=

∑
j

B j ( f ).

First we estimate B j in L p0 . By (2.13) and (2.14), we have

‖B j ( f )‖p0 ≤ C

∥∥∥∥∥
(∑

k

|σk ∗ S j+k f |
2
)1/2

∥∥∥∥∥
p0

≤ C

∥∥∥∥∥
(∑

k

|S j+k f |
2
)1/2

∥∥∥∥∥
p0

≤ C‖ f ‖p0 . (2.15)

Now we compute the L2-norm of B j ( f ). When j < 0, by using the estimate
|σ̂k(ξ)| ≤ C |Lr A2k ξ |−β we have

‖B j ( f )‖2
2 ≤

∑
k

∫
2− j−k−1≤ρ(Lr ξ)≤2− j−k+1

| f̂ (ξ)|2|Lr A2k ξ |
−2β dξ

=
1

rn+1

∑
k

∫ 2− j−k+1

2− j−k−1

∫
Sn−1

J (ξ ′)| f̂ (Lr−1 Aρξ
′)|2|A2k Aρξ

′
|
−2βρα−1 dσ(ξ ′) dρ

≤ C22β jα1
1

rn+1

∑
k

∫ 2− j−k+1

2− j−k−1

∫
Sn−1

J (ξ ′)| f̂ (Lr−1 Aρξ
′)|2ρα−1 dσ(ξ ′) dρ

≤ C22β j 1

rn+1

∫
Rn

| f̂ (Lr−1ξ)|
2 dξ

= C22β j
‖ f ‖

2
2.

So we obtain

‖B j ( f )‖2 ≤ C2β j
‖ f ‖2 for all j < 0. (2.16)
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If j > 0, using the estimate |σ̂k(ξ)| ≤ |Lr A2k ξ |γ and the same idea of proving (2.16),
we have

‖B j ( f )‖2 ≤ C2−γ j
‖ f ‖2 for all j > 0, (2.17)

where C is independent of j and f . Thus, by (2.16) and (2.17) we obtain

‖B j ( f )‖2 ≤ C2−δ| j |
‖ f ‖2 for all δ > 0. (2.18)

Now, if |1/p − 1/2|< 1/2q, we have 1/p = θ/2 + (1 − θ)/p0 for some 0< θ < 1.
By interpolating between (2.15) and (2.18), we obtain

‖B( f )‖p ≤

∑
j

‖B j ( f )‖p ≤ C
∑

j

2−δκ| j |
‖ f ‖p ≤ C‖ f ‖p for all 0< κ < 1.

The inequality ‖g( f )‖p ≤ C‖ f ‖p can be proved by essentially the same argument. 2

LEMMA 2.6 (See [5]). Let {ηk} be a lacunary sequence of positive numbers
(infk(ηk+1/ηk)= η > 1). Suppose that {λk} is a sequence of nonnegative functions
satisfying, for some θ > 0,

|λ̂k(ξ)− 1| ≤ C |ηk+1ξ |
θ , |λ̂k(ξ)| ≤ C |ηkξ |

−θ ,

for all k ∈ Z. Then, the maximal operator (λ∗ f )(x)= supk |λk ∗ f (x)| is bounded on
L p(Rn) for 1< p ≤ ∞.

LEMMA 2.7 (See [4]). Suppose that m denotes the distinct numbers of {α j }. Then for
any x, y ∈ Rn , 0 ≤ β ≤ 1∣∣∣∣∫ 2

1
e−i Aλx ·y dλ

λ

∣∣∣∣ ≤ C |x · y|
−(β/m),

where C > 0 is independent of x and y.

3. Proof of Theorem 1

Noting that

T f (x)=

∫
∞

0

∫
Sn−1

�(y′)J (y′) f (x − Aρ y′) dσ(y′)
dρ

ρ
.

Since � ∈ H1(Sn−1) satisfying the cancellation condition (1.1), we can write

�=

∞∑
j=1

λ j a j + ‖�‖H1(Sn−1)ω,
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where ω satisfies (2.5) and ‖ω‖L∞(Sn−1) ≤ 1, each a j is a regular H1(Sn−1) atom and∑
∞

j=1 |λ j | ≤ C‖�‖H1(Sn−1). So

‖T f ‖p ≤ C
∞∑
j=1

|λ j |‖B j ( f )‖p + ‖�‖H1(Sn−1)‖Tω f ‖p, (3.1)

where

B j ( f )(x)=

∫
∞

0

∫
Sn−1

a j (y
′)J (y′) f (x − Aρ y′) dσ(y′)

dρ

ρ
,

and

Tω( f )(x)=

∫
Rn

f (x − y)ω(y′)ρ(y)−α dy.

Since ω(y′) ∈ L∞(Sn−1)⊂ L log+L(Sn−1) and satisfies (2.5), by Theorem B, we
obtain

‖Tω f ‖p ≤ C‖ f ‖p, (3.2)

where C is independent of ω and f . Therefore, to prove Theorem 1, it suffices by (3.1)
and (3.2) to show that

‖B j ( f )‖p ≤ C‖ f ‖p, j = 1, 2, . . . , (3.3)

where C is independent of the atoms a j and f . By (2.4) and by the observation that
J (y′) ∈ C∞

0 (S
n−1), it is easy to check that ã j (y′)= a j (y′)J (y′)/‖J‖L∞(Sn−1) satisfies

(2.1), (2.3) and (2.6). Thus,

B j ( f )(x)= ‖J‖L∞(Sn−1)

∫
∞

0

∫
Sn−1

ã j (y
′) f (x − Aρ y′) dσ(y′)

dρ

ρ
.

For simplicity in our argument, we denote ã j by a and B j ( f )/‖J‖L∞(Sn−1) by B( f )
from now. Without loss of generality, we may assume that supp(a)⊂ B(ι, r) ∩ Sn−1,

where ι= (1, 0, . . . , 0) and B(ι, r)= {y : |y − ι|< r}. Let Ik = (2k, 2k+1). Then
B( f )(x) is equal to∫

∞

0

∫
Sn−1

ρ−1a(y′)
∑

k

χIk (ρ) f (x − Aρ y′) dσ(y′) dρ =

∑
k

σk ∗ f (x),

where

σ̂k(ξ)=

∫
Ik

∫
Sn−1

a(y′)e−2π i Aρ y′
·ξ dσ(y′)

dρ

ρ
. (3.4)

Let

µ̂k(ξ)=

∫
Ik

∫
Sn−1

|a(y′)|e−2π i Aρ y′
·ξ dσ(y′)

dρ

ρ
, (3.5)

and
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σ ∗( f )(x)= sup
k

|µk ∗ f (x)|. (3.6)

Then it is easy to verify that ‖µ̂k‖∞ < C, ‖σk‖1 < C uniformly for k ∈ Z and for all
k ∈ Z. Since a(y′) satisfies (2.6), then

σ̂k(0)=

∫ 2k+1

2k

dρ

ρ

∫
Sn−1

a(y′) dσ(y′)= 0.

By Lemma 2.5, if we can show that {σk} satisfies condition (2.11) and

‖σ ∗( f )‖p ≤ C‖ f ‖p for all 1< p <∞, (3.7)

where C is independent of a and f . Thus (3.3) is obtained. We first verify
that {σk} satisfies (2.11). We only prove the case n > 2, since the proof for
n = 2 is essentially the same (using Lemma 2.2 instead of Lemma 2.1). For any
ξ 6= 0, we choose a rotation O such that O(Aρξ)= |Aρξ |ι= |Aρξ |(1, 0, . . . , 0). Let
y′

= (s, y′

2, y′

3, . . . , y′
n). Then it is easy to see that

σ̂k(ξ) =

∫
Ik

∫
Sn−1

a(O−1(y′))e−2π i |Aρξ |(ι·y′) dσ(y′)
dρ

ρ
,

where O−1 is the inverse of O. Now a(O−1(y′)) also satisfies (2.3), (2.6) and is
supported in B(ζ, r) ∩ Sn−1, where ζ = Aρξ/|Aρξ |. Thus,

σ̂k(ξ)=

∫
Ik

∫
R

Fa(s)e
−2π i |Aρξ |s ds

dρ

ρ
,

where Fa(s) is the function defined in Lemma 2.1. By Lemma 2.1, we
know supp(Fa)⊂ (−2r(ζ )+ ζ1, 2r(ζ )+ ζ1), where r(ζ )= |Lr Aρξ |/|Aρξ | and
ζ1 = ρα1ξ1/|Aρξ |. Thus, N (s)= r(ζ )Fa(r(ζ )s) is a function supported in the
interval (−2 + ζ1/r(ζ ), 2 + ζ1/r(ζ )), and ‖N‖∞ < C (C is independent of s and ρ),∫
R N (s) ds = 0. After changing variables

σ̂k(ξ)=

∫
Ik

∫
R

N (s)e−2π is|Lr Aρξ | ds
dρ

ρ
.

So by the cancellation property of N (·), we obtain that

|σ̂k(ξ)| ≤

∫
Ik

∣∣∣∣∫
R

N (s) (e−2π i |Lr Aρξ |s − e−2π iρα1ξ1)ds

∣∣∣∣dρ

ρ

≤ C
∫

Ik

∫
|s−

ζ1
r(ζ ) |≤2

|N (s)||Lr Aρξ |

∣∣∣∣s −
ζ1

r(ζ )

∣∣∣∣ ds
dρ

ρ

≤ C
∫ 2

1
|Lr A2kρξ |

dρ

ρ

≤ C |Lr A2k ξ |. (3.8)
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On the other hand, by (3.4) and Hölder’s inequality,

|σ̂k(ξ)|
2
≤ C Hk(ξ), (3.9)

where

Hk(ξ)=

∫
Ik

∣∣∣∣ ∫
Sn−1

a(y′)e−2π i Aρ y′
·ξ dσ(y′)

∣∣∣∣2 dρ

ρ
.

Then we obtain

Hk(ξ) =

∫ 2k+1

2k

∫ ∫
Sn−1×Sn−1

a(y′)a(x ′)e−2π i Aρ(y′
−x ′)·ξ dσ(y′) dσ(x ′)

dρ

ρ

≤ C
∫ ∫

Sn−1×Sn−1
|a(y′)||a(x ′)|

∣∣∣∣ ∫ 2k+1

2k
e−2π i Aρ(y′

−x ′)·ξ dρ

ρ

∣∣∣∣ dσ(y′) dσ(x ′).

By Lemma 2.7, we know∣∣∣∣∫ 2k+1

2k
e−2π i Aρ(y′

−x ′)·ξ dρ

ρ

∣∣∣∣ =

∣∣∣∣∫ 2

1
e−2π i A2kρ(y

′
−x ′)·ξ dρ

ρ

∣∣∣∣
≤ C(|(y′

− x ′) · A2k ξ |)
−2β/m .

where 0 ≤ β < 1/2 and m denotes the distinct numbers of {α j }. Then by the above
inequality we obtain

Hk(ξ)≤ C
∫ ∫

Sn−1×Sn−1
|a(y′)||a(x ′)|(|(y′

− x ′) · A2k ξ |)
−2β/m dσ(y′) dσ(x ′).

(3.9′)

Denote

I1(ξ)=

∫ ∫
Sn−1×Sn−1

|a(y′)||a(x ′)|(|(y′
− x ′) · A2k ξ |)

−2β/m dσ(y′) dσ(x ′).

For any ξ 6= 0, we choose a rotation O such that

O(A2k ξ)= |A2k ξ |ι= |A2k ξ |(1, 0, . . . , 0).

Let
y′

= (s, y′

2, y′

3, . . . , y′
n) and x ′

= (t, x ′

2, x ′

3, . . . , x ′
n).

Then it is easy to see that

I1(ξ) =

∫ ∫
Sn−1×Sn−1

|a(O−1(y′))||a(O−1(x ′))|

× (|(y′
− x ′) · |A2k ξ |ι|)

−2β/m dσ(y′) dσ(x ′),
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where O−1 is the inverse of O. Now a(O−1(y′)) also satisfies (2.3), (2.6) and is
supported in B(ϑ, r) ∩ Sn−1, where ϑ = A2k ξ/|A2k ξ |. Thus,

I1(ξ)=

∫ ∫
R×R

Ga(s)Ga(t)(|A2k ξ ||s − t |)−2β/m ds dt,

where Ga(s) is the function defined in Lemma 2.1. By Lemma 2.1, we
know supp(Ga)⊂ (−2r(ϑ)+ ϑ1, 2r(ϑ)+ ϑ1), where r(ϑ)= |Lr A2k ξ |/|A2k ξ | and
ϑ1 = 2kα1

ξ1/|A2k ξ |. Thus,

ϕ(s)= r(ϑ)Ga

(
r(ϑ)

(
s −

ϑ1

r(ϑ)

))
is a function supported in the interval (−2, 2), and ‖ϕ‖∞ < C , where C is independent
of r , ϑ and k. Since 2β/m < 1, we obtain

I1(ξ) =

∫ 2

−2

∫ 2

−2
ϕ(s)ϕ(t)(|Lr A2k ξ ||s − t |)−2β/m ds dt

≤ C |Lr A2k ξ |
−2β/m

∫ 2

−2

∫ 2

−2
|s − t |−2β/m ds dt

≤ C |Lr A2k ξ |
−2β/m .

This together with (3.9) and (3.9′) gives

|σ̂k(ξ)| ≤ C |Lr A2k ξ |
−β/m . (3.10)

By (3.8) and (3.10),

|σ̂k(ξ)| ≤ C min{|Lr A2k ξ |, |Lr A2k ξ |
−β/m

}. (3.11)

Inequality (3.11) shows that {σk} satisfies (2.11). Hence, it remains to show (3.7). We
define the measure sequences {λk} on R by

λ̂k(ξ1)= ‖a‖L1(Sn−1)

∫
Ik

e−2π iρα1ξ1
dρ

ρ
. (3.12)

Let δ be the Dirac delta function acting on (x2, . . . , xn). Now, choose the function8k
as in Lemma 2.4 and for each k define

νk = µk −8k ∗ (λk ⊗ δ). (3.13)

By (3.6) and (3.13),

σ ∗( f )≤

(∑
k

|νk ∗ f |
2
)1/2

+ sup
k
8k ∗

(
sup

k
|(λk ⊗ δ) ∗ f |

)
, (3.14)
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and

||νk | ∗ f | ≤ σ ∗( f )+ sup
k
8k ∗

(
sup

k
|(λk ⊗ δ) ∗ f |

)
. (3.15)

By (3.14), if we can prove∥∥∥∥ sup
k
8k ∗

(
sup

k
|(λk ⊗ δ) ∗ f |

)∥∥∥∥
p

≤ C‖ f ‖p for all 1< p <∞, (3.16)

and ∥∥∥∥∥
(∑

k

|νk ∗ f |
2
)1/2

∥∥∥∥∥
p

≤ C‖ f ‖p for all 1< p <∞, (3.17)

where C is independent of f, then we obtain (3.7). We first verify (3.16). By the
definition of λk, it is easy to see that, for each k, |λ̂k(ξ1)| ≤ C, and λk is a positive
measure on R:

|λ̂k(ξ1)− λ̂k(0)| ≤ ‖a‖L1(Sn−1)

∫
Ik

|e−2π iρα1ξ1 − 1|
dρ

ρ

≤ C2kα1 |ξ1|.

Using integration by parts,

|λ̂k(ξ1)| ≤ C(2kα1 |ξ1|)
−1.

By Lemma 2.6, we know that supk |λk ∗ f | is bounded in L p(R) for 1< p <∞.
Since δ is the Dirac delta function acting on (x2, . . . , xn), we see supk |(λk ⊗ δ) ∗ f |

is bounded on L p(Rn). So by Lemma 2.4, we obtain (3.16). Hence, it remains to show
(3.17). We still use Lemma 2.5 to do this. We first show that {νk} satisfies (2.11). By
(3.13),

|ν̂k(ξ)| ≤ |µ̂k(ξ)− λ̂k(ξ1)| + |λ̂k(ξ1)||8̂k(ξ)− 1|, (3.18)

and

|ν̂k(ξ)| ≤ |µ̂k(ξ)| + |λ̂k(ξ1)||8̂k(ξ)|. (3.19)

By (3.5) and applying the method of rotation again

µ̂k(ξ)= C
∫

Ik

∫
R

Ga(s)e
−2π i |Aρξ |s ds

dρ

ρ
.

Note that supp(Ga)= supp(Fa)= (ζ1 − 2r(ζ ), ζ1 + 2r(ζ )) by (2.7) and (2.8), and
also note

∫
R Ga(s) ds = ‖a‖L1(Sn−1), then by Lemma 2.1 we have

|µ̂k(ξ)− λ̂k(ξ1)| ≤

∫
Ik

∫
R

|Ga(s)||e
−2π i |Aρξ |s − e−2π iρα1ξ1 | ds

dρ

ρ

≤ C
∫

Ik

1
r(ζ )

∫
|s−ζ1|≤2r(ζ )

|Aρξ ||s − ζ1| ds
dρ

ρ

≤ C |Lr A2k ξ |. (3.20)
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From the proof of (3.10), we also have

|µ̂k(ξ)| ≤ C |Lr A2k ξ |
−β/m . (3.21)

On the other hand,

8̂k(ξ)= 8̂(|Lr A2k ξ |)= e−π |Lr A2k ξ |
2
=

∫
R

e−π t2
e−2π i t |Lr A2k ξ | dt.

Thus,

|8̂k(ξ)− 1| =

∣∣∣∣ ∫
R

e−π t2
(e−2π i t |Lr A2k ξ | − 1) dt

∣∣∣∣
≤ C |Lr A2k ξ |

∫
∞

0
e−π t2

t dt ≤ C |Lr A2k ξ |. (3.22)

Using integration by parts,

|8̂k(ξ)| ≤
C

|Lr A2k ξ |

∫
∞

0
e−π t2

t dt ≤ C |Lr A2k ξ |
−1. (3.23)

By (3.18), (3.20), (3.22) and |λ̂k(ξ1)| ≤ C , we have

|ν̂k(ξ)| ≤ C |Lr A2k ξ |. (3.24)

On the other hand, by (3.19), (3.21), (3.23) and |λ̂k(ξ1)| ≤ C, it is easy to see that

|ν̂k(ξ)| ≤ C |Lr A2k ξ |
−η, (3.25)

where |Lr A2k ξ |−η = max{|Lr A2k ξ |−1, |Lr A2k ξ |−β/m
} and η = β/m or 1. Thus,

(3.24) and (3.25) yield

|ν̂k(ξ)| ≤ C min{|Lr A2k ξ |, |Lr A2k ξ |
−η

}. (3.26)

So {νk} satisfies (2.11). By (3.26) and the same idea of proving (2.18) in Lemma 2.5,
we obtain ∥∥∥∥∥

(∑
k

|νk ∗ f |
2
)1/2

∥∥∥∥∥
2

≤ C‖ f ‖2,

where C is independent of f . By (3.14) and (3.16), we see ‖σ ∗( f )‖2 ≤ C‖ f ‖2.
Therefore, by (3.15), (3.16), we obtain ‖ supk ||νk | ∗ f |‖2 ≤ C‖ f ‖2. Applying
Lemma 2.5 with q = 2 again, we obtain∥∥∥∥∥

(∑
k

|νk ∗ f |
2
)1/2

∥∥∥∥∥
p

≤ C‖ f ‖p for all 4/3< p < 4. (3.27)

https://doi.org/10.1017/S144678870800027X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870800027X


178 Y. Chen, Y. Ding and D. Fan [16]

and

‖σ ∗( f )‖p ≤ C‖ f ‖p for all 4/3< p < 4. (3.28)

Thus, a bootstrap argument by reiterating application of Lemma 2.5 gives us∥∥∥∥∥
(∑

k

|νk ∗ f |
2
)1/2

∥∥∥∥∥
p

≤ C‖ f ‖p,

for all 1< p <∞. Thus, (3.17) is proved and Theorem 1 follows.
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